JP4172907B2 - Effective removal method of dioxins - Google Patents

Effective removal method of dioxins Download PDF

Info

Publication number
JP4172907B2
JP4172907B2 JP2000261894A JP2000261894A JP4172907B2 JP 4172907 B2 JP4172907 B2 JP 4172907B2 JP 2000261894 A JP2000261894 A JP 2000261894A JP 2000261894 A JP2000261894 A JP 2000261894A JP 4172907 B2 JP4172907 B2 JP 4172907B2
Authority
JP
Japan
Prior art keywords
dioxins
cleaning liquid
incinerator
effective
dioxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000261894A
Other languages
Japanese (ja)
Other versions
JP2002035772A (en
Inventor
汪芳 白井
睦 木村
謙二 英
州博 濱田
利博 平井
Original Assignee
財団法人上田繊維科学振興会
汪芳 白井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人上田繊維科学振興会, 汪芳 白井 filed Critical 財団法人上田繊維科学振興会
Priority to JP2000261894A priority Critical patent/JP4172907B2/en
Publication of JP2002035772A publication Critical patent/JP2002035772A/en
Application granted granted Critical
Publication of JP4172907B2 publication Critical patent/JP4172907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本願発明は新規かつ効果的なダイオキシン類の除去ないしは減少方法に関する。本願発明に係る方法は、社会的大きな問題となっている汚染された廃棄に困る物質を正常に回復させる地球環境を護るための効果的な方法に関する。
【0002】
【従来の技術】
従来、ダイオキシン類を除去する方法として、色々と試みがあるが効果的な方法は見出されていない。そのためダイオキシン類が発生しやすい低温焼却炉や化学工場は、操業の停止や廃棄さらには周辺の土壌までも巨大なゴムシート、コンクリート槽内に閉じ込めることが行われている。近代科学のマイナス面が表れ、その処置に困って、行政的に徴量ならば影響は少ないとして、進めざるを得ない状況にある。
【0003】
前者には、超高温で燃焼させて、発生を押さえるとか、再超高温処理して減少させるとか、プラズマの中を通して、減少させる試みで、いずれも膨大なエネルギーを消費するもであり、一層実施を困難にしていた。公費で行われると一層経済を疲弊させるものである。科学的方向のみをみても超高温処理の方向またはそれに類するものであった。装置も含めて、極めて高価につくという致命的な問題として未解決のままである。
【0004】
【発明が解決しようとする課題】
本発明者らは上記の未解決の問題を解決すること、超高温処理のような莫大な費用を伴う欠点のない方法を提供することを目的とし、鋭意検討した結果、次の発明に到達した。特に、低温で、比較的安価で、地球に優しい効果的なダイオキシン類の除去法・減少方法を提供すること、かかる火急的な問題に対処し、引いては人類の福祉と安寧に大きく寄与することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記の社会的な大題を、多くの人が避けて通る傾向の中にあって、地球環境守り人類のため、正面から、真に受け止め、遂に達成したものである。その骨子は、次の通りである。
【0006】
少なくとも、1分子中に2つの環状構造を持つダイオキシン類に対して、フタロシアニン最外周に位置する6個の炭素を含む環状化合物に付属する化学基の2個以上8個以下がカルボン酸ナトリウムであり、他の残基が−Hである金属フタロシアニン誘導体の水溶液と、該金属フタロシアニン誘導体の少なくとも1000倍量の過酸化水素とが同時に接触するように混合作用を加えることを特徴とする効果的なダイオキシン類の除去方法である。
【0007】
上記において、金属フタロシアニン誘導体の金属原子は、鉄、コバルト、銅、ニッケル、マンガン、オスミウム、チタン、モリブデン、タングステンの1またはそれ以上から選ばれた物である効果的なダイオキシン類の除去方法である。
【0008】
前記少なくとも1分子中に2つの環状構造を持つダイオキシン類が、焼却炉からのガス、焼却炉周辺土壌、ヂーゼル廃ガス、化学合成に伴う排出ガス、のいずれかに含まれることを特徴とするダイオキシン類の除去方法である。
【0009】
前記少なくとも1分子中に2つの環状構造を持つダイオキシン類が、焼却炉の排煙洗浄液、焼却炉周辺土壌洗浄液、焼却炉解体洗浄液、ヂーゼル廃ガスの洗浄液、化学合成に伴う排出ガス洗浄液、のいずれかに含まれることを特徴とするダイオキシン類の除去方法である。
【0010】
更に上記において、同時に接触するように混合作用を加えた後の液に対し、イオン交換樹脂または繊維との接触、オゾンの吹き込み、活性アルミナまたは活性炭の投入、若しくは固化燃焼させることを特徴とするダイオキシン類の分解処理後液の処理方法である。
【0011】
これまで、本発明者は、長年金属フタロシアニン誘導体の有用性に注目し鋭意研究を続けてきた。そして遂にダイオキシンではない物質例えば2,4,5トリクロロフェノールは、塩素イオンと炭酸ガスに分解することをすでに他に先んじて見出した。他方、ダイオキシン類は、有用な高分子であるポリ塩化ビニールポリ塩化ビニリデンなど、塩素を含む高分子を低温で焼却すると発生し易いことが知られている。
【0012】
ダイオキシン類は、有用な高分子であるポリ塩化ビニールポリ塩化ビニリデンなどの他に、安定化、耐熱化、難燃化などの目的で、塩素(分子中または添加物として含む)を含む高分子を低温で焼却することで発生する徴量の2,3,7,8−テトラクロロジベンゾ−p−ジオキシンのような少なくとも2つの環が強固に結合したダイオキシンに対して、効果的な除去への挑戦はおろかその特性すら不明であった。特に2,3,7,8−テトラクロロジベンゾ−p−ジオキシン(ダイオキシン)のような少なくとも2つの環が強固に結合したダイオキシンの発生に対して挑戦が少なく、有効な除去手法と効果が全く不明であったのである。なおダイオキシン類と称するのは、例えば、23,7,8の基全てが塩素であるとは限らないのも含まれる意味であることは申すまでもない。以下同様に、少なくとも、1分子中に2つの環状構造を持つヘキサクロロフェンもその類に属する。
【0013】
以下に述べるフタロシアニンに関しては、編著白井芳(本発明者)、小林長夫「フタロシアニン−化学と機能−」(株式会社アイピーシー発行:発行日平成9年2月28日:全338頁)に詳しく記載されている。この発明での記載の内容は、この文献レベルの、当業界の技術水準を前提としている。従ってここで一々フタロシアニンの複雑な化学構造式を、ことさらに頁を割いて、ここで改めて、一々記載するまでもない。
【0014】
本発明に用いられる金属フタロシアニン誘導体はフタロシアニン金属錯体とも呼ばれ、これはここでの目的に対して固有の触媒の働きをする。例えば、ダイオキシンに過酸化水素を添加混合することによって室温下わずか10分で、驚くべきことに90%のダイオキシンが分解されたことを発明した。すなわち、塩素イオンと炭酸ガスに分解したことも確認した。
【0015】
この溶液は、一般に、溶解性に乏しいが、カラフルに着色し安定である。反応後、それを除去する必要がある場合がある時は、物理分離すると簡単だが、溶解分乾燥させて、燃焼してしまう方法、活性アルミナや活性炭に吸着させる方法、オゾンを吹き込んで分解させる方法、または、アニオン交換樹脂で補足する方法が好ましく用いられる。これは、本発明にかかる独特のものである。
【0016】
金属フタロシアニン誘導体は触媒であるので、酸素供給化合物が補給されれば、極めて長期間使用できる。これに対して例えば、金属フタロシアニン誘導体を、過酸化水素のようなものに対し、酸化に耐え易いアクリル繊維に吸着させたもの、または反応させたものは、このように反応液中に出てこないので、または出てきても極めてわずかであるので、好適に用いられる。何度でも使用できるからである。繊維状・綿状・ネット状、多層状など接触面積を大きくとる方法が採用される。金属フタロシアニン誘導体は、酸化に耐え易いものであればよく、繊維、紙、パルプ、プラスチックフイルム、合成樹脂、発砲樹脂、ゴム、活性アルミナなどに担持することができ、本発明に好適に用いられる。金属フタロシアニン誘導体(錯体)の繊維化担特や高分子化については、上記の文献に記載されており、それらが有効に組み合わせ得ることを見出した。
【0017】
ここにおいて、同様な条件において、過酸化水素の他に、過硫酸水素カリウムやt−ブチルヒドロベルオキシドなどが同様に利用できることを発見した。すなわち、酸素原子を発生(供給)することのできる例えば、ビニール系化合物の過酸化物系の重合触媒としてよく知られているものである。ここで、一々紙面を使って、それらの化合物を羅列する必要性は、ないことは明らかである。特に、一般に、価格、安定性、取り扱い性、供給体制などのよく整っている過酸化水素が好ましい。
【0018】
酸化作用を発生するものとして、酸素を発生させる電気分解条件で、試みたところ驚くべきことに、有効にダイオキシンが分解する知見をえた。これは金属フタロシアニン誘導体の強力な触媒作用の結果もたらされたものと推定できるものである。いずれにせよ、本発明の、産業上の有用性の高さと広さを示すものである。
【0019】
更に上記において、金属フタロシアニン誘導体の金属原子は鉄、コバルト、銅、ニッケル、マンガン、オスミウム、チタン、モリブデン、タングステンの1またはそれ以上から選ばれた物が好ましい。特に鉄、マンガンが好ましい。
【0020】
更に上記において、図1の構造式から明らかなように、フタロシアニン最外周に位置する6個の炭素を含む環状化合物に付属する化学基の2個以上がルボキシル基またはスルホン酸基である金属フタロシアニン誘導体であることが好ましい。
【0021】
更に上記において、例えば、第1図では、Mは金属原子であり、Yは置換基を示しているが、フタロシアニン最外周に位置する6個の炭素を含む環状化合物に付属する化学基の2個以上がルボキシル基であること、他の残基が−Hまたは別の置換基、アルキル基、置換アルキル基、ハロゲン基、ニトロ、アミノ基、チオシアネート基、カルボニルクロリド基、アルデヒド基、カルボキシルアミド基、ニトリル基、水酸基、アルコキシル基、フェノキシル基、スルホン酸基、スルホニルクロリド基、スルホンアミド基、チオール基、クロロメチル基、アルキルケイ素基、ビニール基、スルホン酸基のアルカ塩から選ばれたい。またはそれ以上の基で構成された金属フタロシアニン誘導体であることが好ましい。特にカルボン酸基とその塩、スルホン酸基であることが好ましいのである。
【0022】
上記の手法の基での処理対象は少なくとも1分子中に2つの環状構造を持つダイオキシン類を含む焼却炉からのガスまたは排煙洗浄液、焼却炉周辺土壌加熱ガスまたは洗浄液、焼却炉ガスまたは洗浄液、焼却炉周辺土壌洗浄液、または焼却炉解体洗浄液、水分を含む焼却炉周辺土壌、ヂーゼル廃ガスまたは洗浄液、化学合成に伴う排出ガスまたは排出液中から選ばれたダイオキシン類を含むガスまたは液付着固形物のいずれかからなるダイオキシン類の除去方法が好ましい。ダイオキシン類を含む廃ガスや排ガスはシャワー塔、噴霧塔、泡鐘塔など化学工学的手法で補足或いは接触させられる。
【0023】
更に上記において、少なくとも1分子中に2つの環状構造を持つダイオキシン類を含む焼却炉からのガスまたは排煙洗浄液、焼却炉周辺土壌加熱ガスまたは洗浄液、焼却炉ガスまたは洗浄液、焼却炉周辺土壌洗浄液、または焼却炉解体洗浄液、水分を含む焼却炉周辺土壌、ヂーゼル廃ガスまたは洗浄液、化学合成に伴う排出ガスまたは排出液中から選ばれたダイオキシン類を含むガスまたは液付着固形物導入部と、金属フタロシアニン誘導体を比表面積の大きい繊維もしくは繊維状の一部に吸着させたものまたは金属フタロシアニン誘導体を含む液または粒子状を含む液と酸素供給化合物とを混合接触させる反応槽、または過酸化水素発生条件の伴う電気分解条件下に循環または混合接触させる反応槽とからなるダイオキシン類の除去装置が有効であることを見出した。特に酸素供給物質を運んだり、扱ったりすることがないから、ダイオキシン類を分解できる修飾電気分解法は、新たな、手法として注目されるべきものである。修飾電解法とは、例えば、電極の表面が金属フタロシアニン誘導体で覆われているような方法である。
【0024】
この触媒は接触面積の大きいこと、すなわち比表面積が大であることが好ましいので、かかる方法がとられる。少なくとも1分子中に2つの環状構造を持つダイオキシン類としては、各種のハロゲンの全部または部分置換ダイオキシンの全て、また1分子中に2つの環状構造を持つヘキサクロロフェンなども該当する。ここでは極めて徴量でも存在すれば、発明の範疇に含まれる。それは、ダイオキシン類は、極微量でも毒性が驚くほど高いからである。1分子中に2つの環状構造を持たない、すなわち1分子中に1つのハロゲン置換環状化合物の方がはるかに多量に含まれていても本発明はそれらをも分解するので極めて有効である。
【0025】
本発明で、注目すべきは、従来のような超高温で処理する必要性がないことである。超高温処理に比べて、設備費、運転コストなど、極めて経済的である。更に良いことは、例え超高温処理されたとは言え、更に、排出されるガスを確実にかつ安心できるように、本発明方法で、更に処理して、微量のダイオキシン類を塩素イオンと炭酸ガスに分解する組み合わせにも使えることである。生成する無の塩素イオンは苛性ソーダや苛性リ、水酸化カルシウムで容易に中和でき、その処置を行うことが好ましい。上記の処方に組み合わせることが効果的である。
【実施例】
【0026】
以下に、本発明にかかる実施例を示すが、本発明の有効性は、これらによって、限定解釈されるものではなく、むしろその応用展開をもたらすものである。
【0027】
(実施例1)
ダイオキシンを10ng/mlを含む土壌混合水溶液に、触媒として鉄フタロシアニン錯体(カルボン酸ナトリウムとしての置換基が1〜8個の混合体)を触媒として、400ng/mlを加え、青色の土壌混合液に、触媒の1000倍の過酸化水素を加えた混合した。10分経過後、ダイオキシンの90%が分解されていた。
【0028】
(実施例2)
イオキシンを1ng/mlを含む土壌混合水溶液に、触媒としてマンガンフタロシアニン錯体(スルホン酸基置換基が1〜4個の混合体)を触媒として、400ng/mlを加え緑色の液に、触媒の1000倍の過酸化水素を加え混合した。10分後ダイオキシンの88%が分解されていた。
【0029】
(実施例3)
実施例1において、土壌を櫨過紙で分離後、乾燥後、全てを燃焼させフタロシアニンの分解を確認した。
【0030】
(実施例4)
実施例1において、土壌を櫨過紙で分離後、オゾンガスを吹き込んだ緑色が消失しフタロシアニンの分解を確認した。
【0031】
(実施例5)
実施例2において、土壌を櫨過紙で分離後、アニオン交換樹脂を投入し、分離した。緑色の液は、ほぼ消失し、イオン交換樹脂の方に、捉えられていることを確認した。
【0032】
【発明の効果】
除去が極めて困難な猛毒かつ危険なダイオキシン類が、低温で、効率よく、塩素イオンと炭酸ガスに安価に分解できる。用いた金属フタロシアニン誘導体(錯体)を安全に処理する方法が提供できた。産業廃棄物、排出物や家庭ゴミの焼却などに生じるダイオキシン類を分解除去または大幅に軽減でき、地球環境破壊防止に大きく貢献でき、人類の福祉と安寧に貢献できる。
【図面の簡単な説明】
【図1】金属フタロシアニンの一例である。
【符号の説明】
Mは金属原子である。Yは、置換基を示す。
[0001]
[Industrial application fields]
The present invention also relates to a novel and effective method for removing or reducing dioxins. The method according to the present invention relates to an effective method for protecting the global environment, which normally recovers polluted materials that are a problem in society, which is a serious social problem.
[0002]
[Prior art]
Conventionally, there have been various attempts to remove dioxins, but no effective method has been found. For this reason, low-temperature incinerators and chemical factories that tend to generate dioxins are shut down and discarded , and even the surrounding soil is confined in huge rubber sheets and concrete tanks. The negative side of modern science appears, and it is difficult to deal with it, and if the amount is administratively charged, there is little impact, and there is no choice but to proceed.
[0003]
The former is burned at very high temperatures, Toka suppress the occurrence, Toka reduced by re-ultra-high-temperature treated through in the plasma, in an attempt to reduce, and both also of the consuming enormous energy, more Implementation was difficult. If done at public expense, it will make the economy even more exhausted. Looking only at the scientific direction, it was the direction of ultra-high temperature treatment or similar. Including the equipment, it remains unresolved as a fatal problem of being extremely expensive.
[0004]
[Problems to be solved by the invention]
As a result of intensive studies aimed at solving the above-mentioned unsolved problems and providing a defect-free method with enormous costs such as ultra-high temperature treatment, the inventors have reached the following invention. . In particular, at low temperatures, relatively inexpensive, to provide a removal method, reduction methods friendly effective dioxins in the earth, to deal with such urgent problems, pulls greatly contributes to welfare and well-being of mankind For the purpose.
[0005]
[Means for Solving the Problems]
The present invention, a social large problems of the above, if there among the trend through to avoid a lot of people, for mankind to protect the global environment, from the front, received in the true 摯, one in which was finally achieved . The outline is as follows.
[0006]
At least 1 for the dioxins with two intramolecular cyclic structure, the following eight two or more chemical groups that are included with cyclic compounds containing 6 carbons located phthalocyanine outermost periphery be sodium carboxylate An effective dioxin characterized by adding a mixing action so that an aqueous solution of a metal phthalocyanine derivative whose other residue is -H and at least 1000 times the amount of hydrogen peroxide of the metal phthalocyanine derivative are in contact with each other simultaneously This is a method of removing the kind.
[0007]
In the above, the metal atom of the metal phthalocyanine derivative is an effective method for removing dioxins, which is a material selected from one or more of iron, cobalt, copper, nickel, manganese, osmium, titanium, molybdenum, and tungsten. .
[0008]
The dioxins having two ring structures in at least one molecule are contained in any one of gas from an incinerator, soil around the incinerator, waste gas from diesel, and exhaust gas accompanying chemical synthesis. This is a method of removing the kind.
[0009]
The dioxins having two ring structures in at least one molecule are any one of incinerator flue gas cleaning liquid, incinerator surrounding soil cleaning liquid, incinerator demolition cleaning liquid, diesel waste gas cleaning liquid, and exhaust gas cleaning liquid accompanying chemical synthesis. It is the removal method of dioxins characterized by being contained in this.
[0010]
In addition above, with respect to the liquid after the addition of mixing action to simultaneously contact, contact with an ion exchange resin or fiber, blowing ozone, characterized that you be on of activated alumina or activated carbon, or solidified combustion This is a method for treating a solution after the decomposition treatment of dioxins.
[0011]
Until now, the present inventor has been intensively researching for many years paying attention to the usefulness of metal phthalocyanine derivatives. Finally, we have already found that substances that are not dioxins , such as 2,4,5 trichlorophenol, decompose into chlorine ions and carbon dioxide. On the other hand, it is known that dioxins are easily generated when a polymer containing chlorine such as polyvinyl chloride and polyvinylidene chloride , which are useful polymers, is incinerated at a low temperature.
[0012]
Dioxins are polymers that contain chlorine (included in the molecule or as an additive) for purposes such as stabilization, heat resistance, and flame resistance in addition to useful polymers such as polyvinyl chloride and polyvinylidene chloride. the butterflies amount generated by incineration at low temperature, 2,3,7, 8-tetrachloro-dibenzo -p- least two, such as dioxin ring against tightly bound dioxins, into effective removal The challenge, as well as its characteristics, was unknown. In particular 2,3,7, 8 against tetrachloro-dibenzo -p- dioxin of at least two dioxin ring tightly bound, such as (dioxin) occurs, it challenges less effective removal methods and effects are completely It was unknown. Note the called dioxins, for example, 2, all groups of 3, 7, 8 is not even Mosu it is also the meaning contained not necessarily the chlorine. Similarly, at least hexachlorophene having two cyclic structures in one molecule also belongs to the class.
[0013]
With respect to the phthalocyanine described below, written and edited by Hiroshi Shirai Fang (the present inventors), Nagao Kobayashi "phthalocyanine - Chemistry and function -" (Ltd. IPC issue: Date of issue 1997 February 28, 2011: all 338 pages) For more information on Are listed. The contents of the description in the present invention are based on the technical level of the industry at the level of this document. Therefore, the complex chemical structure of phthalocyanine is not necessary to be described again here.
[0014]
The metal phthalocyanine derivative used in the present invention is also called a phthalocyanine metal complex, which serves as an intrinsic catalyst for the purpose here. For example, it was invented that 90% of dioxin was surprisingly decomposed in only 10 minutes at room temperature by adding and mixing hydrogen peroxide to dioxin. That is, it was also confirmed that it was decomposed into chlorine ions and carbon dioxide.
[0015]
The solution will generally be poorly soluble and stable colored colorful. When it is necessary to remove it after the reaction, it is easy to physically separate it, but it is easy to dry the dissolved matter and burn it, to adsorb it on activated alumina or activated carbon, to blow in ozone and decompose A method or a method supplemented with an anion exchange resin is preferably used. This is unique to the present invention.
[0016]
Since the metal phthalocyanine derivative is a catalyst, it can be used for a very long time if the oxygen supply compound is replenished. On the other hand, for example, a metal phthalocyanine derivative adsorbed on an acrylic fiber that is resistant to oxidation or reacted with a substance such as hydrogen peroxide does not appear in the reaction solution in this way. Therefore, even if it comes out very little, it is preferably used. This is because it can be used any number of times. A method of increasing the contact area such as fiber, cotton, net or multilayer is employed. The metal phthalocyanine derivative only needs to be resistant to oxidation, and can be supported on fiber, paper, pulp, plastic film, synthetic resin, foamed resin, rubber, activated alumina, and the like, and is preferably used in the present invention. The fiber forming characteristics and polymerization of metal phthalocyanine derivatives (complexes) are described in the above-mentioned documents, and it has been found that they can be combined effectively.
[0017]
Here, it was discovered that under the same conditions, potassium hydrogen persulfate, t-butyl hydroperoxide and the like can be used in addition to hydrogen peroxide. That is, it is well known as a peroxide-based polymerization catalyst for vinyl compounds that can generate (supply) oxygen atoms. Here, it is clear that there is no need to enumerate those compounds one by one using paper. In particular, hydrogen peroxide that is generally well-priced in terms of price, stability, handleability, and supply system is preferred.
[0018]
As occurring an oxidizing effect, under electrolysis conditions of generating oxygen, surprisingly was tried, effectively dioxin to give a knowledge decompose. This can be presumed to have resulted from the strong catalytic action of metal phthalocyanine derivatives. In any case, it shows the high industrial utility and breadth of the present invention.
[0019]
Further, in the above, the metal atom of the metal phthalocyanine derivative is preferably selected from one or more of iron, cobalt, copper, nickel, manganese, osmium, titanium, molybdenum, and tungsten. Particularly preferred are iron and manganese.
[0020]
In addition above, as is clear from the structural formula of Figure 1, the metal phthalocyanine is two or more months carboxyl group or a sulfonic acid group of chemical groups that are included with cyclic compounds containing 6 carbons located phthalocyanine outermost A derivative is preferred.
[0021]
Further, in the above, for example, in FIG. 1, M is a metal atom, and Y represents a substituent, but two of the chemical groups attached to the cyclic compound containing 6 carbons located on the outermost periphery of phthalocyanine. or it is mosquitoes carboxyl group, the other residues are -H or another substituent, an alkyl group, a substituted alkyl group, a halogen group, a nitro group, an amino group, a thiocyanate group, carbonyl chloride group, aldehyde group, carboxyl amide group, a nitrile group, a hydroxyl group, an alkoxyl group, selected from phenoxyl group, a sulfonic acid group, sulfonyl chloride group, sulfonamide group, a thiol group, a chloromethyl group, an alkyl silicon group, vinyl group, alkali salts of sulphonic acid groups I want. Or it is preferable that it is a metal phthalocyanine derivative comprised by the group beyond it. In particular, a carboxylic acid group, a salt thereof, and a sulfonic acid group are preferable.
[0022]
The object to be treated under the above method is a gas or flue gas cleaning liquid containing at least one dioxin having two cyclic structures in one molecule, a soil heating gas or cleaning liquid around the incinerator, an incinerator gas or cleaning liquid, Incinerator surrounding soil cleaning liquid, or incinerator dismantling cleaning liquid, soil surrounding incinerator containing moisture, diesel waste gas or cleaning liquid, gas or liquid adhering solids containing dioxins selected from chemical synthesis or exhaust liquid A dioxin removal method comprising any of the above is preferred. Waste gas and exhaust gas containing dioxins are supplemented or brought into contact with each other by chemical engineering techniques such as a shower tower, a spray tower, and a bubble tower.
[0023]
Further, in the above, gas or flue gas cleaning liquid containing dioxins having two ring structures in at least one molecule, incinerator surrounding soil heating gas or cleaning liquid, incinerator gas or cleaning liquid, incinerator peripheral soil cleaning liquid, Or incinerator dismantling cleaning liquid, soil around incinerator containing water, diesel waste gas or cleaning liquid, exhaust gas or chemical adhering gas or liquid adhering solids introduction part selected from chemical synthesis, metal phthalocyanine A reaction vessel in which a derivative is adsorbed on a fiber or a part of a fiber having a large specific surface area, a liquid containing a metal phthalocyanine derivative or a liquid containing particles, and an oxygen supply compound, or a hydrogen peroxide generation condition A dioxin removal device consisting of a reaction vessel that is circulated or mixed and contacted under electrolysis conditions. It was found to be effective. In particular, a modified electrolysis method capable of decomposing dioxins is notable as a new method because it does not carry or handle oxygen supply substances. The modified electrolysis method is, for example, a method in which the surface of the electrode is covered with a metal phthalocyanine derivative.
[0024]
Since this catalyst preferably has a large contact area, that is, a large specific surface area, such a method is adopted. Examples of the dioxins having at least two cyclic structures in one molecule include all of various halogens or all partially substituted dioxins, and hexachlorophene having two cyclic structures in one molecule. In this case, if there is an extremely high amount, it is included in the category of the invention. This is because dioxins are surprisingly highly toxic even in trace amounts. Even if a much larger amount of one halogen-substituted cyclic compound is not contained in one molecule, that is, one halogen-substituted cyclic compound is contained in one molecule, the present invention is very effective because they are decomposed.
[0025]
In the present invention, it should be noted that there is no need for processing at ultra-high temperatures as in the prior art. Compared to ultra-high temperature treatment, it is extremely economical in terms of equipment costs and operation costs. Even better, even though it has been treated at ultra-high temperatures, it is further treated with the method of the present invention to ensure that the discharged gas can be reliably and relieved, so that trace amounts of dioxins can be converted into chlorine ions and carbon dioxide. It can also be used for disassembling combinations. Resulting no color chloride ion caustic soda or caustic mosquito Li, can be easily neutralized with calcium hydroxide, it is preferable to perform the treatment. It is effective to combine with the above prescription.
【Example】
[0026]
Although the Example concerning this invention is shown below, the effectiveness of this invention is not limitedly interpreted by these but rather brings about the application development.
[0027]
(Example 1)
400 ng / ml is added to a soil mixed aqueous solution containing 10 ng / ml of dioxin, iron phthalocyanine complex (mixture of 1 to 8 substituents as sodium carboxylate) as a catalyst, and the blue soil mixed solution is added. Then, 1000 times as much hydrogen peroxide as the catalyst was added and mixed. After 10 minutes, 90% of the dioxin was decomposed.
[0028]
(Example 2)
The dioxin in the soil mixed aqueous solution containing 1 ng / ml, manganese phthalocyanine complex (sulfonic acid substituents are 1-4 mixture) as a catalyst as the catalyst, the green liquid added 400 ng / ml, the catalyst 1000 Double hydrogen peroxide was added and mixed. Ten minutes later, 88% of the dioxin was decomposed.
[0029]
Example 3
In Example 1, the soil was separated with a filter paper, dried, and then all burned to confirm the decomposition of phthalocyanine.
[0030]
Example 4
In Example 1, after separating the soil with a filter paper, ozone gas was blown in . The green color disappeared and the decomposition of phthalocyanine was confirmed.
[0031]
(Example 5)
In Example 2, after separating the soil with a filter paper, an anion exchange resin was added and separated. It was confirmed that the green liquid almost disappeared and was captured by the ion exchange resin.
[0032]
【The invention's effect】
Very toxic and dangerous dioxins that are extremely difficult to remove can be efficiently decomposed at low temperatures into chlorine ions and carbon dioxide gas at low cost. A method for safely treating the metal phthalocyanine derivative (complex) used could be provided. Industrial waste, emissions and can decompose and remove or significantly reduce the dioxins generated in the incineration of household waste, can greatly contribute to the prevention of global environmental destruction, it can contribute to the welfare and well-being of mankind.
[Brief description of the drawings]
FIG. 1 is an example of metal phthalocyanine.
[Explanation of symbols]
M is a metal atom. Y represents a substituent.

Claims (5)

少なくとも、1分子中に2つの環状構造を持つダイオキシン類に対して、フタロシアニン最外周に位置する6個の炭素を含む環状化合物に付属する化学基の2個以上8個以下がカルボン酸ナトリウムであり、他の残基が−Hである金属フタロシアニン誘導体の水溶液と、該金属フタロシアニン誘導体の少なくとも1000倍量の過酸化水素とが同時に接触するように混合作用を加えることを特徴とする効果的なダイオキシン類の除去方法。At least 1 for the dioxins with two intramolecular cyclic structure, the following eight two or more chemical groups that are included with cyclic compounds containing 6 carbons located phthalocyanine outermost periphery be sodium carboxylate An effective dioxin characterized by adding a mixing action so that an aqueous solution of a metal phthalocyanine derivative whose other residue is -H and at least 1000 times the amount of hydrogen peroxide of the metal phthalocyanine derivative are in contact with each other simultaneously Removal method. 金属フタロシアニン誘導体の金属原子は、鉄、コバルト、銅、ニッケル、マンガン、オスミウム、チタン、モリブデン、タングステンの1またはそれ以上から選ばれた物であることを特徴とする請求項1記載の効果的なダイオキシン類の除去方法。Metal atoms of the metal phthalocyanine derivative, iron, cobalt, copper, nickel, manganese, osmium, titanium, molybdenum, effective according to claim 1, characterized in that selected from one or more of tungsten To remove dioxins. 前記少なくとも1分子中に2つの環状構造を持つダイオキシン類が、焼却炉からのガス、焼却炉周辺土壌、ヂーゼル廃ガス、化学合成に伴う排出ガス、のいずれかに含まれることを特徴とする請求項1記載の効果的なダイオキシン類の除去方法。Dioxins with two annular structure in said at least one molecule, gas from the incinerator, the incinerator surrounding soil, characterized in that it is included in any exhaust gas, the associated Diesel exhaust gases, chemical synthesis The effective dioxin removal method according to claim 1. 前記少なくとも1分子中に2つの環状構造を持つダイオキシン類が、焼却炉の排煙洗浄液、焼却炉周辺土壌洗浄液、焼却炉解体洗浄液、ヂーゼル廃ガスの洗浄液、化学合成に伴う排出ガス洗浄液、のいずれかに含まれることを特徴とする請求項1記載の効果的なダイオキシン類の除去方法。The dioxins having two ring structures in at least one molecule are any one of incinerator flue gas cleaning liquid, incinerator surrounding soil cleaning liquid, incinerator demolition cleaning liquid, diesel waste gas cleaning liquid, and exhaust gas cleaning liquid accompanying chemical synthesis. effective dioxin removing method of claim 1, wherein the included characterized Rukoto to or. 請求項1に記載した同時に接触するように混合作用を加えた後の液に対し、イオン交換樹脂または繊維との接触、オゾンの吹き込み、活性アルミナまたは活性炭の投入、若しくは固化燃焼させることを特徴とするダイオキシン類の分解処理後液の処理方法。Features to liquid after the addition of mixing action to simultaneously contact according to claim 1, contacting the ion exchange resin or fiber, blowing ozone, and this for introduction of activated alumina or activated carbon, or solidified combustion The processing method of the solution after the decomposition treatment of dioxins.
JP2000261894A 2000-07-26 2000-07-26 Effective removal method of dioxins Expired - Fee Related JP4172907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261894A JP4172907B2 (en) 2000-07-26 2000-07-26 Effective removal method of dioxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261894A JP4172907B2 (en) 2000-07-26 2000-07-26 Effective removal method of dioxins

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005169627A Division JP4255458B2 (en) 2005-06-09 2005-06-09 Effective removal method of dioxins

Publications (2)

Publication Number Publication Date
JP2002035772A JP2002035772A (en) 2002-02-05
JP4172907B2 true JP4172907B2 (en) 2008-10-29

Family

ID=18749662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261894A Expired - Fee Related JP4172907B2 (en) 2000-07-26 2000-07-26 Effective removal method of dioxins

Country Status (1)

Country Link
JP (1) JP4172907B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430325C (en) * 2003-01-31 2008-11-05 出光兴产株式会社 Method for treating waste water containing hardly decomposable harmful substances
KR20050093854A (en) 2003-01-31 2005-09-23 이데미쓰 고산 가부시키가이샤 Method of treating wastewater containing hardly decomposable harmful substances
JPWO2004069341A1 (en) 2003-02-10 2006-05-25 財団法人上田繊維科学振興会 Detoxification treatment method and detoxification treatment apparatus for polychlorinated biphenyl
PT1720802E (en) * 2004-02-26 2013-11-13 Fmc Corp Oxidation of organic compounds at high ph
EP1926682A4 (en) 2005-06-21 2012-06-20 Crosslink Polymer Res Signal activated decontaminating coating
US20090288946A1 (en) 2008-05-23 2009-11-26 Lumimove, Inc. Dba Crosslink Electroactivated film with layered structure
CN105481048A (en) * 2015-12-16 2016-04-13 无锡吉进环保科技有限公司 Improved visible light photocatalytic oxidation water treatment reactor
CN108706717A (en) * 2015-12-16 2018-10-26 永春新盛环保科技有限公司 A kind of water processing reactor

Also Published As

Publication number Publication date
JP2002035772A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
Ahmed et al. Advanced treatment technologies efficacies and mechanism of per-and poly-fluoroalkyl substances removal from water
Rayaroth et al. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons–A review
Deng et al. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review
He et al. Novel insights into the mechanism of periodate activation by heterogeneous ultrasonic-enhanced sludge biochar: Relevance for efficient degradation of levofloxacin
Fan et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts
JP4172907B2 (en) Effective removal method of dioxins
Li et al. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase
JPH01297127A (en) Air purifying method
WO2022068034A1 (en) System and method for advanced treatment of low-concentration cs2 by means of heterogeneous catalytic oxidation technology
CN104930518A (en) Method for treating solid waste in low-carbon mode and restraining generation of dioxin
JP4255458B2 (en) Effective removal method of dioxins
Wang et al. A novel design of self-assembled metal-organic frameworks MIL-53 (Fe) modified resin as a catalyst for catalytic degradation of tetracycline
JP5403531B2 (en) Purification method for contaminated substances containing organic chemicals
CN108201782A (en) A kind of boiler flue gas purification technique
Zeng et al. Degradation of atrazine by electroactivation of persulfate using FeCuO@ C modified composite cathode: Synergistic activation mechanism
CN106587282A (en) Difunctional multi-template molecularly imprinted type photoelectric anode material and preparation method and application
KR20030043404A (en) Method for removal of volatile organic compounds and odor using non-thermal plasma and apparatus thereof
JP5058871B2 (en) Method for treating water containing volatile organic compounds
CN204768201U (en) It is smooth from combined type organic waste gas treatment facility
CN106587325B (en) By using CoxFe1-xMethod for treating refractory wastewater by using P material heterogeneous activated monopersulfate
JP2007105059A (en) Method of decomposing dioxins
CN115193428A (en) Regeneration method of waste activated carbon containing perfluorinated compounds
JP4164776B2 (en) Dioxin suppression or removal agent and waste incineration method using the same
JP2006255618A (en) Method for recovering organic solvent
JP2003311124A (en) Exhaust gas treatment method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050615

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees