JP4171935B2 - Heat-shrinkable polyester film - Google Patents
Heat-shrinkable polyester film Download PDFInfo
- Publication number
- JP4171935B2 JP4171935B2 JP1885098A JP1885098A JP4171935B2 JP 4171935 B2 JP4171935 B2 JP 4171935B2 JP 1885098 A JP1885098 A JP 1885098A JP 1885098 A JP1885098 A JP 1885098A JP 4171935 B2 JP4171935 B2 JP 4171935B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- film
- polyester
- shrinkage
- shrinkable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0049—Heat shrinkable
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、熱収縮性ポリエステル系フィルムに関し、さらに詳しくは熱収縮性フィルムの収縮後にシワ、収縮斑、歪みの発生が極めて少なく、かつミシン目カット性に優れた、ラベル用途に好適な熱収縮性ポリエステル系フィルムに関するものである。
【0002】
【従来の技術】
熱収縮性フィルムは、特にボトルの胴部のラベル用収縮フィルムの分野では、ポリ塩化ビニル、ポリスチレン等からなるフィルムが主として用いられていたが、近年、ポリ塩化ビニルについては廃棄時に焼却する際の塩素系ガス発生の問題、ポリエチレンについては印刷が困難である問題等があり、さらにPETボトルの回収にあたってはPET以外の樹脂のラベルを分別する必要がある等の問題が加わり、熱収縮性ポリエステル系フィルムが注目を集めている。
【0003】
ところが、熱収縮性ポリエステル系フィルムは、急激に収縮するのが多く、収縮後にシワ、収縮斑、歪みが残り、また収縮後に外部から与えられた衝撃による破断が生じやすい等ラベル用収縮フイルムとして満足されるものではなかった。かかる欠点の一部を回避するため、特公平7−77757号公報では主収縮方向と直交する方向の破断伸度を著しく小さくすることによって収縮仕上がり性を改良する方法が開示されている。
【0004】
又、特開昭58−64958号公報には配向戻り応力を小さくすることによって、収縮仕上り性を改良する方法が開示されている。
しかしながら上記方法で得られたフイルムは収縮トンネル通過時間が短時間である小型PETボトル用途では十分な収縮仕上り性が得られず、収縮フイルムとして満足されるものではなかった。
【0005】
さらに、地球環境問題への意識の高まりから熱可塑性重合体からなるボトルのリサイクル問題への対応が迫られている。熱可塑性重合体からなるボトル、特にPETボトルのリサイクルへの関心は大きくリサイクルシステムの早期の確立が必要とされている。PETボトルには、一般にポリオレフィン系のストレッチラベルやポリエステル、ポリスチレン、塩化ビニル等からなる熱収縮ラベル及びポリプロピレンフイルム等からなるタックラベル等からなるタックラベル等のラベルが装着されている。PETボトルのリサイクルに関しては、通常、ラベルが付いたまま一般消費者から回収され再生業者に持ち込まれ、持ち込まれたボトルは洗浄後一次粉砕によりラベルの除去作業が行われるが、粉砕物の中にはまだ多量のラベルが含まれている。そのため、二次粉砕、ラベルの液比重分離、脱水・乾燥・風力比重分離及びペレタイズ工程を経て再生ペレットを得ていた。
【0006】
最近、リサイクル工程において、ラベルの除去効率を上げるため、洗浄後にボトルからラベルを取り外し粉砕してペレタイズ工程を経て再生ペレットを得る試みがなされている。
上記工程においては、ボトルからラベルを取り外しやすくするためミシン目の入ったラベルが用いられており、実際の取り外し作業はミシン目に沿ってラベルを破ることにより達成される。
【0007】
従って、収縮処理後のミシン目カット性が優れていることが熱収縮性フイルムの重要品質といわざるをえない。しかしながら前記方法で得られたフイルムは収縮処理後のミシン目カット性が著しく劣り、収縮フイルムとして満足されるものではなかった。
【0008】
【発明が解決しようとする課題】
小型PETボトルを含むあらゆる用途においても十分な収縮仕上り性が得られる収縮特性とリサイクル工程で待ち望まれているミシン目カット性を有する熱収縮性フイルムを提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明は、ラベル用熱収縮性ポリエステル系フイルムにおいて、主収縮方向の温湯収縮率が70℃・5秒で20%以上であり、75℃・5秒で35〜55%であり、80℃・5秒で50〜60%であって75℃温湯10秒処理で5%収縮させた後の主収縮方向と直交する方向において破断伸度20%以下の発生率が10%以下で、該フイルムに用いるポリエステルは、プロパンジオール、ブタンジオール、ヘキサンジオールのうち1種以上を含有させてガラス転移温度(Tg)を58〜68℃に調整したものであることを特徴とするものである。
【0010】
【発明実施の形態】
以下本発明の実施の形態を具体的に説明する。本発明の熱収縮ポリエステル系フイルムに用いるポリエステルは、プロパンジオール、ブタンジオール、ヘキサンジオールのうち1種以上を含有させてガラス転移点(Tg)を58〜68℃に調整したポリエステルである。
【0011】
C8 以上のジオール(例えばオクタンジオール等)又は多価ジオール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)又は多価カルボン酸(例えば、トリメリット酸、ピロメリット酸及びこれらの無水物等)を含有させないことが必須である。これらのジオール又はカルボン酸を含有するポリエステルを使用して得た熱収縮ポリエステル系フイルムでは、収縮処理後の主収縮方向と直交する方向の破断伸度が低下しやすく好ましくない。
【0012】
又、脂肪族カルボン酸(例えばアジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族カルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フイルムでは、収縮処理後の主収縮方向と直交する方向の破断伸度が低下しやすく好ましい。
【0013】
本発明で使用するポリエステルを構成する酸成分としてテレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられる。又、ジオール成分として前記必須のジオール以外にエチレングリコール、ネオペンチルグリコール、1,4シクロヘキサンジメタノール等が挙げられる。ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールは含有させないことが好ましい。特にジエチレングリコールはポリエステル重合時に副生成成分として存在しやすいが、本発明で使用するポリエステルではジエチレングリコールの含有率を4モル%未満であることが好ましい。
【0014】
本発明で2種以上のポリエステルを混合して使用する場合、酸成分・ジオール成分の含有率は混合後にエステル交換がなされているかどうかにかかわらず、ポリエステル全体の中の酸成分、ジオール成分の含有率である。
収縮仕上り性が特に優れた熱収縮性ポリエステル系フイルムとするためにはネオペンチルグリコールをジオール成分の1種として用いることが好ましい。
【0015】
さらに、熱収縮性フィルムの易滑性を向上させるために無機滑剤、有機滑剤を含有させるのも好ましい。また、必要に応じて安定剤、着色剤、酸化防止剤、消溶剤、静電防止剤等の添加剤を含有させるものであってもよい。
【0016】
本発明では前記ポリエステルをTg−5℃以上Tg+15℃未満の温度で延伸する必要がある。
Tg−5℃未満の温度で延伸した場合、本発明の構成要件となる熱収縮率を得にくいばかりでなく、得られたフイルムの透明性が悪化するため好ましくない。又、Tg+15℃以上の温度で延伸した場合、得られたフィルムの収縮処理後の主収縮方向と直交する方向への破断伸度が低下しやすく好ましくない。
【0017】
本発明の熱収縮性ポリエステル系フイルムでは、主収縮方向の温湯収縮率が70℃・5秒で20%以上であり、75℃・5秒で35〜55%であり、80℃・5秒で50〜60%であることが必要である。70℃・5秒処理後の収縮率が20%未満の場合、又は75℃・5秒処理後の収縮率が35%未満の場合、80℃・5秒処理後の収縮率が50%未満の場合、ボトル等の被包装体を包装して収縮トンネルを通過させた時、花ビラ状に端部が広く収縮斑及びシワが発生しやすく好ましくない。
【0018】
75℃・5秒処理後の収縮率が55%を超える場合又は、80℃・5秒処理後の収縮率が60%を超える場合、ボトル等の被包装体を包装して収縮トンネルを通過させた時、ラベルの上端又は下端が斜めになる斜め被り又はラベルの上方での飛び上りが発生しやすく好ましくない。
【0019】
本発明の熱収縮性ポリエステル系フイルムでは、75℃温湯10秒処理で5%収縮させた後の主収縮方向と直交する方向において破断伸度20%以下の発生率が10%以下であることが必要である。上記破断伸度20%以下の発生率が10%を超える場合、得られたフイルムより作製したラベルにミシン目を入れてボトル等に収縮させた後のミシン目カット性が悪く好ましくない。即ち、ミシン目に沿ってラベルを破った場合、手に把持した部分が途中で切断しやすく最後までミシン目に沿ってラベルを破ることが困難になるため好ましくない。ミシン目カット性を良好にするにはフイルムの厚みのバラツキ(平均値)が6%以下になるのが好ましい。
【0020】
本発明の熱収縮性フイルムの厚みは特に限定するものではないが、ラベル用収縮フイルムとして10〜200μmが好ましく、20〜100μmがさらに好ましい。
【0021】
次に本発明の熱収縮性フイルムの製造法をより具体的に説明するが、下記製造法に限定されるものではない。
本発明に用いるポリエステル原料をホッパードライヤー、バドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥し、200〜300℃の温度でフイルム状に押し出す。押し出しに際してはTダイ法、チューブラー法等、既存のどの方法を採用しても構わない。押し出し後急冷して未延伸フイルムを得る。該未延伸フイルムに対し延伸処理を行うが、本発明の目的を達成するには主収縮方向としては横方向が実用的であるので以下主収縮方向が横方向である場合の製膜法の例を示すが、主収縮方向を縦方向とする場合も下記方法における延伸方向を90度変えるほか通常の操作に準じて製膜することができる。
【0022】
また、目的とする熱収縮性ポリエステル系フイルムの厚み分布を均一化させることに着目すれば、テンターを用いて横方向に延伸する際、延伸工程に先立って実施される予備加熱工程では熱伝達係数を0.0013カロリー/cm2 ・sec・℃以下の低風速で所定のフイルム温度になるまで加熱を行うことが好ましい横方向の延伸は3.0倍以上、好ましくは3.5倍以上として延伸する。延伸温度はTg+15℃未満の温度で延伸する。
【0023】
しかる後必要により70〜100℃の温度で熱処理して熱収縮性ポリエステル系フイルムを得る。
延伸に伴うフイルムの内部発熱を抑制し、巾方向のフイルム温度斑を小さくする点に着目すれば、延伸工程の熱伝達係数は0.0009カロリー/cm2 ・sec・℃以上、好ましくは0.0011〜0.0017カロリー/cm2 ・sec・℃の条件がよい。
予備加熱工程の風速が0.0013カロリー/cm2 ・secを越える場合、延伸工程での風速が0.0009カロリー/cm2 ・sec未満の場合、厚み分布が均一になりにくく得られたフイルムを多色印刷加工する際、図柄のずれは多色の重ね合せで起こり好ましくない。
詳しくは厚みのバラツキが6%以下のフイルムは収縮仕上り性評価時に実施する3色印刷で色の重ね合せが容易であるのに対し、6%を越えたフイルムは重ね合せの点で好ましくない。
延伸の方法は、テンターでの横1軸延伸ばかりでなく、付加的に縦方向を僅かに延伸することも可能である。このような2軸延伸においては、逐次2軸延伸法、同時2軸延伸のいずれの方法によってでもよく、さらに必要に応じて縦方向または横方向に再延伸を行ってもよい。
【0024】
(実施例)
以下、実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。
なお、本発明において、フイルムの評価方法は下記の通りである。
【0025】
(1)熱収縮率
フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で5秒間処理して熱収縮させた後、フィルムの縦および横方向の寸法を測定し、下記(1)式に従い熱収縮率を求めた。該熱収縮率の大きい方向を主収縮方向とした。
熱収縮率=(収縮前の長さ−収縮後の長さ/収縮前の長さ)×100(%) (1)式
【0026】
(2)収縮仕上り性
Fuji Astec Inc 製スチームトンネル(型式:SH−1500−L)を用い通過時間2.5秒ゾーン温度80℃500mlの丸ボトル(高さ20.6cm、中央部直径6.5cm:(株)吉野工業所製でキリンビバレッジ(株)の午後の紅茶に使用されているボトル)を用いてテストした。(n=20)
なお、熱収縮性フイルムには、あらかじめ東洋インキ製造(株)の草・金・白のインキで3色印刷した。評価は目視で行い、基準は下記の通りとした。
シワ・飛び上り・収縮不足とも未発生 : ○
飛び上り又は収縮不足発生 : ×
【0027】
(3)耐破断性
上記印刷フイルムをコーヒー缶に装着し、75℃・温湯10秒処理で5%収縮させたサンプルを用い、東洋精機(株)製のテンシロン(型式:UTM−4L)を用いて、JIS C2318の方法で引張試験を行い、主収縮方向と直角の方向(縦方向)の伸度20%以下の発生数で評価(試料数=50)した。
【0028】
(4)Tg(ガラス転移点)
セイコー電子工業(株)製のDSC(型式:DSC220)を用いて、未延伸フイルム10mgを−40℃から120℃まで昇温速度20℃/分で昇温した際に得られた吸熱曲線に接線を引き、その交点をTg(ガラス転移点)とした。
【0029】
(5)ミシン目カット性
図1に示されるように熱収縮性フイルムをインバルスシール法によりチューブ状体(巾106mm、長さ54mm)にし、チューブの長さ方向にミシン孔を10mmの間隔をもった2列の平行線上に連続的に形成しペットボトルに装着した。収縮仕上り性の評価の項に記載した方法でボトルを熱収縮性フイルムで被覆した。全試料数は50本とした。
直線カット不良率(%)はボトルのキャップ部から底部の方向に向けてミシン孔にそってフイルムの開封を行い、この時に全試料本数に対し瓶のいずれかの部分においてフイルムが横方向に裂ける現象が生じた試料本数の割合を評価した。
なお、図1に示した穴長さの比はL1 /L2 2.5〜3.0とした。
【0030】
(6)厚み分布
アンリツ(株)製の接触厚み計(型式:KG60/A)を用いて、縦方向5cm・横方向50cmのサンプルの厚みを測定(試料数=20)し、各々のサンプルについて、下記(3)式により厚みのバラツキを求めた。また、該厚みのバラツキの平均値(n=50)を下記の基準に従って評価した。
厚みのバラツキ=(最大厚み−最少厚み/平均厚み)×100 (%)(3)式
平均値:6%以下 → ○
平均値:6%より大きく10%未満 → △
平均値:10%以上 → ×
【0031】
(7)印刷性評価
(株)東谷鉄工所製PAS型多色グラビア印刷機を用い東洋インキ製造(株)シュリンクEXの草・金・白で3色重ね印刷した。印刷速度は100m/分、乾燥温度は50℃で印刷した。
評価は各色のズレをJIS1級金尺で実測した。
(n=10)
○ : ズレが1mm未満
△ : ズレが1〜3mm
× : ズレが3mm以上
【0032】
実施例に用いたポリエステルは以下の通りである。
ポリエステルA:ポリエチレンテレフタレート(IV 0.75)
ポリエステルB:エチレングリコール70モル%、ネオペンチルグリコール30モル%とテレフタル酸とからなるポリエステル(IV 0.72)
ポリエステルC:ポリブチレンテレフタレート(IV 1.20)
ポリエステルD:テレフタル酸65モル%、アジピン酸10モル%、イソフタル酸25モル%とブタンジオールとからなるポリエステル(IV 0.72)
【0033】
(実施例1)
ポリエステルA25wt%、ポリエステルB55wt%、ポリエステルC20wt%混合したポリエステルを280℃で押出し、急冷して未延伸フイルムを得た。(Tg66℃)
該未延伸フィルムを、熱伝達係数0.0008カロリー/cm2 ・sec・℃の条件でフイルム温度が85℃になるまで予備加熱した後、テンターで横方向にに74℃で4.0倍延伸した。次いで80℃で10秒間熱処理して厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0034】
(実施例2)
ポリエステルA25wt%、ポリエステルB50wt%、ポリエステルC25wt%混合したポリエステルを280℃で押出し・急冷して未延伸フイルムを得た。(Tg63℃)
該未延伸フイルムを、熱伝達係数0.0008カロリー/cm2 ・sec・℃の条件でフイルム温度が82℃になるまで予備加熱した後、テンターで横方向に72℃で4.0倍延伸した。次いで79℃で10秒間熱処理して厚み50μの熱収縮性ポリエステル系フイルムを得た。
【0035】
(実施例3)
ポリエステルA25wt%、ポリエステルB45wt%、ポリエステルC30wt%混合したポリエステルを280℃で押出し・急冷して未延伸フイルムを得た。(Tg61℃)
該未延伸フイルムを、熱伝達係数0.0008カロルー/cm2 ・sec・℃の条件でフイルム温度が80℃になるまで予備加熱した後、テンターで横方向に69℃で4.0倍延伸した。次いで77℃で10秒間熱処理して厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0036】
(実施例4)
ポリエステルAを40wt%、ポリエステルBを50wt%、ポリエステルDを10wt%混合したポリエステルを280℃でTダイから押し出し、チルロールで急冷して、未延伸フイルムを得た(Tg67℃)。
該未延伸フイルムを実施例1に記載した方法で厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0037】
(比較例1)
延伸温度を83℃とした以外は実施例1に記載した方法で厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0038】
(比較例2)
延伸温度を60℃とした以外は実施例1に記載した方法で製膜したがテンター出口でフイルムは全巾にわたって白化していた。
【0039】
(比較例3)
ポリエステルA25wt%、ポリエステルB65wt%、ポリエステルC10wt%混合したポリエステルを280℃で押出し急冷して未延伸フイルムを得た。(Tg69℃)
該未延伸フイルムを、熱伝達係数0.0008カロリー/cm2 ・sec・℃の条件でフイルム温度が90℃になるまで予備加熱した後、テンターで横方向に75℃で4.0倍延伸した。次いで80℃で10秒間熱処理して厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0040】
(比較例4)
延伸後の熱処理温度を75℃とした以外は実施例1に記載した方法で厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0041】
(比較例5)
延伸後の熱処理温度を83℃とした以外は実施例1に記載した方法で厚み50μmの熱収縮性ポリエステル系フイルムを得た。
【0042】
(比較例6)
熱伝達係数を0.0017カロリー/cm2 ・sec・℃とした以外は実施例1に記載した方法で厚み50μmの熱収縮性ポリエステル系フイルムを得た。
0
【0043】
実施例1〜4及び比較例1〜6で得られたフイルムの評価結果を表1に示す。表1から明らかなように実施例1〜4で得られたフイルムはいずれも良好な仕上りを示し、ミシン目カット性に優れ、厚み分布も良好であった。
このように、本発明の熱収縮性ポリエステル系フイルムは高品質で実用性が高く、特に収縮ラベル用として好適である。一方比較例1で得られた熱収縮性フイルムは耐破断性が劣るためミシン目カット性が劣る。比較例3及び5で得られた熱収縮性フイルムはシワ、収縮不足が発生し、比較例4で得られた熱収縮性フイルムは飛び上りが発生するため、いずれも収縮仕上り性が劣る。
比較例6で得られたフイルムは厚み分布が悪い。
このように比較例で得られた熱収縮性ポリエステル系フイルムはいずれも品質が劣り、実用性が低いものであった。
【0044】
【発明の効果】
本願発明の熱収縮性ポリエステル系フイルムは熱収縮後にシワ、収縮斑歪みの発生が極めて少なく、且つミシン目カット性に優れ、ラベル用途として極めて有用であることがわかる。
【0045】
【表1】
【図面の簡単な説明】
【図1】 図1は熱収縮フイルムをチューブ状体にしたものを示す。
【図2】 図2はチューブ状体にミシン孔を2列の平行線上連続的に形成し、ボトルに装着して収縮被覆したものを示す。
【符号の説明】
L1 :ミシン目のボトルの円筒方向の長さを表わす。
L2 :ミシン目とミシン目の間隔を表わす。[0001]
[Industrial application fields]
The present invention relates to a heat-shrinkable polyester film. More specifically, the heat-shrinkable film is suitable for labeling, having very few wrinkles, shrinkage spots and distortion after shrinkage of the heat-shrinkable film, and excellent perforation cutability. This relates to a conductive polyester film.
[0002]
[Prior art]
A film made of polyvinyl chloride, polystyrene or the like has been mainly used as a heat-shrinkable film, particularly in the field of a shrink film for labeling on the body of a bottle. In recent years, polyvinyl chloride has been incinerated at the time of disposal. There are problems such as the generation of chlorine gas, the problem that printing is difficult for polyethylene, and the addition of problems such as the need to separate the labels of resins other than PET when collecting PET bottles. Film is drawing attention.
[0003]
However, heat-shrinkable polyester film often shrinks rapidly, leaving wrinkles, shrinkage spots, and distortion after shrinkage, and being satisfactory as a shrink film for labels because it tends to break due to externally applied impact after shrinkage. It was not something that was done. In order to avoid a part of such drawbacks, Japanese Patent Publication No. 7-77757 discloses a method for improving the shrinkage finish by significantly reducing the breaking elongation in the direction orthogonal to the main shrinkage direction.
[0004]
Japanese Patent Application Laid-Open No. 58-64958 discloses a method for improving shrinkage finish by reducing the orientation return stress.
However, the film obtained by the above-mentioned method was not satisfactory as a shrink film because a sufficient shrink finish could not be obtained for small PET bottle applications where the shrink tunnel passage time was short.
[0005]
Furthermore, due to increased awareness of global environmental problems, there is an urgent need to deal with the recycling problem of bottles made of thermoplastic polymers. There is a great interest in recycling bottles made of thermoplastic polymers, especially PET bottles, and an early establishment of a recycling system is required. The PET bottle is generally equipped with a polyolefin-based stretch label, a heat-shrink label made of polyester, polystyrene, vinyl chloride or the like and a tack label made of a tack label made of polypropylene film or the like. Regarding the recycling of PET bottles, it is usually collected from general consumers with labels attached and brought to a recycler. The bottles that are brought in are subjected to label removal by primary crushing after washing. Still contains a lot of labels. Therefore, recycled pellets were obtained through secondary pulverization, liquid density separation of labels, dehydration / drying / wind density separation and pelletizing processes.
[0006]
Recently, in order to increase the label removal efficiency in the recycling process, attempts have been made to remove the label from the bottle after washing and crush it to obtain recycled pellets through the pelletizing process.
In the above process, a perforated label is used to facilitate the removal of the label from the bottle, and the actual removal operation is achieved by breaking the label along the perforation.
[0007]
Therefore, it is an important quality of the heat shrinkable film that the perforation cutability after the shrinkage treatment is excellent. However, the film obtained by the above-mentioned method has a very poor perforation cut property after shrinkage treatment, and is not satisfactory as a shrinkage film.
[0008]
[Problems to be solved by the invention]
It is an object of the present invention to provide a heat-shrinkable film having a shrinkage characteristic capable of obtaining a sufficient shrinkage finish in any application including a small PET bottle and a perforation-cutting property which is awaited in a recycling process.
[0009]
[Means for Solving the Problems]
That is, according to the present invention, in the heat-shrinkable polyester film for labels, the hot water shrinkage in the main shrinkage direction is 20% or more at 70 ° C. for 5 seconds, 35 to 55% at 75 ° C. for 5 seconds, 80% The incidence of breaking elongation of 20% or less in a direction orthogonal to the main shrinkage direction after shrinking 5% by 10 seconds treatment at 75 ° C. with hot water for 10 seconds is 10% or less . The polyester used for the film is characterized in that one or more of propanediol, butanediol, and hexanediol are contained and the glass transition temperature (Tg) is adjusted to 58 to 68 ° C.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below. Polyester used in the heat shrinkable polyester film of the present invention, up propanediol, butanediol, polyesters adjusted glass transition point by containing one or more of hexanediol Le a (Tg) in 58 to 68 ° C..
[0011]
C 8 or more diols (e.g., octanediol etc.) or polyhydric diol (e.g., trimethylol propane, trimethylol ethane, glycerol, diglycerol, etc.) or polycarboxylic acid (e.g., trimellitic acid, pyromellitic acid and their It is essential not to contain an anhydride etc.). A heat-shrinkable polyester film obtained by using a polyester containing these diols or carboxylic acids is not preferred because the elongation at break in the direction perpendicular to the main shrinkage direction after shrinkage treatment tends to decrease.
[0012]
Further, when an aliphatic carboxylic acid (for example, adipic acid, sebacic acid, decanedicarboxylic acid, etc.) is contained, the content is preferably less than 3 mol%. A heat-shrinkable polyester film obtained by using a polyester containing 3 mol% or more of these aliphatic carboxylic acids is preferred because the elongation at break in the direction perpendicular to the main shrinkage direction after the shrinkage treatment tends to decrease.
[0013]
Examples of the acid component constituting the polyester used in the present invention include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. Examples of the diol component include ethylene glycol, neopentyl glycol, 1,4 cyclohexane dimethanol and the like in addition to the essential diol. It is preferable not to contain diethylene glycol, triethylene glycol, or polyethylene glycol. In particular, diethylene glycol is likely to be present as a by-product component during polyester polymerization, but in the polyester used in the present invention, the diethylene glycol content is preferably less than 4 mol%.
[0014]
When two or more kinds of polyesters are mixed and used in the present invention, the content of the acid component and the diol component is the content of the acid component and the diol component in the whole polyester regardless of whether or not transesterification is performed after mixing. Rate.
In order to obtain a heat-shrinkable polyester film having particularly excellent shrinkage finishing properties, it is preferable to use neopentyl glycol as one type of diol component.
[0015]
Furthermore, it is also preferable to contain an inorganic lubricant or an organic lubricant in order to improve the slipperiness of the heat-shrinkable film. Moreover, you may contain additives, such as a stabilizer, a coloring agent, antioxidant, a solvent elimination, an antistatic agent, as needed.
[0016]
In this invention, it is necessary to extend | stretch the said polyester at the temperature below Tg-5 degreeC or more and Tg + 15 degreeC.
When the film is stretched at a temperature lower than Tg-5 ° C., not only is it difficult to obtain the heat shrinkage rate which is a constituent of the present invention, but the transparency of the obtained film is deteriorated, which is not preferable. Moreover, when it extends | stretches at the temperature of Tg + 15 degreeC or more, the breaking elongation to the direction orthogonal to the main shrinkage direction after the shrinkage processing of the obtained film tends to fall and it is unpreferable.
[0017]
In the heat-shrinkable polyester film of the present invention, the hot water shrinkage in the main shrinkage direction is 20% or more at 70 ° C. for 5 seconds, 35 to 55% at 75 ° C. for 5 seconds, and 80 ° C. for 5 seconds. It is necessary to be 50 to 60%. When the shrinkage after treatment at 70 ° C for 5 seconds is less than 20%, or when the shrinkage after treatment at 75 ° C for 5 seconds is less than 35%, the shrinkage after treatment at 80 ° C for 5 seconds is less than 50%. In such a case, when a package such as a bottle is packaged and passed through a contraction tunnel, the ends are wide in a flower leaf shape and shrinkage spots and wrinkles are likely to occur, which is not preferable.
[0018]
If the shrinkage rate after processing at 75 ° C for 5 seconds exceeds 55%, or if the shrinkage rate after processing at 80 ° C for 5 seconds exceeds 60%, wrap the packaging body such as a bottle and pass through the shrinking tunnel. In such a case, the upper end or the lower end of the label is slanted, or jumping over the label is likely to occur.
[0019]
In the heat-shrinkable polyester film of the present invention, the rate of occurrence of a breaking elongation of 20% or less in a direction perpendicular to the main shrinkage direction after shrinking 5% by 75 ° C. hot water treatment for 10 seconds may be 10% or less. is necessary. When the rate of occurrence of the breaking elongation of 20% or less exceeds 10%, the perforation cut property after the perforation is put into the label produced from the obtained film and contracted to a bottle or the like is not preferable. That is, when the label is broken along the perforation, it is not preferable because the portion gripped by the hand is easily cut in the middle and it is difficult to break the label along the perforation to the end. In order to improve the perforation cutability, it is preferable that the variation in film thickness (average value) is 6% or less.
[0020]
The thickness of the heat-shrinkable film of the present invention is not particularly limited, but is preferably 10 to 200 μm, more preferably 20 to 100 μm, as the shrinkable film for labels.
[0021]
Next, although the manufacturing method of the heat-shrinkable film of this invention is demonstrated more concretely, it is not limited to the following manufacturing method.
The polyester raw material used for this invention is dried using dryers, such as a hopper dryer and a paddle dryer, or a vacuum dryer, and is extruded in the form of a film at the temperature of 200-300 degreeC. When extruding, any existing method such as a T-die method or a tubular method may be adopted. After extrusion, it is cooled rapidly to obtain an unstretched film. The unstretched film is stretched, but in order to achieve the object of the present invention, the transverse direction is practical as the main shrinking direction, so the following is an example of the film forming method when the principal shrinking direction is the transverse direction. However, even when the main shrinkage direction is the longitudinal direction, the film can be formed according to a normal operation in addition to changing the stretching direction in the following method by 90 degrees.
[0022]
In addition, when paying attention to uniforming the thickness distribution of the target heat-shrinkable polyester film, the heat transfer coefficient in the preheating step prior to the stretching step when stretching in the transverse direction using a tenter It is preferable to heat the film at a low wind speed of 0.0013 calories / cm 2 · sec · ° C. or less until a predetermined film temperature is reached. Stretching in the transverse direction is 3.0 times or more, preferably 3.5 times or more. To do. The stretching temperature is stretched at a temperature lower than Tg + 15 ° C.
[0023]
Thereafter, if necessary, it is heat-treated at a temperature of 70 to 100 ° C. to obtain a heat-shrinkable polyester film.
Focusing on the point of suppressing the internal heat generation of the film accompanying stretching and reducing the film temperature unevenness in the width direction, the heat transfer coefficient in the stretching process is 0.0009 calories / cm 2 · sec · ° C. or more, preferably 0.00. A condition of 0011 to 0.0017 calories / cm 2 · sec · ° C. is preferable.
When the wind speed in the preheating process exceeds 0.0013 calories / cm 2 · sec, when the wind speed in the stretching process is less than 0.0009 calories / cm 2 · sec, the obtained film is less likely to have a uniform thickness distribution. When multi-color printing is performed, the shift of the pattern occurs due to the superposition of multiple colors, which is not preferable.
Specifically, a film having a thickness variation of 6% or less is easy to superimpose colors in three-color printing performed at the time of evaluating the shrink finish, whereas a film exceeding 6% is not preferable in terms of the superposition.
As the stretching method, not only the lateral uniaxial stretching with a tenter, but also the longitudinal direction can be slightly stretched. In such biaxial stretching, either sequential biaxial stretching or simultaneous biaxial stretching may be used, and restretching may be performed in the longitudinal direction or the transverse direction as necessary.
[0024]
(Example)
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples, unless the summary is exceeded.
In the present invention, the film evaluation method is as follows.
[0025]
(1) The heat shrinkage rate film is cut into a 10 cm × 10 cm square, heat-shrinked in hot water at a predetermined temperature ± 0.5 ° C. under no load for 5 seconds, and then the film in the vertical and horizontal directions. The dimensions were measured, and the thermal shrinkage rate was determined according to the following formula (1). The direction in which the heat shrinkage rate is large was taken as the main shrinkage direction.
Heat shrinkage rate = (length before shrinkage−length after shrinkage / length before shrinkage) × 100 (%) (1) Formula [0026]
(2) Shrinkage finish
A round bottle (height 20.6 cm, center diameter 6.5 cm) using a steam tunnel (model: SH-1500-L) manufactured by Fuji Astec Inc. And bottles used in Kirin Beverage Co., Ltd. afternoon tea). (N = 20)
The heat-shrinkable film was previously printed in three colors with grass, gold, and white inks from Toyo Ink Manufacturing Co., Ltd. Evaluation was made visually and the criteria were as follows.
No wrinkles / jumping / shrinkage occurred: ○
Jumping up or insufficient shrinkage occurred: ×
[0027]
(3) Fracture resistance Using a sample of the above-mentioned printing film mounted on a coffee can and contracted 5% by treatment at 75 ° C./hot water for 10 seconds, using Tensilon (model: UTM-4L) manufactured by Toyo Seiki Co., Ltd. Then, a tensile test was performed by the method of JIS C2318, and the number of samples with an elongation of 20% or less in the direction perpendicular to the main shrinkage direction (longitudinal direction) was evaluated (number of samples = 50).
[0028]
(4) Tg (glass transition point)
Using a DSC (model: DSC220) manufactured by Seiko Denshi Kogyo Co., Ltd., tangent to the endothermic curve obtained when the temperature of the unstretched film 10 mg was raised from −40 ° C. to 120 ° C. at a heating rate of 20 ° C./min. And the intersection was defined as Tg (glass transition point).
[0029]
(5) Perforation cut property As shown in FIG. 1, the heat shrinkable film is formed into a tubular body (width 106 mm, length 54 mm) by the Inverse sealing method, and the perforation 10 mm apart in the length direction of the tube. It was continuously formed on two parallel lines and attached to a PET bottle. The bottle was covered with a heat-shrinkable film by the method described in the section on evaluation of shrinkage finish. The total number of samples was 50.
The straight line cut defect rate (%) is to open the film along the machine hole from the cap to the bottom of the bottle. At this time, the film tears laterally at any part of the bottle with respect to the total number of samples. The ratio of the number of samples in which the phenomenon occurred was evaluated.
The hole length ratio shown in FIG. 1 was L1 / L2 2.5-3.0.
[0030]
(6) Thickness distribution Using a contact thickness meter (model: KG60 / A) manufactured by Anritsu Co., Ltd., the thickness of the sample of 5 cm in the vertical direction and 50 cm in the horizontal direction is measured (number of samples = 20). The thickness variation was determined by the following equation (3). Moreover, the average value (n = 50) of the variation in the thickness was evaluated according to the following criteria.
Variation in thickness = (maximum thickness−minimum thickness / average thickness) × 100 (%) (3) formula average value: 6% or less → ○
Average value: greater than 6% and less than 10% → △
Average value: 10% or more → ×
[0031]
(7) Printability evaluation Three colors of overprinting were performed with grass, gold and white of Toyo Ink Manufacturing Co., Ltd. Shrink EX using a PAS type multicolor gravure printing machine manufactured by Higashidani Iron Works. Printing was performed at a printing speed of 100 m / min and a drying temperature of 50 ° C.
In the evaluation, the deviation of each color was measured with a JIS Class 1 metal scale.
(N = 10)
○: Deviation is less than 1 mm △: Deviation is 1 to 3 mm
×: The deviation is 3 mm or more. [0032]
The polyester used in the examples is as follows.
Polyester A: Polyethylene terephthalate (IV 0.75)
Polyester B: Polyester composed of 70 mol% ethylene glycol, 30 mol% neopentyl glycol and terephthalic acid (IV 0.72)
Polyester C: Polybutylene terephthalate (IV 1.20)
Polyester D: Polyester composed of 65 mol% terephthalic acid, 10 mol% adipic acid, 25 mol% isophthalic acid and butanediol (IV 0.72)
[0033]
(Example 1)
A polyester mixed with 25 wt% polyester A, 55 wt% polyester B and 20 wt% polyester C was extruded at 280 ° C. and rapidly cooled to obtain an unstretched film. (Tg66 ° C)
The unstretched film is preheated until the film temperature reaches 85 ° C. under the condition of a heat transfer coefficient of 0.0008 cal / cm 2 · sec · ° C., and then stretched 4.0 times in the transverse direction at 74 ° C. with a tenter. did. Subsequently, it was heat-treated at 80 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 50 μm.
[0034]
(Example 2)
A polyester blended with 25 wt% polyester A, 50 wt% polyester B and 25 wt% polyester C was extruded at 280 ° C. and quenched to obtain an unstretched film. (Tg63 ℃)
The unstretched film was preheated until the film temperature reached 82 ° C under the condition of a heat transfer coefficient of 0.0008 cal / cm 2 · sec · ° C, and then stretched 4.0 times at 72 ° C in the transverse direction with a tenter. . Subsequently, it was heat-treated at 79 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 50 μm.
[0035]
(Example 3)
A polyester blended with 25 wt% polyester A, 45 wt% polyester B and 30 wt% polyester C was extruded at 280 ° C. and quenched to obtain an unstretched film. (Tg61 ℃)
The unstretched film was preheated until the film temperature reached 80 ° C under the condition of a heat transfer coefficient of 0.0008 carol / cm 2 · sec · ° C, and then stretched 4.0 times at 69 ° C in the transverse direction with a tenter. . Subsequently, it was heat-treated at 77 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 50 μm.
[0036]
Example 4
A polyester mixed with 40 wt% polyester A, 50 wt% polyester B and 10 wt% polyester D was extruded from a T die at 280 ° C. and quenched with a chill roll to obtain an unstretched film (Tg 67 ° C.).
A heat-shrinkable polyester film having a thickness of 50 μm was obtained from the unstretched film by the method described in Example 1.
[0037]
(Comparative Example 1)
A heat-shrinkable polyester film having a thickness of 50 μm was obtained by the method described in Example 1 except that the stretching temperature was 83 ° C.
[0038]
(Comparative Example 2)
A film was formed by the method described in Example 1 except that the stretching temperature was 60 ° C., but the film was whitened over the entire width at the tenter outlet.
[0039]
(Comparative Example 3)
A polyester mixed with 25 wt% polyester A, 65 wt% polyester B and 10 wt% polyester C was extruded at 280 ° C. and rapidly cooled to obtain an unstretched film. (Tg69 ℃)
The unstretched film was preheated until the film temperature reached 90 ° C. under the condition of a heat transfer coefficient of 0.0008 cal / cm 2 · sec · ° C., and then stretched 4.0 times at 75 ° C. in the transverse direction with a tenter. . Subsequently, it was heat-treated at 80 ° C. for 10 seconds to obtain a heat-shrinkable polyester film having a thickness of 50 μm.
[0040]
(Comparative Example 4)
A heat-shrinkable polyester film having a thickness of 50 μm was obtained by the method described in Example 1 except that the heat treatment temperature after stretching was 75 ° C.
[0041]
(Comparative Example 5)
A heat-shrinkable polyester film having a thickness of 50 μm was obtained by the method described in Example 1 except that the heat treatment temperature after stretching was 83 ° C.
[0042]
(Comparative Example 6)
A heat-shrinkable polyester film having a thickness of 50 μm was obtained by the method described in Example 1 except that the heat transfer coefficient was 0.0017 cal / cm 2 · sec · ° C.
0
[0043]
Table 1 shows the evaluation results of the films obtained in Examples 1 to 4 and Comparative Examples 1 to 6. As is clear from Table 1, the films obtained in Examples 1 to 4 all showed a good finish, were excellent in perforation cutability, and had a good thickness distribution.
As described above, the heat-shrinkable polyester film of the present invention has high quality and high practicality, and is particularly suitable for a shrink label. On the other hand, the heat-shrinkable film obtained in Comparative Example 1 is inferior in perforation cutability due to inferior rupture resistance. The heat-shrinkable films obtained in Comparative Examples 3 and 5 are wrinkled and insufficiently shrunk, and the heat-shrinkable film obtained in Comparative Example 4 jumps up.
The film obtained in Comparative Example 6 has a poor thickness distribution.
Thus, all the heat-shrinkable polyester films obtained in the comparative examples were inferior in quality and low in practicality.
[0044]
【The invention's effect】
It can be seen that the heat-shrinkable polyester film of the present invention has very little wrinkling and shrinkage distortion after heat shrinkage, is excellent in perforation cutability, and is extremely useful as a label application.
[0045]
[Table 1]
[Brief description of the drawings]
FIG. 1 shows a heat-shrinkable film made into a tubular body.
FIG. 2 shows a tube-like body in which sewing holes are continuously formed on two rows of parallel lines, which are attached to a bottle and shrink-coated.
[Explanation of symbols]
L1: represents the length of the perforated bottle in the cylinder direction.
L2: represents the interval between perforations.
Claims (3)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1885098A JP4171935B2 (en) | 1998-01-30 | 1998-01-30 | Heat-shrinkable polyester film |
US09/240,024 US5985387A (en) | 1998-01-30 | 1999-01-29 | Thermo-shrinkable polyester film |
AT04007374T ATE514543T1 (en) | 1998-01-30 | 1999-01-29 | HEAT SHRINKABLE POLYESTER FILM |
EP99101938A EP0934813B1 (en) | 1998-01-30 | 1999-01-29 | Thermo-shrinkable polyester film |
EP04007374A EP1441000B1 (en) | 1998-01-30 | 1999-01-29 | Thermo-shrinkable polyester film |
DE69924421T DE69924421T2 (en) | 1998-01-30 | 1999-01-29 | Heat shrinkable polyester film |
AT99101938T ATE292009T1 (en) | 1998-01-30 | 1999-01-29 | HEAT SHRINKABLE POLYESTER FILM |
KR10-1999-0003042A KR100431976B1 (en) | 1998-01-30 | 1999-01-30 | Thermo-shrinkable polyester film |
HK00100849A HK1024205A1 (en) | 1998-01-30 | 2000-02-11 | Thermo-shrinkable polyester film. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1885098A JP4171935B2 (en) | 1998-01-30 | 1998-01-30 | Heat-shrinkable polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11207818A JPH11207818A (en) | 1999-08-03 |
JP4171935B2 true JP4171935B2 (en) | 2008-10-29 |
Family
ID=11983037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1885098A Expired - Fee Related JP4171935B2 (en) | 1998-01-30 | 1998-01-30 | Heat-shrinkable polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4171935B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001200072A (en) * | 2000-01-14 | 2001-07-24 | Toyobo Co Ltd | Heat-shrinkable polyester film |
JP4501043B2 (en) * | 2000-01-25 | 2010-07-14 | 東洋紡績株式会社 | Heat-shrinkable polyester film |
JP4710102B2 (en) * | 2000-05-15 | 2011-06-29 | 東洋紡績株式会社 | Heat-shrinkable polyester film |
JP4552097B2 (en) * | 2000-04-27 | 2010-09-29 | 東洋紡績株式会社 | Heat-shrinkable thermoplastic resin film |
JP2002046176A (en) * | 2000-08-01 | 2002-02-12 | Toyobo Co Ltd | Heat-shrinkable polyester film |
JP2002308518A (en) * | 2000-10-19 | 2002-10-23 | Brother Ind Ltd | Tape unit |
JP3678186B2 (en) | 2001-08-01 | 2005-08-03 | 東洋紡績株式会社 | Heat-shrinkable polyester film roll |
JP5125017B2 (en) * | 2005-07-29 | 2013-01-23 | 東洋紡株式会社 | Heat-shrinkable polyester film and method for producing the same |
WO2009066928A2 (en) * | 2007-11-19 | 2009-05-28 | Kolon Industries, Inc. | Thermo-shrinkable polyester film |
JP6888702B2 (en) * | 2020-02-12 | 2021-06-16 | 東洋紡株式会社 | Heat shrinkable polyester film and packaging |
-
1998
- 1998-01-30 JP JP1885098A patent/JP4171935B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11207818A (en) | 1999-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100431976B1 (en) | Thermo-shrinkable polyester film | |
JP3642229B2 (en) | Heat-shrinkable polyester film | |
JP4304243B2 (en) | Heat-shrinkable polyester film | |
KR101333948B1 (en) | Heat-shrinkable polyester film, process for production thereof, and package | |
EP1024162B1 (en) | Heat shrinkable polyester film | |
CN104508021B (en) | Heat-contractable ployester series film | |
JP3829353B2 (en) | Heat-shrinkable polyester film | |
KR20090034336A (en) | Heat-shrinkable polyester film and process for production thereof | |
JP2007016120A (en) | Heat-shrinkable polyester film and label, and method for production thereof | |
JP2007056156A (en) | Thermally shrinkable polyester-based film and label and method for producing the same | |
JP4171935B2 (en) | Heat-shrinkable polyester film | |
JP4552097B2 (en) | Heat-shrinkable thermoplastic resin film | |
JP2000169602A (en) | Thermoshrinkable polyester-based film | |
JP4267108B2 (en) | Heat-shrinkable polyester film | |
KR100817390B1 (en) | Layered heat-shrinkable films and labels for bottles | |
JP4302803B2 (en) | Heat-shrinkable polyester film | |
JP2000135737A (en) | Heat-shrinkable polyester film | |
JP4501043B2 (en) | Heat-shrinkable polyester film | |
JP2002046176A (en) | Heat-shrinkable polyester film | |
JP2002103545A (en) | Heat-shrinkable polyester-based film | |
JP2002067210A (en) | Laminated heat-shrinkable film and label for | |
JP2003266537A (en) | Heat-shrinkable polyester film and label | |
JP4281487B2 (en) | Multilayer heat shrinkable polyester film and label | |
JP2005022208A (en) | Heat-shrinkable polyester film and label | |
JP2005153515A (en) | Multilayer heat shrinkable polyester film and label |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080730 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |