JP4174844B2 - Freezer refrigerator - Google Patents

Freezer refrigerator Download PDF

Info

Publication number
JP4174844B2
JP4174844B2 JP03840498A JP3840498A JP4174844B2 JP 4174844 B2 JP4174844 B2 JP 4174844B2 JP 03840498 A JP03840498 A JP 03840498A JP 3840498 A JP3840498 A JP 3840498A JP 4174844 B2 JP4174844 B2 JP 4174844B2
Authority
JP
Japan
Prior art keywords
evaporator
temperature
defrosting
refrigerator
cold air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03840498A
Other languages
Japanese (ja)
Other versions
JPH11237161A (en
Inventor
泰樹 浜野
義人 木村
明 兵藤
宏 山田
治彦 岩井
伸一 金岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03840498A priority Critical patent/JP4174844B2/en
Publication of JPH11237161A publication Critical patent/JPH11237161A/en
Application granted granted Critical
Publication of JP4174844B2 publication Critical patent/JP4174844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵あるいは冷凍により保存を行う冷凍冷蔵庫の除霜に関するものである。
【0002】
【従来の技術】
図10に従来のこの種の冷蔵庫の一例として、特開平7−159014号公報に開示されている冷凍冷蔵庫の概略図を示す。
【0003】
この冷凍冷蔵庫は冷凍冷蔵庫箱体1が冷凍室2と冷蔵室3に区切られている。冷凍室2の奥部には蒸発器4と庫内ファン5とが設置されている。蒸発器4によって冷媒を蒸発させることで冷凍室2内を冷却し、庫内ファン5で冷気を循環させる。
【0004】
さらに蒸発器4の近傍には、付着する霜を除去するための除霜ヒータ6と除霜時の温度を検知する除霜温度検知手段7とが取り付けられている。
【0005】
冷凍室2と冷蔵室3とをつなぐ冷気通路8に電動ダンパ9が設置され、電動ダンパ9の開閉動作によって冷凍室2からの冷気が冷蔵室3に循環される。
【0006】
また、冷蔵室3の後背部には冷凍サイクルを構成する圧縮機10が設置されている。
【0007】
庫内ファン5と除霜ヒータ6と除霜温度検知手段7と電動ダンパ9と圧縮機10の運転制御はシステム制御手段11により行われる。
【0008】
次に上記従来の構成の動作について説明する。
圧縮機10の運転により、圧縮機10より吐出された高温高圧の冷媒は、図示しない凝縮器により凝縮液化し、さらに、図示しない減圧手段にて減圧され、蒸発器4で蒸発気化し空気を冷却する。庫内ファン5が運転することで冷凍室2と冷蔵室3へと熱搬送が行われる。蒸発器4で気化した冷媒は、再び圧縮機10に吸入される。
【0009】
このような動作を行うことにより、冷凍室2と冷蔵室3とを冷却する。
このような冷却運転を続けると、蒸発器4を循環する空気に含まれる水分が、熱交換される際に霜として蒸発器4の表面に付着する。この着霜が進むと通風抵抗の増加による風速の低下や、霜層による蒸発器4の空気側熱伝達率の減少により蒸発器4の熱交換性能が低下し、充分な冷却運転が不可能となってくる。
【0010】
この状態を防止するため定期的に除霜が行われる。除霜が開始されると、圧縮機10が停止し除霜ヒータ6が通電される。除霜ヒータ6の通電により蒸発器4の表面に付着した霜を発熱により融解する。蒸発器4の表面に付着した霜が融解すると、除霜温度検知手段7は除霜が完了したことを所定温度(一般的には10〜20℃)以上になることで検知し、除霜ヒータ6の通電を停止する。その後、上記の通常の冷却運転に復帰する。
【0011】
【発明が解決しようとする課題】
しかしながら上記のような冷凍冷蔵庫では、冷蔵室と冷凍室の両室内の空気が蒸発器を循環するため、蒸発器の表面に多量の霜が付着し、この多量の霜を融解するため除霜時間が長くなり、除霜ヒータの通電加熱量も大きくなり、発生する熱負荷が増大する。従って、発生する熱負荷により冷凍室内に貯蔵した食品の温度が一時的に大きく上昇するので食品の鮮度維持が短くなる。
【0012】
しかも除霜終了後は冷凍室内温度も高くなっているため、除霜終了後の圧縮機の運転率も長くなり消費電力量の増加につながる。
【0013】
また、蒸発器に付着する霜量が多いため、定期的に行われる除霜の間隔(積算時間)が比較的短くなり、単位時間内に行われる除霜の回数が多く、除霜により発生する熱負荷による冷凍室庫内温度の変動回数が多いので、冷凍室内の食品の鮮度維持が短くなる。
【0014】
しかも、単位時間内に行われる除霜回数が多いため、冷凍室温度が頻繁に上昇し、圧縮機の運転率も高くなり消費電力量の増加につながる。
【0015】
このように従来の冷凍冷蔵庫では、単一の蒸発器であるため蒸発器に付着する霜量が多く、除霜時間が長くなる。これにより除霜に伴う熱負荷の発生も多くなり、冷凍室内の食品の温度が上昇することで食品鮮度の維持が短く、併せて冷凍室内温度も高くなるため除霜終了後の圧縮機の運転時間が長くなり消費電力量が増加する。
【0016】
また、蒸発器に付着する霜量が多いため、定期的に行われる除霜間の間隔(積算時間)が比較的短く、単位時間内に行われる除霜の回数が多くなる。これにより除霜に伴う熱負荷による冷凍室庫内温度の変動回数が多くなり、冷凍室内の食品の鮮度維持が短く、併せて単位時間内に行われる除霜回数が多いため、冷凍室庫内温度が頻繁に上昇し、圧縮機の運転率も高くなり消費電力量が増加するという課題を有していた。
【0017】
本発明は以上のような従来例の問題点を解決するもので、蒸発器を冷蔵室に設けた第一の蒸発器と冷凍室に設けた第二の蒸発器に分割することで、特に第二の蒸発器に付着する霜量を少なくすることができ、それに伴って除霜時の冷凍室に対する温度上昇が低減され、冷凍室の食品温度をほぼ一定に保つことができる冷凍冷蔵庫を提供し、併せて、除霜による冷凍室庫内温度上昇の低減により消費電力量を低減することのできる冷凍冷蔵庫を提供することを目的とする。
【0018】
【課題を解決するための手段】
この目的を達成するために本発明の冷凍冷蔵庫は、冷凍室と冷蔵室から成る冷凍冷蔵庫箱体と、圧縮機と凝縮器と第一の減圧手段とを順次直列に接合し、前記第一の減圧手段と前記冷凍室内に設けた第二の蒸発器との間に前記冷蔵室内に設け入口部に冷媒制御弁を配置した第一の蒸発器と第二の減圧手段とを並列に接合した冷却システムと、前記第一の蒸発器の近傍に第一の冷気循環手段と前記第二の蒸発器の近傍に第二の冷気循環手段と除霜ヒータとを設けてある。前記圧縮機と前記冷媒制御弁と前記第一の冷気循環手段と前記第二の冷気循環手段と前記除霜ヒータとを運転制御するシステム制御手段を設け、前記システム制御手段の命令による第一の所定のタイミングで前記除霜ヒータの通電によって第二の蒸発器の除霜を行うとき圧縮機の運転を停止し冷媒制御弁をとし前記第一の冷気循環手段を運転することを特徴とする。
【0021】
さらに、第一の蒸発器近傍に補償ヒータを設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記補償ヒータを通電することを特徴とする。
【0022】
また、冷蔵室内の温度を検知する検知手段を設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記温度検知手段が所定温度を検知しているならば補償ヒータを通電することを特徴とする。
【0023】
この本発明によれば、蒸発器を冷蔵室に設けた第一の蒸発器と冷凍室に設けた第二の蒸発器に分割することで、特に第二の蒸発器に付着する霜量を少なくすることができ除霜時間の短縮が計られる。これに伴い、冷凍室への熱負荷が減少することから除霜時における冷凍室の温度上昇が低減され、冷凍室内の食品温度の変動を抑えることができ、食品の鮮度を長く保つことができる。
【0024】
また、冷凍室の温度上昇低減に伴い、除霜後の通常運転時における圧縮機の運転時間が短縮され消費電力量の低減が図られる。
【0025】
さらに、第二の蒸発器に付着する霜量を少なくすることができるので、定期的に行われる除霜間の間隔(積算時間)を長くすることができる。これに伴い、単位時間内に行われる除霜の回数が減少することから、除霜により発生する熱負荷による冷凍室庫内温度の変動回数が減少し、食品の鮮度を長く保つことができる。
【0026】
また、単位時間内に行われる除霜回数が減少することから、冷凍室庫内温度が上昇する回数も減少し、圧縮機の運転率も低くなり消費電力量の低減を図ることのできる冷凍冷蔵庫を提供できる。
【0031】
【発明の実施の形態】
本発明の請求項に記載の発明は、冷凍室と冷蔵室から成る冷凍冷蔵庫箱体と、圧縮機と凝縮器と第一の減圧手段とを順次直列に接合し、前記第一の減圧手段と前記冷凍室内に設けた第二の蒸発器との間に前記冷蔵室内に設け入口部に冷媒制御弁を配置した第一の蒸発器と第二の減圧手段とを並列に接合した冷却システムと、前記第一の蒸発器の近傍に第一の冷気循環手段と前記第二の蒸発器の近傍に第二の冷気循環手段と除霜ヒータと、前記圧縮機と前記冷媒制御弁と前記第一の冷気循環手段と前記第二の冷気循環手段と前記除霜ヒータとを運転制御するシステム制御手段とからなり、前記システム制御手段の命令による第一の所定のタイミングで除霜ヒータの通電によって第二の蒸発器の除霜を行うとき圧縮機の運転を停止し冷媒制御弁を開とし第一の冷気循環手段を運転することを特徴とするものである。
【0032】
第二の蒸発器の除霜中、冷媒制御弁は開となっているため、除霜ヒータで温められた冷媒が第一の蒸発器に容易に流動し、これにより第一の蒸発器の除霜は、第一の蒸発器を構成する配管の内部から行われる。また、第二の蒸発器の除霜タイミングに合わせて第一の冷気循環手段を作動させることで、冷蔵室内のプラス温度の空気を第一の蒸発器に循環させることができ、第一の蒸発器に付着した霜を第一の蒸発器の外部から融解することができる。
【0033】
すなわち、冷蔵室に設けた第一の蒸発器に付着した霜は、第一の蒸発器の内部と外部の両方から融解され、除霜を促進させることができる。加えて除霜時、高圧側からの比較的高温の冷媒が第一の蒸発器に流動することからも、第一の蒸発器が温められ、第一の蒸発器を構成する配管の内部から第一の蒸発器の除霜を促進させることができるという作用を有する。
【0038】
本発明の請求項に記載の発明は、第一の蒸発器近傍に補償ヒータを設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記補償ヒータを通電することを特徴とするものである。
【0039】
冷蔵室の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室内の温度は低温(例えば0℃近傍)状態となる。この状態で第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で空気を循環しても冷蔵室内、特に第一の蒸発器の吸込側の空気温度が低温(例えば0℃近傍)の状態であり、第一の蒸発器に付着した霜は融解しない。
【0040】
しかし、第一の所定のタイミング及び第二の所定のタイミングのとき、第一の蒸発器近傍に設けた補償ヒータを通電することにより、冷蔵室内温度、特に第一の蒸発器の吸込側の空気温度を第一の蒸発器に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、冷蔵室内温度が低いときでも第一の蒸発器の除霜が確実にできるという作用を有する。
【0041】
本発明の請求項に記載の発明は、冷蔵室内の温度を検知する検知手段を設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記温度検知手段が所定温度を検知しているならば補償ヒータを通電することを特徴とするものである。
【0042】
冷蔵室の設定温度が高い場合や夏期など冷凍冷蔵庫を取り囲む外気温度が高温の場合、冷蔵室内の温度は比較的高温(例えば5℃以上)状態となる。この状態で第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で冷蔵室内の空気を循環すれば、補償ヒータの通電が無くとも第一の蒸発器に付着した霜は融解する。しかし、冷蔵室の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室内の温度は低温(例えば0℃近傍)状態となる。この状態で第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で空気を循環しても冷蔵室内、特に第一の蒸発器の吸込側の空気温度が低温(例えば0℃近傍)の状態であり、第一の蒸発器に付着した霜は融解しない。
【0043】
従って、第一の所定のタイミング及び第二の所定のタイミングのとき、温度検知手段が所定の温度(例えば0℃近傍)を検知しているときのみ補償ヒータを通電することにより、冷蔵室内温度、特に第一の蒸発器の吸込側の空気温度を第一の蒸発器に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、冷蔵室内温度が低いときでも第一の蒸発器の除霜が確実にできる。
【0044】
すなわち、冷蔵室内の温度が高い場合は第一の冷気循環手段の空気循環のみとし、冷蔵室内の温度が低い場合は第一の冷気循環手段の空気循環及び補償ヒータの通電を行うことにより、第一の蒸発器の除霜を効率良く確実に行うことができるという作用を有する。
【0045】
以下、本発明の実施の形態について、図1から図9を用いて説明する。
(実施の形態1)
図1は本発明の参考例における冷凍冷蔵庫の断面概略図、図2は冷却システム概略図である。
【0046】
断熱された少なくとも一つの冷凍室2と少なくとも一つの冷蔵室3からなる冷凍冷蔵庫箱体1と圧縮機11と凝縮器13と第一の減圧手段14とを順次直列に接合し、第一の減圧手段14と第二の蒸発器5との間に入口部に冷媒制御弁16を配置した第一の蒸発器4と第二の減圧手段15とを並列に接合して成る冷却システム17を有している。
【0047】
第一の蒸発器4は冷蔵室3内に設けられており、第一の蒸発器4の近傍には冷蔵室3の空気を循環する第一の冷気循環手段6を設けている。第一の冷気循環手段6の運転によって冷蔵室3の空気が第一の蒸発器4を通過するとき、空気は第一の蒸発器4で熱交換を行い、より低温の空気として冷蔵室3へ吐出される。
【0048】
第二の蒸発器5は冷凍室2内に設けられており、第二の蒸発器5の近傍には冷蔵室3の空気を循環する第二の冷気循環手段7を設けている。第二の冷気循環手段7の運転によって冷凍室2の空気が第二の蒸発器5を通過するとき、空気は第二の蒸発器5で熱交換を行い、より低温の空気として冷凍室2へ吐出される。
【0049】
さらに、第一の蒸発器4の近傍には、除霜時における第一の蒸発器4の温度を検知する第一の除霜温度検知手段8を設け、第二の蒸発器5の近傍には第二の蒸発器5の除霜のための除霜ヒータ10と、除霜時における第二の蒸発器5の温度を検知する第二の除霜温度検知手段9とを設けてある。
【0050】
システム制御手段12は冷凍室2と冷蔵室3からの冷却要求を受け、圧縮機11と第一の冷気循環手段6と第二の冷気循環手段7との運転制御を行い、且つ所定のタイミングにより圧縮機11と冷媒制御弁16と第一の冷気循環手段6と除霜ヒータ10と第一の除霜温度検知手段8と第二の除霜温度検知手段9を運転制御するものである。
【0051】
以上のように構成された本発明の冷凍冷蔵庫の請求項1の実施例の動作について説明を行う。
【0052】
図3は本発明の参考例を示すタイムチャートである。
第二の蒸発器5の定期的な除霜を行うために、システム制御手段12にあらかじめ積算時間として設定されている第一の所定のタイミングT1になったとき、システム制御手段12は圧縮機11と第二の冷気循環手段7とを停止状態に維持すると共に冷媒制御弁16を閉とし、除霜ヒータ10と第一の冷気循環手段6とを作動状態に維持し除霜を開始する。このときの除霜ヒータ10の通電による加熱で、通常運転中に第二の蒸発器5の表面に付着した霜は融解される。
【0053】
このとき、第一の冷気循環手段6の作動により冷蔵室3内のプラス温度の空気が第一の蒸発器4に循環される。これにより、通常運転中に第一の蒸発器4の表面に付着した霜はプラス温度の空気の循環をもって融解される。
【0054】
除霜ヒータ10の通電による加熱で第二の蒸発器5の表面の霜が融解すると、第二の蒸発器5の温度も上昇し、第二の除霜温度検知手段9は所定温度K2℃以上を検知する。所定温度K2℃は第二の蒸発器5に付着する霜が完全に融解する温度として設定する。
【0055】
また、第一の冷気循環手段6の作動で冷蔵室3内のプラス温度の空気が蒸発器4に循環されることにより第一の蒸発器4の表面の霜が融解すると、第一の蒸発器4の温度も上昇し、第一の除霜温度検知手段8は所定温度Kの1℃以上を検知する。所定温度Kが1℃は第一の蒸発器4に付着する霜が完全に融解する温度として設定する。
【0056】
このとき、第一の除霜温度検知手段8が除霜開始から所定温度Kが1℃以上を検知するのに要する時間をta、第二の除霜温度検知手段9が除霜開始から所定温度Kが2℃以上を検知するのに要する時間をtbとする。
【0057】
taがtbより長い(ta>tb)場合は、システム制御手段12は、まず第二の除霜温度検知手段9が所定温度K2℃以上を検知したという信号を受け、除霜ヒータ10の運転を停止し第二の蒸発器5の除霜を終了すると共に冷媒制御弁16を閉の状態に維持し、圧縮機11と第二の冷気循環手段7を作動し、冷凍室2の冷却を開始する。
【0058】
続いて第一の除霜温度検知手段8が所定温度Kが1℃以上を検知したという信号を受け、第一の蒸発器4の除霜を終了すると共に冷媒制御弁16を開き、冷蔵室3の冷却も開始する。
【0059】
taがtbより短い(ta<tb)場合は、システム制御手段12は、まず第一の除霜温度検知手段8が所定温度K1℃以上を検知したという信号を受け、第一の冷気循環手段6の運転を停止し、冷媒制御弁16を閉の状態に維持し、第一の蒸発器4の除霜を終了する。続いて第二の除霜温度検知手段9が所定温度K2℃以上を検知したという信号を受け、除霜ヒータ10の運転を停止し第二の蒸発器5の除霜を終了すると共に冷媒制御弁16を開き、圧縮機11と第一の冷気循環手段6と第二の冷気循環手段7を作動し、冷凍室2と冷蔵室3の冷却を開始する。
【0060】
上記のように、蒸発器を冷蔵室3に設けた第一の蒸発器4と冷凍室2に設けた第二の蒸発器5に分割することで、特に第二の蒸発器5に付着する霜量を少なくすることができる。霜量減少により、除霜ヒータ10による加熱時間が短縮され、冷凍室2への熱負荷が低減される。
【0061】
これにより除霜時の冷凍室2内の温度上昇が低減されることから、冷凍室2内の食品の温度上昇も抑えることができ、食品の鮮度を長く保つことができる。併せて、冷凍室2内の温度上昇低減が図られた分、除霜後の通常運転時における圧縮機11の運転時間が短縮され、消費電力量が低減する。
【0062】
さらに、第二の蒸発器5に付着する霜量を少なくすることができるので、定期的に行われる除霜間の間隔(積算時間)を長くすることができ、単位時間内に行われる除霜の回数が減少する。これにより除霜により発生する熱負荷による冷凍室2の庫内温度の変動回数が減少し、食品の鮮度を長く保つことができる。併せて、単位時間内に行われる除霜回数が減少することから、圧縮機11の運転率も低くなり消費電力量が低減する。
【0063】
さらに、冷蔵室3内のプラス温度の空気を第一の蒸発器4に循環させることから、冷蔵室3内の温度分布が均温化され、食品の温度ムラが改善される。併せて除霜後の比較的高湿の空気を冷蔵室3内に循環させることから、冷蔵室3内は高湿化され食品の鮮度を高めることができる。
【0064】
図4は本発明の請求項の実施例を示すタイムチャートである。
【0065】
システム制御手段12の命令による第一の所定のタイミングT1で除霜ヒータ10の通電によって第二の蒸発器5の除霜を行うとき圧縮機の運転11を停止し冷媒制御弁16を開とし、第一の冷気循環手段6を運転する。
【0066】
このとき、冷媒制御弁16は開の状態であるため第二の蒸発器5の除霜時に除霜ヒータ10で温められた冷媒が第一の蒸発器4に容易に流動し、これにより第一の蒸発器4の除霜は、第一の蒸発器4を構成する配管の内部から行われる。
【0067】
また、第二の蒸発器5の除霜タイミングに合わせて第一の冷気循環手段6を作動させることで、冷蔵室3内のプラス温度の空気を第一の蒸発器4に循環させることができ、第一の蒸発器4に付着した霜を第一の蒸発器4の外部から融解することができる。
【0068】
すなわち、冷蔵室3内に設けた第一の蒸発器4に付着した霜は、第一の蒸発器4の内部と外部の両方から融解され、除霜を促進させることができる。加えて除霜時、高圧側からの比較的高温の冷媒が第一の蒸発器4に流動することからも、第一の蒸発器4が温められ、第一の蒸発器4を構成する配管の内部から第一の蒸発器4の除霜を促進することができる。
【0069】
(実施の形態3)
図5は本発明の参考例を示すタイムチャートである。
【0070】
第一の蒸発器4の定期的な除霜を行うために、システム制御手段12に、第一の所定のタイミングT1を設定している積算時間よりもあらかじめ短い積算時間で設定された第二の所定タイミングT2になったとき、システム制御手段12は圧縮機11と第二の冷気循環手段7とを作動状態に維持すると共に冷媒制御弁16を閉とし、第一の冷気循環手段6を作動状態に維持し、第一の蒸発器4の除霜を開始する。
【0071】
このとき、第一の冷気循環手段6の作動により冷蔵室3内のプラス温度の空気が第一の蒸発器4に循環され、通常運転中に第一の蒸発器4の表面に付着した霜はプラス温度の空気をもって融解される。第一の蒸発器4に付着した霜が融解すると、第一の蒸発器4の温度も上昇し、システム制御手段12は第一の除霜温度検知手段8が所定温度K1以上を検知したという信号を受け、第一の蒸発器4の除霜を終了すると共に冷媒制御弁16を開き、冷蔵室3の冷却を開始する。
【0072】
上記のように、冷蔵室3は冷凍室2に比べて高温多湿なため、冷蔵室3内に設けた第一の蒸発器4に付着する霜量は、冷凍室2に設けた第二の蒸発器5に付着する霜量よりも多く、特に梅雨期や夏期など冷凍冷蔵庫を取り囲む外気が高温多湿な場合や冷蔵室3のドア開閉が頻繁に行われる場合には、第一の蒸発器4は第二の蒸発器5よりも早く着霜による目詰まり状態となる。つまり、第1の蒸発器4は第一の所定のタイミングT1で除霜される以前に目詰まり状態となり、第一の蒸発器4の冷却能力が低下し、必要以上の電力量を消費する。また、食品に対しても十分な冷却がなされず悪影響である。
【0073】
これを防止するため、第一の所定のタイミングをT1設定している積算時間よりも短い積算時間で設定された第二の所定のタイミングT2で、冷媒制御弁16を閉とする。これより、冷却システム17内を循環する冷媒は第一の蒸発器4へ循環しない。
【0074】
このとき第一の蒸発器4の温度は冷蔵室3内の空気の温度の影響を受けて上昇し、この状態において第一の冷気循環手段6の運転により冷蔵室3内のプラス温度の空気を循環することで、第一の蒸発器4に付着した霜は融解され、異常着霜(目詰まりなど)は防止できる。これより第一の蒸発器4の冷却能力の低下を防止することができ必要以上の電力量を消費することがない。また、冷蔵室3の食品に対しても十分な冷却ができる。
【0075】
また、冷媒制御弁16を閉とすることで、冷媒は第二の減圧手段15を経由して第二の蒸発器5に流動するため、冷凍室2は冷却状態が維持される。
【0076】
(実施の形態4)
図6は本発明の請求項の実施例を示す冷凍冷蔵庫の断面概略図、図7は本発明の請求項の実施例を示すタイムチャートである。
【0077】
冷蔵室3内に設けた第一の蒸発器4の近傍に補償ヒータ18を設ける。システム制御手段12の命令による第一の所定のタイミングT1及び第二の所定のタイミングT2において、補償ヒータ18を通電する。
【0078】
上記のように、冷蔵室3の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室3内の温度は低温(例えば0℃近傍)状態となる。この状態で第一の所定のタイミングT1及び第二の所定のタイミングT2において第一の冷気循環手段6で空気を循環しても冷蔵室3内、特に第一の蒸発器4の吸込側の空気温度が低温(例えば0℃近傍)の状態であり、第一の蒸発器4に付着した霜は融解しない。
【0079】
しかし、このとき補償ヒータ18を通電することにより、冷蔵室3内温度、特に第一の蒸発器4の吸込側の空気温度を第一の蒸発器4に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、冷蔵室3内の温度が低いときでも第一の蒸発器4の除霜が確実にできる。
【0080】
(実施の形態5)
図8は本発明の請求項の実施例を示す冷凍冷蔵庫の断面概略図、図9は本発明の請求項の実施例を示すタイムチャートである。
【0081】
冷蔵室3内の温度を適正に検知できる任意の場所に、温度検知手段19を設ける。システム制御手段12の命令による第一の所定のタイミングT1及び第二の所定のタイミングT2において、温度検知手段19が冷蔵室3内の所定温度K3以下を検知しているときのみ補償ヒータ18を通電する。尚、所定の温度K3は第一の蒸発器4に付着した霜を第一の冷気循環手段6による空気循環のみでは融解することができない温度として設定する。
【0082】
また、温度検知手段19は第一の蒸発器4の吸込側の空気温度を検知するようにしてもよい。
【0083】
上記のように、冷蔵室3の設定温度が高い場合や夏期など冷凍冷蔵庫を取り囲む外気温度が高温の場合、冷蔵室3内の温度は比較的高温(例えば5℃以上)状態となる。この状態で第一の所定のタイミングT1及び第二の所定のタイミングT2において第一の冷気循環手段6で冷蔵室3内の空気を循環すれば、補償ヒータ18の通電が無くとも第一の蒸発器4に付着した霜は融解する。しかし、冷蔵室3の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室3内の温度は低温(例えば0℃近傍)状態となる。この状態で第一の所定のタイミングT1及び第二の所定のタイミングT2において第一の冷気循環手段6で空気を循環しても冷蔵室3内、特に第一の蒸発器4の吸込側の空気温度が低温(例えば0℃近傍)の状態であり、第一の蒸発器4に付着した霜は融解しない。
【0084】
従って、第一の所定のタイミングT1及び第二の所定のタイミングT2のとき温度検知手段19が所定の温度(例えば0℃近傍)を検知しているときのみ補償ヒータ18を通電することにより、冷蔵室3内温度、特に第一の蒸発器4の吸込側の空気温度を第一の蒸発器4に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、冷蔵室3内温度が低いときでも第一の蒸発器4の除霜が確実にできる。
【0085】
すなわち、冷蔵室3内の温度が高い場合は第一の冷気循環手段6の空気循環のみとし、冷蔵室3内の温度が低い場合は第一の冷気循環手段6の空気循環及び補償ヒータ18の通電を行うことにより、第一の蒸発器4の除霜を効率良く確実に行うことができる。
【0089】
【発明の効果】
以上の説明から明らかなように本発明の冷凍冷蔵庫は、冷凍室と冷蔵室から成る冷凍冷蔵庫箱体と、圧縮機と凝縮器と第一の減圧手段とを順次直列に接合し、前記第一の減圧手段と前記冷凍室内に設けた第二の蒸発器との間に前記冷蔵室内に設け入口部に冷媒制御弁を配置した第一の蒸発器と第二の減圧手段とを並列に接合した冷却システムと、前記第一の蒸発器の近傍に第一の冷気循環手段と前記第二の蒸発器の近傍に第二の冷気循環手段と除霜ヒータとを設け、前記圧縮機と前記冷媒制御弁と前記第一の冷気循環手段と前記第二の冷気循環手段と前記除霜ヒータとを運転制御するシステム制御手段を設け、前記システム制御手段の命令による第一の所定のタイミングで除霜ヒータの通電によって第二の蒸発器の除霜を行うとき圧縮機の運転を停止し冷媒制御弁を開とし第一の冷気循環手段を運転するものである。
【0090】
第二の蒸発器の除霜中、冷媒制御弁は開となっているため、除霜ヒータで温められた冷媒が第一の蒸発器に容易に流動し、これにより第一の蒸発器の除霜は、第一の蒸発器を構成する配管の内部から行われる。また、第二の蒸発器の除霜タイミングに合わせて第一の冷気循環手段を作動させることで、冷蔵室内のプラス温度の空気を第一の蒸発器に循環させることができ、第一の蒸発器に付着した霜を第一の蒸発器の外部から融解することができる。
【0091】
すなわち、冷蔵室に設けた第一の蒸発器に付着した霜は、第一の蒸発器の内部と外部の両方から融解され、除霜を促進させることができる。加えて除霜時、高圧側からの比較的高温の冷媒が第一の蒸発器に流動することからも、第一の蒸発器が温められ、第一の蒸発器を構成する配管の内部から第一の蒸発器の除霜を促進させることができるという効果を有する。
【0096】
さらに、第一の蒸発器近傍に補償ヒータを設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、補償ヒータを通電するものである。
【0097】
冷蔵室の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室内の温度は低温(例えば0℃近傍)状態となり、第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で空気を循環しても第一の蒸発器に付着した霜は融解しない。しかし、第一の所定のタイミング及び第二の所定のタイミングのとき、第一の蒸発器近傍に設けた補償ヒータを通電することにより、冷蔵室内温度、特に第一の蒸発器の吸込側の空気温度を第一の蒸発器に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、第一の蒸発器の除霜が確実にできるという効果を有する。
【0098】
さらにまた、冷蔵室内の温度を検知する検知手段を設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、温度検知手段が所定温度を検知しているならば補償ヒータを通電するものである。
【0099】
冷蔵室の設定温度が高い場合や夏期など冷凍冷蔵庫を取り囲む外気温度が高温の場合、冷蔵室内の温度は比較的高温(例えば5℃以上)状態となる。この状態で第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で冷蔵室内の空気を循環すれば、補償ヒータの通電が無くとも第一の蒸発器に付着した霜は融解する。しかし、冷蔵室の設定温度が低い場合や冬季など冷凍冷蔵庫を取り囲む外気温度が低温の場合、冷蔵室内の温度は低温(例えば0℃近傍)状態となる。この状態で第一の所定のタイミング及び第二の所定のタイミングにおいて第一の冷気循環手段で空気を循環しても冷蔵室内、特に第一の蒸発器の吸込側の空気温度が低温(例えば0℃近傍)の状態であり、第一の蒸発器に付着した霜は融解しない。
【0100】
従って、第一の所定のタイミング及び第二の所定のタイミングのとき、温度検知手段が所定の温度(例えば0℃近傍)を検知しているときのみ補償ヒータを通電することにより、冷蔵室内温度、特に第一の蒸発器の吸込側の空気温度を第一の蒸発器に付着した霜を融解するのに十分可能な適正温度まで上昇させることで、冷蔵室内温度が低いときでも第一の蒸発器の除霜が確実にできる。
【0101】
すなわち、冷蔵室内の温度が高い場合は第一の冷気循環手段の空気循環のみとし、冷蔵室内の温度が低い場合は第一の冷気循環手段の空気循環及び補償ヒータの通電を行うことにより、第一の蒸発器の除霜を効率良く確実に行うことができるという効果を有する。
【図面の簡単な説明】
【図1】 本発明の参考例における冷凍冷蔵庫の断面図
【図2】 本発明の参考例における冷凍冷蔵庫の冷却システム図
【図3】 本発明の参考例を示すタイムチャート
【図4】 本発明の請求項の実施例を示すタイムチャート
【図5】 本発明の参考例を示すタイムチャート
【図6】 本発明の請求項の実施例における冷凍冷蔵庫の断面図
【図7】 本発明の請求項の実施例を示すタイムチャート
【図8】 本発明の請求項の実施例における冷凍冷蔵庫の断面図
【図9】 本発明の請求項の実施例を示すタイムチャート
【図10】 従来の冷蔵庫の断面概略図
【符号の説明】
1 冷凍冷蔵庫箱体
2 冷凍室
3 冷蔵室
4 第一の蒸発器
5 第二の蒸発器
6 第一の冷気循環手段
7 第二の冷気循環手段
8 第一の除霜温度検知手段
9 第二の除霜温度検知手段
10 除霜ヒータ
11 圧縮機
12 システム制御手段
13 凝縮器
14 第一の減圧手段
15 第二の減圧手段
16 電磁弁
17 冷却システム
18 補償ヒータ
19 温度検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to defrosting of a refrigerator-freezer that is stored by refrigeration or freezing.
[0002]
[Prior art]
FIG. 10 shows a schematic diagram of a refrigerator-freezer disclosed in Japanese Patent Application Laid-Open No. 7-159014 as an example of this type of conventional refrigerator.
[0003]
In this refrigerator-freezer, a refrigerator-freezer box 1 is divided into a freezer compartment 2 and a refrigerator compartment 3. An evaporator 4 and an internal fan 5 are installed at the back of the freezer compartment 2. The inside of the freezer compartment 2 is cooled by evaporating the refrigerant by the evaporator 4, and the cool air is circulated by the internal fan 5.
[0004]
Further, in the vicinity of the evaporator 4, a defrost heater 6 for removing attached frost and a defrost temperature detecting means 7 for detecting the temperature at the time of defrosting are attached.
[0005]
An electric damper 9 is installed in the cold air passage 8 connecting the freezer compartment 2 and the refrigerator compartment 3, and the cold air from the freezer compartment 2 is circulated to the refrigerator compartment 3 by the opening and closing operation of the electric damper 9.
[0006]
In addition, a compressor 10 constituting a refrigeration cycle is installed at the back of the refrigerator compartment 3.
[0007]
Operation control of the internal fan 5, the defrost heater 6, the defrost temperature detecting means 7, the electric damper 9, and the compressor 10 is performed by the system control means 11.
[0008]
Next, the operation of the conventional configuration will be described.
The high-temperature and high-pressure refrigerant discharged from the compressor 10 by the operation of the compressor 10 is condensed and liquefied by a condenser (not shown), further depressurized by a decompression means (not shown), and evaporated by the evaporator 4 to cool the air. To do. When the internal fan 5 is operated, heat transfer is performed to the freezer compartment 2 and the refrigerator compartment 3. The refrigerant evaporated in the evaporator 4 is again sucked into the compressor 10.
[0009]
By performing such an operation, the freezer compartment 2 and the refrigerator compartment 3 are cooled.
If such cooling operation is continued, moisture contained in the air circulating through the evaporator 4 adheres to the surface of the evaporator 4 as frost when heat is exchanged. When this frosting progresses, the heat exchange performance of the evaporator 4 is lowered due to a decrease in the wind speed due to an increase in ventilation resistance and a decrease in the air side heat transfer coefficient of the evaporator 4 due to the frost layer, and sufficient cooling operation is impossible. It becomes.
[0010]
In order to prevent this state, defrosting is periodically performed. When the defrosting is started, the compressor 10 is stopped and the defrosting heater 6 is energized. The frost attached to the surface of the evaporator 4 by energization of the defrost heater 6 is melted by heat generation. When the frost adhering to the surface of the evaporator 4 melts, the defrosting temperature detection means 7 detects that the defrosting is completed by detecting a predetermined temperature (generally 10 to 20 ° C.) or more, and a defrosting heater. 6 is turned off. Thereafter, the normal cooling operation is resumed.
[0011]
[Problems to be solved by the invention]
However, in the refrigerator-freezer as described above, since the air in both the refrigerator compartment and the freezer compartment circulates in the evaporator, a large amount of frost adheres to the surface of the evaporator, and this large amount of frost is melted, so the defrosting time. Becomes longer, the energization heating amount of the defrosting heater increases, and the generated heat load increases. Accordingly, since the temperature of the food stored in the freezer compartment is temporarily greatly increased by the generated heat load, the maintenance of the freshness of the food is shortened.
[0012]
Moreover, since the temperature in the freezer compartment is also high after the defrosting is completed, the operation rate of the compressor after the defrosting is increased, leading to an increase in power consumption.
[0013]
Moreover, since there is much frost amount adhering to an evaporator, the interval (integration time) of defrost performed regularly becomes comparatively short, and the frequency | count of defrost performed within unit time is large, and it generate | occur | produces by defrost. Since the number of fluctuations in the temperature in the freezer compartment due to the heat load is large, maintaining the freshness of the food in the freezer compartment is shortened.
[0014]
Moreover, since the number of defrosts performed within a unit time is large, the freezer temperature rises frequently, the operating rate of the compressor increases, and the power consumption increases.
[0015]
Thus, in the conventional refrigerator-freezer, since it is a single evaporator, there is much frost amount adhering to an evaporator, and defrost time becomes long. As a result, the heat load accompanying defrosting increases, and the temperature of the food in the freezer compartment rises, so the maintenance of food freshness is short and the freezer compartment temperature also rises. Time increases and power consumption increases.
[0016]
Moreover, since there is much frost amount adhering to an evaporator, the space | interval (integration time) between defrosting performed regularly is comparatively short, and the frequency | count of defrosting performed within a unit time increases. This increases the number of times the temperature in the freezer compartment fluctuates due to the heat load associated with defrosting, keeps the food fresh in the freezer compartment short, and at the same time increases the number of defrosts performed per unit time. There was a problem that the temperature increased frequently, the operating rate of the compressor increased, and the amount of power consumption increased.
[0017]
The present invention solves the above-described problems of the conventional example, and the evaporator is divided into a first evaporator provided in the refrigerator compartment and a second evaporator provided in the freezer compartment. A freezing refrigerator that can reduce the amount of frost adhering to the second evaporator, reduces the temperature rise with respect to the freezing room during defrosting, and can keep the food temperature in the freezing room almost constant. In addition, an object of the present invention is to provide a refrigerator-freezer that can reduce the amount of power consumption by reducing the temperature rise in the freezer compartment due to defrosting.
[0018]
[Means for Solving the Problems]
  In order to achieve this object, the refrigerator-freezer of the present invention comprises a refrigerator-freezer box composed of a freezer compartment and a refrigerator compartment, a compressor, a condenser, and a first decompression unit joined in series in order, Cooling in which a first evaporator provided with a refrigerant control valve in the inlet portion and a second decompression means are connected in parallel between the decompression means and a second evaporator provided in the freezer compartment. The system is provided with first cold air circulating means in the vicinity of the first evaporator, and second cold air circulating means and a defrost heater in the vicinity of the second evaporator. System control means for controlling operation of the compressor, the refrigerant control valve, the first cold air circulation means, the second cold air circulation means, and the defrosting heater is provided, and a first command according to a command from the system control means is provided. When defrosting the second evaporator by energizing the defrost heater at a predetermined timing, the operation of the compressor is stopped and the refrigerant control valve isOpenAnd operating the first cold air circulation means.
[0021]
Further, a compensation heater is provided in the vicinity of the first evaporator, and the compensation heater is energized at a first predetermined timing and a second predetermined timing according to a command from the system control means.
[0022]
Also, a detecting means for detecting the temperature in the refrigerator compartment is provided, and if the temperature detecting means detects the predetermined temperature at the first predetermined timing and the second predetermined timing according to the command of the system control means, compensation is made. The heater is energized.
[0023]
According to the present invention, by dividing the evaporator into the first evaporator provided in the refrigerator compartment and the second evaporator provided in the freezer compartment, particularly the amount of frost attached to the second evaporator is reduced. The defrosting time can be shortened. Along with this, since the heat load on the freezer compartment decreases, the temperature rise of the freezer compartment during defrosting is reduced, the fluctuation of the food temperature in the freezer compartment can be suppressed, and the freshness of food can be kept long. .
[0024]
In addition, with the reduction in temperature increase in the freezer compartment, the compressor operation time during normal operation after defrosting is shortened, and the amount of power consumption is reduced.
[0025]
Furthermore, since the amount of frost adhering to a 2nd evaporator can be decreased, the space | interval (integration time) between defrosting performed regularly can be lengthened. Accordingly, since the number of defrosts performed within a unit time is reduced, the number of fluctuations in the freezer compartment temperature due to the heat load generated by the defrosting is reduced, and the freshness of the food can be kept long.
[0026]
In addition, since the number of defrosts performed within a unit time decreases, the number of times that the temperature in the freezer compartment rises also decreases, the operating rate of the compressor decreases, and the power consumption can be reduced. Can provide.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
  Claims of the invention1The invention described inA second evaporator provided in the freezing chamber and the freezer compartment, a refrigerator, a refrigerator compartment, a compressor, a condenser, and a first decompression unit sequentially joined in series. A cooling system in which a first evaporator provided with a refrigerant control valve at the inlet portion and a second pressure reducing means are connected in parallel between the first evaporator and the first evaporator in the vicinity of the first evaporator. In the vicinity of the cold air circulation means and the second evaporator, the second cold air circulation means, the defrost heater, the compressor, the refrigerant control valve, the first cold air circulation means, and the second cold air circulation means. And a system control means for controlling the operation of the defrosting heater, and a compressor for defrosting the second evaporator by energizing the defrosting heater at a first predetermined timing according to a command from the system control means Is stopped, the refrigerant control valve is opened, and the first cold air circulation means is operated. ThatIt is characterized by this.
[0032]
Since the refrigerant control valve is open during the defrosting of the second evaporator, the refrigerant warmed by the defrosting heater easily flows to the first evaporator, thereby removing the first evaporator. The frost is generated from the inside of the pipe constituting the first evaporator. Further, by operating the first cold air circulation means in accordance with the defrosting timing of the second evaporator, it is possible to circulate the positive temperature air in the refrigerator compartment to the first evaporator, and the first evaporation The frost attached to the vessel can be melted from the outside of the first evaporator.
[0033]
That is, the frost adhering to the first evaporator provided in the refrigerator compartment can be melted from both the inside and the outside of the first evaporator to promote defrosting. In addition, since the relatively high-temperature refrigerant from the high-pressure side flows to the first evaporator during defrosting, the first evaporator is also warmed, and the first evaporator is connected from the inside of the pipe constituting the first evaporator. It has the effect | action that the defrosting of one evaporator can be accelerated | stimulated.
[0038]
  Claims of the invention2The invention described in 1 is characterized in that a compensation heater is provided in the vicinity of the first evaporator, and the compensation heater is energized at a first predetermined timing and a second predetermined timing according to a command from the system control means. Is.
[0039]
When the set temperature of the refrigerator compartment is low or when the outside air temperature surrounding the refrigerator-freezer is low, such as in winter, the temperature in the refrigerator compartment is in a low temperature state (for example, near 0 ° C.). In this state, even if air is circulated by the first cold air circulation means at the first predetermined timing and the second predetermined timing, the air temperature in the refrigerator compartment, particularly the suction side of the first evaporator, is low (for example, 0 The frost attached to the first evaporator does not melt.
[0040]
However, at the first predetermined timing and the second predetermined timing, by energizing the compensation heater provided in the vicinity of the first evaporator, the temperature in the refrigerator compartment, particularly the air on the suction side of the first evaporator By raising the temperature to an appropriate temperature sufficient to melt the frost adhering to the first evaporator, the first evaporator can be reliably defrosted even when the temperature in the refrigerator compartment is low. .
[0041]
  Claims of the invention3According to the invention described in (1), a detecting means for detecting the temperature in the refrigerator compartment is provided, and the temperature detecting means detects the predetermined temperature at the first predetermined timing and the second predetermined timing according to a command from the system control means. If so, the compensation heater is energized.
[0042]
When the set temperature of the refrigerator compartment is high or when the outside air temperature surrounding the refrigerator-freezer is high, such as in summer, the temperature in the refrigerator compartment is relatively high (for example, 5 ° C. or higher). In this state, if the air in the refrigerator compartment is circulated by the first cold air circulation means at the first predetermined timing and the second predetermined timing, the frost attached to the first evaporator is not energized by the compensation heater. Melt. However, when the set temperature of the refrigerator compartment is low or when the outside air temperature surrounding the refrigerator-freezer is low such as in winter, the temperature in the refrigerator compartment is in a low temperature state (for example, near 0 ° C.). In this state, even if air is circulated by the first cold air circulation means at the first predetermined timing and the second predetermined timing, the air temperature in the refrigerator compartment, particularly the suction side of the first evaporator, is low (for example, 0 The frost attached to the first evaporator does not melt.
[0043]
Therefore, at the first predetermined timing and the second predetermined timing, the temperature of the refrigerating room is obtained by energizing the compensation heater only when the temperature detecting means detects a predetermined temperature (for example, near 0 ° C.). In particular, by raising the air temperature on the suction side of the first evaporator to an appropriate temperature sufficient to melt the frost adhering to the first evaporator, the first evaporator even when the temperature in the refrigerator compartment is low Can be reliably defrosted.
[0044]
That is, when the temperature in the refrigerator compartment is high, only the air circulation of the first cold air circulation means is performed, and when the temperature in the refrigerator compartment is low, the air circulation of the first cold air circulation means and energization of the compensation heater are performed. It has the effect | action that the defrost of one evaporator can be performed efficiently and reliably.
[0045]
  Hereinafter, embodiments of the present invention will be described with reference to FIGS.
  (Embodiment 1)
  FIG. 1 illustrates the present invention.referenceThe cross-sectional schematic of the refrigerator-freezer in an example, FIG. 2 is a cooling system schematic.
[0046]
A refrigerator-freezer box 1 composed of at least one freezer compartment 2 and at least one refrigerator compartment 3, a compressor 11, a condenser 13, and a first decompression means 14 are sequentially joined in series to form a first decompression chamber. A cooling system 17 comprising a first evaporator 4 having a refrigerant control valve 16 disposed at the inlet portion and a second pressure reducing means 15 joined in parallel between the means 14 and the second evaporator 5; ing.
[0047]
The first evaporator 4 is provided in the refrigerator compartment 3, and first cold air circulation means 6 for circulating the air in the refrigerator compartment 3 is provided in the vicinity of the first evaporator 4. When the air in the refrigerator compartment 3 passes through the first evaporator 4 by the operation of the first cold air circulation means 6, the air exchanges heat in the first evaporator 4 and enters the refrigerator compartment 3 as lower temperature air. Discharged.
[0048]
The second evaporator 5 is provided in the freezer compartment 2, and in the vicinity of the second evaporator 5, second cold air circulating means 7 for circulating the air in the refrigerator compartment 3 is provided. When the air in the freezer compartment 2 passes through the second evaporator 5 by the operation of the second cold air circulation means 7, the air exchanges heat in the second evaporator 5, and enters the freezer compartment 2 as lower temperature air. Discharged.
[0049]
Further, a first defrosting temperature detecting means 8 for detecting the temperature of the first evaporator 4 at the time of defrosting is provided in the vicinity of the first evaporator 4, and in the vicinity of the second evaporator 5. A defrosting heater 10 for defrosting the second evaporator 5 and a second defrosting temperature detecting means 9 for detecting the temperature of the second evaporator 5 at the time of defrosting are provided.
[0050]
The system control means 12 receives a cooling request from the freezer compartment 2 and the refrigerator compartment 3, performs operation control of the compressor 11, the first cold air circulation means 6, and the second cold air circulation means 7, and at a predetermined timing. The compressor 11, the refrigerant control valve 16, the first cold air circulating means 6, the defrost heater 10, the first defrost temperature detecting means 8, and the second defrost temperature detecting means 9 are controlled.
[0051]
Operation | movement of the Example of Claim 1 of the refrigerator-freezer of this invention comprised as mentioned above is demonstrated.
[0052]
  FIG. 3 illustrates the present invention.referenceIt is a time chart which shows an example.
  In order to perform periodic defrosting of the second evaporator 5, when the first predetermined timing T <b> 1 preset as the accumulated time in the system control means 12 is reached, the system control means 12 is connected to the compressor 11. And the second cold air circulation means 7 are maintained in a stopped state, the refrigerant control valve 16 is closed, the defrost heater 10 and the first cold air circulation means 6 are maintained in an activated state, and defrosting is started. The frost adhering to the surface of the second evaporator 5 during normal operation is melted by heating by energization of the defrost heater 10 at this time.
[0053]
At this time, positive temperature air in the refrigerator compartment 3 is circulated to the first evaporator 4 by the operation of the first cold air circulation means 6. As a result, frost adhering to the surface of the first evaporator 4 during normal operation is melted with circulation of air at a positive temperature.
[0054]
When frost on the surface of the second evaporator 5 is melted by heating by energization of the defrost heater 10, the temperature of the second evaporator 5 also rises, and the second defrost temperature detecting means 9 is equal to or higher than a predetermined temperature K2 ° C. Is detected. The predetermined temperature K2 ° C. is set as a temperature at which the frost attached to the second evaporator 5 is completely melted.
[0055]
Further, when the frost on the surface of the first evaporator 4 is melted by the positive temperature air in the refrigerator compartment 3 being circulated to the evaporator 4 by the operation of the first cold air circulation means 6, the first evaporator The temperature of 4 also rises, and the first defrosting temperature detecting means 8 detects a predetermined temperature K of 1 ° C. or higher. The predetermined temperature K of 1 ° C. is set as a temperature at which the frost attached to the first evaporator 4 is completely melted.
[0056]
At this time, the time required for the first defrosting temperature detecting means 8 to detect that the predetermined temperature K is 1 ° C. or higher from the start of the defrosting is ta, and the second defrosting temperature detecting means 9 is the predetermined temperature from the start of the defrosting. Let tb be the time required for K to detect 2 ° C. or higher.
[0057]
When ta is longer than tb (ta> tb), the system control means 12 first receives a signal that the second defrosting temperature detecting means 9 has detected a predetermined temperature K2 ° C. or higher, and operates the defrosting heater 10. The defrosting of the second evaporator 5 is stopped and the refrigerant control valve 16 is kept closed, the compressor 11 and the second cold air circulation means 7 are operated, and cooling of the freezer compartment 2 is started. .
[0058]
Subsequently, the first defrosting temperature detecting means 8 receives a signal that the predetermined temperature K has detected 1 ° C. or more, ends the defrosting of the first evaporator 4, opens the refrigerant control valve 16, and stores the refrigerator compartment 3. Also starts cooling.
[0059]
When ta is shorter than tb (ta <tb), the system control means 12 first receives a signal that the first defrosting temperature detection means 8 has detected a predetermined temperature K1 ° C. or higher, and receives the first cold air circulation means 6. Is stopped, the refrigerant control valve 16 is kept closed, and the defrosting of the first evaporator 4 is terminated. Subsequently, upon receiving a signal that the second defrosting temperature detecting means 9 has detected a predetermined temperature K2 ° C. or higher, the operation of the defrosting heater 10 is stopped, the defrosting of the second evaporator 5 is terminated, and the refrigerant control valve 16 is opened, the compressor 11, the first cold air circulation means 6 and the second cold air circulation means 7 are operated, and cooling of the freezer compartment 2 and the refrigerator compartment 3 is started.
[0060]
As described above, by dividing the evaporator into the first evaporator 4 provided in the refrigerating chamber 3 and the second evaporator 5 provided in the freezer compartment 2, especially frost adhering to the second evaporator 5 The amount can be reduced. By reducing the amount of frost, the heating time by the defrost heater 10 is shortened, and the thermal load on the freezer compartment 2 is reduced.
[0061]
Thereby, since the temperature rise in the freezer compartment 2 at the time of defrosting is reduced, the temperature rise of the foodstuff in the freezer compartment 2 can also be suppressed and the freshness of a foodstuff can be kept long. In addition, since the temperature rise in the freezer compartment 2 is reduced, the operation time of the compressor 11 during normal operation after defrosting is shortened, and the power consumption is reduced.
[0062]
Furthermore, since the amount of frost adhering to the 2nd evaporator 5 can be decreased, the interval (integration time) between defrosting performed regularly can be lengthened, and the defrost performed within unit time The number of times decreases. Thereby, the frequency | count of fluctuation | variation of the internal temperature of the freezer compartment 2 by the heat load which generate | occur | produces by a defrost reduces, and the freshness of a foodstuff can be kept long. In addition, since the number of defrosts performed within a unit time is reduced, the operation rate of the compressor 11 is also reduced, and the power consumption is reduced.
[0063]
Further, since the positive temperature air in the refrigerator compartment 3 is circulated to the first evaporator 4, the temperature distribution in the refrigerator compartment 3 is equalized, and the temperature unevenness of the food is improved. In addition, since relatively humid air after defrosting is circulated in the refrigerator compartment 3, the inside of the refrigerator compartment 3 is made highly humid and the freshness of the food can be increased.
[0064]
  FIG. 4 is a claim of the present invention.2It is a time chart which shows the Example of.
[0065]
When defrosting the second evaporator 5 by energizing the defrost heater 10 at the first predetermined timing T1 according to the command of the system control means 12, the compressor operation 11 is stopped and the refrigerant control valve 16 is opened. The first cold air circulation means 6 is operated.
[0066]
At this time, since the refrigerant control valve 16 is in an open state, the refrigerant warmed by the defrost heater 10 when the second evaporator 5 is defrosted easily flows to the first evaporator 4, thereby The defrosting of the evaporator 4 is performed from the inside of the piping constituting the first evaporator 4.
[0067]
Further, by operating the first cold air circulation means 6 in accordance with the defrosting timing of the second evaporator 5, the positive temperature air in the refrigerator compartment 3 can be circulated to the first evaporator 4. The frost attached to the first evaporator 4 can be melted from the outside of the first evaporator 4.
[0068]
That is, frost adhering to the first evaporator 4 provided in the refrigerator compartment 3 can be melted from both the inside and the outside of the first evaporator 4 to promote defrosting. In addition, since the relatively high-temperature refrigerant from the high-pressure side flows to the first evaporator 4 during defrosting, the first evaporator 4 is also warmed, and the piping constituting the first evaporator 4 The defrosting of the first evaporator 4 can be promoted from the inside.
[0069]
  (Embodiment 3)
  FIG. 5 illustrates the present invention.referenceIt is a time chart which shows an example.
[0070]
In order to perform periodic defrosting of the first evaporator 4, the second time set in the system control means 12 in advance with an integration time shorter than the integration time for which the first predetermined timing T <b> 1 is set. When the predetermined timing T2 is reached, the system control means 12 maintains the compressor 11 and the second cold air circulation means 7 in the operating state and closes the refrigerant control valve 16 so that the first cold air circulation means 6 is in the active state. And defrosting of the first evaporator 4 is started.
[0071]
At this time, the positive temperature air in the refrigerator compartment 3 is circulated to the first evaporator 4 by the operation of the first cold air circulation means 6, and the frost adhering to the surface of the first evaporator 4 during the normal operation is Melted with positive temperature air. When the frost adhering to the first evaporator 4 melts, the temperature of the first evaporator 4 also rises, and the system control means 12 signals that the first defrost temperature detection means 8 has detected a predetermined temperature K1 or higher. In response, the defrosting of the first evaporator 4 is completed and the refrigerant control valve 16 is opened, and the cooling of the refrigerator compartment 3 is started.
[0072]
As described above, since the refrigerator compartment 3 is hot and humid as compared with the freezer compartment 2, the amount of frost attached to the first evaporator 4 provided in the refrigerator compartment 3 is the second evaporation provided in the refrigerator compartment 2. When the outside air surrounding the refrigerator / freezer is hot and humid, such as during the rainy season or summer, or when the door of the refrigerator compartment 3 is frequently opened and closed, the first evaporator 4 is It becomes clogged by frosting earlier than the second evaporator 5. In other words, the first evaporator 4 becomes clogged before being defrosted at the first predetermined timing T1, the cooling capacity of the first evaporator 4 is reduced, and more electric power is consumed than necessary. In addition, the food is not sufficiently cooled, which is an adverse effect.
[0073]
In order to prevent this, the refrigerant control valve 16 is closed at a second predetermined timing T2 set at an integration time shorter than the integration time at which the first predetermined timing is set at T1. Accordingly, the refrigerant circulating in the cooling system 17 does not circulate to the first evaporator 4.
[0074]
At this time, the temperature of the first evaporator 4 rises under the influence of the temperature of the air in the refrigerator compartment 3, and in this state, the positive temperature air in the refrigerator compartment 3 is removed by the operation of the first cold air circulation means 6. By circulating, the frost adhering to the first evaporator 4 is melted, and abnormal frost formation (clogging or the like) can be prevented. As a result, it is possible to prevent the cooling capacity of the first evaporator 4 from being lowered, and an amount of electric power more than necessary is not consumed. In addition, the food in the refrigerator compartment 3 can be sufficiently cooled.
[0075]
Further, by closing the refrigerant control valve 16, the refrigerant flows to the second evaporator 5 via the second decompression means 15, so that the freezer compartment 2 is maintained in a cooled state.
[0076]
  (Embodiment 4)
  FIG. 6 is a claim of the present invention.2FIG. 7 is a schematic sectional view of a refrigerator-freezer showing an embodiment of the present invention.2It is a time chart which shows the Example of.
[0077]
A compensation heater 18 is provided in the vicinity of the first evaporator 4 provided in the refrigerator compartment 3. The compensation heater 18 is energized at a first predetermined timing T1 and a second predetermined timing T2 according to a command from the system control means 12.
[0078]
As described above, when the set temperature of the refrigerator compartment 3 is low or when the outside air temperature surrounding the refrigerator-freezer is low, such as in winter, the temperature in the refrigerator compartment 3 is in a low temperature state (for example, near 0 ° C.). In this state, even if air is circulated by the first cold air circulation means 6 at the first predetermined timing T1 and the second predetermined timing T2, the air in the refrigerating chamber 3, particularly the suction side of the first evaporator 4 is used. The temperature is low (for example, around 0 ° C.), and the frost attached to the first evaporator 4 does not melt.
[0079]
However, by energizing the compensation heater 18 at this time, the temperature in the refrigerator compartment 3, particularly the air temperature on the suction side of the first evaporator 4, can be sufficiently melted to melt the frost adhering to the first evaporator 4. By raising the temperature to a suitable temperature, the first evaporator 4 can be defrosted reliably even when the temperature in the refrigerator compartment 3 is low.
[0080]
  (Embodiment 5)
  FIG. 8 is a claim of the present invention.3FIG. 9 is a schematic sectional view of a refrigerator-freezer showing an embodiment of the present invention.3It is a time chart which shows the Example of.
[0081]
The temperature detection means 19 is provided in an arbitrary place where the temperature in the refrigerator compartment 3 can be properly detected. At the first predetermined timing T1 and the second predetermined timing T2 according to the command of the system control means 12, the compensation heater 18 is energized only when the temperature detection means 19 detects the predetermined temperature K3 or less in the refrigerator compartment 3. To do. The predetermined temperature K3 is set as a temperature at which the frost attached to the first evaporator 4 cannot be melted only by air circulation by the first cold air circulation means 6.
[0082]
Further, the temperature detecting means 19 may detect the air temperature on the suction side of the first evaporator 4.
[0083]
As described above, when the set temperature of the refrigerator compartment 3 is high or when the outside air temperature surrounding the refrigerator-freezer is high such as in summer, the temperature in the refrigerator compartment 3 is relatively high (for example, 5 ° C. or higher). In this state, if the air in the refrigerator compartment 3 is circulated by the first cold air circulation means 6 at the first predetermined timing T1 and the second predetermined timing T2, the first evaporation is performed even if the compensation heater 18 is not energized. The frost attached to the vessel 4 melts. However, when the set temperature of the refrigerator compartment 3 is low or when the outside air temperature surrounding the refrigerator-freezer is low, such as in winter, the temperature in the refrigerator compartment 3 is in a low temperature state (for example, near 0 ° C.). In this state, even if air is circulated by the first cold air circulation means 6 at the first predetermined timing T1 and the second predetermined timing T2, the air in the refrigerating chamber 3, particularly the suction side of the first evaporator 4 is used. The temperature is low (for example, around 0 ° C.), and the frost attached to the first evaporator 4 does not melt.
[0084]
Accordingly, the refrigeration is performed by energizing the compensation heater 18 only when the temperature detecting means 19 detects a predetermined temperature (for example, around 0 ° C.) at the first predetermined timing T1 and the second predetermined timing T2. By raising the temperature in the chamber 3, particularly the air temperature on the suction side of the first evaporator 4 to an appropriate temperature sufficient to melt the frost adhering to the first evaporator 4, the temperature in the refrigerator 3 Even when the temperature is low, the first evaporator 4 can be defrosted reliably.
[0085]
That is, when the temperature in the refrigerator compartment 3 is high, only the air circulation of the first cold air circulation means 6 is performed, and when the temperature in the refrigerator compartment 3 is low, the air circulation of the first cold air circulation means 6 and the compensation heater 18 By energizing, the first evaporator 4 can be defrosted efficiently and reliably.
[0089]
【The invention's effect】
  As is apparent from the above description, the refrigerator-freezer of the present invention comprises a refrigerator-freezer box composed of a freezer compartment and a refrigerator compartment, a compressor, a condenser, and a first decompression means joined in series in order. The first evaporator having the refrigerant control valve disposed in the inlet portion and the second decompression means are connected in parallel between the decompression means and the second evaporator provided in the freezer compartment. A cooling system; a first cold air circulating means in the vicinity of the first evaporator; a second cold air circulating means and a defrost heater in the vicinity of the second evaporator; the compressor and the refrigerant control System control means for controlling the operation of the valve, the first cold air circulation means, the second cold air circulation means, and the defrost heater is provided, and the defrost heater is provided at a first predetermined timing according to a command from the system control means. When defrosting the second evaporator by energizing the compressor, The Stop the refrigerant control valve to the open is for driving the first cold air circulation means.
[0090]
Since the refrigerant control valve is open during the defrosting of the second evaporator, the refrigerant warmed by the defrosting heater easily flows to the first evaporator, thereby removing the first evaporator. The frost is generated from the inside of the pipe constituting the first evaporator. Further, by operating the first cold air circulation means in accordance with the defrosting timing of the second evaporator, it is possible to circulate the positive temperature air in the refrigerator compartment to the first evaporator, and the first evaporation The frost attached to the vessel can be melted from the outside of the first evaporator.
[0091]
That is, the frost adhering to the first evaporator provided in the refrigerator compartment can be melted from both the inside and the outside of the first evaporator to promote defrosting. In addition, since the relatively high-temperature refrigerant from the high-pressure side flows to the first evaporator during defrosting, the first evaporator is also warmed, and the first evaporator is connected from the inside of the pipe constituting the first evaporator. The defrosting of one evaporator can be promoted.
[0096]
Further, a compensation heater is provided in the vicinity of the first evaporator, and the compensation heater is energized at a first predetermined timing and a second predetermined timing according to a command from the system control means.
[0097]
When the set temperature of the refrigerator compartment is low or the outside air temperature surrounding the refrigerator-freezer is low, such as in winter, the temperature in the refrigerator compartment is low (for example, near 0 ° C.), and the first predetermined timing and the second predetermined timing However, the frost attached to the first evaporator is not melted even if air is circulated by the first cold air circulation means. However, at the first predetermined timing and the second predetermined timing, by energizing the compensation heater provided in the vicinity of the first evaporator, the temperature in the refrigerator compartment, particularly the air on the suction side of the first evaporator By raising the temperature to an appropriate temperature sufficient to melt the frost adhering to the first evaporator, there is an effect that the defrosting of the first evaporator can be surely performed.
[0098]
Furthermore, a detecting means for detecting the temperature in the refrigerator compartment is provided, and if the temperature detecting means detects the predetermined temperature at the first predetermined timing and the second predetermined timing according to the command of the system control means, it is compensated. The heater is energized.
[0099]
When the set temperature of the refrigerator compartment is high or when the outside air temperature surrounding the refrigerator-freezer is high, such as in summer, the temperature in the refrigerator compartment is relatively high (for example, 5 ° C. or higher). In this state, if the air in the refrigerator compartment is circulated by the first cold air circulation means at the first predetermined timing and the second predetermined timing, the frost attached to the first evaporator is not energized by the compensation heater. Melt. However, when the set temperature of the refrigerator compartment is low or when the outside air temperature surrounding the refrigerator-freezer is low such as in winter, the temperature in the refrigerator compartment is in a low temperature state (for example, near 0 ° C.). In this state, even if air is circulated by the first cold air circulation means at the first predetermined timing and the second predetermined timing, the air temperature in the refrigerator compartment, particularly the suction side of the first evaporator, is low (for example, 0 The frost attached to the first evaporator does not melt.
[0100]
Therefore, at the first predetermined timing and the second predetermined timing, the temperature of the refrigerating room is obtained by energizing the compensation heater only when the temperature detecting means detects a predetermined temperature (for example, near 0 ° C.). In particular, by raising the air temperature on the suction side of the first evaporator to an appropriate temperature sufficient to melt the frost adhering to the first evaporator, the first evaporator even when the temperature in the refrigerator compartment is low Can be reliably defrosted.
[0101]
That is, when the temperature in the refrigerator compartment is high, only the air circulation of the first cold air circulation means is performed, and when the temperature in the refrigerator compartment is low, the air circulation of the first cold air circulation means and energization of the compensation heater are performed. It has the effect that the defrosting of one evaporator can be performed efficiently and reliably.
[Brief description of the drawings]
FIG. 1 of the present inventionreferenceCross-sectional view of the refrigerator-freezer in the example
FIG. 2 of the present inventionreferenceRefrigeration refrigerator cooling system diagram in the example
FIG. 3 of the present inventionreferenceExample time chart
FIG. 4 claims of the present invention1Time chart showing an example of
FIG. 5 shows the present invention.referenceExample time chart
FIG. 6 claims of the present invention2Sectional drawing of the refrigerator-freezer in the Example of
FIG. 7 claims of the present invention2Time chart showing an example of
FIG. 8 claims of the present invention3Sectional drawing of the refrigerator-freezer in the Example of
FIG. 9 claims of the present invention3Time chart showing an example of
FIG. 10 is a schematic sectional view of a conventional refrigerator.
[Explanation of symbols]
  1 Freezer refrigerator box
  2 Freezer room
  3 Cold room
  4 First evaporator
  5 Second evaporator
  6 First cold air circulation means
  7 Second cold air circulation means
  8 First defrost temperature detection means
  9 Second defrosting temperature detection means
  10 Defrost heater
  11 Compressor
  12 System control means
  13 Condenser
  14 First decompression means
  15 Second decompression means
  16 Solenoid valve
  17 Cooling system
  18 Compensation heater
  19 Temperature detection means

Claims (3)

冷凍室と冷蔵室から成る冷凍冷蔵庫箱体と、圧縮機と凝縮器と第一の減圧手段とを順次直列に接合し、前記第一の減圧手段と前記冷凍室内に設けた第二の蒸発器との間に前記冷蔵室内に設け入口部に冷媒制御弁を配置した第一の蒸発器と第二の減圧手段とを並列に接合した冷却システムと、前記第一の蒸発器の近傍に第一の冷気循環手段と前記第二の蒸発器の近傍に第二の冷気循環手段と除霜ヒータと、前記圧縮機と前記冷媒制御弁と前記第一の冷気循環手段と前記第二の冷気循環手段と前記除霜ヒータとを運転制御するシステム制御手段とからなり、前記システム制御手段の命令による第一の所定のタイミングで除霜ヒータの通電によって第二の蒸発器の除霜を行うとき圧縮機の運転を停止し冷媒制御弁を開とし第一の冷気循環手段を運転することを特徴とする冷凍冷蔵庫。  A second evaporator provided in the freezing chamber and the freezer compartment, a refrigerator, a refrigerator compartment, a compressor, a condenser, and a first decompression unit sequentially joined in series. A cooling system in which a first evaporator provided with a refrigerant control valve at the inlet portion and a second pressure reducing means are connected in parallel between the first evaporator and the first evaporator in the vicinity of the first evaporator. In the vicinity of the cold air circulation means and the second evaporator, the second cold air circulation means, the defrost heater, the compressor, the refrigerant control valve, the first cold air circulation means, and the second cold air circulation means. And a system control means for controlling the operation of the defrosting heater, and a compressor for defrosting the second evaporator by energizing the defrosting heater at a first predetermined timing according to a command from the system control means Is stopped, the refrigerant control valve is opened, and the first cold air circulation means is operated. Refrigerator characterized by Rukoto. 第一の蒸発器近傍に補償ヒータを設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記補償ヒータを通電することを特徴とする請求項記載の冷凍冷蔵庫。The compensation heater provided near the first evaporator, at a first predetermined timing and a second predetermined timing by the instruction of the system control means, the refrigeration of claim 1, wherein the energizing of the compensation heater refrigerator. 冷蔵室内の温度を検知する検知手段を設け、システム制御手段の命令による第一の所定のタイミング及び第二の所定のタイミングで、前記温度検知手段が所定温度を検知しているならば補償ヒータを通電することを特徴とする請求項記載の冷凍冷蔵庫。A detecting means for detecting the temperature in the refrigerator compartment is provided, and if the temperature detecting means detects a predetermined temperature at a first predetermined timing and a second predetermined timing according to a command from the system control means, a compensation heater is provided. refrigerator according to claim 1, wherein the energizing.
JP03840498A 1998-02-20 1998-02-20 Freezer refrigerator Expired - Fee Related JP4174844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03840498A JP4174844B2 (en) 1998-02-20 1998-02-20 Freezer refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03840498A JP4174844B2 (en) 1998-02-20 1998-02-20 Freezer refrigerator

Publications (2)

Publication Number Publication Date
JPH11237161A JPH11237161A (en) 1999-08-31
JP4174844B2 true JP4174844B2 (en) 2008-11-05

Family

ID=12524370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03840498A Expired - Fee Related JP4174844B2 (en) 1998-02-20 1998-02-20 Freezer refrigerator

Country Status (1)

Country Link
JP (1) JP4174844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349659A (en) * 2000-06-09 2001-12-21 Matsushita Refrig Co Ltd Refrigerator

Also Published As

Publication number Publication date
JPH11237161A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
EP0593194B1 (en) Refrigeration system with sequentially operating multiple evaporators
US6817195B2 (en) Reduced energy refrigerator defrost method and apparatus
JPH11304329A (en) Cooling operation controller of refrigerator
CN109798713B (en) Three-circulation air-cooled refrigerator and defrosting method thereof
JP3611447B2 (en) refrigerator
JPH09229532A (en) Refrigerator
JP4174844B2 (en) Freezer refrigerator
JP2007132571A (en) Refrigerator
JP5722160B2 (en) Cooling storage
JPH09236369A (en) Refrigerator
JPH1047827A (en) Freezing refrigerator
JPH10292967A (en) Freezer refrigerator
KR0154441B1 (en) Defrosting control method of a refrigerator
JP2001263912A (en) Refrigerator
JP2001255050A (en) Refrigerator
JPH10122719A (en) Refrigerator
JP3611961B2 (en) refrigerator
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
KR100379403B1 (en) defrosting method in the refrigerator with 2 evaporators
JP2002195726A5 (en)
JPH09287863A (en) Refrigerator
JPS621670Y2 (en)
KR100335054B1 (en) the separational cooling system for a refrigerator
JP3681795B2 (en) refrigerator
JPH04194564A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees