JP4174877B2 - Method for producing fluororesin-coated molding - Google Patents

Method for producing fluororesin-coated molding Download PDF

Info

Publication number
JP4174877B2
JP4174877B2 JP30474998A JP30474998A JP4174877B2 JP 4174877 B2 JP4174877 B2 JP 4174877B2 JP 30474998 A JP30474998 A JP 30474998A JP 30474998 A JP30474998 A JP 30474998A JP 4174877 B2 JP4174877 B2 JP 4174877B2
Authority
JP
Japan
Prior art keywords
fluororesin
coating
mold
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30474998A
Other languages
Japanese (ja)
Other versions
JP2000117753A (en
Inventor
秀樹 柏原
金子  豊
昭 西村
久美 別所
敏彦 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30474998A priority Critical patent/JP4174877B2/en
Publication of JP2000117753A publication Critical patent/JP2000117753A/en
Application granted granted Critical
Publication of JP4174877B2 publication Critical patent/JP4174877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素樹脂被覆成型物の製造方法に関し、さらに詳しくは、熱可塑性樹脂や熱可塑性エラストマーなどの樹脂材料を用いて、フッ素樹脂被膜が一体化した容器などのフッ素樹脂被覆成型物を製造する方法に関する。本発明のフッ素樹脂被覆成型物は、例えば、電子レンジ用調理容器などとして好適である。
【0002】
【従来の技術】
近年、電子レンジの普及にともない、加工食品を再加熱するのに必要な耐熱性と電磁波透過性を有する電子レンジ用耐熱容器に対する需要が増大している。最近では、加工食品だけではなく、例えば、米と水を入れて、電子レンジで加熱することにより炊飯することができる電子レンジ用調理容器が開発されている。これらの容器としては、耐熱性に優れた樹脂材料を所定形状に成型した樹脂製容器が汎用されている。
【0003】
具体的に、電子レンジ用調理容器としては、例えば、融点が235℃と高く、耐熱性に優れ、耐薬品性、耐熱水性、電気特性にも優れているポリメチルペンテンなどの耐熱性樹脂から成型された容器が使用されている。特に、ポリメチルペンテン製容器は、表面活性エネルギーが小さく離型性に優れているため、米と水を入れて電子レンジで加熱することにより炊飯するのに適している。
しかしながら、従来の電子レンジ用調理容器を用いて炊飯すると、炊けたご飯が容器の表面にこびりついてとれにくいといった問題があった。特に、炊き込みご飯などの醤油や野菜などが入った調理を行った場合には、こびりつきが激しくなる。さらに、電子レンジ用調理容器を用いてシチューや煮付けなどの調理を行うと、調理物がなおひどく容器の表面にこびりついてしまい、調理後の洗浄にも手間がかかるといった問題があった。
【0004】
一方、フッ素樹脂は、ポリメチルペンテンなどの樹脂に比べてはるかに優れた離型性を有するため、フッ素樹脂で被覆した樹脂製容器を作製すれば、前記の如き調理物のこびりつき問題を解消できることが期待される。しかしながら、フッ素樹脂の被覆層を形成するには、樹脂製容器の表面にフッ素樹脂塗料を塗布した後、フッ素樹脂の融点以上の温度に加熱して、焼成する必要がある。フッ素樹脂の融点は、例えば、ポリテトラフルオロエチレン(PTFE)では327℃であり、また、テトラフルオロエチレン/パーフルオロアルキルビニエーテル共重合体(PFA)では310℃であり、いずれも通常の樹脂製容器の耐熱温度を越える温度である。そのため、フッ素樹脂の焼成工程において、下層の樹脂製容器が変形、溶融、または劣化するという問題が生じる。したがって、フッ素樹脂塗料を塗布し、焼成する方法では、樹脂製容器にフッ素樹脂被膜を形成することが実質上不可能であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、表面にフッ素樹脂被膜が形成された樹脂製のフッ素樹脂被覆成型物を提供することにある。
特に、本発明の目的は、内面に非粘着性に優れるフッ素樹脂被膜を設けた樹脂製容器であって、調理の際にこびりつきが無い電子レンジ用調理容器を提供することにある。
【0006】
本発明者らは、前記従来技術の問題点を克服するために鋭意研究した結果、内金型の表面にフッ素樹脂被膜を形成し、次いで、内金型のフッ素樹脂被膜と外金型の内面との間の隙間に樹脂材料を注入して成型した後、内外金型からフッ素樹脂被膜が一体化した樹脂成型物を脱型することにより、表面にフッ素樹脂被膜が形成された樹脂製のフッ素樹脂被覆成型物が得られることを見いだした。
本発明の製造方法によれば、予め内金型表面にフッ素樹脂を塗布し、焼成してフッ素樹脂被膜を形成し、このフッ素樹脂被膜を樹脂材料の成型時に樹脂製容器の表面に転写することになるため、樹脂製容器の変形、溶融、劣化などの問題を生じることがない。本発明は、これらの知見に基づいて完成するに至ったものである。
【0007】
【課題を解決するための手段】
本発明によれば、表面にセラミック離型性被膜を形成した内金型と外金型とを使用し、
内金型の離型性被膜を形成した表面に、ポリテトラフルオロエチレンまたはテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体から成るフッ素樹脂被膜を形成し、次いで、
該フッ素樹脂被膜に対して、紫外線照射、コロナ放電、プラズマ処理、電子線照射、イオン照射、レーザー照射、金属ナトリウムによる化学的処理、または湿式エッチング処理により、該フッ素樹脂被膜の表面からフッ素原子を引き抜くか、該表面を親水化する表面処理を行うか、あるいは、該フッ素樹脂被膜の表面に、フッ素樹脂と耐熱性が200℃以上かつ極性基を持つ耐熱性樹脂との混合物からなる耐熱プライマー層を設けた後、
内金型のフッ素樹脂被膜側の表面と外金型の離型性被膜を形成した内面との間の隙間に、ポリメチルペンテン、ポリエステル、ポリアミド、及びポリサルホンから成る群より選ばれる熱可塑性樹脂材料を注入して成型し、然る後、
内外金型からフッ素樹脂被膜が一体化した樹脂成型物を脱型する
ことを特徴とするフッ素樹脂被覆成型物の製造方法が提供される。
【0008】
【発明の実施の形態】
本発明の製造方法について、図面を参照しながら具体的に説明する。図1は、内金型と外金型の断面略図である。金型の材質としては、特に限定されないが、一般に、鉄、ステンレス、アルミニウム、アルミニウム合金などの耐熱性に優れた金属を使用する。内金型1の表面に、フッ素樹脂被膜4を形成するが、後の脱型工程においてフッ素被膜が内金型の表面から容易に脱型できるようにするために、内金型表面に離型処理を施すことが好ましい。図1には、離型処理の一つとして、内金型表面にセラミック離型性被膜3を形成し、その上にフッ素樹脂被膜を形成した例が示されている。また、外金型の表面にも、セラミック離型性被膜を形成するなどの離型処理を施すことが好ましい。
【0009】
フッ素樹脂被膜を形成した内金型(コア)を外金型(キャビティ)2内に配置し、次いで、図2に示すように、内金型のフッ素樹脂被膜と外金型の内面との間の隙間に樹脂材料を注入して成型し、樹脂成型物5を形成する。樹脂材料を注入するには、通常、樹脂材料を加熱溶融する。溶融した樹脂材料は、注入後、冷却固化されて成型物となる。溶融した樹脂材料の金型内への注入は、通常、注型によって行うが、必要に応じて射出成型してもよい。次に、内金型と外金型を脱型すると、図3に示すように、フッ素樹脂被膜4が樹脂成型物5と一体化したフッ素樹脂被覆成型物が得られる。樹脂材料としては、通常、熱可塑性樹脂や熱可塑性エラストマーなどの熱可塑性樹脂材料を用いるが、熱硬化性樹脂を使用する場合には、熱硬化性樹脂材料を内金型のフッ素樹脂被膜と外金型の内面との間の隙間に注入し、硬化させる。ただし、電子レンジ用調理容器の用途には、未反応物がなく調理時に溶出物のない熱可塑性樹脂材料を使用することが好ましい。
【0010】
ッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)などを挙げることができる。これらのフッ素樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、耐熱性に優れる点で、PTFE及びPFAが好ましく、溶融流動性があり、表面平滑性に優れたフッ素樹脂被膜が得られ易い点で、PFAが特に好ましい。
本発明では、ポリテトラフルオロエチレンまたはテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体が用いられる
【0011】
フッ素樹脂被膜を内金型の表面に形成する方法としては、例えば、
(1)フッ素樹脂の分散液(フッ素樹脂塗料)を塗布し、乾燥させた後、フッ素樹脂の融点以上の温度で焼成する方法、及び
(2)フッ素樹脂の粉体を塗布し、次いで、フッ素樹脂の融点以上の温度で焼成する方法(粉体塗装法)
が挙げられる。
【0012】
フッ素樹脂塗料を用いる(1)の方法では、必要に応じて、充填材などの配合剤を添加し易い一方、水または有機溶媒などの分散媒体中にフッ素樹脂粒子を分散させるのに界面活性剤を必要とする。界面活性剤は、フッ素樹脂の焼成時に炭化して不純物となり、この不純物が脱型を困難にしたり、フッ素樹脂被膜の非粘着性(離型性)を低下させることがある。これに対して、(2)の粉体塗装法を採用すると、(1)の方法のように分散液中にフッ素樹脂粒子を分散させるための界面活性剤が配合されているといったことがなく、純粋なフッ素樹脂の被膜が形成できるため、非粘着性の点からより好ましい。また、粉体塗装法を適用するに際し、フッ素樹脂粉体を帯電させて塗布する静電塗装法を用いることにより、より均一な塗装を行うことができる。フッ素樹脂被膜の厚みは、特に限定されないが、通常、0.1〜150μm、好ましくは1〜60μm、より好ましくは5〜40μm程度である。
【0013】
フッ素樹脂被膜と樹脂成型物との間の接着力を向上させるために、内金型表面に形成したフッ素樹脂被膜の表面処理を行うことが好ましい。フッ素樹脂被膜の表面処理法としては、紫外線ランプ、エキシマランプなどによる紫外線照射、コロナ放電、プラズマ処理、電子線照射、イオン照射、レーザー照射などの照射による物理的処理;金属ナトリウムによる化学的処理;処理液による湿式エッチング処理;などが挙げられる。これらの表面処理によって、フッ素樹脂被膜の表面からフッ素原子が引き抜かれたり、表面が親水化されたりするので、樹脂成型物との接着力が高まる。
【0014】
また、フッ素樹脂被膜と樹脂成型物との間の接着力を向上させるために、フッ素樹脂被膜と注入する樹脂材料との間に耐熱プライマー層を設けてもよい。耐熱プライマーは、特に限定されないが、フッ素樹脂と耐熱性が200℃以上かつ極性基を持つ耐熱性樹脂との混合物が好ましい。耐熱性樹脂としては、特に限定されないが、ポリアミドイミド、ポリエーテルスルホンが好ましい。この耐熱プライマー層は、通常、フッ素樹脂被膜の表面に形成する。
【0015】
本発明で使用する樹脂材料は、特に限定されないが、フッ素樹脂被覆成型物を電子レンジ用調理容器として使用する場合には、電子レンジでの調理に耐える耐熱性を持つものが好ましい。また、食品衛生上の点からは、塩素を含まない熱可塑性樹脂、熱可塑性エラストマー、あるいはこれらの2種以上の混合物が好ましく、例えば、熱可塑性樹脂では、ポリメチルペンテン、ポリエステル、ポリアミド、ポリサルホンなどが好ましく、ポリメチルペンテンが特に好ましい。
本発明では、ポリメチルペンテン、ポリエステル、ポリアミド、及びポリサルホンから成る群より選ばれる熱可塑性樹脂が使用される
本発明のフッ素樹脂被覆成型物としては、内面にフッ素樹脂被膜が形成された容器であることが好ましい。このような容器は、電子レンジ用調理容器として好適であり、炊飯などの調理を行っても、調理物が表面にこびりつくことがなく、調理後の洗浄も簡単である。
【0016】
【実施例】
以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。
【0017】
[実施例1]
図1に示すようなステンレス製の内金型1の表面にセラミカ(日板研究所製)を塗布し、200℃で熱処理してセラミックの離型性被膜を形成した。同様に、外金型2の内表面にセラミックの離型性被膜を形成した。(図示せず)。
セラミックの離型性被膜を形成した内金型表面にPFAディスパージョン(AD2−CR、ダイキン製)をスプレーで塗布し、100℃で30分、380℃で60分熱処理して、厚み20μmのPFA被膜を形成した。次いで、PFA被膜表面に、耐熱プライマーのEK−1959DGN(ダイキン製)をスプレーで塗布し、100℃で30分、380℃で10分熱処理した。
内金型と外金型の隙間に、ポリメチルペンテンを熱溶融させて注型した。冷却後、PFA被膜と一体化したポリメチルペンテン容器を金型から脱型した。
【0018】
[実施例2]
実施例1と同様に、ステンレス製の内金型及び外金型の表面にセラミックの離型性被膜を形成し、次いで、離型処理した内金型表面にPFA被膜を形成した。PFA被膜表面をテトラエッチ液(潤工社製)でエッチング処理し、水で洗浄した後、乾燥させた。
内金型と外金型の隙間に、ポリメチルペンテンを熱溶融させて注型した。冷却後、PFA被膜と一体化したポリメチルペンテン容器を金型から脱型した。
【0019】
[実施例3]
実施例1と同様に,ステンレス製の内金型及び外金型の表面にセラミックの離型性被膜を形成した。次いで、離型処理した内金型表面に、PFA粉体のMP102(三井デュポン製)を静電塗装し、380℃で60分熱処理して、厚み20μmのPFA被膜を形成した。PFA被膜表面に、耐熱プライマーのEK−1959DGN(ダイキン製)をスプレーで塗布し、100℃で30分、380℃で10分熱処理した。
内金型と外金型の隙間に、ポリメチルペンテンを熱溶融させて注型した。冷却後、PFA被膜と一体化したポリメチルペンテン容器を金型から脱型した。
【0020】
[実施例4]
実施例1と同様に、ステンレス製の内金型及び外金型の表面にセラミックの離型性被膜を形成した。次いで、離型処理した内金型表面に、PFA粉体のMP102(三井デュポン製)を静電塗装し、380℃で60分熱処理して、厚み20μmのPFA被膜を形成した。PFA被膜表面をテトラエッチ液(潤工社製)でエッチング処理し、水で洗浄した後、乾燥させた。
内金型と外金型の隙間に、ポリメチルペンテンを熱溶融させて注型した。冷却後、PFA被膜と一体化したポリメチルペンテン容器を金型から脱型した。
【0021】
[比較例1]
ステンレス製の内金型及び外金型の隙間に、ポリメチルペンテンを熱溶融させて注型した。冷却後、ポリメチルペンテン容器を金型から脱型した。
<性能評価>
各実施例及び比較例で得られた各容器に、米3合、おでんの素100g、水1リットルを入れ、ポリメチルペンテン製の上蓋をして、電子レンジで30分間調理し炊飯した。炊飯後の容器をひっくり返して調理した米を取り出し、米のこびりつきの状態を観察した。結果を表1に示す。
【0022】
【表1】

Figure 0004174877
表1の結果から明らかなように、実施例1〜4の容器ではこびりつきが全く見られなかったのに対し、比較例1の容器では、かなりの量の米が容器にこびりつき取れなかった。
【0023】
【発明の効果】
本発明によれば、表面にフッ素樹脂被膜が形成された樹脂製のフッ素樹脂被覆成型物が提供される。特に、本発明によれば、内面に非粘着性に優れるフッ素樹脂被膜を設けた樹脂製容器であって、調理の際にこびりつきが無い電子レンジ用調理容器が提供される。
【図面の簡単な説明】
【図1】本発明の製造方法の一例を示す断面略図である。
【図2】本発明の製造方法の一例を示す断面略図である。
【図3】本発明のフッ素樹脂被覆成型物の一例を示す断面略図である。
【符号の説明】
1:内金型
2:外金型
3:セラミック離型性被膜
4:フッ素樹脂被膜
5:樹脂成型物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fluororesin-coated molded article, and more specifically, uses a resin material such as a thermoplastic resin or a thermoplastic elastomer to produce a fluororesin-coated molded article such as a container in which a fluororesin coating is integrated. On how to do. The fluororesin-coated molded product of the present invention is suitable, for example, as a cooking container for a microwave oven.
[0002]
[Prior art]
In recent years, with the spread of microwave ovens, there is an increasing demand for heat-resistant containers for microwave ovens that have the heat resistance and electromagnetic wave permeability necessary for reheating processed foods. Recently, not only processed foods but also cooking containers for microwave ovens that can be cooked by adding rice and water and heating them in a microwave oven have been developed. As these containers, resin containers obtained by molding a resin material having excellent heat resistance into a predetermined shape are widely used.
[0003]
Specifically, as a cooking container for a microwave oven, for example, it is molded from a heat resistant resin such as polymethylpentene, which has a high melting point of 235 ° C., excellent heat resistance, chemical resistance, hot water resistance, and electrical characteristics. Used containers. In particular, a polymethylpentene container is suitable for cooking rice by adding rice and water and heating it in a microwave oven because of its small surface active energy and excellent releasability.
However, when rice is cooked using a conventional microwave cooking container, there is a problem that the cooked rice is hard to stick to the surface of the container. In particular, when cooking is performed with soy sauce such as cooked rice or vegetables, sticking becomes intense. Further, when cooking such as stew or cooking is performed using a microwave cooking container, there is a problem that the cooked food still sticks to the surface of the container so that washing after cooking is troublesome.
[0004]
On the other hand, fluororesin has much better release properties than resins such as polymethylpentene, so if you make a resin container coated with fluororesin, you can solve the above-mentioned sticking problem of cooked food There is expected. However, in order to form a coating layer of fluororesin, it is necessary to apply a fluororesin coating to the surface of the resin container, and then heat and bak it at a temperature equal to or higher than the melting point of the fluororesin. The melting point of the fluororesin, such as polytetrafluoroethylene (PTFE) is at 327 ° C., also a tetrafluoroethylene / perfluoroalkyl vinyl le ether copolymer (PFA) at 310 ° C., both conventional resin The temperature exceeds the heat resistance temperature of the container. Therefore, in the fluororesin baking process, there arises a problem that the lower resin container is deformed, melted or deteriorated. Therefore, it is virtually impossible to form a fluororesin film on a resin container by the method of applying and baking the fluororesin paint.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin-made fluororesin-coated molded product having a fluororesin coating formed on the surface thereof.
In particular, an object of the present invention is to provide a cooking container for a microwave oven, which is a resin container provided with a fluororesin coating having excellent non-adhesiveness on the inner surface and does not stick when cooking.
[0006]
As a result of diligent research to overcome the problems of the prior art, the present inventors formed a fluororesin coating on the inner mold surface, and then the inner mold fluororesin coating and the outer mold inner surface. After the resin material is injected into the gap between and molded, the resin molded product with the fluororesin coating integrated from the inner and outer molds is removed, so that the fluororesin made of resin with the fluororesin coating formed on the surface It has been found that a resin-coated molded product can be obtained.
According to the manufacturing method of the present invention, a fluororesin is applied to the inner mold surface in advance and baked to form a fluororesin coating, and this fluororesin coating is transferred to the surface of the resin container when molding the resin material. Therefore, problems such as deformation, melting, and deterioration of the resin container do not occur. The present invention has been completed based on these findings.
[0007]
[Means for Solving the Problems]
According to the present invention, using an inner mold and an outer mold having a ceramic releasable film formed on the surface,
The surface formed the inner die of releasing film, to form a fluororesin coating comprising polytetrafluoroethylene or a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, then
The fluorine resin film is irradiated with fluorine atoms from the surface of the fluorine resin film by ultraviolet irradiation, corona discharge, plasma treatment, electron beam irradiation, ion irradiation, laser irradiation, chemical treatment with metallic sodium, or wet etching treatment. A heat-resistant primer layer made of a mixture of a fluororesin and a heat-resistant resin having a heat resistance of 200 ° C. or more and a polar group on the surface of the fluororesin coating, or by performing surface treatment to make the surface hydrophilic After providing
A thermoplastic resin material selected from the group consisting of polymethylpentene, polyester, polyamide, and polysulfone in the gap between the surface of the inner mold on the fluororesin coating side and the inner surface of the outer mold on which the release coating is formed And then mold it ,
There is provided a method for producing a fluororesin-coated molded product, wherein a resin molded product in which a fluororesin coating is integrated is removed from an inner and outer mold.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an inner mold and an outer mold. The material of the mold is not particularly limited, but generally, a metal having excellent heat resistance such as iron, stainless steel, aluminum, and aluminum alloy is used. A fluororesin film 4 is formed on the surface of the inner mold 1. In order to allow the fluorine film to be easily demolded from the surface of the inner mold in a subsequent demolding step, the mold is released on the surface of the inner mold. It is preferable to perform the treatment. FIG. 1 shows an example in which a ceramic releasable film 3 is formed on the inner mold surface and a fluororesin film is formed thereon as one of the mold release treatments. Moreover, it is preferable to perform a mold release treatment such as forming a ceramic mold release film on the surface of the outer mold.
[0009]
The inner mold (core) on which the fluororesin coating is formed is placed in the outer mold (cavity) 2 and then, as shown in FIG. 2, between the fluororesin coating on the inner mold and the inner surface of the outer mold. A resin material is injected into the gap and molded to form a resin molding 5. In order to inject the resin material, the resin material is usually heated and melted. The molten resin material is cooled and solidified after being poured into a molded product. Injection of the molten resin material into the mold is usually performed by casting, but may be injection-molded as necessary. Next, when the inner mold and the outer mold are removed, a fluororesin-coated molded product in which the fluororesin coating 4 is integrated with the resin molded product 5 is obtained as shown in FIG. As the resin material, a thermoplastic resin material such as a thermoplastic resin or a thermoplastic elastomer is usually used. However, when a thermosetting resin is used, the thermosetting resin material is separated from the fluororesin coating of the inner mold. It is poured into the gap between the inner surface of the mold and cured. However, it is preferable to use a thermoplastic resin material that has no unreacted substance and has no eluate during cooking for the use of the cooking container for a microwave oven.
[0010]
The full fluororesin, such as polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl le ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / Examples thereof include tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and polyvinylidene fluoride (PVDF). These fluororesins can be used alone or in combination of two or more. Among these, PTFE and PFA are preferable from the viewpoint of excellent heat resistance, and PFA is particularly preferable from the viewpoint of easily obtaining a fluororesin film having melt fluidity and excellent surface smoothness.
In the present invention, polytetrafluoroethylene or a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer is used .
[0011]
As a method for forming the fluororesin coating on the surface of the inner mold, for example,
(1) A method of applying a fluororesin dispersion (fluororesin coating material) and drying, followed by baking at a temperature equal to or higher than the melting point of the fluororesin, and (2) applying a fluororesin powder, followed by fluorine Baking at a temperature above the melting point of the resin (powder coating method)
Is mentioned.
[0012]
In the method (1) using a fluororesin coating, a surfactant is used to disperse fluororesin particles in a dispersion medium such as water or an organic solvent while easily adding a compounding agent such as a filler as required. Need. The surfactant is carbonized to become an impurity when the fluororesin is baked, and this impurity may make it difficult to remove the mold or reduce the non-adhesiveness (release property) of the fluororesin film. On the other hand, when the powder coating method of (2) is adopted, there is no such a case that a surfactant for dispersing the fluororesin particles in the dispersion is blended as in the method of (1). Since a pure fluororesin film can be formed, it is more preferable from the point of non-adhesiveness. Further, when applying the powder coating method, a more uniform coating can be performed by using an electrostatic coating method in which the fluororesin powder is charged and applied. Although the thickness of a fluororesin film is not specifically limited, Usually, it is 0.1-150 micrometers, Preferably it is 1-60 micrometers, More preferably, it is about 5-40 micrometers.
[0013]
In order to improve the adhesive force between the fluororesin coating and the resin molding, it is preferable to perform a surface treatment of the fluororesin coating formed on the inner mold surface. Surface treatment methods for fluororesin coatings include: UV treatment with UV lamps, excimer lamps, etc., corona discharge, plasma treatment, electron beam irradiation, ion irradiation, laser irradiation, etc .; physical treatment with metal sodium; And wet etching treatment with a treatment liquid. By these surface treatments, fluorine atoms are extracted from the surface of the fluororesin coating or the surface is hydrophilized, so that the adhesive force with the resin molding is increased.
[0014]
Moreover, in order to improve the adhesive force between a fluororesin film and a resin molding, you may provide a heat-resistant primer layer between a fluororesin film and the resin material to inject | pour. The heat-resistant primer is not particularly limited, but a mixture of a fluororesin and a heat-resistant resin having a heat resistance of 200 ° C. or more and having a polar group is preferable. Although it does not specifically limit as heat resistant resin, Polyamideimide and polyether sulfone are preferable. This heat-resistant primer layer is usually formed on the surface of the fluororesin coating.
[0015]
The resin material used in the present invention is not particularly limited, but when a fluororesin-coated molded product is used as a cooking container for a microwave oven, one having heat resistance that can withstand cooking in a microwave oven is preferable. From the viewpoint of food hygiene, a chlorine-free thermoplastic resin, thermoplastic elastomer, or a mixture of two or more of these is preferred. For thermoplastic resins, polymethylpentene, polyester, polyamide, polysulfone, etc. Are preferred, and polymethylpentene is particularly preferred.
In the present invention, a thermoplastic resin selected from the group consisting of polymethylpentene, polyester, polyamide, and polysulfone is used .
The fluororesin-coated molded product of the present invention is preferably a container having a fluororesin film formed on the inner surface. Such a container is suitable as a cooking container for a microwave oven, and even when cooking such as cooking rice, the cooked product does not stick to the surface, and washing after cooking is easy.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0017]
[Example 1]
A ceramic (manufactured by Nippon Sheet Research Laboratories) was applied to the surface of a stainless steel inner mold 1 as shown in FIG. 1, and heat treated at 200 ° C. to form a ceramic releasable film. Similarly, a ceramic releasable film was formed on the inner surface of the outer mold 2. (Not shown).
PFA dispersion (AD2-CR, manufactured by Daikin) is sprayed on the inner mold surface on which the ceramic releasable film is formed, heat treated at 100 ° C. for 30 minutes and 380 ° C. for 60 minutes, and PFA having a thickness of 20 μm A film was formed. Next, a heat-resistant primer EK-1959DGN (manufactured by Daikin) was applied to the surface of the PFA coating by spraying, followed by heat treatment at 100 ° C. for 30 minutes and 380 ° C. for 10 minutes.
In a gap between the inner mold and the outer mold, polymethylpentene was melted and cast. After cooling, the polymethylpentene container integrated with the PFA coating was removed from the mold.
[0018]
[Example 2]
In the same manner as in Example 1, a ceramic releasable film was formed on the surfaces of the stainless inner mold and the outer mold, and then a PFA film was formed on the inner mold surface subjected to the mold release treatment. The surface of the PFA coating was etched with a tetra-etch solution (manufactured by Junko), washed with water, and then dried.
In a gap between the inner mold and the outer mold, polymethylpentene was melted and cast. After cooling, the polymethylpentene container integrated with the PFA coating was removed from the mold.
[0019]
[Example 3]
In the same manner as in Example 1, a ceramic releasable film was formed on the surfaces of the stainless inner mold and the outer mold. Next, PFA powder MP102 (manufactured by Mitsui DuPont) was electrostatically coated on the surface of the inner mold subjected to the mold release treatment, and heat treated at 380 ° C. for 60 minutes to form a PFA film having a thickness of 20 μm. A heat-resistant primer EK-1959DGN (manufactured by Daikin) was sprayed on the surface of the PFA coating, and heat-treated at 100 ° C. for 30 minutes and at 380 ° C. for 10 minutes.
In a gap between the inner mold and the outer mold, polymethylpentene was melted and cast. After cooling, the polymethylpentene container integrated with the PFA coating was removed from the mold.
[0020]
[Example 4]
In the same manner as in Example 1, a ceramic releasable film was formed on the surfaces of the stainless inner mold and the outer mold. Next, PFA powder MP102 (manufactured by Mitsui DuPont) was electrostatically coated on the surface of the inner mold subjected to the mold release treatment, and heat treated at 380 ° C. for 60 minutes to form a PFA film having a thickness of 20 μm. The surface of the PFA coating was etched with a tetra-etch solution (manufactured by Junko), washed with water, and then dried.
In a gap between the inner mold and the outer mold, polymethylpentene was melted and cast. After cooling, the polymethylpentene container integrated with the PFA coating was removed from the mold.
[0021]
[Comparative Example 1]
In a gap between the stainless steel inner mold and the outer mold, polymethylpentene was melted and cast. After cooling, the polymethylpentene container was removed from the mold.
<Performance evaluation>
In each container obtained in each of the examples and comparative examples, 3 g of rice, 100 g of oden, and 1 liter of water were placed, covered with a polymethylpentene top, cooked in a microwave for 30 minutes, and cooked. The cooked rice was taken out by turning the container after cooking, and the state of rice sticking was observed. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0004174877
As is apparent from the results in Table 1, no sticking was observed in the containers of Examples 1 to 4, whereas a considerable amount of rice was not sticking to the container in the container of Comparative Example 1.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the resin-made fluororesin coating moldings in which the fluororesin film was formed in the surface are provided. In particular, according to the present invention, there is provided a cooking container for a microwave oven, which is a resin container provided with a fluororesin coating having excellent non-adhesiveness on the inner surface and does not stick when cooking.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of the production method of the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of the manufacturing method of the present invention.
FIG. 3 is a schematic cross-sectional view showing an example of a fluororesin-coated molded product of the present invention.
[Explanation of symbols]
1: Inner mold 2: Outer mold 3: Ceramic releasable coating 4: Fluororesin coating 5: Molded resin

Claims (4)

表面にセラミック離型性被膜を形成した内金型と外金型とを使用し、
内金型の離型性被膜を形成した表面に、ポリテトラフルオロエチレンまたはテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体から成るフッ素樹脂被膜を形成し、次いで、
該フッ素樹脂被膜に対して、紫外線照射、コロナ放電、プラズマ処理、電子線照射、イオン照射、レーザー照射、金属ナトリウムによる化学的処理、または湿式エッチング処理により、該フッ素樹脂被膜の表面からフッ素原子を引き抜くか、該表面を親水化する表面処理を行うか、あるいは、該フッ素樹脂被膜の表面に、フッ素樹脂と耐熱性が200℃以上かつ極性基を持つ耐熱性樹脂との混合物からなる耐熱プライマー層を設けた後、
内金型のフッ素樹脂被膜側の表面と外金型の離型性被膜を形成した内面との間の隙間に、ポリメチルペンテン、ポリエステル、ポリアミド、及びポリサルホンから成る群より選ばれる熱可塑性樹脂材料を注入して成型し、然る後、
内外金型からフッ素樹脂被膜が一体化した樹脂成型物を脱型する
ことを特徴とするフッ素樹脂被覆成型物の製造方法。
Using an inner mold and an outer mold with a ceramic releasable film formed on the surface,
The surface formed the inner die of releasing film, to form a fluororesin coating comprising polytetrafluoroethylene or a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, then
The fluorine resin film is irradiated with fluorine atoms from the surface of the fluorine resin film by ultraviolet irradiation, corona discharge, plasma treatment, electron beam irradiation, ion irradiation, laser irradiation, chemical treatment with metallic sodium, or wet etching treatment. A heat-resistant primer layer made of a mixture of a fluororesin and a heat-resistant resin having a heat resistance of 200 ° C. or more and a polar group on the surface of the fluororesin coating, or by performing surface treatment to make the surface hydrophilic After providing
A thermoplastic resin material selected from the group consisting of polymethylpentene, polyester, polyamide, and polysulfone in the gap between the surface of the inner mold on the fluororesin coating side and the inner surface of the outer mold on which the release coating is formed And then mold it ,
A method for producing a fluororesin-coated molded product, comprising demolding a resin molded product in which a fluororesin coating is integrated from an inner and outer mold.
該内金型の離型性被膜を形成した表面にフッ素樹脂の分散液を塗布し、乾燥させた後、該フッ素樹脂の融点以上の温度で焼成する方法によりフッ素樹脂被膜を形成する請求項1記載の製造方法。2. A fluororesin coating is formed by a method in which a fluororesin dispersion is applied to the surface of the inner mold on which the release coating is formed, dried, and then fired at a temperature equal to or higher than the melting point of the fluororesin. The manufacturing method as described. 内金型の離型性被膜を形成した表面にフッ素樹脂の粉体を粉体塗装し、該フッ素樹脂の融点以上の温度で焼成する方法によりフッ素樹脂被膜を形成する請求項1記載の製造方法。A powder of fluororesin powder coating on the surface formed the inner die of releasing film, No placement claim 1 Symbol forming a fluororesin coating film by a method of baking at a temperature higher than the melting point of the fluororesin Production method. フッ素樹脂被覆成型物が、内面にフッ素樹脂被膜が形成された容器である請求項1ないし3のいずれか1項に記載の製造方法。  The manufacturing method according to any one of claims 1 to 3, wherein the fluororesin-coated molded product is a container having a fluororesin coating formed on the inner surface.
JP30474998A 1998-10-13 1998-10-13 Method for producing fluororesin-coated molding Expired - Fee Related JP4174877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30474998A JP4174877B2 (en) 1998-10-13 1998-10-13 Method for producing fluororesin-coated molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30474998A JP4174877B2 (en) 1998-10-13 1998-10-13 Method for producing fluororesin-coated molding

Publications (2)

Publication Number Publication Date
JP2000117753A JP2000117753A (en) 2000-04-25
JP4174877B2 true JP4174877B2 (en) 2008-11-05

Family

ID=17936768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30474998A Expired - Fee Related JP4174877B2 (en) 1998-10-13 1998-10-13 Method for producing fluororesin-coated molding

Country Status (1)

Country Link
JP (1) JP4174877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406662B (en) * 2013-07-17 2015-07-08 江苏大学 Micro plastic forming demolding device and forming method under high strain rate

Also Published As

Publication number Publication date
JP2000117753A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
CN106086763B (en) Pot and preparation method thereof
JP5464710B2 (en) Cooking utensils with a non-stick coating having scratch and corrosion resistance
JP4448480B2 (en) Electromagnetic induction heating cooking utensil, method for manufacturing the same, and electromagnetic induction heating cooker
KR20120018357A (en) Cooking utensil comprising a hard base made from a ceramic and/or metal and/or polymer material and a nonstick coating containing a fluorocarbon resin
CN101687401A (en) Fluororesin composite material, cooking utensil, cooker, roller for oa apparatus, belt for oa apparatus, and processes for producing these
JP6688907B2 (en) Method for manufacturing intermediate material for cookware and intermediate material for cookware manufactured by the manufacturing method
CA2525068C (en) Composite material and plastic-processing product using the same
JP3103084B2 (en) Manufacturing method for tubular objects
JP4174877B2 (en) Method for producing fluororesin-coated molding
US20100167890A1 (en) Oa apparatus roller
JP4435051B2 (en) Surface-modified carbon aggregate, method for surface modification of carbon aggregate, and electromagnetic induction heating cooker or electromagnetic induction heating rice cooker
JP4909271B2 (en) Resin mold
EP3287211B1 (en) Method for producing heat sink
JP4347305B2 (en) Method for manufacturing induction heating cooker
JPH0538721A (en) Molding die and molding method using the same
US20090176637A1 (en) oa apparatus roller
JP4804580B1 (en) Method for surface modification of sintered carbon
JP5042276B2 (en) Surface-modified carbon aggregate and electromagnetic induction heating cooker or electromagnetic induction heating cooker
JPH08206004A (en) Induction heating cooker and manufacture thereof
JPH044946A (en) Metallic mold for precision casting
JPS61149275A (en) Method for applying fluorocarbon resin to aluminum foil or aluminum alloy foil
KR19990057648A (en) Fluorine resin coated ceramic container and its manufacturing method
JP3753790B2 (en) Fixing roller and manufacturing method thereof
JP3677829B2 (en) Liquid heating container
JP2010158881A (en) Heat control mold for injection molding and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees