JP4173088B2 - Charge control agent and toner for developing electrostatic image containing the same - Google Patents

Charge control agent and toner for developing electrostatic image containing the same Download PDF

Info

Publication number
JP4173088B2
JP4173088B2 JP2003393530A JP2003393530A JP4173088B2 JP 4173088 B2 JP4173088 B2 JP 4173088B2 JP 2003393530 A JP2003393530 A JP 2003393530A JP 2003393530 A JP2003393530 A JP 2003393530A JP 4173088 B2 JP4173088 B2 JP 4173088B2
Authority
JP
Japan
Prior art keywords
group
control agent
charge control
carbon atoms
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003393530A
Other languages
Japanese (ja)
Other versions
JP2004199039A (en
Inventor
雅司 安松
和義 黒田
修 山手
香織 佐藤
淳 日方
平八 油科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orient Chemical Industries Ltd
Original Assignee
Orient Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orient Chemical Industries Ltd filed Critical Orient Chemical Industries Ltd
Priority to JP2003393530A priority Critical patent/JP4173088B2/en
Publication of JP2004199039A publication Critical patent/JP2004199039A/en
Application granted granted Critical
Publication of JP4173088B2 publication Critical patent/JP4173088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、静電荷像現像用トナーや粉体塗料に使用されるアゾ系鉄錯塩が含まれている負帯電性荷電制御剤、およびそれが含有されている静電荷像現像用トナーに関するものである。   The present invention relates to a negatively chargeable charge control agent containing an azo-based iron complex salt used for an electrostatic charge image developing toner or powder coating material, and an electrostatic charge image developing toner containing the same. is there.

複写機、プリンター、ファクシミリ等に利用されている電子写真システムは、摩擦帯電させたトナーにより感光体上に静電潜像を現像し、記録紙上に転写し定着させるものである。   An electrophotographic system used in a copying machine, a printer, a facsimile, or the like develops an electrostatic latent image on a photosensitive member with a frictionally charged toner, and transfers and fixes it on a recording sheet.

トナーの帯電の立ち上がり速度を速めたり、トナーを十分に帯電させその荷電量を適切に制御しつつ安定化して帯電特性を高めたり、静電潜像の現像速度を早めつつ鮮明な画像を形成したりするため、予めトナーに荷電制御剤が添加される。このような荷電制御剤として、例えば特許文献1に記載された負帯電性の金属錯塩が用いられている。   To increase the charging speed of the toner, to stabilize the charge sufficiently by properly charging the toner and properly controlling the amount of charge, to improve the charging characteristics, or to form a clear image while increasing the development speed of the electrostatic latent image Therefore, a charge control agent is added to the toner in advance. As such a charge control agent, for example, a negatively chargeable metal complex salt described in Patent Document 1 is used.

特開昭61−155464号公報JP 61-155464 A

近年の複写機やプリンターの解像度向上等の高性能化、電子写真システムでの高速現像のみならず低速現像等の用途の拡大に伴い、トナーの帯電の立ち上がりをより速くし、より優れた帯電特性を発現させ、鮮明で高解像度の画像を形成させることができ、簡便に製造できる荷電制御剤が求められていた。また、構造体表面の電荷に、静電気帯電した粉体塗料を引き付け、焼き付ける静電粉体塗装に使用される粉体塗料にも用いることができる荷電制御剤が、求められていた。   In recent years, with higher performance such as improved resolution of copiers and printers, and the expansion of applications such as low-speed development as well as high-speed development in electrophotographic systems, toner charge rises faster and better charging characteristics Thus, there has been a demand for a charge control agent that can produce a clear and high-resolution image and can be easily produced. There has also been a demand for a charge control agent that can be used in a powder coating used in electrostatic powder coating that attracts and charges an electrostatically charged powder coating to the surface charge of the structure.

本発明は、前記課題を解決するためになされたもので、帯電の立ち上がりが速く、優れた帯電特性を発現させ、鮮明で高解像度の画像を形成させることができ、簡便に製造できる荷電制御剤、その製造方法、それを含有する静電荷像現像用トナー、およびこのトナーを用いた画像形成方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. A charge control agent that has a fast charge rise, exhibits excellent charging characteristics, can form a clear and high-resolution image, and can be easily manufactured. Another object of the present invention is to provide a production method thereof, an electrostatic image developing toner containing the same, and an image forming method using the toner.

前記の目的を達成するためになされた本発明の荷電制御剤は、下記化学式[I]   The charge control agent of the present invention made to achieve the above object has the following chemical formula [I]

Figure 0004173088
Figure 0004173088

(式[I]中、R-〜R-は、夫々同一または異なり、水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、炭素数2〜18で直鎖または分岐鎖のアルケニル基、置換基を有していてもよいスルホンアミド基、メシル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、アセチルアミノ基、ベンゾイルアミノ基、ハロゲン原子、ニトロ基、置換基を有していてもよいアリール基、R-は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、R-は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、カルボキシル基、ハロゲン原子、炭素数1〜18のアルコキシ基、n=0.7〜0.99である。)で示されるアゾ系鉄錯塩が含まれた平均粒径1〜4μmの凝集粒子であって、該凝集粒子を超音波照射して微粒化した一次粒子結晶の平均粒径が最大でも3μmとし、ブタノールを0.01〜1.00重量%含有しているものである。 (In the formula [I], R 1-to R 4 -are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or a linear or branched chain having 2 to 18 carbon atoms. An alkenyl group, an optionally substituted sulfonamido group, a mesyl group, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an acetylamino group, a benzoylamino group, a halogen atom, a nitro group, and a substituent. An aryl group, R 5 -is a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, R 6 -is a hydrogen atom, carbon An azo type represented by a linear or branched alkyl group, hydroxy group, carboxyl group, halogen atom, alkoxy group having 1 to 18 carbon atoms, n = 0.7 to 0.99. Average grain containing iron complex salt A agglomerated particles of 1 to 4 [mu] m, and 3μm at a maximum average particle size of the aggregated particles ultrasonic irradiation to micronized primary particles crystals and contains butanol 0.01 to 1.00 wt% Is .

この荷電制御剤は微細であるので、ジェットミルのような強力な粉砕装置を用いて粉砕をする必要がない。平均粒径がこの範囲にある微細な凝集粒子である荷電制御剤とトナー用樹脂とを、例えば溶融混練して得た粒径数μmの静電荷像現像用トナーは、走査電子顕微鏡で観察したとき、トナー粒子中に荷電制御剤が万遍なく分散している。その結果、トナー粒子は、その表面に多くの荷電制御剤を露出させて、均等で、優れた帯電特性を発現する。荷電制御剤の凝集粒子の平均粒径が4μmを超えると、分散性が低下し、トナーの帯電特性が悪くなってしまう。荷電制御剤は、平均粒径が1〜3μmの凝集粒子であると一層好ましい。   Since the charge control agent is fine, it is not necessary to pulverize using a powerful pulverizer such as a jet mill. An electrostatic image developing toner having a particle size of several μm obtained by, for example, melt-kneading a charge control agent, which is fine aggregated particles having an average particle size in this range, and a resin for toner was observed with a scanning electron microscope. Sometimes, the charge control agent is evenly dispersed in the toner particles. As a result, the toner particles expose a large amount of charge control agent on the surface thereof and exhibit uniform and excellent charging characteristics. When the average particle diameter of the aggregated particles of the charge control agent exceeds 4 μm, the dispersibility is lowered and the charging characteristics of the toner are deteriorated. The charge control agent is more preferably aggregated particles having an average particle diameter of 1 to 3 μm.

荷電制御剤は、前記式[I]で示されるアゾ系鉄錯塩の一次粒子の粒径が最大でも4μmのものであることが好ましい。   The charge control agent preferably has a primary particle diameter of 4 μm at the maximum in the azo-based iron complex salt represented by the formula [I].

この荷電制御剤は、極微細な一次粒子の複数個が会合して、平均粒径1〜4μmの凝集粒子を形成したものであると推察される。微粒化した一次粒子が前記の範囲より大きいと、前記と同数程度の複数個会合する凝集粒子の荷電制御剤は、平均粒径4μmを超えてしまう。   This charge control agent is presumed to be one in which a plurality of extremely fine primary particles are associated to form aggregated particles having an average particle size of 1 to 4 μm. When the atomized primary particles are larger than the above range, the charge control agent for the aggregated particles, which are associated with the same number as the above, exceeds the average particle size of 4 μm.

前記の存在比のアンモニウムイオンとナトリウムイオンとの対イオンを有するアゾ系鉄錯塩が含まれた荷電制御剤を用いて調製した静電荷像現像用トナーは、静電潜像を現像する際に低速であっても高速であっても帯電の立ち上がりが速い。さらに十分な荷電量を帯電させることができ、安定して帯電を維持できる。nがこの範囲から外れると、静電潜像を現像する際に低速なほど帯電の立ち上がりが遅くなり、荷電量が少なくなってしまう。   The electrostatic charge image developing toner prepared using a charge control agent containing an azo-based iron complex salt having a counter ion of ammonium ion and sodium ion in the abundance ratio described above is low in developing an electrostatic latent image. Even at high speed, the rise of the charge is fast. Furthermore, a sufficient amount of charge can be charged, and charging can be stably maintained. When n is out of this range, the lower the speed when developing the electrostatic latent image, the slower the rising of the charge and the less the charge amount.

このアゾ系鉄錯塩のアニオン成分の共通な中心骨格は、下記構造式[IV]   The common central skeleton of the anionic component of this azo-based iron complex salt is represented by the following structural formula [IV]

Figure 0004173088
Figure 0004173088

に示すとおり、鉄原子を中心金属に有し、モノアゾ化合物2モル当量に対し鉄原子の1モル当量で金属化した構造を有している。このモノアゾ化合物はナフチル環を有し、このナフチル環は下記の基[V]、 As shown in FIG. 4, the structure has an iron atom as a central metal and is metallized with 1 molar equivalent of an iron atom per 2 molar equivalents of a monoazo compound. This monoazo compound has a naphthyl ring, which is represented by the following group [V],

Figure 0004173088
Figure 0004173088

で示されるアニリド基で置換されている。このようなアニリド基で置換されたナフチル環を有するモノアゾ化合物、およびそれから誘導されるアゾ系鉄錯塩は、いずれも非油溶性が高まる。 It is substituted with the anilide group shown by. A monoazo compound having a naphthyl ring substituted with such an anilide group and an azo-based iron complex salt derived from the monoazo compound are all insoluble in oil.

このようなアゾ系鉄錯塩は、固体と固体との反応になり易いため反応し難く、さらに結晶化が難しい。また、トナー樹脂との相溶性が低下するので、結晶の分散が不均一になり易い。そのために、アゾ系鉄錯塩をより微細な粒子にして、均一に分散させることが、荷電制御性に優れた良好な現像特性を有するトナーとするのに、重要である。   Such an azo-based iron complex salt is difficult to react because it tends to react with a solid, and further difficult to crystallize. In addition, since the compatibility with the toner resin is lowered, the dispersion of crystals tends to be non-uniform. Therefore, it is important to make the azo-based iron complex salt into finer particles and uniformly disperse the toner with excellent development characteristics with excellent charge controllability.

以下に、前記式[I]で示されるアゾ系鉄錯塩を例示する。   Examples of the azo-based iron complex salt represented by the formula [I] will be given below.

置換基R-〜R-は、それぞれ、同じであっても異なっていてもよく、水素原子;炭素数1〜18で直鎖または分岐鎖のアルキル基(例えばメチル基、エチル基、プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、ヘキシル基、ヘプチル基、オクチル基);炭素数2〜18で直鎖または分岐鎖のアルケニル基(例えばビニル基、アリル基、プロペニル基、ブテニル);置換基を有していてもよく有していなくてもよいスルホンアミド基;メシル基;ヒドロキシ基;炭素数1〜18のアルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基);アセチルアミノ基;ベンゾイルアミノ基;ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子);ニトロ基;フッ素原子や塩素原子や臭素原子のようなハロゲン原子、水酸基、アルキル基、またはアリール基で例示される置換基を有していてもよく有していなくてもよいアリール基(例えばフェニル基、ナフチル基)である。 Each of the substituents R 1-to R 4 -may be the same or different and is a hydrogen atom; a linear or branched alkyl group having 1 to 18 carbon atoms (for example, methyl group, ethyl group, propyl group) Group, iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, hexyl group, heptyl group, octyl group); linear or branched alkenyl having 2 to 18 carbon atoms Group (for example, vinyl group, allyl group, propenyl group, butenyl); sulfonamide group which may or may not have a substituent; mesyl group; hydroxy group; alkoxy group having 1 to 18 carbon atoms ( For example, methoxy group, ethoxy group, propoxy group); acetylamino group; benzoylamino group; halogen atom (for example, fluorine atom, chlorine atom, bromine atom); nitro group; fluorine atom or chlorine atom Or a halogen atom such as bromine atom, a hydroxyl group, an alkyl group or an aryl aryl group may not have may have a substituent exemplified by a group (e.g. a phenyl group, a naphthyl group), a.

-は、水素原子;炭素数1〜18で直鎖または分岐鎖のアルキル基(例えばメチル基、エチル基、プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、ヘキシル基、ヘプチル基、オクチル基);ヒドロキシ基;炭素数1〜18のアルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基)である。 R 5 -represents a hydrogen atom; a linear or branched alkyl group having 1 to 18 carbon atoms (for example, methyl group, ethyl group, propyl group, iso-propyl group, n-butyl group, tert-butyl group, n- A pentyl group, an iso-pentyl group, a hexyl group, a heptyl group, an octyl group); a hydroxy group; an alkoxy group having 1 to 18 carbon atoms (for example, a methoxy group, an ethoxy group, and a propoxy group).

-は、水素原子;炭素数1〜18で直鎖または分岐鎖のアルキル基(例えばメチル基、エチル基、プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、ヘキシル基、ヘプチル基、オクチル基);ヒドロキシ基;カルボキシル基;ハロゲン原子;炭素数1〜18のアルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基)である。 R 6 -represents a hydrogen atom; a linear or branched alkyl group having 1 to 18 carbon atoms (eg, methyl group, ethyl group, propyl group, iso-propyl group, n-butyl group, tert-butyl group, n- Pentyl group, iso-pentyl group, hexyl group, heptyl group, octyl group); hydroxy group; carboxyl group; halogen atom; alkoxy group having 1 to 18 carbon atoms (for example, methoxy group, ethoxy group, propoxy group).

式[I]に示されるアゾ系鉄錯塩は、より具体的な化合物として下記化学式[II]   The azo iron complex salt represented by the formula [I] is a more specific compound represented by the following chemical formula [II]

Figure 0004173088
(化学式[II]中、nは前記と同じ)で示される化合物であることが好ましい。
Figure 0004173088
(In the chemical formula [II], n is the same as defined above).

式[I]に示されるアゾ系鉄錯塩は、下記化学式[VI]〜[XIII]   The azo-based iron complex salt represented by the formula [I] has the following chemical formulas [VI] to [XIII].

Figure 0004173088
(化学式[VI]中、t-C-はターシャリーブチル基)
Figure 0004173088
(In the chemical formula [VI], t-C 4 H 9 -is a tertiary butyl group)

Figure 0004173088
Figure 0004173088

Figure 0004173088
Figure 0004173088

Figure 0004173088
Figure 0004173088

Figure 0004173088
Figure 0004173088

Figure 0004173088
(化学式[XI]中、t-C17-はターシャリーオクチル基)
Figure 0004173088
(In the chemical formula [XI], t-C 8 H 17 -is a tertiary octyl group)

Figure 0004173088
Figure 0004173088

Figure 0004173088
Figure 0004173088

(化学式[VI]〜[XIII]中、nは前記と同じ)で示される化合物であってもよい。中でも、前記化学式[II]で示される化合物が特に好ましい。 (In the chemical formulas [VI] to [XIII], n is the same as described above). Among these, the compound represented by the chemical formula [II] is particularly preferable.

この荷電制御剤を走査電子顕微鏡で拡大すると、前記の大きさであって形状の揃った略板片状の凝集粒子として観察される。この揃った略板片状の凝集粒子は、長さが約2〜5μmで、幅が約0.5〜2.5μmの粒子として観察される。形状の揃った荷電制御剤を含有するトナーは、帯電性が均質となるので、ムラのない鮮明な静電潜像を形成することができる。   When this charge control agent is magnified with a scanning electron microscope, it is observed as aggregated particles of substantially the same size and shape as described above. The aligned substantially plate-like aggregated particles are observed as particles having a length of about 2 to 5 μm and a width of about 0.5 to 2.5 μm. A toner containing a charge control agent having a uniform shape is uniform in chargeability, so that a clear electrostatic latent image without unevenness can be formed.

荷電制御剤の一次粒子結晶の平均粒径と一次粒子の表面積とを検討すると、一次粒子結晶の平均粒径から得た比表面積が10m/g以上であることが好ましい。この範囲であると、荷電制御剤の帯電制御性がよくなる結果、高解像の画像が得られる。15m/g以上であると一層好ましい。 Considering the average particle size of the primary particle crystal and the surface area of the primary particle of the charge control agent, the specific surface area obtained from the average particle size of the primary particle crystal is preferably 10 m 2 / g or more. Within this range, the charge controllability of the charge control agent is improved, resulting in a high-resolution image. More preferably, it is 15 m 2 / g or more.

荷電制御剤は、ブタノールを0.01〜1.00重量%含有していることが好ましい。ブタノールを用いて反応させることにより、平均粒径が微細な荷電制御剤が得られ、また少量のブタノールを含有する荷電制御剤は凝集が起こりにくいうえ、トナー中に微細に分散する結果優れたトナーが得られるものと推測される。   The charge control agent preferably contains 0.01 to 1.00% by weight of butanol. By reacting with butanol, a charge control agent having a fine average particle diameter can be obtained, and a charge control agent containing a small amount of butanol is less likely to aggregate and finely dispersed in the toner. Is presumed to be obtained.

荷電制御剤は、荷電制御剤中の残存硫酸イオンが最大100ppmであることが好ましい。更に残存塩素イオンが、最大200ppmであることが好ましい。この量は、アゾ系鉄錯塩の残存イオンとして測定したものである。荷電制御剤は、純度が高いほど帯電特性が向上する。   The charge control agent preferably has a maximum residual sulfate ion of 100 ppm in the charge control agent. Furthermore, it is preferable that a residual chlorine ion is a maximum of 200 ppm. This amount is measured as residual ions of the azo-based iron complex salt. As the charge control agent has higher purity, the charging characteristics are improved.

本発明の前記化学式[I]で示されるアゾ系鉄錯塩を含んでいる荷電制御剤の製造方法は、ジアゾ化して、下記化学式[III]   The method for producing a charge control agent comprising an azo-based iron complex salt represented by the above chemical formula [I] according to the present invention comprises diazotization and the following chemical formula [III]:

Figure 0004173088
Figure 0004173088

(式[III]中、R-〜R-は、前記と同じ)
で示されるモノアゾ化合物を得る第1工程、モノアゾ化合物を鉄化する第2工程、対イオンを調製して、前記式[I]で示されるアゾ系鉄錯塩を得る第3工程、該アゾ系鉄錯塩を濾取し、乾燥する第4工程を有する荷電制御剤の製造方法において、該第2工程および/または該第3工程を、水−炭素数1〜6の低級アルコールの混合溶媒中で行うというものである。この水は、少なくとも70重量%含まれていることが好ましい。
(In the formula [III], R 1-to R 6 -are the same as above)
A first step of obtaining a monoazo compound represented by formula (2), a second step of ironating the monoazo compound, a third step of preparing a counter ion to obtain an azo iron complex salt represented by the formula [I], the azo iron In the method for producing a charge control agent having a fourth step of filtering and drying the complex salt, the second step and / or the third step are performed in a mixed solvent of water and a lower alcohol having 1 to 6 carbon atoms. That's it. This water is preferably contained at least 70% by weight.

この製造方法によれば、生成するモノアゾ化合物、およびアゾ系鉄錯塩は結晶化し易い。この製造方法の各工程で、反応物および生成物の結晶の粒径が微細となる。このように微細にコントロールすることが、反応収率、およびアゾ系鉄錯塩が含まれた凝集粒子である荷電制御剤やそれの一次粒子結晶の粒子を得るために、大きく影響する要因である。この製造方法において、反応を水系で行う場合に、炭素数1〜6の低級アルコールを添加することにより、高収率に反応が進み、アゾ系鉄錯塩の結晶を微細な粒子に調整することができる。この低級アルコールがブタノールであると一層好ましい。   According to this production method, the produced monoazo compound and azo-based iron complex salt are easily crystallized. In each step of the production method, the crystal size of the reactant and product crystals becomes fine. Such fine control is a factor that greatly affects the reaction yield and the charge control agent, which is an agglomerated particle containing an azo-based iron complex salt, and particles of primary particle crystals thereof. In this production method, when the reaction is carried out in an aqueous system, the reaction proceeds in a high yield by adding a lower alcohol having 1 to 6 carbon atoms, and the crystals of the azo-based iron complex salt can be adjusted to fine particles. it can. More preferably, the lower alcohol is butanol.

第1工程は、水中、または水−有機溶剤混合溶液中、好ましくは水−炭素数1〜6の低級アルコール混合溶液中で、常法のジアゾ化カップリング反応をしてモノアゾ化合物を得ることが好ましい。   In the first step, a monoazo compound can be obtained by performing a conventional diazotization coupling reaction in water or in a water-organic solvent mixed solution, preferably in a water-C1-6 lower alcohol mixed solution. preferable.

第2工程は、水中、または水−有機溶剤混合溶液中、好ましくは水−炭素数1〜6の低級アルコール混合溶液(水:炭素数1〜6の低級アルコールの重量比が、99.9〜70:0.1〜30の混合溶媒)中で、第1工程で得られたモノアゾ化合物を、硫酸第二鉄、塩化第二鉄、硝酸第二鉄で例示される鉄化剤により鉄化することが好ましい。炭素数1〜6の低級アルコールを添加することにより、得られる荷電制御剤の平均粒径を調整できる。第2工程における反応混合液中の水全体に対する炭素数1〜6の低級アルコールの存在比は、0.5〜9.0重量%、より好ましくは2.0〜8.0重量%である。この低級アルコールがブタノールであると一層好ましい。   The second step is carried out in water or in a water-organic solvent mixed solution, preferably a water-C1-C6 lower alcohol mixed solution (water: the weight ratio of C1-C6 lower alcohol is 99.9- 70: 0.1 to 30), the monoazo compound obtained in the first step is ironified with an ironizing agent exemplified by ferric sulfate, ferric chloride, and ferric nitrate. It is preferable. By adding a lower alcohol having 1 to 6 carbon atoms, the average particle diameter of the obtained charge control agent can be adjusted. The abundance ratio of the lower alcohol having 1 to 6 carbon atoms with respect to the entire water in the reaction mixture in the second step is 0.5 to 9.0% by weight, more preferably 2.0 to 8.0% by weight. More preferably, the lower alcohol is butanol.

第3工程は、アンモニア水、硝酸アンモニウム、リン酸アンモニウム、塩化アンモニウム、硫酸アンモニウムで例示されるアンモニウム化剤を用い、対イオンを調製するというものである。   The third step is to prepare a counter ion using an ammonium agent exemplified by aqueous ammonia, ammonium nitrate, ammonium phosphate, ammonium chloride, and ammonium sulfate.

先ずモノアゾ化合物を鉄化する第2工程の後に、対イオンを調製する第3工程を行ってもよく、この第2工程と、この第3工程とを同時に行ってもよい。また、対イオンの調製の際に、先ず対イオンを全てNaまたはHとし、その後、前記化学式[I]の所望の対イオン比nとなるよう調製してもよい。対イオンの調製は、水系または/および非水系で行うことができるが、水系の方が低コストであり、反応物と生成物とが結晶化し易くなるうえ、これらの結晶の粒径を微細にコントロールすることができる。 First, after the second step of ironizing the monoazo compound, a third step of preparing a counter ion may be performed, and this second step and this third step may be performed simultaneously. Further, when preparing the counter ion, first, all the counter ions may be Na + or H +, and thereafter, the counter ion may be prepared so as to have a desired counter ion ratio n of the chemical formula [I]. The counter ion can be prepared in an aqueous system and / or a non-aqueous system. However, the aqueous system is less expensive, the reaction product and the product are more easily crystallized, and the grain size of these crystals is finer. Can be controlled.

第1〜第3工程のうち複数の工程を連続して同一反応器内で行ってもよく、各工程毎に別々な反応器で行ってもよい。また、各工程で反応液を取り出すことなくワンポットで行ってもよい。各工程で反応ごとに中間生成物を濾取し、中間生成物のウエットケーキを得たり、このウエットケーキを乾燥して乾燥品を得たりして、ウエットケーキや乾燥品を中間体として次の反応に用いてもよい。   A plurality of steps among the first to third steps may be performed continuously in the same reactor, or may be performed in separate reactors for each step. Moreover, you may carry out by one pot, without taking out a reaction liquid at each process. In each step, the intermediate product is filtered for each reaction to obtain a wet cake of the intermediate product, or the wet cake is dried to obtain a dry product. You may use for reaction.

第1工程後、一度反応液を取り出し濾取し、中間生成物のウエットケーキを得る製造法において重要な点は、生成物であるアゾ系鉄錯塩の対イオンのNaの存在量を、所望の量に調整することである。そのために先ず、第1工程で例えば亜硝酸ナトリウムを用いジアゾ化カップリング反応させて得られる反応液、およびモノアゾ化合物中のNa量の測定をする必要がある。モノアゾ化合物に残存するNa量を控除して、水酸化ナトリウム量を調整して、第2工程でモノアゾ化合物を分散させた炭素数1〜6の低級アルコール−水混合液に加え、更に鉄化剤を加え、鉄化反応することにより、所望の対イオンの存在比のアゾ系鉄錯塩を簡便に得ることができる。この反応時の好ましいpHは2〜4である。
得られた荷電制御剤は粒径が微細であり、形状が揃っているので、粉砕および分級する必要がなく、簡便に製造でき実用的である。したがって、水酸化ナトリウム量と、炭素数1〜6の低級アルコール量と、pHとが前記の適当な範囲から外れると、荷電制御剤は平均粒径4μmを超えてしまう。このような荷電制御剤は、攪拌ミルや乳鉢等を用いた弱い力での解砕では平均粒径1〜4μmにすることができないので、ジェットミルのような強力な高速気流下で粉砕しなければならない。
After the first step, the reaction solution is once taken out and filtered to obtain an intermediate product wet cake. The important point in the production method is that the amount of Na + in the counter ion of the product azo-type iron complex salt is determined as desired. Is to adjust the amount. Therefore, first, it is necessary to measure the amount of Na in the reaction solution obtained by diazotization coupling reaction using, for example, sodium nitrite in the first step, and the monoazo compound. The amount of Na remaining in the monoazo compound is subtracted to adjust the amount of sodium hydroxide, and added to the lower alcohol-water mixture having 1 to 6 carbon atoms in which the monoazo compound is dispersed in the second step. Is added, and an azo iron complex salt having a desired counter ion abundance ratio can be easily obtained. The preferred pH during this reaction is 2-4.
Since the obtained charge control agent has a fine particle size and a uniform shape, it is not necessary to pulverize and classify, and can be easily produced and practical. Therefore, if the amount of sodium hydroxide, the amount of lower alcohol having 1 to 6 carbon atoms, and the pH are out of the appropriate ranges, the charge control agent exceeds the average particle size of 4 μm. Such charge control agents cannot be reduced to an average particle size of 1 to 4 μm by crushing with a weak force using a stirring mill or a mortar, and therefore must be pulverized under a powerful high-speed air current such as a jet mill. I must.

第1工程後、反応液を取り出すことなく第2工程を行う場合、炭素数1〜6の低級アルコール量が前記の適当な範囲から外れると、荷電制御剤は平均粒径4μmを超えてしまう。このような荷電制御剤は、攪拌ミルや乳鉢等を用いた弱い力での解砕では平均粒径1〜4μmにすることができないので、ジェットミルのような強力な高速気流下で粉砕しなければならない。   When the second step is performed without taking out the reaction solution after the first step, if the amount of the lower alcohol having 1 to 6 carbon atoms is out of the appropriate range, the charge control agent exceeds the average particle size of 4 μm. Such charge control agents cannot be reduced to an average particle size of 1 to 4 μm by crushing with a weak force using a stirring mill or a mortar, and therefore must be pulverized under a powerful high-speed air current such as a jet mill. I must.

得られた荷電制御剤を乾燥すると、静電気等で引き寄せられ1mm〜数cm程度の塊状となるが、攪拌ミルのような解砕機や乳鉢により、容易に1〜4μmの凝集粒子へ解砕される。この凝集粒子は、粒径が微細であり、形状が揃っているので、軽度の粉砕処理である解砕を施すことによって、充分に安定な品質を示す。   When the obtained charge control agent is dried, it is attracted by static electricity or the like and becomes a lump of about 1 mm to several centimeters. . Since these agglomerated particles have a fine particle size and have a uniform shape, they exhibit a sufficiently stable quality when subjected to pulverization, which is a mild pulverization process.

荷電制御剤は、この製造方法で製造されていることが好ましい。   The charge control agent is preferably produced by this production method.

荷電制御剤は、静電荷像現像用トナーや粉体塗料に含有させるものである。   The charge control agent is contained in the electrostatic image developing toner or powder coating material.

本発明の静電荷像現像用トナーは、前記の荷電制御剤、およびトナー用樹脂が含有されている。トナー用樹脂は、例えばスチレン系樹脂、アクリル系樹脂、エポキシ樹脂、ビニル系樹脂、ポリエステル系樹脂である。着色剤、磁性材料、流動性改善剤、オフセット防止剤が含有されていてもよい。高速機器用のトナーとするために、酸価の高いトナー用樹脂を用いてもよい。酸価値は20〜100mgKOH/gであることが好ましい。   The electrostatic image developing toner of the present invention contains the charge control agent and a toner resin. The toner resin is, for example, a styrene resin, an acrylic resin, an epoxy resin, a vinyl resin, or a polyester resin. A colorant, a magnetic material, a fluidity improving agent, and an offset preventing agent may be contained. In order to obtain a toner for high-speed equipment, a toner resin having a high acid value may be used. The acid value is preferably 20 to 100 mgKOH / g.

トナーには、例えばトナー用樹脂100重量部に対して、荷電制御剤0.1〜10重量部、着色剤0.5〜10重量部が含まれている。   The toner contains, for example, a charge control agent of 0.1 to 10 parts by weight and a colorant of 0.5 to 10 parts by weight with respect to 100 parts by weight of the toner resin.

このトナーを摩擦して負に帯電させて、複写した画像は、鮮明で高品質である。このトナーは、帯電の立ち上がりが速いので、高速複写のみならず、最大周速度600cm/分以下の低速複写の際にも、明瞭な静電潜像を形成して、鮮明で高解像度の画像を形成することができ、コピー特性が優れている。   The image copied by negatively charging the toner by friction is clear and of high quality. Since this toner has a fast charge rise, a clear electrostatic latent image is formed not only at high speed copying but also at low speed copying at a maximum peripheral speed of 600 cm / min. It can be formed and has excellent copy characteristics.

この静電荷像現像用トナーにおいては、着色剤として公知の多数の染料、顔料を用いることができる。用い得る着色剤の具体例は次のとおりである。すなわち、キノフタロンイエロー、イソインドリノンイエロー、ペリノンオレンジ、ペリノンレッド、ペリレンマルーン、ローダミン6Gレーキ、キナクリドンレッド、アンスアンスロンレッド、ローズベンガル、銅フタロシアニンブルー、銅フタロシアニングリーン、ジケトピロロピロール系の有機顔料;カーボンブラック、チタンホワイト、チタンイエロー、群青、コバルトブルー、べんがら、アルミニウム粉、ブロンズ等の無機顔料並びに金属粉などを挙げることができる。また染料や顔料が高級脂肪酸や合成樹脂等で加工されたものが挙げられる。これらは、単独で又は2種以上配合して使用してもよい。   In this electrostatic image developing toner, a number of known dyes and pigments can be used as colorants. Specific examples of colorants that can be used are as follows. That is, quinophthalone yellow, isoindolinone yellow, perinone orange, perinone red, perylene maroon, rhodamine 6G lake, quinacridone red, anthanthrone red, rose bengal, copper phthalocyanine blue, copper phthalocyanine green, diketopyrrolopyrrole organic pigments; Examples thereof include inorganic pigments such as carbon black, titanium white, titanium yellow, ultramarine, cobalt blue, bengara, aluminum powder and bronze, and metal powder. Further, dyes and pigments processed with higher fatty acids or synthetic resins can be used. You may use these individually or in mixture of 2 or more types.

また、トナーの品質を向上させるために、オフセット防止剤、流動性改良剤(例えば、シリカ、酸化アルミニウム、酸化チタン等の各種金属酸化物、又はフッ化マグネシウム等)、クリーニング助剤(例えば、ステアリン酸等の金属石鹸;フッ素系合成樹脂微粒子、シリコン系合成樹脂微粒子、スチレン−(メタ)アクリル系合成樹脂微粒子等の各種合成樹脂微粒子等)で例示される添加剤を、トナーに内添または外添させてもよい。   Further, in order to improve the quality of the toner, an offset preventive agent, a fluidity improver (for example, various metal oxides such as silica, aluminum oxide, titanium oxide, or magnesium fluoride), a cleaning aid (for example, stearin) Metal additives such as acids; fluorine synthetic resin fine particles, silicon synthetic resin fine particles, various synthetic resin fine particles such as styrene- (meth) acrylic synthetic resin fine particles, etc.) It may be added.

このトナーは、キャリア粉と混合した後、2成分磁気ブラシ現像法等により現像する際に用いることができる。キャリア粉としては、公知のものが全て使用可能であり特に限定されない。キャリア粉として、具体的には、粒径50〜200μm程度のもので、鉄粉、ニッケル粉、フェライト粉、およびガラスビーズ等が挙げられ、またこれらの表面をアクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、シリコーン樹脂、ポリアミド樹脂、またはフッ化エチレン系樹脂等でコーティングしたものが挙げられる。   This toner can be used when developing with a two-component magnetic brush developing method after mixing with carrier powder. Any known carrier powder can be used and is not particularly limited. Specifically, the carrier powder has a particle size of about 50 to 200 μm, and examples thereof include iron powder, nickel powder, ferrite powder, and glass beads. The surface of the carrier powder is an acrylate copolymer, styrene- Examples thereof include those coated with an acrylate copolymer, a silicone resin, a polyamide resin, or a fluoroethylene resin.

このトナーは、1成分現像剤として用いることができる。そのようなトナーは、上記のようにしてトナーを製造する際に、例えば鉄粉、ニッケル粉、フェライト粉等の強磁性材料製の微粉体を添加分散させたものである。この場合の現像法として、例えば接触現像法、ジャンピング現像法等が挙げられる。   This toner can be used as a one-component developer. Such a toner is obtained by adding and dispersing fine powder made of a ferromagnetic material such as iron powder, nickel powder, and ferrite powder when the toner is manufactured as described above. Examples of the developing method in this case include a contact developing method and a jumping developing method.

このトナーを製造する方法として、例えばいわゆる粉砕方法が挙げられる。この方法は具体的には次のようなものである。樹脂、低軟化点物質からなる離型剤、着色剤、荷電制御剤等を、加圧ニーダー、エクストルーダー、またはメディア分散機を用いて、均一に分散させた後、機械的に粉砕し、またはジェット気流下でターゲットに衝突させて粉砕し、所望のトナー粒径に微粉砕化させ、次いで分級工程を経ることにより粒度分布を狭めてシャープ化すると、所望のトナーが得られる。   As a method for producing this toner, for example, a so-called pulverization method can be mentioned. Specifically, this method is as follows. A resin, a release agent comprising a low softening point substance, a colorant, a charge control agent, etc. are uniformly dispersed using a pressure kneader, an extruder, or a media dispersing machine, and then mechanically pulverized, or The desired toner can be obtained by colliding with a target under a jet stream and pulverizing, finely pulverizing to a desired toner particle size, and then narrowing and sharpening the particle size distribution through a classification step.

また、重合トナーを製造する方法は、例えば、次のようなものである。重合性単量体中に離型剤、着色剤、荷電制御剤、重合開始剤その他の添加剤を加え、ホモミキサー、超音波分散機等を用いて、均一に溶解又は分散させた単量体組成物とした後、分散安定剤を含有する水相中で、ホモミキサー等により分散させる。単量体組成物からなる液滴が、所望のトナー粒子のサイズとなった時点で、造粒を停止する。その後、分散安定剤の作用により、その粒径の粒子状態が維持され、また粒子の沈降が防止される程度の緩やかな攪拌を行う。重合反応は、40℃以上、好ましくは50〜90℃の温度で、行われる。重合反応の後半で昇温してもよい。さらに、未反応の重合性単量体や副生成物等を除去するために、重合反応の後半に、または重合反応終了後に、水系媒体を一部留去してもよい。なお、このような懸濁重合法においては、重合性単量体組成物100重量部に対して水300〜3000重量部を分散媒として使用するのが好ましい。重合反応終了後、生成したトナー粒子を洗浄して濾別し、乾燥すると、重合トナーが得られる。   The method for producing the polymerized toner is, for example, as follows. Monomers that are uniformly dissolved or dispersed using a homomixer, ultrasonic disperser, etc. by adding a release agent, a colorant, a charge control agent, a polymerization initiator and other additives to the polymerizable monomer After preparing the composition, it is dispersed in a water phase containing a dispersion stabilizer by a homomixer or the like. The granulation is stopped when the droplets of the monomer composition reach the desired toner particle size. Thereafter, gentle stirring is performed to such an extent that the particle state of the particle size is maintained by the action of the dispersion stabilizer and the settling of the particles is prevented. The polymerization reaction is carried out at a temperature of 40 ° C. or higher, preferably 50 to 90 ° C. The temperature may be raised in the latter half of the polymerization reaction. Furthermore, in order to remove unreacted polymerizable monomers and by-products, a part of the aqueous medium may be distilled off in the latter half of the polymerization reaction or after the completion of the polymerization reaction. In such a suspension polymerization method, it is preferable to use 300 to 3000 parts by weight of water as a dispersion medium with respect to 100 parts by weight of the polymerizable monomer composition. After the completion of the polymerization reaction, the produced toner particles are washed, filtered, and dried to obtain a polymerized toner.

本発明の画像形成方法は、前記の静電荷像現像用トナーが含まれている現像剤で、静電潜像担持体上の静電潜像を現像する工程を有している。   The image forming method of the present invention includes a step of developing the electrostatic latent image on the electrostatic latent image carrier with the developer containing the electrostatic image developing toner.

この画像形成方法は、例えば、間隙をあけて静電潜像担持体に対峙して配置され最大900cm/分の周速度で回転している現像剤担持体上に、前記トナーが含まれている現像剤を吸着させて層を形成する工程と、該層中のトナーを前記静電潜像担持体に吸着させてそれの静電潜像を現像する工程とを有しているというものである。   In this image forming method, for example, the toner is contained on a developer carrying member that is arranged to face the electrostatic latent image carrying member with a gap and is rotated at a peripheral speed of a maximum of 900 cm / min. A step of forming a layer by adsorbing the developer, and a step of developing the electrostatic latent image by adsorbing the toner in the layer to the electrostatic latent image carrier. .

以上、詳細に説明したように、本発明の荷電制御剤は、微細で形状が揃っており、ジェットミル等により粉砕する必要がなく、簡便に製造できる。さらに、帯電立ち上がりが速く、荷電量が高い。そのため、低速複写から高速複写に至る幅広い用途の静電荷像現像用トナーに、使用される。また、静電粉体塗装に使用される粉体塗料にも使用できる。荷電制御剤は、有害な重金属を含まず、安全性が高く、環境を汚染しない。   As described above in detail, the charge control agent of the present invention is fine and uniform in shape, and does not need to be pulverized by a jet mill or the like, and can be easily produced. Furthermore, the charge rise is fast and the charge amount is high. Therefore, it is used as a toner for developing an electrostatic charge image for a wide range of uses from low speed copying to high speed copying. It can also be used for powder coatings used for electrostatic powder coating. The charge control agent does not contain harmful heavy metals, is highly safe and does not pollute the environment.

この荷電制御剤を含有する静電荷像現像用トナーは、帯電の立ち上がりが速い。このトナーは、荷電制御剤がトナー中に均等に分散しており、負電荷に帯電し均一で高い荷電量のまま長時間安定して維持できる。このトナーは、電子写真システムにおいて静電潜像を現像する際に用いられる。この像を転写して記録紙に形成した画像は、安定して鮮明な高解像度であり、カブリがなく綺麗である。   The electrostatic charge image developing toner containing this charge control agent has a fast charge rise. In this toner, the charge control agent is uniformly dispersed in the toner, and the toner can be stably charged for a long time with a uniform and high charge amount by being charged to a negative charge. This toner is used when developing an electrostatic latent image in an electrophotographic system. The image formed on the recording paper by transferring this image has a stable and clear high resolution and is beautiful without fog.

以下、本発明の荷電制御剤、およびそれを含有する静電荷像現像用トナーの実施例を詳細に説明する。   Examples of the charge control agent of the present invention and toner for developing an electrostatic charge image containing the same will be described in detail below.

(実施例1)
前記化学式[II]で示されるアゾ系鉄錯塩を含む荷電制御剤の製造方法について、この錯塩の合成の一例である下記化学反応式を参照しながら説明する。
(Example 1)
A method for producing a charge control agent containing an azo-based iron complex salt represented by the chemical formula [II] will be described with reference to the following chemical reaction formula, which is an example of the synthesis of this complex salt.

Figure 0004173088
Figure 0004173088

始発物質である2−アミノ−4−クロロフェノール(化学式[XIV])58.1gと、濃塩酸120.0gとを、水680.3gに加え、次いで反応系の外部から氷冷しながら36%の亜硝酸ナトリウム水溶液36.3gを徐々に加え、ジアゾ化してジアゾニウム塩を得た。ナフトールAS(化学式[XV])17.4gと20.5%の水酸化ナトリウム水溶液280gとを水800mlに溶解させた水溶液に前記ジアゾニウム塩溶液を短時間で滴下し、2時間反応させた。その後、析出したモノアゾ化合物(化学式[XVI])を濾取、水洗し、含水率78.4%のウエットケーキ688.4gを得た。   The starting material 2-amino-4-chlorophenol (chemical formula [XIV]) 58.1 g and concentrated hydrochloric acid 120.0 g were added to 680.3 g of water, and then 36% with ice cooling from the outside of the reaction system. 36.3 g of an aqueous sodium nitrite solution was gradually added and diazotized to obtain a diazonium salt. The diazonium salt solution was added dropwise in a short time to an aqueous solution in which 17.4 g of naphthol AS (chemical formula [XV]) and 280 g of a 20.5% aqueous sodium hydroxide solution were dissolved in 800 ml of water, and reacted for 2 hours. Thereafter, the precipitated monoazo compound (chemical formula [XVI]) was collected by filtration and washed with water to obtain 688.4 g of a wet cake having a water content of 78.4%.

このモノアゾ化合物(化学式[XVI])のウエットケーキ一部を乾燥し、Na含有量を原子吸光にて測定したところ2.88%であった。このウエットケーキの固形分に対して、これに残存するNa量を控除した20.5%の水酸化ナトリウム水溶液25.0gを、このモノアゾ化合物(化学式[XVI]の化合物)のウエットケーキ285.4gを分散させたn-ブタノール−水(94.3g:1180g)混合液に加え、80℃まで加熱し、30分攪拌分散させた。次いで41%の硫酸第二鉄水溶液36.0gを滴下した。その後、96℃まで加熱し、2時間加熱還流し、水素イオン含有アゾ系鉄錯塩(化学式[XVII])を合成した。更に加熱還流しディーンスタークを用い水−n-ブタノール液126.9gを除去した。室温まで冷却後、硫酸アンモニウム19.4g及び25%アンモニア水20.0gを加え、96℃で2時間加熱還流させ対イオン交換を行った。反応終了後、放冷し沈殿したアゾ系鉄錯塩(化学式[II])を濾取、水洗し、所望の荷電制御剤として、57.3g得た。   A portion of the wet cake of this monoazo compound (chemical formula [XVI]) was dried, and the Na content was measured by atomic absorption, and found to be 2.88%. 25.0 g of a 20.5% aqueous sodium hydroxide solution obtained by subtracting the amount of Na remaining in the solid content of the wet cake was added to 285.4 g of a wet cake of this monoazo compound (compound of formula [XVI]). Was added to a mixed liquid of n-butanol-water (94.3 g: 1180 g), heated to 80 ° C., and stirred and dispersed for 30 minutes. Subsequently, 36.0 g of 41% aqueous ferric sulfate solution was added dropwise. Then, it heated to 96 degreeC and heated and refluxed for 2 hours, and the hydrogen ion containing azo type iron complex salt (Chemical formula [XVII]) was synthesize | combined. The mixture was further heated to reflux to remove 126.9 g of water-n-butanol solution using Dean Stark. After cooling to room temperature, 19.4 g of ammonium sulfate and 20.0 g of 25% aqueous ammonia were added, and the mixture was heated to reflux at 96 ° C. for 2 hours for counter ion exchange. After completion of the reaction, the azo-type iron complex salt (chemical formula [II]) which was allowed to cool and precipitated was collected by filtration and washed with water to obtain 57.3 g as a desired charge control agent.

これを乾燥すると、1mm〜数cm程度の塊状となるので、攪拌ミルで解砕したり、乳鉢で擂り潰したりして、粉末にした。   When this was dried, it became a lump of about 1 mm to several centimeters, so it was pulverized with a stirring mill or crushed with a mortar to form a powder.

この荷電制御剤について、以下の理化学分析、および物性評価を行った。   The charge control agent was subjected to the following physicochemical analysis and physical property evaluation.

(走査電子顕微鏡観察)
走査電子顕微鏡S2350(日立製作所社製の商品名)を用い、試料の粒径と形状を観察した。拡大して観察したところ、一次粒径が1〜4μmであり、揃った略板片状であった。
(Scanning electron microscope observation)
Using a scanning electron microscope S2350 (trade name, manufactured by Hitachi, Ltd.), the particle size and shape of the sample were observed. When enlarged and observed, the primary particle size was 1 to 4 μm, and it was a substantially plate-like shape.

(凝集粒子である荷電制御剤の平均粒径の測定)
荷電制御剤約20mgを、活性剤 スコアロール100(花王社製の商品名)2mLおよび水20mLの溶液に加え混合液とし、粒度分布測定器 LA−910(堀場製作所社製の商品名)内の分散水約120mLに、この混合液の約1mLを加え、1分間超音波振動させた後、粒度分布を測定した。凝集粒子である荷電制御剤の平均粒径は2.2μmであった。
(Measurement of average particle size of charge control agent that is aggregated particles)
About 20 mg of the charge control agent is added to a solution of 2 mL of the active agent score roll 100 (trade name, manufactured by Kao Corporation) and 20 mL of water to form a mixed solution, and the particle size distribution analyzer LA-910 (trade name, manufactured by Horiba, Ltd.) About 1 mL of this mixed solution was added to about 120 mL of dispersed water and subjected to ultrasonic vibration for 1 minute, and then the particle size distribution was measured. The average particle diameter of the charge control agent as aggregated particles was 2.2 μm.

(荷電制御剤を微細分散させた一次粒子結晶の平均粒径)
凝集粒子である荷電制御剤約20mgを、活性剤 スコアロール100(花王社製の商品名)2mLおよび水20mLの溶液に加え混合液とし、10分間超音波振動させたこの混合液の1〜2滴を、粒度分布測定器 LA−910(堀場製作所社製の商品名)内の分散水約120mLに加え、更に1分間超音波振動させ凝集粒子を一次粒子結晶に微細分散させた後、粒度分布を測定した。このときの粒度分布測定結果が、走査電子顕微鏡による粒径の観察結果と大きく異なる場合、さらに5分間超音波振動させ十分に一次粒子結晶に微細分散させてから、再度粒度分布を測定した。荷電制御剤の一次粒子結晶の平均粒径は1.6μmであった。
(Average particle size of primary particle crystal with finely dispersed charge control agent)
About 20 mg of the charge control agent, which is an aggregated particle, is added to a solution of 2 mL of active agent score roll 100 (trade name, manufactured by Kao Corporation) and 20 mL of water to form a mixed solution, and this mixture is subjected to ultrasonic vibration for 10 minutes. Drops are added to about 120 mL of dispersed water in a particle size distribution analyzer LA-910 (trade name, manufactured by HORIBA, Ltd.) and further subjected to ultrasonic vibration for 1 minute to finely disperse the aggregated particles into primary particle crystals, and then the particle size distribution. Was measured. When the particle size distribution measurement result at this time was significantly different from the observation result of the particle size by the scanning electron microscope, the particle size distribution was measured again after further ultrasonically vibrating for 5 minutes and sufficiently finely dispersing in the primary particle crystals. The average particle diameter of the primary particle crystals of the charge control agent was 1.6 μm.

(荷電制御剤の比表面積)
比表面積測定器 NOVA−1200(QUANTACHROME社製の商品名)を用い、荷電制御剤の比表面積(BET)を測定した。空セル(9mm−大)を秤量した後、セルの4/5程度(約0.2g)サンプルを入れた。乾燥室にセルをセットし、120℃にて1時間、加熱脱気した。セルを放冷後、秤量し、サンプル重量を算出した後に、分析ステーションに取り付けて測定した。その結果、平均粒径を用いて換算した荷電制御剤の一次粒子結晶の比表面積は、15.3m/gであった。
(Specific surface area of charge control agent)
The specific surface area measuring device NOVA-1200 (trade name, manufactured by QUANTACHROME) was used to measure the specific surface area (BET) of the charge control agent. After empty cells (9 mm-large) were weighed, about 4/5 (about 0.2 g) samples of the cells were added. The cell was set in a drying chamber and heated and degassed at 120 ° C. for 1 hour. The cell was allowed to cool and then weighed to calculate the sample weight, and then the cell was attached to the analysis station and measured. As a result, the specific surface area of the primary particle crystal of the charge control agent converted using the average particle diameter was 15.3 m 2 / g.

(アンモニウムイオン量およびナトリウムイオン量の測定)
原子吸光測定器AA−660(島津製作所社製の商品名)と、元素分析測定器2400 II CHNS/O(パーキンエルマー社製の商品名)とを用い、荷電制御剤中のNa含有量等を測定した結果、対イオンとしての存在比率は、アンモニウムイオンが97.2mol%であり、ナトリウムイオンが2.8mol%であった。
(Measurement of ammonium ion amount and sodium ion amount)
Using atomic absorption measuring instrument AA-660 (trade name, manufactured by Shimadzu Corporation) and elemental analysis measuring instrument 2400 II CHNS / O (trade name, manufactured by Perkin Elmer), the Na content in the charge control agent is determined. As a result of measurement, the abundance ratio as a counter ion was 97.2 mol% for ammonium ions and 2.8 mol% for sodium ions.

(残存塩素イオン量および残存硫酸イオン量の測定)
イオンクロマト測定器(DIONEX社製の商品名:DX−300)を用い、荷電制御剤に残存する塩素イオン量と硫酸イオン量を測定した。その結果、塩素イオン量は112ppmであった。硫酸イオン量の検出限界は100ppmであるが、硫酸イオン量はこの検出限界以下であった。
(Measurement of residual chlorine ion content and residual sulfate ion content)
The amount of chlorine ions and the amount of sulfate ions remaining in the charge control agent were measured using an ion chromatograph (trade name: DX-300 manufactured by DIONEX). As a result, the chlorine ion content was 112 ppm. The detection limit of the amount of sulfate ions was 100 ppm, but the amount of sulfate ions was below this detection limit.

(有機溶剤含有量の測定)
ガスクロマト測定器SERIES II 5890(HEWLETT PACKARD社製の商品名)を用い、荷電制御剤中の有機溶剤含有量を測定した。その結果、n-ブタノール含有量は、0.22重量%であった。
(Measurement of organic solvent content)
The organic solvent content in the charge control agent was measured using a gas chromatograph SERIES II 5890 (trade name, manufactured by HEWLETT PACKARD). As a result, the n-butanol content was 0.22% by weight.

これらの結果を、表1に示す。   These results are shown in Table 1.

(実施例2)
実施例1と同様な手順により製造量が異なる別なロットとしてモノアゾ化合物(化学式[XVI])を合成し、濾取、水洗し、含水率73.8%のウエットケーキ1620.4gを得た。
(Example 2)
A monoazo compound (chemical formula [XVI]) was synthesized as another lot having a different production amount by the same procedure as in Example 1, and was collected by filtration and washed with water to obtain 1620.4 g of a wet cake having a water content of 73.8%.

このモノアゾ化合物(化学式[XVI])のウエットケーキ一部を乾燥し、Na含有量を原子吸光にて測定したところ1.90%であった。このウエットケーキの固形分に対して、これに残存するNa量を控除した20.5%の水酸化ナトリウム水溶液22.05gを、このモノアゾ化合物(化学式[XVI]の化合物)のウエットケーキ160gを分散させたn-ブタノール−水(22.2g:283.39g)混合液に加え、80℃まで加熱し、30分攪拌分散させた。次いで41%の硫酸第二鉄水溶液24.5gを滴下した。その後、93℃まで加熱し、2時間加熱還流し、水素イオン含有アゾ系鉄錯塩(化学式[XVII])を合成した。更に加熱還流しディーンスタークを用い水−n-ブタノール液34.3gを除去した。室温まで冷却後、硫酸アンモニウム3.32g及び25%アンモニア水13.65gを加え、96℃で2時間加熱還流させ対イオン交換を行った。反応終了後、放冷し沈殿したアゾ系鉄錯塩(化学式[II])を濾取、水洗し、所望の荷電制御剤として、38.7g得た。   A portion of the wet cake of this monoazo compound (chemical formula [XVI]) was dried, and the Na content was measured by atomic absorption. As a result, it was 1.90%. Disperse 22.05 g of a 20.5% aqueous sodium hydroxide solution obtained by subtracting the amount of Na remaining in the solid content of this wet cake, and 160 g of the wet cake of this monoazo compound (compound of formula [XVI]). The mixture was added to the n-butanol-water (22.2 g: 283.39 g) mixed solution, heated to 80 ° C., and stirred and dispersed for 30 minutes. Subsequently, 24.5 g of 41% aqueous ferric sulfate solution was added dropwise. Then, it heated to 93 degreeC and heated and refluxed for 2 hours, and the hydrogen ion containing azo type iron complex salt (Chemical formula [XVII]) was synthesize | combined. The mixture was further heated to reflux to remove 34.3 g of a water-n-butanol solution using Dean Stark. After cooling to room temperature, 3.32 g of ammonium sulfate and 13.65 g of 25% aqueous ammonia were added, and the mixture was heated to reflux at 96 ° C. for 2 hours for counter ion exchange. After completion of the reaction, the azo iron complex salt (chemical formula [II]) which was allowed to cool and precipitated was collected by filtration and washed with water to obtain 38.7 g as a desired charge control agent.

これを乾燥すると、1mm〜数cm程度の塊状となるので、攪拌ミルで解砕したり、乳鉢で擂り潰したりして、粉末にした。   When this was dried, it became a lump of about 1 mm to several centimeters, so it was pulverized with a stirring mill or crushed with a mortar to form a powder.

この荷電制御剤について、実施例1と同様にして、理化学分析、および物性評価を行った。走査電子顕微鏡で観察したところ、一次粒径が1〜4μmの範囲にあり、揃った略板片状であった。凝集粒子である荷電制御剤の平均粒径は、3.5μmであった。荷電制御剤を微細分散させた一次粒子結晶の平均粒径は、1.8μmであった。実施例2の荷電制御剤について、理化学分析および物性評価を行った結果を、まとめて表1に示す。   The charge control agent was subjected to physicochemical analysis and physical property evaluation in the same manner as in Example 1. When observed with a scanning electron microscope, the primary particle size was in the range of 1 to 4 μm, and it was a substantially plate-like shape. The average particle diameter of the charge control agent as aggregated particles was 3.5 μm. The average particle diameter of the primary particle crystal in which the charge control agent was finely dispersed was 1.8 μm. Table 1 summarizes the results of physicochemical analysis and physical property evaluation of the charge control agent of Example 2.

(実施例3)
実施例1の合成方法と同様にして、モノアゾ化合物(化学式[XVI])を合成した。析出したモノアゾ化合物を濾取、水洗し、実施例1とは含水率が異なる別なロットのウエットケーキ(液体クロマトグラフィーによる純度99.00%、含水率68.45%)を得た。このウエットケーキ一部を乾燥し、Na含有量を原子吸光にて測定したところ4.26%であった。このウエットケーキの固形分に対して、これに残存するNa量を控除した20.5%の水酸化ナトリウム水溶液7.1gを、このモノアゾ化合物のウエットケーキ70.0gを分散させた1−ペンタノール−水(11.53g:424.27g)混合液に加え、80℃まで加熱し、30分攪拌分散させた。次いで41%の硫酸第二鉄水溶液12.76gを滴下した。この時の反応液のpHは、2.7であった。その後、97℃まで加熱し、3時間加熱還流し、アゾ系鉄錯塩を合成した。沈殿したこのアゾ系鉄錯塩を濾取、水洗し、含水率60.3%のウエットケーキ53.4gを得た。
次いでこのウエットケーキを水151gに分散させ、硫酸アンモニウム1.5gおよび25%アンモニア水6.1g、n−ブタノール5.5gを加え、97℃で2時間加熱還流させ対イオン交換を行った。析出したアゾ系鉄錯塩を濾取、水洗し、乾燥し所望の荷電制御剤として、19.5g得た。
(Example 3)
In the same manner as in the synthesis method of Example 1, a monoazo compound (chemical formula [XVI]) was synthesized. The precipitated monoazo compound was collected by filtration and washed with water to obtain another lot of wet cake having a moisture content different from that of Example 1 (purity 99.00% by liquid chromatography, moisture content 68.45%). A portion of this wet cake was dried and the Na content measured by atomic absorption was 4.26%. 1-Pentanol in which 7.1 g of a 20.5% aqueous sodium hydroxide solution obtained by subtracting the amount of Na remaining in the solid content of the wet cake was dispersed in 70.0 g of the wet cake of the monoazo compound. -It added to water (11.53g: 424.27g) liquid mixture, and it heated to 80 degreeC, and was made to stir-disperse for 30 minutes. Subsequently, 12.76 g of 41% aqueous ferric sulfate solution was added dropwise. The pH of the reaction solution at this time was 2.7. Then, it heated to 97 degreeC and heated and refluxed for 3 hours, and the azo type iron complex salt was synthesize | combined. The precipitated azo-based iron complex salt was collected by filtration and washed with water to obtain 53.4 g of a wet cake having a water content of 60.3%.
Next, this wet cake was dispersed in 151 g of water, 1.5 g of ammonium sulfate, 6.1 g of 25% aqueous ammonia, and 5.5 g of n-butanol were added, and the mixture was heated to reflux at 97 ° C. for 2 hours for counter ion exchange. The precipitated azo-type iron complex salt was collected by filtration, washed with water, and dried to obtain 19.5 g as a desired charge control agent.

この荷電制御剤について、実施例1と同様にして、理化学分析、および物性評価を行った。凝集粒子である荷電制御剤の平均粒径は、4.0μmであった。荷電制御剤を微細分散させた一次粒子結晶の平均粒径は、2.1μmであった。実施例3の荷電制御剤について、理化学分析および物性評価を行った結果を、まとめて表1に示す。   The charge control agent was subjected to physicochemical analysis and physical property evaluation in the same manner as in Example 1. The average particle diameter of the charge control agent as aggregated particles was 4.0 μm. The average particle diameter of the primary particle crystal in which the charge control agent was finely dispersed was 2.1 μm. Table 1 summarizes the results of physicochemical analysis and physical property evaluation of the charge control agent of Example 3.

(実施例4)
実施例1の2−アミノ−4−クロロフェノール(化学式[XIV])を2−アミノ−4−スルホン体に変えた以外は実施例1と同様にして、下記モノアゾ化合物[XVIII]
Example 4
The following monoazo compound [XVIII] was prepared in the same manner as in Example 1 except that 2-amino-4-chlorophenol (chemical formula [XIV]) in Example 1 was changed to a 2-amino-4-sulfone compound.

Figure 0004173088
Figure 0004173088

を合成した。析出したモノアゾ化合物を濾取、水洗し、ウエットケーキ(液体クロマトグラフィーによる純度97.04%、含水率58.3%)を得た。このモノアゾ化合物のウエットケーキ少量を乾燥し、Na含有量を原子吸光にて測定したところ4.20%であった。このウエットケーキの固形分に対して、これに残存するNa量を控除した20.5%の水酸化ナトリウム水溶液9.37g(0.048mol)を、このモノアゾ化合物のウエットケーキ57.00g(0.050mol)を分散させたn−ブタノール−水(24.24g:409.02g)混合液に加え、80℃まで加熱し、30分攪拌分散させた。次いで41%の硫酸第二鉄水溶液12.24g(0.013mol)を滴下した。この時の反応液のpHは、3.83であった。その後、97℃まで加熱し、3時間加熱還流し、アゾ系鉄錯塩を合成した。沈殿したこのアゾ系鉄錯塩を濾取、水洗し、含水率56.3%のウエットケーキ50.05gを得た。
次いでこのウエットケーキを水161gに分散させ、硫酸アンモニウム1.6gおよび25%アンモニア水6.3g、ブタノール5.7gを加え、97℃で2時間加熱還流させ対イオン交換を行った。析出したアゾ系鉄錯塩を濾取、水洗し、乾燥し所望の荷電制御剤(式[VII]のアゾ系鉄錯塩)として、21.1g得た。
Was synthesized. The precipitated monoazo compound was collected by filtration and washed with water to obtain a wet cake (purity 97.04% by liquid chromatography, water content 58.3%). A small amount of the wet cake of this monoazo compound was dried, and the Na content was measured by atomic absorption to be 4.20%. 9.37 g (0.048 mol) of a 20.5% aqueous sodium hydroxide solution obtained by subtracting the amount of Na remaining in the solid content of the wet cake was added to 57.00 g (0.0. 050 mol) was added to a mixed liquid of n-butanol-water (24.24 g: 409.02 g), heated to 80 ° C., and stirred and dispersed for 30 minutes. Then, 12.24 g (0.013 mol) of a 41% aqueous ferric sulfate solution was added dropwise. The pH of the reaction solution at this time was 3.83. Then, it heated to 97 degreeC and heated and refluxed for 3 hours, and the azo type iron complex salt was synthesize | combined. The precipitated azo-based iron complex salt was collected by filtration and washed with water to obtain 50.05 g of a wet cake having a water content of 56.3%.
Next, this wet cake was dispersed in 161 g of water, 1.6 g of ammonium sulfate, 6.3 g of 25% aqueous ammonia, and 5.7 g of butanol were added, and the mixture was heated to reflux at 97 ° C. for 2 hours for counter ion exchange. The precipitated azo-type iron complex salt was collected by filtration, washed with water, and dried to obtain 21.1 g as a desired charge control agent (azo-type iron complex salt of the formula [VII]).

この荷電制御剤について、実施例1と同様にして、理化学分析、および物性評価を行った。走査電子顕微鏡で観察したところ、一次粒径が1〜4μmの範囲にあり、揃った略板片状であった。凝集粒子である荷電制御剤の平均粒径は、3.9μmであった。荷電制御剤を微細分散させた一次粒子結晶の平均粒径は、1.7μmであった。実施例4の荷電制御剤について、理化学分析および物性評価を行った結果を、まとめて表1に示す。   The charge control agent was subjected to physicochemical analysis and physical property evaluation in the same manner as in Example 1. When observed with a scanning electron microscope, the primary particle size was in the range of 1 to 4 μm, and it was a substantially plate-like shape. The average particle diameter of the charge control agent as aggregated particles was 3.9 μm. The average particle diameter of the primary particle crystal in which the charge control agent was finely dispersed was 1.7 μm. Table 1 summarizes the results of physicochemical analysis and physical property evaluation of the charge control agent of Example 4.

(実施例5)
始発物質である2−アミノ−4−クロロフェノール(化学式[XIV])16.2gと、濃塩酸26.1gとを、124.0gの水に加え、次いで反応系の外部から氷冷しながら36%の亜硝酸ナトリウム水溶液21.7gを徐々に加え、ジアゾ化してジアゾニウム塩を得た。ナフトールAS(化学式[XV])25.0gと20.5%の水酸化ナトリウム水溶液55.9gとを水186gに溶解させた水溶液に前記ジアゾニウム塩溶液を短時間で滴下し、2時間反応させた。その後、析出したモノアゾ化合物(化学式[XVI])の反応液にブタノール12.00g及び20.5%の水酸化ナトリウム水溶液18.2g、41%の硫酸第二鉄水溶液22.7gを加え、97℃まで加熱し、2時間加熱還流し、アゾ系鉄錯塩(化学式[XVII])を合成した。その後、析出したアゾ系鉄錯塩化合物(化学式[XVII])を濾取、水洗し、含水率55.1%のウエットケーキ86.63gを得た。
次いでこのウエットケーキを水282gに分散させ、硫酸アンモニウム3.00gおよび25%アンモニア水11.0g、ブタノール9.9gを加え、97℃で2時間加熱還流させ対イオン交換を行った。析出したアゾ系鉄錯塩化合物(化学式[II])を濾取、水洗し、乾燥し34.9gを得た。
(Example 5)
The starting material 2-amino-4-chlorophenol (Chemical Formula [XIV]) 16.2 g and concentrated hydrochloric acid 26.1 g were added to 124.0 g of water, and then cooled with ice from the outside of the reaction system. % Of sodium nitrite aqueous solution 21.7 g was gradually added and diazotized to obtain a diazonium salt. The diazonium salt solution was added dropwise in a short time to an aqueous solution in which 25.0 g of naphthol AS (chemical formula [XV]) and 55.9 g of 20.5% aqueous sodium hydroxide solution were dissolved in 186 g of water, and reacted for 2 hours. . Thereafter, 12.00 g of butanol, 18.2 g of 20.5% sodium hydroxide aqueous solution and 22.7 g of 41% ferric sulfate aqueous solution were added to the reaction solution of the precipitated monoazo compound (chemical formula [XVI]) at 97 ° C. And heated to reflux for 2 hours to synthesize an azo-based iron complex salt (chemical formula [XVII]). Thereafter, the precipitated azo-based iron complex salt compound (chemical formula [XVII]) was collected by filtration and washed with water to obtain 86.63 g of a wet cake having a water content of 55.1%.
Next, this wet cake was dispersed in 282 g of water, 3.00 g of ammonium sulfate, 11.0 g of 25% aqueous ammonia and 9.9 g of butanol were added, and the mixture was heated to reflux at 97 ° C. for 2 hours for counter ion exchange. The precipitated azo type iron complex salt compound (chemical formula [II]) was collected by filtration, washed with water and dried to obtain 34.9 g.

この荷電制御剤について、実施例1と同様にして、理化学分析、および物性評価を行った。凝集粒子である荷電制御剤の平均粒径は、3.9μmであった。荷電制御剤を微細分散させた一次粒子結晶の平均粒径は、2.0μmであった。実施例5の荷電制御剤について、理化学分析および物性評価を行った結果を、まとめて表1に示す。   The charge control agent was subjected to physicochemical analysis and physical property evaluation in the same manner as in Example 1. The average particle diameter of the charge control agent as aggregated particles was 3.9 μm. The average particle diameter of the primary particle crystal in which the charge control agent was finely dispersed was 2.0 μm. Table 1 summarizes the results of physicochemical analysis and physical property evaluation of the charge control agent of Example 5.

(比較例1)
実施例1と同様にして得た中間物であるモノアゾ化合物(化学式[XVI])のウエットケーキの固形分に対してこれに残存するNa量を控除して、このモノアゾ化合物(化学式[XVI])のウエットケーキ285.4gを分散させた水1180gに、20.5%の水酸化ナトリウム水溶液25.0gを加え、80℃まで加熱し、30分攪拌分散させた。次いで41%の硫酸第二鉄水溶液36.0gを滴下した。その後、85℃まで加熱し、2時間加熱還流し、反応を行った。得られるアゾ系鉄錯塩(化学式[XVII])の反応率は19.3%であった。得られた結晶形を観察すると、不均一で固まりであった。
(Comparative Example 1)
This monoazo compound (chemical formula [XVI]) was obtained by subtracting the amount of Na remaining from the solid content of the intermediate monoazo compound (chemical formula [XVI]) obtained in the same manner as in Example 1 from the wet cake. 25.0 g of a 20.5% aqueous sodium hydroxide solution was added to 1180 g of water in which 285.4 g of the wet cake was dispersed, heated to 80 ° C., and stirred and dispersed for 30 minutes. Subsequently, 36.0 g of 41% aqueous ferric sulfate solution was added dropwise. Then, it heated to 85 degreeC and heated and refluxed for 2 hours, and reaction was performed. The reaction rate of the obtained azo iron complex salt (chemical formula [XVII]) was 19.3%. When the obtained crystal form was observed, it was non-uniform and solid.

この荷電制御剤について、実施例1と同様にして、凝集粒子の平均粒径を測定したところ22.4μmであった。走査電子顕微鏡で粒径と形状を観察したところ、粒径が最大40μmであった。比較例1の荷電制御剤について、理化学分析および物性評価を行った結果を、まとめて表1に示す。   With respect to this charge control agent, the average particle diameter of the aggregated particles was measured in the same manner as in Example 1. As a result, it was 22.4 μm. When the particle diameter and shape were observed with a scanning electron microscope, the maximum particle diameter was 40 μm. Table 1 summarizes the results of physicochemical analysis and physical property evaluation of the charge control agent of Comparative Example 1.

Figure 0004173088
Figure 0004173088

次に、本発明の荷電制御剤を用いた静電荷像現像用トナーを試作した例について説明する。   Next, an example in which a toner for developing an electrostatic charge image using the charge control agent of the present invention is produced will be described.

(実施例6)
実施例1で得られた荷電制御剤の1重量部、
スチレン−アクリル共重合樹脂CPR−600B(三井化学社製の商品名)の100重量部、
カーボンブラック MA−100(三菱化学社製の商品名)の6重量部、
低重合ポリプロピレン ビスコール550P(三洋化成社製の商品名)の2重量部
を予備混合しプレミックスを調製した。このプレミックスを加熱ロールで溶融混練し、この混練物を冷却した後、超遠心粉砕器で粗粉砕した。得られた粗粉砕品を、分級器付きのエアージェットミルにより微粉砕すると、粒径5〜15μmの黒色トナーが得られた。
(Example 6)
1 part by weight of the charge control agent obtained in Example 1,
100 parts by weight of styrene-acrylic copolymer resin CPR-600B (trade name, manufactured by Mitsui Chemicals),
6 parts by weight of carbon black MA-100 (trade name, manufactured by Mitsubishi Chemical Corporation),
A premix was prepared by premixing 2 parts by weight of low-polymerized polypropylene biscol 550P (trade name, manufactured by Sanyo Kasei Co., Ltd.). The premix was melt-kneaded with a heating roll, the kneaded product was cooled, and then coarsely pulverized with an ultracentrifugal pulverizer. When the obtained coarsely pulverized product was finely pulverized by an air jet mill equipped with a classifier, a black toner having a particle diameter of 5 to 15 μm was obtained.

このトナー5重量部と、鉄粉キャリアTEFV200/300(パウダーテック社製の商品名)95部とを、3つのドラム内に装填した。現像ローラーの周速度を各々(A)1200cm/分、(B)900cm/分、(C)600cm/分で回転させ、経時的なトナーの摩擦荷電量について、ブローオフ帯電量測定器TB−200(東芝ケミカル社製の商品名)を使用したブローオフ法により測定した。その結果を図1の(A)〜(C)に示す。   Five parts by weight of this toner and 95 parts of iron powder carrier TEFV200 / 300 (trade name, manufactured by Powdertech) were loaded into three drums. The peripheral speed of the developing roller was rotated at (A) 1200 cm / min, (B) 900 cm / min, and (C) 600 cm / min, respectively. The product was measured by a blow-off method using a product name of Toshiba Chemical Co.). The results are shown in FIGS.

(実施例7)
実施例1で得られた荷電制御剤を実施例4で得られた荷電制御剤に変えた他は実施例6と同様の方法で黒色トナーを作成し、摩擦荷電量についてブローオフ法により測定した。結果を図2の(A)〜(C)に示す。
(Example 7)
A black toner was prepared in the same manner as in Example 6 except that the charge control agent obtained in Example 1 was changed to the charge control agent obtained in Example 4, and the triboelectric charge amount was measured by the blow-off method. A result is shown to (A)-(C) of FIG.

(実施例8)
イオン交換水710重量部に、0.1モル/L濃度のNaPO水溶液450重量部を投入し、60℃に加熱後、TK式ホモミキサー(特殊機化工業社製)にて5000rpmで攪拌しつつ1.0モル/L濃度のCaCl水溶液68重量部を徐々に加え、Ca(POの分散水液を得た。
一方、スチレン単量体170重量部、カーボン25重量部、分散液4重量部、実施例1にて得られたアゾ系鉄錯塩(化学式[II])9重量部をダイノーミルECM−PILOT(シンマルエンタープライゼス社製)に添加し、0.8mmのジルコニアビーズ用いて攪拌羽根で周速10m/secにて3時間分散を行い分散溶液を得た。次に、得られた分散液を60℃で保ちつつ2,2−アゾビス(2,4−ジメチルバレロニトリル)10重量部を添加し重合性単量体組成物を調製した。
上記重合性単量体組成物をCa(PO分散水液に投入し10000rpmで15分間攪拌造粒し、その後、攪拌羽根で攪拌しながら80℃にて10時間重合を行った。反応終了後、減圧下、残存モノマーを留去し、冷却後、塩酸を加えCa(POを溶解させ、ろ過、水洗、乾燥し、黒色トナーを得た。
得られた黒色トナー5重量部に対しフェライトキャリア95重量部を混合し現像剤とした。この現像剤を用い温度26〜29℃、湿度55〜63%の環境下で画像形成試験を行った。5000枚画像を形成する耐久試験においても、初期と耐久試験後の画像濃度に変化が無く、中抜けもない高画質画像が得られた。
(Example 8)
To 710 parts by weight of ion-exchanged water, 450 parts by weight of a 0.1 mol / L Na 3 PO 4 aqueous solution was added, heated to 60 ° C., and then at 5000 rpm with a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). While stirring, 68 parts by weight of a CaCl 2 aqueous solution having a concentration of 1.0 mol / L was gradually added to obtain a dispersed aqueous solution of Ca (PO 4 ) 2 .
On the other hand, 170 parts by weight of styrene monomer, 25 parts by weight of carbon, 4 parts by weight of the dispersion, and 9 parts by weight of the azo-based iron complex salt (chemical formula [II]) obtained in Example 1 were mixed with Dinomil ECM-PILOT (Shinmaru). And dispersed with an agitating blade at a peripheral speed of 10 m / sec for 3 hours to obtain a dispersion solution. Next, while maintaining the obtained dispersion at 60 ° C., 10 parts by weight of 2,2-azobis (2,4-dimethylvaleronitrile) was added to prepare a polymerizable monomer composition.
The polymerizable monomer composition was put into a Ca (PO 4 ) 2 aqueous dispersion and stirred and granulated at 10,000 rpm for 15 minutes, and then polymerized at 80 ° C. for 10 hours while stirring with a stirring blade. After completion of the reaction, the residual monomer was distilled off under reduced pressure. After cooling, hydrochloric acid was added to dissolve Ca (PO 4 ) 2 , filtered, washed with water, and dried to obtain a black toner.
A developer was prepared by mixing 95 parts by weight of a ferrite carrier with 5 parts by weight of the obtained black toner. Using this developer, an image formation test was conducted in an environment of a temperature of 26 to 29 ° C. and a humidity of 55 to 63%. Also in the durability test for forming 5000 images, there was no change in the image density between the initial stage and after the endurance test, and a high-quality image with no voids was obtained.

(比較例2)
比較例1の荷電制御剤を用いたこと以外は、実施例6と同様に試作した比較例のトナーについても、同じようにして摩擦荷電量を測定した。その結果を図1及び2の(A)〜(C)に示す。
(Comparative Example 2)
The triboelectric charge amount was measured in the same manner for the toner of the comparative example that was produced in the same manner as in Example 6 except that the charge control agent of Comparative Example 1 was used. The results are shown in FIGS. 1 and 2 (A) to (C).

図1および図2から明らかなとおり、実施例のトナーは、高速回転であるか低速回転であるかに係わらず、帯電の立ち上がりが速く、さらに荷電量が高かった。   As is clear from FIGS. 1 and 2, the toner of the example had a fast charge rise and a high charge amount regardless of whether the toner was rotating at high speed or rotating at low speed.

本発明を適用する静電荷像現像用トナーを用い、回転数毎における摩擦荷電量と回転時間との相関関係を示す図である。It is a figure which shows the correlation of the friction charge amount and rotation time for every rotation speed using the electrostatic image developing toner to which this invention is applied. 本発明を適用する別な静電荷像現像用トナーを用い、回転数毎における摩擦荷電量と回転時間との相関関係を示す図である。It is a figure which shows the correlation with the amount of friction charges and rotation time for every rotation speed using another toner for image development to which this invention is applied.

Claims (14)

下記化学式[I]
Figure 0004173088
(式[I]中、R-〜R-は、夫々同一または異なり、水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、炭素数2〜18で直鎖または分岐鎖のアルケニル基、置換基を有していてもよいスルホンアミド基、メシル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、アセチルアミノ基、ベンゾイルアミノ基、ハロゲン原子、ニトロ基、置換基を有していてもよいアリール基、R-は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、R-は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、カルボキシル基、ハロゲン原子、炭素数1〜18のアルコキシ基、n=0.7〜0.99である。)で示されるアゾ系鉄錯塩が含まれた平均粒径1〜4μmの凝集粒子であって、該凝集粒子を超音波照射して微粒化した一次粒子結晶の平均粒径が最大でも3μmとし、ブタノールを0.01〜1.00重量%含有していることを特徴とする荷電制御剤。
The following chemical formula [I]
Figure 0004173088
(In the formula [I], R 1-to R 4 -are the same or different and each represents a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or a linear or branched chain having 2 to 18 carbon atoms. An alkenyl group, an optionally substituted sulfonamido group, a mesyl group, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an acetylamino group, a benzoylamino group, a halogen atom, a nitro group, and a substituent. An aryl group, R 5 -is a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, R 6 -is a hydrogen atom, carbon An azo type represented by a linear or branched alkyl group, hydroxy group, carboxyl group, halogen atom, alkoxy group having 1 to 18 carbon atoms, n = 0.7 to 0.99. Average grain containing iron complex salt A agglomerated particles of 1 to 4 [mu] m, and 3μm at a maximum average particle size of the aggregated particles ultrasonic irradiation to micronized primary particles crystals and contains butanol 0.01 to 1.00 wt% The charge control agent characterized by the above-mentioned.
前記式[I]で示されるアゾ系鉄錯塩は、その一次粒子の粒径が最大でも4μmであることを特徴とする請求項1に記載の荷電制御剤。 The charge control agent according to claim 1, wherein the azo-type iron complex salt represented by the formula [I] has a primary particle size of 4 µm at the maximum. 前記アゾ系鉄錯塩が、下記化学式[II]
Figure 0004173088
(式[II]中、nは前記と同じ)で示される化合物であることを特徴とする請求項1に記載の荷電制御剤。
The azo-based iron complex salt has the following chemical formula [II]
Figure 0004173088
The charge control agent according to claim 1, wherein the charge control agent is a compound represented by the formula (II), wherein n is the same as defined above.
請求項1に記載の荷電制御剤は、揃った略板片状の該凝集粒子であることを特徴とする荷電制御剤。 The charge control agent according to claim 1, wherein the charge control agent is an aggregated particle having a substantially plate shape. 前記一次粒子結晶の平均粒径から得た比表面積が10m/g以上であることを特徴とする請求項1に記載の荷電制御剤。 The charge control agent according to claim 1, wherein a specific surface area obtained from an average particle diameter of the primary particle crystals is 10 m 2 / g or more. 残存硫酸イオンが、最大100ppmであり、且つ残存塩素イオンが、最大200ppmであることを特徴とする請求項1に記載の荷電制御剤。 2. The charge control agent according to claim 1, wherein the residual sulfate ion is a maximum of 100 ppm and the residual chlorine ion is a maximum of 200 ppm. 前記ブタノールが、n−ブタノールであることを特徴とする請求項1に記載の荷電制御剤。 The charge control agent according to claim 1, wherein the butanol is n-butanol . ジアゾ化カップリング反応をして、下記化学式[III]
Figure 0004173088
(式[III]中、 -〜R -は、夫々同一または異なり、水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、炭素数2〜18で直鎖または分岐鎖のアルケニル基、置換基を有していてもよいスルホンアミド基、メシル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、アセチルアミノ基、ベンゾイルアミノ基、ハロゲン原子、ニトロ基、置換基を有していてもよいアリール基、R -は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、炭素数1〜18のアルコキシ基、R -は水素原子、炭素数1〜18で直鎖または分岐鎖のアルキル基、ヒドロキシ基、カルボキシル基、ハロゲン原子、炭素数1〜18のアルコキシ基である。
で示されるモノアゾ化合物を得る第1工程、モノアゾ化合物を鉄化する第2工程、対イオンを調製して、下記化学式[I]
Figure 0004173088
(式[I]中、R -〜R -、R -、R -は前記と同じ。n=0.7〜0.99である。)
で示される前記アゾ系鉄錯塩を得る第3工程、該アゾ系鉄錯塩を濾取し、乾燥する第4工程を有する荷電制御剤の製造方法であって、該第2工程および/または該第3工程を、少なくとも70重量%含まれている水と0.5〜9.0重量%の炭素数1〜6の低級アルコールとの混合溶媒中で、反応を行うことを特徴とする荷電制御剤の製造方法。
Diazotization coupling reaction is carried out to obtain the following chemical formula [III]
Figure 0004173088
(Wherein [III], R 1 -~R 4 - , respectively the same or different, a hydrogen atom, an alkyl group of straight or branched chain 1 to 18 carbon atoms, straight chain or branched chain C2-18 An alkenyl group, an optionally substituted sulfonamido group, a mesyl group, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, an acetylamino group, a benzoylamino group, a halogen atom, a nitro group, and a substituent. An aryl group, R 5 -is a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, a hydroxy group, an alkoxy group having 1 to 18 carbon atoms, R 6 -is a hydrogen atom, carbon These are a linear or branched alkyl group, a hydroxy group, a carboxyl group, a halogen atom, and an alkoxy group having 1 to 18 carbon atoms.
A first step for obtaining a monoazo compound represented by formula (2), a second step for ironating the monoazo compound, a counter ion was prepared, and the following chemical formula [I]
Figure 0004173088
(Wherein [I], R 1 -~R 4 -, R 5 -, R 6 - is the same .n = from 0.7 to .99 and the.)
A method for producing a charge control agent comprising a third step of obtaining the azo-based iron complex salt represented by formula (4), and a fourth step of filtering and drying the azo-based iron complex salt, wherein the second step and / or the second step Charge control agent characterized in that the reaction is performed in a mixed solvent of water containing at least 70% by weight of water and 0.5 to 9.0% by weight of a lower alcohol having 1 to 6 carbon atoms. Manufacturing method.
前記低級アルコールが、ブタノールであることを特徴とする請求項に記載の荷電制御剤の製造方法。 The method for producing a charge control agent according to claim 8 , wherein the lower alcohol is butanol. 前記ブタノールが、n−ブタノールであることを特徴とする請求項に記載の荷電制御剤の製造方法。 The method for producing a charge control agent according to claim 9 , wherein the butanol is n-butanol . 請求項8〜10のいずれかに記載の製造方法で製造された荷電制御剤。 The charge control agent manufactured with the manufacturing method in any one of Claims 8-10. 請求項1〜7および11のいずれかに記載の荷電制御剤と、トナー用樹脂とが含有されていることを特徴とする静電荷像現像用トナー。 An electrostatic charge image developing toner comprising the charge control agent according to any one of claims 1 to 7 and a toner resin. 請求項12に記載の静電荷像現像用トナーが含まれている現像剤で、静電潜像担持体上の静電潜像を現像する工程とを有することを特徴とする静電写真の画像形成方法。 An electrostatic image having a step of developing an electrostatic latent image on an electrostatic latent image carrier with a developer containing the electrostatic image developing toner according to claim 12. Forming method. 最大900cm/分の周速度で回転している現像剤担持体上に前記トナーが含まれている現像剤を吸着させて層を形成する工程と、該層中のトナーを前記静電潜像担持体に吸着させてそれの静電潜像を現像する工程とを有することを特徴とする請求項13に記載の静電写真の画像形成方法。
Forming a layer by adsorbing the developer containing the toner on a developer carrying member rotating at a peripheral speed of up to 900 cm / min; and carrying the electrostatic latent image on the toner in the layer The method of forming an image of electrostatography according to claim 13, further comprising the step of developing the electrostatic latent image by adsorbing to a body.
JP2003393530A 2002-12-06 2003-11-25 Charge control agent and toner for developing electrostatic image containing the same Expired - Lifetime JP4173088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393530A JP4173088B2 (en) 2002-12-06 2003-11-25 Charge control agent and toner for developing electrostatic image containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002355598 2002-12-06
JP2003393530A JP4173088B2 (en) 2002-12-06 2003-11-25 Charge control agent and toner for developing electrostatic image containing the same

Publications (2)

Publication Number Publication Date
JP2004199039A JP2004199039A (en) 2004-07-15
JP4173088B2 true JP4173088B2 (en) 2008-10-29

Family

ID=32775101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393530A Expired - Lifetime JP4173088B2 (en) 2002-12-06 2003-11-25 Charge control agent and toner for developing electrostatic image containing the same

Country Status (1)

Country Link
JP (1) JP4173088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150097490A (en) * 2012-12-13 2015-08-26 호도가야 가가쿠 고교 가부시키가이샤 Production method for charge control agent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349072C (en) 2002-11-27 2007-11-14 东方化学工业株式会社 Electric charge controlling agent, toner for developing electrostatic charge image containing the same, and method for forming image using the toner
JP4344580B2 (en) 2003-10-15 2009-10-14 オリヱント化学工業株式会社 Method for producing charge control agent
JP4751244B2 (en) * 2006-06-16 2011-08-17 オリヱント化学工業株式会社 Toner for developing electrostatic image and image forming method using the same
JP5972129B2 (en) * 2012-09-20 2016-08-17 キヤノン株式会社 toner
JP6385088B2 (en) * 2014-03-20 2018-09-05 キヤノン株式会社 Magnetic toner
JP6385087B2 (en) * 2014-03-20 2018-09-05 キヤノン株式会社 Toner production method
JP2016118759A (en) * 2014-12-22 2016-06-30 オリヱント化学工業株式会社 Charge control agent, manufacturing method of charge control agent, and toner for electrostatic charge image development including charge control agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150097490A (en) * 2012-12-13 2015-08-26 호도가야 가가쿠 고교 가부시키가이샤 Production method for charge control agent
KR102122108B1 (en) * 2012-12-13 2020-06-11 호도가야 가가쿠 고교 가부시키가이샤 Production method for charge control agent

Also Published As

Publication number Publication date
JP2004199039A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US20060257776A1 (en) Charge control agent and toner for electrostatic image development
JPH0786706B2 (en) Toner and developer composition containing charge-accelerating additive
US20020102485A1 (en) Toner, and toner production process
WO1999012941A1 (en) Zirconium compounds and electrophotographic toner containing the same
JP2003255613A (en) Method for manufacturing toner
JP4173088B2 (en) Charge control agent and toner for developing electrostatic image containing the same
JP3916633B2 (en) Charge control agent and toner for developing electrostatic image containing the same
JP4344580B2 (en) Method for producing charge control agent
JP3916645B2 (en) Charge control agent and toner for developing electrostatic image containing the same
JP3916646B2 (en) Image forming method using toner for developing electrostatic image containing charge control agent
JP3854854B2 (en) Toner and toner production method
JP2014021144A (en) Manufacturing method for toner particle
JP3993881B2 (en) Method for producing charge control agent
JP4115495B2 (en) Toner and toner production method
JP4267037B2 (en) Charge control agent and toner
JP2765937B2 (en) Colored fine particles and toner for developing electrostatic images using the same
JP2005232234A (en) Method for producing charge controlling agent
JP3264024B2 (en) Toner for developing electrostatic images
JPH05134457A (en) Production for electrostatic charge image developing toner
JP2596617B2 (en) Toner for developing electrostatic images
JPH04211691A (en) Zinc benzoate salt compound and electronic photography toner using the same
JP2001175028A (en) Method for producing electrostatic charge image developing toner
JPH08179559A (en) Positive charge type particles and positive charge type toner using same
JP2000105489A (en) Charge controlling agent for toner and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Ref document number: 4173088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250