JP4171932B2 - Ventilation heat dissipation measurement device and measurement method - Google Patents

Ventilation heat dissipation measurement device and measurement method Download PDF

Info

Publication number
JP4171932B2
JP4171932B2 JP14031097A JP14031097A JP4171932B2 JP 4171932 B2 JP4171932 B2 JP 4171932B2 JP 14031097 A JP14031097 A JP 14031097A JP 14031097 A JP14031097 A JP 14031097A JP 4171932 B2 JP4171932 B2 JP 4171932B2
Authority
JP
Japan
Prior art keywords
temperature
simulated skin
sweating
heat dissipation
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14031097A
Other languages
Japanese (ja)
Other versions
JPH10332683A (en
Inventor
園子 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14031097A priority Critical patent/JP4171932B2/en
Publication of JPH10332683A publication Critical patent/JPH10332683A/en
Application granted granted Critical
Publication of JP4171932B2 publication Critical patent/JP4171932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衣服を着用した人が、動いて汗をかく状態を装置的に模擬して、装置の動きに伴い衣服に用いられる編織物等がはためき、換気が生じる状態での放熱性を計測することが可能な放熱性計測装置および計測方法に関する。
【0002】
【従来の技術】
従来から、衣服に用いられる編織物等からなる試料の放熱性を計測する方法として、熱板の温度を一定に維持するための消費熱量を計測する方法が一般的に行われている。しかし、かかる方法は、発汗状態を模擬する計測ではなかった。
【0003】
最近、上記装置の考え方を応用して、熱板上に濡れた濾紙をのせ、発汗状態を模擬して消費熱量を計測する方法が行われている。しかし、かかる発汗方法では計測中に発汗を停止させたり発汗させたりすることはできず、また稼動機構も備わっていなかった。
【0004】
さらに、一部では、マイクロシリンジなどを利用して熱板に水分供給する方法が行われているが、一定水分量を供給することは難しく、かつ、稼動機構もなく、換気による放熱性を計測することはできなかった。
【0005】
また、稼動型のマネキンはあるが、発汗が可能なマネキンはない。かつ、その動きも腕および脚を疑似歩行させる運動であり、歩行、走行、またはジャンプ時に生じる、上下および前後の動き、言い換えればひねりを伴う上下運動を模擬しているものではなかった。
【0006】
【発明が解決しようとする課題】
本発明は、人に近い発汗状態を模擬する模擬発汗機構と、該発汗機構を上下および前後等に回転稼動させ人が動いている状態を模擬する稼動機構とを有する装置を用いて、人が動いたときの衣服に用いられる編織物等の換気による放熱性を計測する装置および計測方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、かかる目的を達成するために、次の構成を有する。すなわち、衣服に用いられる編織物等からなる試料(4)の換気を伴う放熱性を計測する装置であって、表面側から順に模擬皮膚(1)、発汗孔を有する基体(2)、および産熱体(3)が積層された産熱発汗機構(A)と、上記発汗孔に水分を供給する送水機構(B)と、上記基体(2)の温度を制御する産熱制御機構(C)と、産熱発汗機構(A)を稼動させる稼動機構(D)を備え、模擬皮膚(1)は、0.1ccの水を滴下し10秒後の水拡散面積が7cm 以上有する、編物、織物、または濾紙からなり、稼動機構(D)は、産熱機構(A)部分を0.7〜2.0秒で1サイクルの上下および前後に稼動することを特徴とする換気放熱性計測装置である。
また計測方法としては上記の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、基体(2)の温度を一定に維持するための消費熱量を計測することを特徴とする換気放熱性計測方法、および上記の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、基体(2)に一定電力を供給したときの模擬皮膚(1)の温度を温度センサ(5)により計測することを特徴とする換気放熱性計測方法、および上記の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、模擬皮膚(1)と試料(4)との間の微小空間(E)の温湿度を温湿度センサ(6)により計測することを特徴とする換気放熱性計測方法である。
【0008】
以下、本発明を詳細に説明する。本発明における換気放熱性とは、衣服を着用した人が歩行、走行、またはジャンプ等の動きをした時に、衣服がはためき換気が生じるが、その様な状態を模擬した状態での放熱性のことをいう。
【0009】
本発明における産熱発汗機構(A)は、模擬皮膚(1)、発汗孔を有する基体(2)、および産熱体(3)の順で積層されている。また、人間の場合、腕および首部分から主たる換気は生じるので、本産熱機構部分には、腕および首に相当する3箇所の突起部分が存在する。該突起部分は産熱機構と同様の構成をしていても、断熱材を用いても構わない。
【0010】
模擬皮膚(1)は、0.1ccの水を滴下し10秒後の水拡散面積が7cm2以上有する、編物、織物、または濾紙からなる。ただし、この時、模擬皮膚の下には基体(2)を接触させた状態で測定する。特に、ポリエステルフィラメントからなる薄地織物等のように、吸湿性がほとんどなく、水の移行性が速いものが望ましい。
【0011】
本発明の基体(2)は、アルミニウム、ステンレスなどの金属板から構成されてなる。基体の形状は、人が動いた場合の換気性を計測するため、人間の体型およびサイズに近いことが望ましい。しかし、本発明のように装置的に模擬して衣服に用いられる編織物等を評価する上では、人間の上半身の体型が模擬されていればよく、サイズは人間の等身大ほど大きくなくても構わないし、また、人間の下半身を模擬した部分がなくても構わない。ただし、サイズについては、小さすぎると生地重量の影響が計測できなくなるため、各々最大長が、タテ方向に12cm以上、ヨコ方向に9cm以上、奥行き4cm以上は必要である。
【0012】
基体(2)には、模擬皮膚側の表面に、内径0.1mm〜2.0mmの発汗孔を配置する。該発汗孔は1個/10〜20cm2 の密度で配置する。また、発汗孔周辺には、模擬皮膚への水の移行速度を高めるため、長さ5mm〜30mm、深さ0.2〜1mmの溝を付与することが望ましい。発汗孔は、樹脂、ステンレス、アルミニウムなどのチューブに接続され、産熱体(3)を経て、送水機構(B)から送られてくる水を基体(2)の模擬皮膚側の表面に吐出する。
【0013】
産熱体(3)は、基体(2)の裏面に位置する。加熱方法には、シリコンラバー等のエラストマーで成型した面状ヒータを用いたり、被覆した電熱線を伝熱セメントで固定したりする方法がある。ただし、温度制御の容易さや安定性、応答性等を考慮すると、面状ヒータを用いることが望ましい。
【0014】
送水機構(B)は、水を基体(2)の表面の発汗孔に送水するものである。チューブポンプを用いて送水する方法が、微量の水を精度良く吐出することが可能であり、かつ、取扱いも容易であり適している。
【0015】
産熱制御機構(C)は、温度制御用の温度センサで産熱体(3)に接した基体(2)の温度を検知し、該温度センサの温度が設定値に一定になるように、産熱体(3)に電力を供給する。あるいは、一定供給電力を産熱体(3)に供給する。
【0016】
駆動機構(D)は、産熱機構(A)部分を0.7〜2.0秒で1サイクルの上下および前後に稼動させる。前後の稼動とは、中心軸に対して左肩相当部が前に稼動する場合右肩相当部は後ろに稼動するという、中心軸に対する部分回転運動のことである。1サイクルとは、繰り返し最小単位である。人間の歩行、ランニングのサイクルに近い、1サイクル0.9〜1.5秒が望ましい。1サイクルの間に上下運動は2回繰り返し、前後運動は1回実施される。前後運動とは、人体を模擬した形状の産熱機構(A)の疑似胴部が、疑似肩幅ラインに対し前後に回転運動をすることをいう。該前後運動の移動角度は、疑似肩幅ラインに対し前後各々3〜6度である。
【0017】
試料(4)は、衣服用の編織物等を縫製または高透湿性のサージカルテープ等で貼り合わせることにより、貫頭衣状またはTシャツ状にして用いる。あるいは衣服がそのまま使用できるようであればそのまま使用してよい。
【0018】
本発明の換気による放熱性計測方法の1つは、基体(2)の温度を一定に維持するための消費熱量を計測することである。消費熱量は、基体(2)の温度を一定に維持するために電力が供給された電力供給時間を計測し、式▲1▼より求める。
Q=0.86×W×t/T×1/S ・・・ ▲1▼
Q:消費熱量(kcal/m2/hr)
W:供給電力(W)
t:電力供給時間(sec)
T:計測時間(sec)
S:基体面積(cm2
【0019】
換気による放熱性計測方法は、基体(2)への供給電力を一定にし、模擬皮膚(1)の表面温度を計測する方法でもよい。模擬皮膚の表面温度を計測する方法は、熱電対等の温度センサー(5)をサージカルテープ等で模擬皮膚(1)上に固定して計測する。
【0020】
さらに、換気による放熱性計測方法は、模擬皮膚(1)と試料(4)との微少空間(E)の温湿度を温湿度センサ(5)で計測する方法も可能である。
【0021】
本発明による計測手順は、次の通りである。まず、基体(2)上に模擬皮膚(1)を粘着テープ等で密着固定する。このとき粘着テープ部の基体(2)に対する占有面積ができるだけ小さくなるようにする。次に、基体(2)の温度を設定し、産熱制御機構(C)により加熱する。基体(2)の温度が一定になった状態で、試料(4)を発汗装置に取り付け、駆動機構(D)により産熱機構部分(A)を稼動させ、送水機構(B)より所定の水を送り込み、電力供給時間、あるいは微少空間(E)の温湿度を計測する。微少空間の温湿度を計測する温湿度センサ(6)は試料(4)を取り付ける前に固定する。あるいは、送水機構(B)より所定の水を供給させたのち、水の供給を止め、一定電力供給に切り替え、模擬皮膚(1)上の温度を温度センサ(5)で計測する。該温度センサ(5)も試料(4)を取り付ける前に固定する。模擬皮膚(1)の取付は基体(2)の温度が一定になった後でも構わない。駆動機構(D)を用いなければ、静止状態での放熱性を計測することができる。また、送水機構(B)からの送水をしなければ、水分蒸発による放熱性以外の放熱性を計測することができる。さらに、送水機構からの送水を行ったり止めたりする方法で放熱性を計測することもできる。
【0022】
次に実施例及び比較例を示すが、本発明の換気放熱性計測方法は、以下の実施例のみに限定されるものではない。いずれも、試料にはポリエステル100%の鹿子リバーシブルのニットを用いた。
【0023】
【実施例】
実施例1
図1に示す上半身のみを模擬した装置を用いた。基体(2)の面積は250cm2 であり、発汗孔は片面10個の合計20個設置した。駆動機構(D)は1秒で1サイクルの上下および前後運動をする。上下に2cm、前後に各々4度の運動をする。測定環境32℃、70%RHの条件で、基体(2)温度は37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2の織物を用いた。発汗量は300g/m2 /hr、実験手順は、試料を取り付け上下および前後運動を10分間実施したのち、上下前後運動を行いながら発汗を15分間実施した。この時、5分毎に電力供給時間を計測した。
【0024】
実施例2
実施例1と同様の装置を用いた。駆動機構(D)は1秒で1サイクルの上下および前後運動をする。上下に2cm、前後に各々4度の運動をする。測定環境32℃、70%RHの条件で、基体(2)温度を37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2 の織物を用いた。発汗量は300g/m2 /hr、実験手順は、試料(4)を取り付け上下および前後運動を10分間実施したのち、上下および前後運動を行いながら発汗を15分間実施した。その後、発汗を停止し、供給電力を6Wにし、駆動機構(D)を1.5秒で1サイクルの上下および前後運動に変更し、10分間計測した。試料(4)を取り付ける前に模擬皮膚(1)上に温度センサ(5)を取り付け、模擬皮膚(1)の温度を計測した。
【0025】
実施例3
実施例1と同様の装置を用いた。駆動機構(D)は1秒で1サイクルの上下および前後運動をする。上下に2cm、前後に各々4度の運動をする。測定環境は32℃、70%RHの条件で、基体(2)温度を37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2 の織物を用いた。発汗量は300g/m2 /hr、実験手順は、試料(4)を取り付け上下および前後運動を10分間実施したのち、上下および前後運動を行いながら発汗を15分間実施した。この時、模擬皮膚(1)と試料(2)との間の微少空間(E)に温湿度センサ(6)を取り付け、衣服内温湿度を計測した。
【0026】
比較例1
実施例1と同様の装置を用いた。発汗はさせず、模擬皮膚(1)にシリンジで水を供給した。水の供給は経時的に付与できないので、実施例で付与した水と同量の水を一度に模擬皮膚に付与した。測定環境32℃、70%RHの条件で、基体(2)温度を37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2 の織物を用いた。実験手順は、試料を取り付け10分間放置したのち、水を模擬皮膚にシリンジで一度に付与し15分間実験した。この時、5分毎に電力供給時間を計測した。
【0027】
比較例2
実施例1と同様の装置を用いた。発汗はさせず、模擬皮膚(1)にシリンジで水を供給した。水の供給は経時的に付与できないので、実施例で付与した水と同量の水を一度に模擬皮膚(1)に付与した。測定環境32℃、70%RHの条件で、基体(2)温度を37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2 の織物を用いた。実験手順は、試料(4)を取り付け10分間放置したのち、水を模擬皮膚(1)にシリンジで一度に付与し15分間放置したのち、さらに10分間放置した。試料(4)を取り付ける前に模擬皮膚(1)上に温度センサ(5)を取り付け、模擬皮膚(1)の温度を計測した。
【0028】
比較例3
実施例1と同様の装置を用い、比較例1と同様の手順で実験を実施した。そして、模擬皮膚(1)と試料(4)との間の微少空間(E)に温湿度センサ(6)を取り付け、衣服内温湿度を計測した。温湿度センサ(6)は試料(4)を取り付ける前に行った。
【0029】
比較例4
実施例1と同様の装置を用いた。測定環境32℃、70%RHの条件で、基体(2)温度を37℃に設定した。模擬皮膚(1)はポリエステルフィラメントからなる目付80g/m2 の織物を用いた。発汗量は300g/m2 /hr、実験手順は、試料(4)を取り付け10分間放置したのち、発汗を15分間実施した。駆動装置を稼働させず、上下および前後運動は行わなかった。5分毎の消費熱量を計測した。
【0030】
実施例1〜3および比較例1〜4の計測データを、各々表1、表2、表3に示す。
【0031】
【表1】

Figure 0004171932
【0032】
【表2】
Figure 0004171932
【0033】
【表3】
Figure 0004171932
【0034】
表1、表2、表3の結果から、実施例は、比較例に対し、発汗前の消費熱量は大きく、模擬皮膚温度は低く、衣服内湿度が低くなり、放熱性が高くなる傾向がみられる。本結果より、実施例による方法は、換気による放熱性が計測できていることが確認された。また、発汗中は、比較例4以外の比較例は、水付与後初期段階に放熱性が高くなり後半は小さくなるのに対し、実施例は、発汗初期段階は放熱性が小さく後半大きくなる傾向を示した。本結果より、実施例はより人体の発汗に伴う放熱性に近い挙動の放熱性が計測できることが確認された。さらに、比較例4に対し実施例1は全体的に放熱性が高くなる結果が得られた。したがって、上記と同様に実施例による方法は換気による放熱性が計測できていることが確認された。
【0035】
【発明の効果】
本発明による換気放熱性計測方法は、従来にない、換気を伴う放熱性を計測することを可能にした。
【図面の簡単な説明】
【図1】 換気放熱性計測を行う発汗装置の模式図
A:産熱発汗機構 B:送水機構 C:産熱制御機構 D:稼動機構 E:微少空間 1:模擬皮膚 2:基体 3:産熱体 4:試料 5:温度センサ 6:温湿度センサ[0001]
BACKGROUND OF THE INVENTION
The present invention simulates a state in which a person wearing clothes moves and sweats, and measures the heat dissipation in a state in which ventilation occurs when knitted fabric used in the clothes flutters as the apparatus moves. The present invention relates to a heat dissipation measurement device and a measurement method that can be performed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method for measuring the heat dissipation of a sample made of a knitted fabric or the like used for clothing, a method for measuring the amount of heat consumed for maintaining the temperature of a hot plate constant has been generally performed. However, this method is not a measurement that simulates a sweating state.
[0003]
Recently, a method of measuring the amount of heat consumed by simulating a sweating state by applying a wet filter paper on a hot plate by applying the idea of the above apparatus has been performed. However, with such a sweating method, sweating cannot be stopped or sweated during measurement, and no operating mechanism is provided.
[0004]
Furthermore, in some cases, water is supplied to the hot plate using a microsyringe, etc., but it is difficult to supply a constant amount of water, and there is no operating mechanism. I couldn't.
[0005]
In addition, there are operating mannequins, but there are no mannequins that can sweat. In addition, the movement is also a movement that simulates the walking of arms and legs, and does not simulate the vertical and forward / backward movements that occur during walking, running, or jumping, in other words, vertical movements with a twist.
[0006]
[Problems to be solved by the invention]
The present invention uses a device having a simulated sweating mechanism that simulates a sweating state close to a person, and an operating mechanism that simulates a state in which a person is moving by rotating the sweating mechanism up and down and front and back. It is an object of the present invention to provide an apparatus and a measuring method for measuring the heat dissipation by ventilation of a knitted fabric or the like used for clothes when moved.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention has the following configuration. That is, a device for measuring the heat dissipation with ventilation of a sample (4) made of a knitted fabric or the like used for clothes, in which the simulated skin (1), the substrate (2) having sweat holes, and the A heat production sweating mechanism (A) in which a thermal body (3) is laminated, a water supply mechanism (B) for supplying moisture to the sweating holes, and a heat production control mechanism (C) for controlling the temperature of the substrate (2). When, with the operating mechanism operating the thermogenic sweating mechanism (a) (D), the simulated skin (1) are water diffusion area after water was dropped in 0.1 cc 10 seconds has 7 cm 2 or more, knitted, Ventilation heat dissipation measuring device comprising a woven fabric or filter paper, and the operation mechanism (D) operates the heat production mechanism (A) part up and down and front and rear in one cycle in 0.7 to 2.0 seconds. It is.
As a measuring method, a sample (4) made of a knitted fabric or the like is attached to the above-described ventilation and heat dissipation measuring device by providing a minute space (E) between the simulated skin (1) and then produced by an operating mechanism (D). A ventilation heat dissipation measurement method characterized by measuring the amount of heat consumed to keep the temperature of the base body (2) constant while the thermal sweating mechanism (A) is in operation, and the ventilation heat dissipation measurement device described above A sample (4) made of knitted fabric or the like is attached to a simulated skin (1) with a minute space (E), and then the thermal sweating mechanism (A) is operated by the operating mechanism (D). The ventilation heat dissipation measuring method characterized in that the temperature of the simulated skin (1) when a constant power is supplied to the substrate (2) is measured by the temperature sensor (5), and the ventilation heat dissipation measuring device described above. Between sample skin (4) made of fabric, etc. and simulated skin (1) A minute space (E) between the simulated skin (1) and the sample (4) in a state in which a minute space (E) is provided and attached, and then the thermal sweating mechanism (A) is operated by the operating mechanism (D). It is a ventilation heat dissipation measuring method characterized by measuring the temperature and humidity of this by a temperature and humidity sensor (6).
[0008]
Hereinafter, the present invention will be described in detail. The ventilation heat dissipation in the present invention refers to the heat dissipation in a state simulating such a state where the clothes flutter when the person wearing the clothes moves, such as walking, running, or jumping. Say.
[0009]
In the heat production sweating mechanism (A) in the present invention, the simulated skin (1), the substrate (2) having sweat holes, and the heat producing body (3) are laminated in this order. Further, in the case of human beings, main ventilation is generated from the arm and the neck portion, and therefore, there are three projecting portions corresponding to the arm and the neck in the heat producing mechanism portion. The protruding portion may have the same configuration as the heat production mechanism, or a heat insulating material may be used.
[0010]
The simulated skin (1) is made of a knitted fabric, a woven fabric, or a filter paper having 0.1 cc of water dropped and having a water diffusion area after 10 seconds of 7 cm 2 or more. However, at this time, measurement is performed with the substrate (2) in contact with the simulated skin. In particular, it is desirable to use a fabric that has almost no hygroscopicity and a high water transfer property, such as a thin fabric made of polyester filament.
[0011]
The substrate (2) of the present invention is made of a metal plate such as aluminum or stainless steel. The shape of the substrate is preferably close to the human body shape and size in order to measure the ventilation when a person moves. However, in evaluating the knitted fabric used for clothes by simulating apparatus as in the present invention, it is only necessary to simulate the body shape of the upper body of the human body, even if the size is not as large as the human life size. It doesn't matter if there is no part that simulates the lower body of a human being. However, if the size is too small, the influence of the dough weight cannot be measured, so that the maximum length is required to be 12 cm or more in the vertical direction, 9 cm or more in the horizontal direction, and 4 cm or more in depth.
[0012]
In the substrate (2), sweat holes having an inner diameter of 0.1 mm to 2.0 mm are arranged on the surface on the simulated skin side. The sweat holes are arranged at a density of 1 piece / 10 to 20 cm 2 . Further, it is desirable to provide a groove having a length of 5 mm to 30 mm and a depth of 0.2 to 1 mm around the sweat hole in order to increase the speed of water transfer to the simulated skin. The sweat hole is connected to a tube made of resin, stainless steel, aluminum or the like, and discharges water sent from the water supply mechanism (B) to the surface of the base body (2) on the simulated skin side through the heat producing body (3). .
[0013]
The heat producing body (3) is located on the back surface of the substrate (2). As a heating method, there are a method of using a planar heater formed of an elastomer such as silicon rubber, or a method of fixing a coated heating wire with a heat transfer cement. However, in consideration of the ease of temperature control, stability, responsiveness, etc., it is desirable to use a planar heater.
[0014]
The water supply mechanism (B) supplies water to the sweat holes on the surface of the base body (2). A method of feeding water using a tube pump is suitable because it can discharge a small amount of water with high accuracy and is easy to handle.
[0015]
The heat production control mechanism (C) detects the temperature of the substrate (2) in contact with the heat production body (3) with a temperature sensor for temperature control, and the temperature of the temperature sensor is kept constant at a set value. Electric power is supplied to the heat producing body (3). Alternatively, constant supply power is supplied to the heat producing body (3).
[0016]
The drive mechanism (D) operates the heat production mechanism (A) part up and down and back and forth in one cycle in 0.7 to 2.0 seconds. The front / rear operation refers to a partial rotational movement with respect to the central axis, in which when the left shoulder equivalent portion moves forward with respect to the central axis, the right shoulder equivalent portion moves backward. One cycle is the minimum repeating unit. A cycle of 0.9 to 1.5 seconds, which is close to a human walking and running cycle, is desirable. Up and down movement is repeated twice during one cycle, and back and forth movement is performed once. The back-and-forth motion means that the pseudo torso of the heat production mechanism (A) having a shape simulating a human body rotates back and forth with respect to the pseudo shoulder width line. The movement angle of the front-rear movement is 3 to 6 degrees in the front-rear direction with respect to the pseudo shoulder width line.
[0017]
The sample (4) is used in the form of a translucent garment or a T-shirt by bonding a knitted fabric for clothes or the like with a surgical tape having high moisture permeability. Alternatively, if clothes can be used as they are, they may be used as they are.
[0018]
One of the methods for measuring heat dissipation by ventilation according to the present invention is to measure the amount of heat consumed for maintaining the temperature of the substrate (2) constant. The amount of heat consumed is obtained from equation (1) by measuring the power supply time during which power is supplied in order to keep the temperature of the substrate (2) constant.
Q = 0.86 × W × t / T × 1 / S (1)
Q: Heat consumption (kcal / m 2 / hr)
W: Power supply (W)
t: Power supply time (sec)
T: Measurement time (sec)
S: Substrate area (cm 2 )
[0019]
The heat dissipation measurement method by ventilation may be a method of measuring the surface temperature of the simulated skin (1) while keeping the power supplied to the substrate (2) constant. The method of measuring the surface temperature of the simulated skin is performed by fixing a temperature sensor (5) such as a thermocouple on the simulated skin (1) with a surgical tape or the like.
[0020]
Furthermore, the heat dissipation measurement method by ventilation can also be a method of measuring the temperature and humidity of the minute space (E) between the simulated skin (1) and the sample (4) with the temperature and humidity sensor (5).
[0021]
The measurement procedure according to the present invention is as follows. First, the simulated skin (1) is tightly fixed on the base (2) with an adhesive tape or the like. At this time, the occupation area of the adhesive tape portion with respect to the base body (2) is made as small as possible. Next, the temperature of the substrate (2) is set and heated by the heat production control mechanism (C). In a state where the temperature of the substrate (2) is constant, the sample (4) is attached to the perspiration apparatus, the heat production mechanism part (A) is operated by the drive mechanism (D), and predetermined water is supplied from the water supply mechanism (B). , And measure the power supply time or the temperature and humidity of the micro space (E). The temperature / humidity sensor (6) for measuring the temperature / humidity of the minute space is fixed before the sample (4) is attached. Or after supplying predetermined water from a water supply mechanism (B), supply of water is stopped, it switches to fixed electric power supply, and the temperature on the simulation skin (1) is measured with a temperature sensor (5). The temperature sensor (5) is also fixed before attaching the sample (4). The simulated skin (1) may be attached after the temperature of the base body (2) becomes constant. If the drive mechanism (D) is not used, the heat dissipation in a stationary state can be measured. Moreover, if water is not supplied from the water supply mechanism (B), heat dissipation other than the heat dissipation due to moisture evaporation can be measured. Furthermore, heat dissipation can also be measured by a method of performing or stopping water supply from the water supply mechanism.
[0022]
Next, although an Example and a comparative example are shown, the ventilation heat dissipation measuring method of this invention is not limited only to the following Examples. In each case, a Kano reversible knit made of 100% polyester was used as a sample.
[0023]
【Example】
Example 1
The apparatus which simulated only the upper body shown in FIG. 1 was used. The area of the substrate (2) was 250 cm 2 , and 20 sweat holes were installed in total, 10 per side. The drive mechanism (D) moves up and down and back and forth for one cycle in one second. Exercise up and down 2 cm and back and forth 4 degrees each. The substrate (2) temperature was set to 37 ° C. under the measurement environment of 32 ° C. and 70% RH. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. The amount of sweating was 300 g / m 2 / hr, and the experimental procedure was to attach a sample and perform up and down and back and forth movements for 10 minutes, and then perspire for 15 minutes while performing up and down back and forth movements. At this time, the power supply time was measured every 5 minutes.
[0024]
Example 2
The same apparatus as in Example 1 was used. The drive mechanism (D) moves up and down and back and forth for one cycle in one second. Exercise up and down 2 cm and back and forth 4 degrees each. The substrate (2) temperature was set to 37 ° C. under the measurement environment of 32 ° C. and 70% RH. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. The amount of perspiration was 300 g / m 2 / hr, and the experimental procedure was that the sample (4) was attached and the up and down and back and forth motions were performed for 10 minutes, and then the perspiration was performed for 15 minutes while performing the up and down and back and forth motions. Thereafter, sweating was stopped, the power supplied was 6 W, the drive mechanism (D) was changed to one cycle of vertical movement and back-and-forth movement in 1.5 seconds, and measurement was performed for 10 minutes. Before attaching the sample (4), the temperature sensor (5) was attached on the simulated skin (1), and the temperature of the simulated skin (1) was measured.
[0025]
Example 3
The same apparatus as in Example 1 was used. The drive mechanism (D) moves up and down and back and forth for one cycle in one second. Exercise up and down 2 cm and back and forth 4 degrees each. The measurement environment was 32 ° C. and 70% RH, and the substrate (2) temperature was set to 37 ° C. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. Sweating is 300g / m 2 / hr, experimental procedures, after the sample up and down and back and forth movements mounting (4) was performed 10 minutes and the sweating while vertical and longitudinal movements performed for 15 minutes. At this time, the temperature / humidity sensor (6) was attached to the minute space (E) between the simulated skin (1) and the sample (2), and the temperature and humidity in the clothes were measured.
[0026]
Comparative Example 1
The same apparatus as in Example 1 was used. Water was supplied to the simulated skin (1) with a syringe without sweating. Since the supply of water cannot be applied over time, the same amount of water as in the example was applied to the simulated skin at one time. The substrate (2) temperature was set to 37 ° C. under the measurement environment of 32 ° C. and 70% RH. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. In the experimental procedure, the sample was attached and allowed to stand for 10 minutes, and then water was applied to the simulated skin at once with a syringe and the experiment was performed for 15 minutes. At this time, the power supply time was measured every 5 minutes.
[0027]
Comparative Example 2
The same apparatus as in Example 1 was used. Water was supplied to the simulated skin (1) with a syringe without sweating. Since the supply of water cannot be applied over time, the same amount of water as that applied in Examples was applied to the simulated skin (1) at a time. The substrate (2) temperature was set to 37 ° C. under the measurement environment of 32 ° C. and 70% RH. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. In the experimental procedure, the sample (4) was attached and allowed to stand for 10 minutes, then water was applied to the simulated skin (1) at once with a syringe, left for 15 minutes, and then left for another 10 minutes. Before attaching the sample (4), the temperature sensor (5) was attached on the simulated skin (1), and the temperature of the simulated skin (1) was measured.
[0028]
Comparative Example 3
Using the same apparatus as in Example 1, the experiment was performed in the same procedure as in Comparative Example 1. And the temperature / humidity sensor (6) was attached to the micro space (E) between the simulated skin (1) and the sample (4), and the temperature and humidity in the clothes were measured. The temperature / humidity sensor (6) was used before attaching the sample (4).
[0029]
Comparative Example 4
The same apparatus as in Example 1 was used. The substrate (2) temperature was set to 37 ° C. under the measurement environment of 32 ° C. and 70% RH. For the simulated skin (1), a fabric made of polyester filament and having a basis weight of 80 g / m 2 was used. The amount of perspiration was 300 g / m 2 / hr, and the experimental procedure was that the sample (4) was attached and left for 10 minutes, and then perspiration was performed for 15 minutes. The drive unit was not operated, and no up-down and back-and-forth movements were performed. The amount of heat consumed every 5 minutes was measured.
[0030]
The measurement data of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1, Table 2, and Table 3, respectively.
[0031]
[Table 1]
Figure 0004171932
[0032]
[Table 2]
Figure 0004171932
[0033]
[Table 3]
Figure 0004171932
[0034]
From the results of Table 1, Table 2, and Table 3, the Examples show a tendency that the amount of heat consumed before perspiration is large, the simulated skin temperature is low, the humidity in the clothes is low, and the heat dissipation is high compared to the comparative example. It is done. From this result, it was confirmed that the method according to the example can measure the heat dissipation by ventilation. In addition, during sweating, Comparative Examples other than Comparative Example 4 have higher heat dissipation in the initial stage after water application and become smaller in the latter half, whereas Examples tend to have lower heat dissipation in the initial stage of sweating and higher in the latter half. showed that. From this result, it was confirmed that the heat dissipation of the behavior close | similar to the heat dissipation accompanying the sweating of a human body can be measured. Furthermore, as compared with Comparative Example 4, the result of Example 1 was that the overall heat dissipation was high. Therefore, it was confirmed that the heat dissipation by ventilation can be measured by the method according to the embodiment as described above.
[0035]
【The invention's effect】
The ventilation heat dissipation measurement method according to the present invention makes it possible to measure the heat dissipation associated with ventilation, which is not present in the past.
[Brief description of the drawings]
[Fig. 1] Schematic diagram of sweating device for measuring ventilation heat dissipation A: Thermal sweating mechanism B: Water supply mechanism C: Thermal control mechanism D: Operating mechanism E: Micro space 1: Simulated skin 2: Substrate 3: Heat production Body 4: Sample 5: Temperature sensor 6: Temperature / humidity sensor

Claims (4)

衣服に用いられる編織物等からなる試料(4)の換気を伴う放熱性を計測する装置であって、表面側から順に模擬皮膚(1)、発汗孔を有する基体(2)、および産熱体(3)が積層された産熱発汗機構(A)と、上記発汗孔に水分を供給する送水機構(B)と、上記基体(2)の温度を制御する産熱制御機構(C)と、産熱発汗機構(A)を稼動させる稼動機構(D)を備え、模擬皮膚(1)は、0.1ccの水を滴下し10秒後の水拡散面積が7cm 以上有する、編物、織物、または濾紙からなり、稼動機構(D)は、産熱機構(A)部分を0.7〜2.0秒で1サイクルの上下および前後に稼動することを特徴とする換気放熱性計測装置。A device for measuring heat dissipation with ventilation of a sample (4) made of a knitted fabric or the like used for clothes, in which the simulated skin (1), the substrate (2) having sweat holes, and the heat-producing body are sequentially formed from the surface side. A heat production sweating mechanism (A) in which (3) is laminated, a water supply mechanism (B) for supplying moisture to the sweating holes, a heat production control mechanism (C) for controlling the temperature of the substrate (2), operating the thermogenic sweating mechanism (a) provided with an operating mechanism (D), the simulated skin (1) are water diffusion area after water was dropped in 0.1 cc 10 seconds has 7 cm 2 or more, knitted, woven, Or it consists of filter paper, and the operation mechanism (D) operates the heat production mechanism (A) part up and down and back and forth for one cycle in 0.7 to 2.0 seconds. 請求項1記載の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、基体(2)の温度を一定に維持するための消費熱量を計測することを特徴とする換気放熱性計測方法。Attached is provided a minute space (E) between the sample (4) consisting of knitted fabric or the like into the ventilation heat radiation measuring device according to claim 1 Symbol placement and the simulated skin (1), thermogenic Subsequent operation mechanism (D) A ventilation heat dissipation measurement method characterized by measuring a heat consumption for maintaining the temperature of the substrate (2) constant in a state where the sweating mechanism (A) is operated. 請求項1記載の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、基体(2)に一定電力を供給したときの模擬皮膚 (1)の温度を温度センサ(5)により計測することを特徴とする換気放熱性計測方法。Attached is provided a minute space (E) between the sample (4) consisting of knitted fabric or the like into the ventilation heat radiation measuring device according to claim 1 Symbol placement and the simulated skin (1), thermogenic Subsequent operation mechanism (D) A ventilation heat dissipation measuring method, characterized in that the temperature of the simulated skin (1) is measured by the temperature sensor (5) when a constant power is supplied to the base (2) while the sweating mechanism (A) is in operation. . 請求項1記載の換気放熱性計測装置に編織物等からなる試料(4)を模擬皮膚(1)との間に微少空間(E)を設けて取り付け、その後稼動機構(D)により産熱発汗機構(A)を稼動させた状態で、模擬皮膚(1)と試料(4)との間の微小空間(E)の温湿度を温湿度センサ(6)により計測することを特徴とする換気放熱性計測方法。Attached is provided a minute space (E) between the sample (4) consisting of knitted fabric or the like into the ventilation heat radiation measuring device according to claim 1 Symbol placement and the simulated skin (1), thermogenic Subsequent operation mechanism (D) Ventilation characterized by measuring the temperature and humidity of the minute space (E) between the simulated skin (1) and the sample (4) with the temperature and humidity sensor (6) while the sweating mechanism (A) is in operation. Heat dissipation measurement method.
JP14031097A 1997-05-29 1997-05-29 Ventilation heat dissipation measurement device and measurement method Expired - Fee Related JP4171932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14031097A JP4171932B2 (en) 1997-05-29 1997-05-29 Ventilation heat dissipation measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14031097A JP4171932B2 (en) 1997-05-29 1997-05-29 Ventilation heat dissipation measurement device and measurement method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007240792A Division JP4582133B2 (en) 2007-09-18 2007-09-18 Ventilation heat dissipation measurement device
JP2007240793A Division JP4582134B2 (en) 2007-09-18 2007-09-18 Ventilation heat dissipation measurement method

Publications (2)

Publication Number Publication Date
JPH10332683A JPH10332683A (en) 1998-12-18
JP4171932B2 true JP4171932B2 (en) 2008-10-29

Family

ID=15265831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14031097A Expired - Fee Related JP4171932B2 (en) 1997-05-29 1997-05-29 Ventilation heat dissipation measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP4171932B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312155B1 (en) * 1998-10-09 2001-11-06 Risk Analysis & Management Apparatus and method for assessing burn injury from flammable materials
JP2002201522A (en) * 2000-12-28 2002-07-19 Kyoto Electron Mfg Co Ltd Artificial perspiring device
ITPD20050363A1 (en) * 2005-12-13 2007-06-14 Geox Spa EQUIPMENT FOR THE SIMULATION OF THE HEALING OF THE HUMAN BODY AND FOR THE EVALUATION OF THE CAPACITY OF BREATHING AND THE COMFORT OF A CLOTHING GARMENT
GB2478950A (en) * 2010-03-24 2011-09-28 Crawley Creatures Ltd A composite element
TWI449909B (en) * 2011-12-08 2014-08-21 Taiwan Textile Res Inst Apparatus for measuring moisture absoring and heat releasing of textile
CN110186946A (en) * 2019-05-24 2019-08-30 中国计量大学 For the skin model and analog temperature of textile test and the control method of perspiration

Also Published As

Publication number Publication date
JPH10332683A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
JP4582134B2 (en) Ventilation heat dissipation measurement method
JP5100102B2 (en) A device for simulating human sweating and evaluating the vapor permeability and comfort of clothing
JP4304015B2 (en) Shoe breathability and comfort measurement device
JP4171932B2 (en) Ventilation heat dissipation measurement device and measurement method
US20090120105A1 (en) Thermal Haptic Effects
JP2019505699A (en) Heatable garment, cloth for such garment, and method of making
US11272580B2 (en) Conductive transfer
CN210604471U (en) Intelligent clothing test system
CN2927053Y (en) Fabric climatic cylindrical tester at normal temperature
JP4582133B2 (en) Ventilation heat dissipation measurement device
Tamura Climate and Clothing
CN112255267A (en) Wearable warm dummy and clothing thermal resistance measuring method
JP2003050541A (en) Perspiration manikin device and measuring method using this device
CN105648709B (en) Washing machine and its clothing warming by fire control device and control method
JPH0847484A (en) Method of measuring temperature and humidity in simulation of sweating condition
JP2003167510A (en) Perspiration appliance and method of evaluating comfortability using this perspiration appliance
JPH10206416A (en) Body for inspection for inspecting clothing
TWI397685B (en) Apparatus of micro-climate measurement
CN114354684B (en) Method for simulating sweat of warm body dummy
JP3967967B2 (en) Pseudo human body
JP2024050154A (en) Sweating thermal mannequin and how to operate it
CN217443219U (en) Body-warming dummy
Chui Creation of wearable electronic clothing addressing end-user needs
JP2004068230A (en) Artificial sweating device
CN209172285U (en) A kind of paediatrics Traditional Chinese medicinal wrist pillow

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees