JP4169888B2 - Medical heat exchange bag and manufacturing method thereof - Google Patents

Medical heat exchange bag and manufacturing method thereof Download PDF

Info

Publication number
JP4169888B2
JP4169888B2 JP30137499A JP30137499A JP4169888B2 JP 4169888 B2 JP4169888 B2 JP 4169888B2 JP 30137499 A JP30137499 A JP 30137499A JP 30137499 A JP30137499 A JP 30137499A JP 4169888 B2 JP4169888 B2 JP 4169888B2
Authority
JP
Japan
Prior art keywords
heat exchange
crimping
liquid flow
liquid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30137499A
Other languages
Japanese (ja)
Other versions
JP2001120658A (en
Inventor
勝美 五十右
澄夫 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP30137499A priority Critical patent/JP4169888B2/en
Publication of JP2001120658A publication Critical patent/JP2001120658A/en
Application granted granted Critical
Publication of JP4169888B2 publication Critical patent/JP4169888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、血液濾過透析等において血液中より取り除かれた水分を補うための補液の加温等に使用される医療用熱交換バッグに関する。
【0002】
【従来の技術】
一般的な医療用熱交換バッグは、2枚のPVC(ポリ塩化ビニル)シートを重ねて、部分的に加熱して圧着することにより袋状の液体流路が形成されたもので、ヒータ等の外部熱源を有する熱交換装置に装着されることにより、PVCシートを介して液体流路内の補液(補充液)の熱交換を行うものである。
【0003】
従来の医療用熱交換バッグは、図3に示すように、2枚のPVCシートの所定部位を高周波溶着(圧着)させることにより、補液をバッグ内に供給するための供給口101と、患者側に続く回路に接続されるべき吐出口102と、これら供給口101と吐出口102とを屈曲させつつ連通した液体流路103とを形成されたものであった。尚、圧着部を図中斜線で示した。
かかる液体流路103を屈曲させて形成したのは、医療用熱交換バッグ100における液体流路103を長くして、補液が流れる時間を長くすることにより、熱交換装置の外部熱源からの加温効果を高めるためである。
【0004】
尚、圧着時にチューブ106を供給口101及び吐出口102にそれぞれ固定しており、このように形成した後、滅菌バッグに入れられた状態で、例えばEOG(ethylene oxide gas)滅菌や蒸気滅菌等することによって、滅菌済みの医療用熱交換バッグ100が製造される。
【0005】
【発明が解決しようとする課題】
しかしながら、この医療用熱交換バッグ100にあっては、使用時、液体流路103の屈曲部Y、特に当該屈曲部Yにおける内側部(同図(b)で示すb部)に過大な負荷がかかり破袋してしまうおそれがあるため、常に監視する必要があった。
【0006】
即ち、例えば屈曲部Yの3点a部、b部、及びc部(いずれも液体流路103を形成する圧着部)にかかる負荷について考察すると、同図矢印で示すような補液の流れによる内圧P、a部とb部との間の液体流路103の断面積A1、c部とb部との間の液体流路103の断面積A2により、a部及びc部にはそれぞれP・A1、P・A2の力が付与されるのに対し、b部にはP・A1+P・A2の力が付与され、相対的にb部に過大な負荷がかかっていることになる。
【0007】
上記説明では便宜上3点の比較において考察したが、実際にはb部には屈曲部Yの他の部位(屈曲部Yが成す外周R部上の点d、e、f、g…)とで成す断面積からも力を受けており、これらの総和がb部にかかることになる。従って、絶対的にも明らかにb部には過大な負荷がかかっており、破袋が生じやすくなっていることが分かる。
【0008】
このような過大な負荷によって破袋が生じると、補液が医療用熱交換バッグ100外に漏れて、十分な補液の供給ができなくなったり、医療用熱交換バッグ100を保持する熱交換装置のヒータ等外部熱源の故障の原因となったりする等の不都合を生じてしまうという問題があった。
【0009】
本発明は、このような事情に鑑みてなされたもので、医療用熱交換バッグにおける屈曲部の内側にかかる負荷を軽減することにより、液体流路中を液体が流れる際の内圧で破袋し、液体が外部に漏れるのを防止することができる医療用熱交換バッグ及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1記載の発明は、液体を取り込む供給口と、該供給口から取り込まれた液体を吐出する吐出口と、前記供給口と吐出口とを屈曲しつつ連通する液体流路とを備えた医療用熱交換バッグにおいて、前記液体流路の屈曲部に、当該液体流路内に流れる液体を屈曲部の形状に沿って分流させるための分流部位が形成されるとともに、当該液体流路は、対面させた複数のシートの所定部位を圧着させることにより形成されるものであって、前記分流部位の圧着力を他の圧着部の圧着力より弱く形成したものであることを特徴とする。
【0011】
かかる構成によれば、屈曲部にかかる力の一因子(パラメータ)である液体流路における液体の流れる方向に対する断面積を小さくすることができる。また、かかる構成によれば、液体の流れによる内圧が増大等しても、液体流路を形成する部位が剥離する前に分流部位が剥離する。
請求項2記載の発明は、前記分流部位の圧着後の厚さを他の圧着部の圧着後の厚さより厚く形成することにより、前記分流部位の圧着力を他の圧着部の圧着力より弱く形成したことを特徴とする。
【0012】
請求項記載の発明は、前記分流部位が、前記屈曲部における液体流路を略二等分することを特徴とする。
かかる構成によれば、屈曲部を流れる液体は、分流部位により二つに分流して流れることとなる。
【0013】
請求項記載の発明は、前記分流部位の先端が他の部位より液体の流れる方向に対する断面積が大きいことを特徴とする。
かかる構成によれば、分流部位先端の液体の流れる方向に対する断面積を大きくし、この部位への過大な内圧の集中を緩和する。
【0016】
請求項記載の発明は、対面させた複数のシートの所定部位を圧着させることにより、前記供給口、吐出口、及び液体流路を形成する医療用熱交換バッグの製造方法において、前記シートの圧着時に、前記分流部位を形成することを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら具体的に説明する。
本実施形態に係る医療用熱交換バッグは、ヒータ等の外部熱源を有する熱交換装置に装着されることにより、PVCシートを介して液体流路内の補液(補充液)の熱交換を行うものであり、図1及び図2に示すように、対面する2枚のPVCシート4、4′の所定部位を圧着して形成された供給口1、吐出口2、液体流路3、及び分流部位5を有するものである。
【0018】
即ち、シート4、4′の非圧着部分(斜線なしの部位)が図示の如く供給口1及び吐出口2を屈曲しつつ連通して形成され、その内部を補液を流すための液体流路3としたものである。尚、分流部位5以外の圧着部を符号7で示している。
【0019】
尚、PVCシート4、4′の表裏面は予め粗いものとし、2枚のPVCシート4、4′が膠着して、供給口1、吐出口2、及び液体流路3が閉じた状態とならないよう構成するのが好ましい。また、PVCシート4、4′の代わりに他の樹脂製シートを用いてもよく、この場合においても表裏面を予め粗い面のものとするのが好ましい。
【0020】
かかる構成により、供給口1に固定されたチューブ6から供給された補液は、屈曲した液体流路3を流れる間に熱交換装置(不図示)にて加温され、吐出口2に固定されたチューブ6から吐出される。そして、吐出された補液は、HDF(血液透析濾過)やHF(血液濾過)治療等の患者の体内に補充液として取り込まれる。
【0021】
ここで、本実施形態における医療用熱交換バッグ10には、その屈曲部Xに、液体流路3内に流れる液体を2方向に分流させるための分流部位5が形成されている。この分流部位5は、圧着部7の形成時に圧着された部位であり、a部とb部を結ぶ線分の略中央位置に形成された先端部5aと、c部とb部とを結ぶ線分の略中央位置に形成された先端部5bと、これら先端部5a、5bを結び屈曲部Xの形状に沿って形成された胴部5cとから構成される。即ち、分流部位5は、屈曲部Xにおける液体流路3を略二等分している。
【0022】
以下、分流部位5によりb部にかかる負荷を考察するため、例えば先端部5aの略中心のa’部、先端部5bの略中心のc’部、及びb部に作用する力を比較する。液体流路3中を流れる液体の内圧をP、b部及びa’部を結ぶ線分が成す断面積をA3、c’部及びb部を結ぶ線分が成す断面積をA4とすると、a’部に付与される力はP・A3、c’部に付与される力はP・A4であるのに対し、b部に付与される力は、P・A3+P・A4=P(A3+A4)となる。
【0023】
また、分流部位5がない場合のb部に付与される力は、a部及びb部を結ぶ線分が成す断面積をA3’、c部及びb部を結ぶ線分が成す断面積をA4’とすると、P・A3’+P・A4’=P(A3’+A4’)となるため、分流部位5の存在により、断面積A3とA3’との差及び断面積A4とA4’との差分だけb部にかかる負荷が小さくなっている。
【0024】
以上の考察は、3部位のみをもって比較した便宜上の説明であるが、実際にはb部には屈曲部Xの他の部位(屈曲部Xが成す外周R部上の点d、e、f、g…とb部とを結ぶ直線が分流部位5と交わる部位)とで成す断面積から力を受けており、これらの総和がb部にかかることになっているが、いずれにしても分流部位5により負荷のパラメータである各断面積が減少しているため、分流部位5がない場合に比べ付与される力の総和も小さくなっている。
【0025】
また、分流部位5の先端部5a、5bは、胴部5cより液体の流れる方向に対して断面積が大きく上面視円状に形成されている。即ち、PVCシート4、4’の引き剥がし力となる負荷は、分流部位5(融着部)の周囲の線に付与されるので、先端部5a、5bの面積を大きくすることにより分流部位5の周囲長を大きくし、引き剥がし力に十分耐え得るようにしている。
また、胴部5cを先端部5a、5bより細く(液体の流れる方向に対して断面積を小さく)形成することにより、液体の流路幅を確保して熱交換面積を確保するとともに、上記引き剥がし力に十分耐え得るよう構成している。
【0026】
2枚のPVCシート4、4′の圧着は、図2に示すように、上型8及び下型9が衝合した際に、これらの間で高周波を生じさせることにより行われる。即ち、所謂高周波溶着によってPVCシート4、4′の所定部位を溶融しつつ圧着し、圧着部7及び分流部位5を形成する。ここで高周波溶着とは、PVC材料等の絶縁物に高周波電磁界を加えることにより、その中に誘電体損失を生じさせて発熱させ、溶融した絶縁物どおしを接着する方法をいい、一般に10〜40MHz程度の高周波電磁界が使用されている。
【0027】
上型8は、PVCシート4、4’における圧着部7と分流部位5とに対応する部位に下型9に向かって突出した突出部8a、8bを有しており、この突出部8a、8bがPVCシート4、4’を介して下型9に衝合する。ここで、突出部8aの方が突出部8bよりtだけ多く突出しているため、衝合力が相違し、圧着部7の方が分流部位5より肉厚が薄くなっている。
【0028】
いいかえれば、分流部位5の圧着力は、圧着部7の圧着力より弱く形成されており、液体流路3に液体が流れる際、屈曲部Xに過大な内圧がかかっても圧着部7より先に分流部位5が剥離するので、液体が医療用熱交換バッグ10から漏れるのを防止できる。尚、分流部位5に作用させる高周波を圧着部7に作用させる高周波より弱くする(発熱量を減少させて溶着度を低下させる)ことにより、分流部位5の圧着力を、圧着部7の圧着力より弱くするようにしてもよい。
【0029】
上記医療用熱交換バッグ10によれば、液体流路3における屈曲部Xの特にb部位にかかる負荷を低減することができるため、液体流路3中を流れる液体による内圧で破袋するのを有効に防止することができる。また、上型8と下型9との1回の衝合による圧着で、圧着部7と分流部位5とを同時に形成できるので、分流部位5を形成するための工程を増やすことが不要である。
【0030】
以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば分流部位5を屈曲部Xの形状に沿って複数形成してもよい。また、分流部位5は、先端部5a、5bを有さないものとしてもよく、屈曲部Xにおける液体流路3中央部以外の任意の位置に形成してもよい。そして、製造方法においては、製造工程数の維持を図るため、本実施形態の如く、圧着部7と同時に分流部位5を形成するのが好ましいが、圧着部7を形成した後、別途分流部位5を形成してもよい。
また、本実施形態の医療用熱交換バッグは、対面する2枚のシートを圧着させたものであるが、例えばブロー成形や射出成形によるガス注入成形で一体成形したものとしてもよい。一方、2枚のシートを圧着する場合においても、高周波溶着の他、超音波溶着、ヒータによる加熱溶着、溶剤による溶着等、他の接着方法としてもよい。更に、分流部位は、所定箇所をスポット溶着(圧着)により形成されるものとしてもよい。
【0031】
尚、医療用熱交換バッグ5の全体形状、液体流路3の形状、供給口1や吐出口2を形成する位置等は一例であって、本発明の要旨を逸脱しない範囲において種々変更可能であることはいうまでもない。
【0032】
【実施例】
表1は、実施例及び比較例の所定条件下で破袋するまでの時間を示す表である。以下、この表に示す実験値に基づき、本発明を実施例により更に具体的に説明する。実施例は本発明を例示的に示すものであり、本発明を制限するものではない。
【0033】
【表1】

Figure 0004169888
【0034】
実施例として用いられる医療用熱交換バッグは、液体流路内コーナー(屈曲部内側円形の端面)から10mmの部位に形成されたR15mm、幅2.5mm、先端Rが3.5mmの分流部位を有するものとする。
【0035】
実施例1
上記分流部位を有し、蒸気滅菌していないものの液体流路中に1[Kg/cm2]のエアー圧をかけたところ、破裂するまでの時間がサンプル1は38分9秒、サンプル2は56分40秒、サンプル3は45分34秒、サンプル4は47分43秒、サンプル5は48分30秒であった。
【0036】
実施例2
上記分流部位を有し、1回蒸気滅菌したものの液体流路中に1[Kg/cm2]のエアー圧をかけたところ、破裂するまでの時間がサンプル1は33分25秒、サンプル2は43分11秒、サンプル3は51分50秒、サンプル4は43分8秒、サンプル5は43分53秒であった。
【0037】
実施例3
上記分流部位を有し、2回蒸気滅菌したものの液体流路中に1[Kg/cm2]のエアー圧をかけたところ、破裂するまでの時間がサンプル1は43分22秒、サンプル2は37分48秒、サンプル3は46分47秒、サンプル4は38分59秒、サンプル5は47分30秒であった。
【0038】
実施例4
上記分流部位を有し、3回蒸気滅菌したものの液体流路中に1[Kg/cm2]のエアー圧をかけたところ、破裂するまでの時間がサンプル1は40分52秒、サンプル2は39分46秒、サンプル3は43分8秒、サンプル4は36分30秒、サンプル5は39分00秒であった。
【0039】
これに対し、分流部位を有さない比較例(比較例1(未蒸気滅菌)、比較例2(1回蒸気滅菌)、比較例3(2回蒸気滅菌)、比較例4(3回蒸気滅菌)は、いずれも実施例と同様、液体流路中に1[Kg/cm2]のエア圧をかけたもの)は、いずれのサンプルのものも実施例より明らかに破裂時間が短い。従って、実施例のものは、蒸気滅菌の有無、回数に拘わらず、比較例のものよりも耐圧強度が向上していることが分かる。
【0040】
【発明の効果】
本発明によれば、医療用熱交換バッグにおける屈曲部の内側にかかる負荷を軽減することにより、液体流路中を液体が流れる際の内圧で破袋し、液体が外部に漏れるのを防止することができる。
また、請求項記載の発明によれば、製造工程を増やすことなく分流部位を形成することができる。
【図面の簡単な説明】
【図1】(a)本発明に係る医療用熱交換バッグを示す中央縦断面図、(b)(a)中のX部に付与される負荷を説明するための説明図
【図2】図1のII−II線で断面した医療用熱交換バッグ、及びその圧着のために使用した上型、下型を示す断面図
【図3】(a)従来の医療用熱交換バッグを示す中央縦断面図、(b)(a)中のY部に付与される負荷を説明するための説明図
【符号の説明】
1、101…供給口
2、102…吐出口
3、103…液体流路
4、4’…PVCシート
5…分流部位
5a、5b…先端部
5c…胴部
6、106…チューブ
7…圧着部
8…上型
9…下型
10、100…医療用熱交換バッグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical heat exchange bag used for warming a replacement fluid for supplementing water removed from blood in blood filtration dialysis or the like.
[0002]
[Prior art]
A general medical heat exchange bag is a bag-like liquid flow path formed by stacking two PVC (polyvinyl chloride) sheets and partially heating and crimping them. By mounting on a heat exchange device having an external heat source, heat exchange of the replacement liquid (replenishment liquid) in the liquid flow path is performed via the PVC sheet.
[0003]
As shown in FIG. 3, the conventional medical heat exchange bag includes a supply port 101 for supplying a replacement fluid into the bag by high-frequency welding (crimping) predetermined portions of two PVC sheets, and a patient side. The discharge port 102 to be connected to the circuit following the above and the liquid flow path 103 communicating with the supply port 101 and the discharge port 102 while being bent are formed. In addition, the crimping | compression-bonding part was shown with the oblique line in the figure.
The liquid flow path 103 is formed by bending the liquid flow path 103 in the medical heat exchange bag 100 to increase the time during which the replacement fluid flows, so that heating from the external heat source of the heat exchange device is performed. This is to increase the effect.
[0004]
The tube 106 is fixed to the supply port 101 and the discharge port 102 at the time of crimping. After forming the tube 106, the tube 106 is put in a sterilization bag and, for example, EOG (ethylene gas) sterilization or steam sterilization is performed. Thus, the sterilized medical heat exchange bag 100 is manufactured.
[0005]
[Problems to be solved by the invention]
However, in this medical heat exchange bag 100, during use, an excessive load is applied to the bent portion Y of the liquid flow path 103, particularly the inner portion of the bent portion Y (b portion shown in FIG. 5B). Since there is a risk of smashing the bag, it was necessary to constantly monitor it.
[0006]
That is, for example, considering the load applied to the three points a, b, and c of the bent portion Y (all of the crimping portions forming the liquid flow path 103), the internal pressure due to the flow of the replacement fluid as shown by the arrows in FIG. P, A1 and c parts have a cross-sectional area A1 of the liquid flow path 103 between the a part and the b part, and a cross-sectional area A2 of the liquid flow path 103 between the c part and the b part. The force P · A2 is applied to the portion b, and the force P · A1 + P · A2 is applied to the portion b, so that an excessive load is applied to the portion b.
[0007]
In the above description, for the sake of convenience, it was considered in comparison of three points. However, in actuality, the b portion includes other portions of the bent portion Y (points d, e, f, g... On the outer periphery R portion formed by the bent portion Y). The force is also received from the cross-sectional area formed, and the sum of these is applied to the part b. Therefore, it can be clearly understood that an excessive load is clearly applied to the portion b, and bag breakage is likely to occur.
[0008]
When a bag breakage occurs due to such an excessive load, the replacement fluid leaks out of the medical heat exchange bag 100, and sufficient replacement fluid cannot be supplied, or the heater of the heat exchange device that holds the medical heat exchange bag 100. There has been a problem that it causes inconveniences such as failure of the external heat source.
[0009]
The present invention has been made in view of such circumstances, and by reducing the load on the inside of the bent portion of the medical heat exchange bag, the bag is broken by the internal pressure when the liquid flows in the liquid flow path. An object of the present invention is to provide a medical heat exchange bag that can prevent liquid from leaking to the outside and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The invention described in claim 1 includes a supply port that takes in liquid, a discharge port that discharges the liquid taken in from the supply port, and a liquid flow path that communicates while bending the supply port and the discharge port. In the medical heat exchange bag, at the bent portion of the liquid flow path, a diversion site for diverting the liquid flowing in the liquid flow path along the shape of the bent portion is formed , and the liquid flow path is It is formed by press-bonding predetermined portions of a plurality of sheets facing each other, and is characterized in that the pressure-bonding force of the flow-dividing portion is formed weaker than the pressure-bonding force of other pressure-bonding portions .
[0011]
According to such a configuration, it is possible to reduce the cross-sectional area of the liquid flow path in the liquid flow path, which is one factor (parameter) of the force applied to the bent portion. Further, according to such a configuration, even if the internal pressure due to the flow of the liquid increases, the shunt portion peels off before the portion that forms the liquid flow path peels off.
According to a second aspect of the present invention, the pressure-bonding force of the flow-dividing part is made weaker than the pressure-bonding force of the other pressure-bonding part by forming the thickness after pressure-bonding of the flow-dividing part thicker than the thickness after pressure-bonding of another pressure-bonding part. It is formed.
[0012]
The invention according to claim 3 is characterized in that the flow-dividing part bisects the liquid flow path in the bent portion.
According to such a configuration, the liquid flowing in the bent portion is divided into two by the branch portion and flows.
[0013]
The invention according to claim 4 is characterized in that the tip of the flow dividing portion has a larger cross-sectional area with respect to the direction in which the liquid flows than other portions.
According to such a configuration, the cross-sectional area in the liquid flowing direction at the tip of the branching part is increased, and the concentration of excessive internal pressure on this part is alleviated.
[0016]
According to a fifth aspect of the present invention, in the method of manufacturing a medical heat exchange bag for forming the supply port, the discharge port, and the liquid flow path by press-bonding predetermined portions of the plurality of sheets facing each other, The diverting part is formed at the time of pressure bonding.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The medical heat exchange bag according to this embodiment performs heat exchange of a replacement liquid (replenishment liquid) in a liquid flow path via a PVC sheet by being attached to a heat exchange device having an external heat source such as a heater. As shown in FIGS. 1 and 2, a supply port 1, a discharge port 2, a liquid flow path 3, and a branching portion formed by pressure-bonding predetermined portions of the two PVC sheets 4 and 4 'facing each other. 5.
[0018]
That is, the non-crimped portion (the portion without hatching) of the sheets 4 and 4 'is formed in communication with the supply port 1 and the discharge port 2 being bent as shown in the figure, and the liquid flow path 3 for flowing the replacement fluid therethrough. It is what. In addition, the crimping | compression-bonding part other than the flow division site | part 5 is shown with the code | symbol 7. FIG.
[0019]
The front and back surfaces of the PVC sheets 4 and 4 ′ are rough beforehand, and the two PVC sheets 4 and 4 ′ are stuck together, so that the supply port 1, the discharge port 2, and the liquid flow path 3 are not closed. It is preferable to configure as described above. In addition, other resin sheets may be used in place of the PVC sheets 4 and 4 '. In this case as well, it is preferable that the front and back surfaces have a rough surface in advance.
[0020]
With this configuration, the replacement fluid supplied from the tube 6 fixed to the supply port 1 is heated by a heat exchange device (not shown) while flowing through the bent liquid flow path 3 and fixed to the discharge port 2. It is discharged from the tube 6. The discharged replacement fluid is taken in as a replenisher into the patient's body for HDF (hemodiafiltration) or HF (blood filtration) treatment.
[0021]
Here, in the medical heat exchange bag 10 according to the present embodiment, a branching portion 5 for splitting the liquid flowing in the liquid flow path 3 in two directions is formed in the bent portion X. This branching portion 5 is a portion that is crimped when the crimping portion 7 is formed, and is a line that connects the tip portion 5a formed at a substantially central position of the line segment connecting the a portion and the b portion, and the c portion and the b portion. It is comprised from the front-end | tip part 5b formed in the approximate center position of the minute, and the trunk | drum 5c formed along the shape of the bending part X which connects these front-end | tip parts 5a and 5b. That is, the flow dividing portion 5 divides the liquid flow path 3 in the bent portion X into substantially equal parts.
[0022]
Hereinafter, in order to consider the load applied to the portion b by the flow dividing portion 5, for example, the forces acting on the a ′ portion at the approximate center of the tip portion 5a, the c ′ portion at the approximate center of the tip portion 5b, and the b portion are compared. Assuming that the internal pressure of the liquid flowing in the liquid flow path 3 is P, the cross-sectional area formed by the line connecting the parts b and a ′ is A3, and the cross-sectional area formed by the line connecting the parts c ′ and b is A4, a The force applied to 'part is P · A3, and the force applied to portion c' is P · A4, whereas the force applied to portion b is P · A3 + P · A4 = P (A3 + A4) Become.
[0023]
In addition, the force applied to the part b when there is no branch part 5 is the cross-sectional area formed by the line connecting the part a and the part b is A3 ′, and the cross-sectional area formed by the line connecting the part c and the part b is A4. Since P · A3 ′ + P · A4 ′ = P (A3 ′ + A4 ′), the difference between the cross-sectional areas A3 and A3 ′ and the difference between the cross-sectional areas A4 and A4 ′ due to the presence of the diversion site 5 Only the load applied to the portion b is reduced.
[0024]
The above consideration is an explanation for convenience of comparison with only three parts, but actually, in the part b, other parts of the bent part X (points d, e, f, g ... and a portion connecting a straight line connecting part b and a part where crossing part 5 intersects), and the sum of these is applied to part b. Since each sectional area, which is a load parameter, is reduced by 5, the sum of the applied forces is also smaller than when there is no diversion site 5.
[0025]
Moreover, the front-end | tip parts 5a and 5b of the flow division site | part 5 have a larger cross-sectional area with respect to the direction of a liquid flow than the trunk | drum 5c, and are formed circularly by the top view. That is, the load that becomes the peeling force of the PVC sheets 4, 4 ′ is applied to the line around the flow dividing portion 5 (fused portion). Therefore, by increasing the area of the tip portions 5 a, 5 b, the flow dividing portion 5 The perimeter is made large enough to withstand the peeling force.
Further, by forming the body portion 5c to be narrower than the tip portions 5a and 5b (smaller in cross-sectional area with respect to the liquid flow direction), the liquid flow path width is secured to secure the heat exchange area, and the above-described pulling is performed. It is configured to withstand the peeling force.
[0026]
As shown in FIG. 2, the two PVC sheets 4, 4 ′ are crimped by generating a high frequency between the upper mold 8 and the lower mold 9 when they are brought into contact with each other. In other words, a predetermined portion of the PVC sheets 4 and 4 ′ is melt-bonded by so-called high-frequency welding to form a pressure-bonding portion 7 and a flow-dividing portion 5. Here, high-frequency welding refers to a method in which a high-frequency electromagnetic field is applied to an insulator such as a PVC material, thereby generating a dielectric loss in the insulator and generating heat, and bonding the melted insulator through the insulator. A high frequency electromagnetic field of about 10 to 40 MHz is used.
[0027]
The upper die 8 has projecting portions 8a and 8b projecting toward the lower die 9 at portions corresponding to the crimping portion 7 and the flow dividing portion 5 in the PVC sheets 4 and 4 '. The projecting portions 8a and 8b Butts against the lower die 9 through the PVC sheets 4 and 4 '. Here, since the protruding portion 8 a protrudes by t more than the protruding portion 8 b, the abutting force is different, and the crimping portion 7 is thinner than the flow dividing portion 5.
[0028]
In other words, the crimping force of the flow dividing portion 5 is formed to be weaker than the crimping force of the crimping portion 7, and even when an excessive internal pressure is applied to the bent portion X when the liquid flows in the liquid flow path 3, Therefore, the liquid can be prevented from leaking from the medical heat exchange bag 10. In addition, by making the high frequency applied to the flow dividing portion 5 weaker than the high frequency applied to the crimping portion 7 (decreasing the amount of heat generation and reducing the degree of welding), the crimping force of the flow dividing portion 5 is changed to the crimping force of the crimping portion 7. You may make it weaker.
[0029]
According to the medical heat exchange bag 10, it is possible to reduce the load applied to the bent portion X of the liquid flow path 3, particularly the portion b, so that the bag breaks due to the internal pressure of the liquid flowing in the liquid flow path 3. It can be effectively prevented. Moreover, since the crimping | compression-bonding part 7 and the flow division site | part 5 can be formed simultaneously by the crimping | compression-bonding by the one time contact | abutting with the upper mold | type 8 and the lower mold | type 9, it is unnecessary to increase the process for forming the flow division site | part 5. .
[0030]
Although the present embodiment has been described above, the present invention is not limited to this. For example, a plurality of flow dividing portions 5 may be formed along the shape of the bent portion X. Further, the flow dividing portion 5 may not have the tip portions 5a and 5b, and may be formed at any position other than the central portion of the liquid flow path 3 in the bent portion X. In the manufacturing method, in order to maintain the number of manufacturing steps, it is preferable to form the flow dividing portion 5 at the same time as the pressure bonding portion 7 as in the present embodiment. However, after the pressure bonding portion 7 is formed, the flow dividing portion 5 is separately provided. May be formed.
In addition, the medical heat exchange bag of the present embodiment is obtained by pressure-bonding two sheets facing each other, but may be integrally molded by, for example, gas injection molding by blow molding or injection molding. On the other hand, when two sheets are pressure-bonded, other bonding methods such as ultrasonic welding, heat welding with a heater, and solvent welding may be used in addition to high-frequency welding. Furthermore, the diversion site may be formed by spot welding (crimping) at a predetermined location.
[0031]
The overall shape of the medical heat exchange bag 5, the shape of the liquid flow path 3, the position where the supply port 1 and the discharge port 2 are formed are examples, and can be variously changed without departing from the gist of the present invention. Needless to say.
[0032]
【Example】
Table 1 is a table | surface which shows time until it breaks under the predetermined conditions of an Example and a comparative example. Hereinafter, based on the experimental value shown in this table | surface, this invention is demonstrated further more concretely by an Example. The examples illustrate the invention and are not intended to limit the invention.
[0033]
[Table 1]
Figure 0004169888
[0034]
The medical heat exchange bag used as an example has a R15 mm, a width of 2.5 mm, and a distal end R of 3.5 mm formed at a portion 10 mm from the corner in the liquid flow path (circular end surface of the bent portion). Shall have.
[0035]
Example 1
The air flow of 1 [Kg / cm 2 ] is applied to the liquid flow path, although it has the above-mentioned diversion site, but is not sterilized by steam. 56 minutes and 40 seconds, sample 3 was 45 minutes and 34 seconds, sample 4 was 47 minutes and 43 seconds, and sample 5 was 48 minutes and 30 seconds.
[0036]
Example 2
When the air flow of 1 [Kg / cm 2 ] is applied in the liquid flow path of the above-mentioned diversion site and steam-sterilized once, the time until bursting is 33 minutes 25 seconds for sample 1, and sample 2 is 43 minutes and 11 seconds, sample 3 was 51 minutes and 50 seconds, sample 4 was 43 minutes and 8 seconds, and sample 5 was 43 minutes and 53 seconds.
[0037]
Example 3
When the air pressure of 1 [Kg / cm 2 ] is applied to the liquid flow path of the above-mentioned diversion site and steam-sterilized twice, the time until bursting is 43 minutes 22 seconds for sample 1, and sample 2 is 37 minutes and 48 seconds, Sample 3 was 46 minutes and 47 seconds, Sample 4 was 38 minutes and 59 seconds, and Sample 5 was 47 minutes and 30 seconds.
[0038]
Example 4
When the air flow of 1 [Kg / cm 2 ] is applied in the liquid flow path of the above-mentioned diversion site and steam-sterilized three times, the time until bursting is 40 minutes 52 seconds for sample 1, and sample 2 is It was 39 minutes 46 seconds, sample 3 43 minutes 8 seconds, sample 4 36 minutes 30 seconds, and sample 5 39 minutes 00 seconds.
[0039]
On the other hand, the comparative example (comparative example 1 (non-steam sterilization), the comparative example 2 (single steam sterilization), the comparative example 3 (double steam sterilization), the comparative example 4 (three steam sterilization) which does not have a branch part. ), As in the examples, the air pressure of 1 [Kg / cm 2 ] was applied in the liquid flow path), and the rupture time of any sample was clearly shorter than in the examples. Therefore, it can be seen that the pressure resistance of the example is higher than that of the comparative example regardless of whether or not steam sterilization is performed.
[0040]
【The invention's effect】
According to the present invention, by reducing the load applied to the inside of the bent portion of the medical heat exchange bag, the bag is broken by the internal pressure when the liquid flows in the liquid channel, and the liquid is prevented from leaking to the outside. be able to.
In addition, according to the invention described in claim 5, it is possible to form the diversion site without increasing the number of manufacturing steps.
[Brief description of the drawings]
1A is a central longitudinal sectional view showing a medical heat exchange bag according to the present invention, and FIG. 1B is an explanatory diagram for explaining a load applied to an X portion in FIG. Sectional view showing a medical heat exchange bag taken along line II-II in FIG. 1 and upper and lower molds used for the crimping. [FIG. 3] (a) Center longitudinal section showing a conventional medical heat exchange bag Plan view, explanatory diagram for explaining the load applied to the Y part in (b) (a)
DESCRIPTION OF SYMBOLS 1, 101 ... Supply port 2, 102 ... Discharge port 3, 103 ... Liquid flow path 4, 4 '... PVC sheet 5 ... Branch part 5a, 5b ... Tip part 5c ... Body part 6, 106 ... Tube 7 ... Crimp part 8 ... Upper mold 9 ... Lower mold 10,100 ... Heat exchange bag for medical use

Claims (5)

液体を取り込む供給口と、
該供給口から取り込まれた液体を吐出する吐出口と、
前記供給口と吐出口とを屈曲しつつ連通する液体流路と、
を備えた医療用熱交換バッグにおいて、
前記液体流路の屈曲部に、当該液体流路内に流れる液体を屈曲部の形状に沿って分流させるための分流部位が形成されるとともに、当該液体流路は、対面させた複数のシートの所定部位を圧着させることにより形成されるものであって、前記分流部位の圧着力を他の圧着部の圧着力より弱く形成したものであることを特徴とする医療用熱交換バッグ。
A supply port for taking in liquid;
A discharge port for discharging the liquid taken in from the supply port;
A liquid flow path that communicates while bending the supply port and the discharge port;
In a medical heat exchange bag with
A diversion site for diverting the liquid flowing in the liquid flow channel along the shape of the bending portion is formed in the bent portion of the liquid flow channel, and the liquid flow channel is formed of a plurality of sheets facing each other. A medical heat exchange bag , which is formed by crimping a predetermined part, wherein the crimping force of the flow dividing part is weaker than the crimping force of other crimping parts .
前記分流部位の圧着後の厚さを他の圧着部の圧着後の厚さより厚く形成することにより、前記分流部位の圧着力を他の圧着部の圧着力より弱く形成したことを特徴とする請求項記載の医療用熱交換バッグ。The thickness after crimping of the shunt portion is formed thicker than the thickness after crimping of another crimping portion, so that the crimping force of the shunt portion is weaker than the crimping force of other crimping portions. Item 2. A medical heat exchange bag according to Item 1 . 前記分流部位は、前記屈曲部における液体流路を略二等分することを特徴とする請求項1又は請求項2記載の医療用熱交換バッグ。The medical heat exchange bag according to claim 1 or 2 , wherein the diversion site bisects the liquid flow path in the bent portion. 前記分流部位は、その先端が他の部位より液体の流れる方向に対する断面積が大きいことを特徴とする請求項1〜請求項3のいずれか1つに記載の医療用熱交換バッグ。The medical heat exchange bag according to any one of claims 1 to 3, wherein the branch portion has a larger cross-sectional area in the liquid flow direction at the tip thereof than in other portions. 対面させた複数のシートの所定部位を圧着させることにより、前記供給口、吐出口、及び液体流路を形成する医療用熱交換バッグの製造方法において、
前記シートの圧着時に、前記分流部位を形成することを特徴とする請求項1〜請求項のいずれか1つに記載の医療用熱交換バッグの製造方法。
In the manufacturing method of the medical heat exchange bag for forming the supply port, the discharge port, and the liquid flow path by press-bonding predetermined portions of the plurality of sheets facing each other,
The method for manufacturing a medical heat exchange bag according to any one of claims 1 to 4 , wherein the flow dividing portion is formed when the sheet is pressed.
JP30137499A 1999-10-22 1999-10-22 Medical heat exchange bag and manufacturing method thereof Expired - Fee Related JP4169888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30137499A JP4169888B2 (en) 1999-10-22 1999-10-22 Medical heat exchange bag and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30137499A JP4169888B2 (en) 1999-10-22 1999-10-22 Medical heat exchange bag and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001120658A JP2001120658A (en) 2001-05-08
JP4169888B2 true JP4169888B2 (en) 2008-10-22

Family

ID=17896114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30137499A Expired - Fee Related JP4169888B2 (en) 1999-10-22 1999-10-22 Medical heat exchange bag and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4169888B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484909B2 (en) * 2006-12-14 2014-05-07 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus for inhaling or manipulating liquids
PL3400975T3 (en) 2017-05-11 2021-04-06 Gambro Lundia Ab Container for fluids and apparatus for warming medical fluids
JP7236912B2 (en) * 2018-07-10 2023-03-10 旭化成メディカル株式会社 Heating panel manufacturing method, heating panel and channel holding device

Also Published As

Publication number Publication date
JP2001120658A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US9901704B2 (en) Multilumen catheters and method of manufacturing
CN103230310B (en) Thoracic aortic aneurysm coated stent and thoracic aortic aneurysm minimally invasive treatment system
JP5483377B2 (en) Vascular closure coil supply system
JP4084661B2 (en) Implantable device with polymeric detachment joint
US7678217B2 (en) Method for manufacturing an endovascular graft section
EP0365993B1 (en) Catheter equipped with expansible member and method of manufacturing the same
JP2003520634A (en) Catheter incorporating insert molded hub and method of manufacturing the same
JP6263622B2 (en) Medical balloon with patterned concave wall profile
CN105213076A (en) A kind of artificial tumor neck and preparation method thereof
CN104540465A (en) Intravascular catheter with a balloon comprising separate microporous regions
JP2016501638A (en) Distal catheter tip and its formation
CN105473093A (en) Flexible circuit having improved adhesion to a renal nerve modulation balloon
CN102368962A (en) Electrical contact for occlusive device delivery system
US4377897A (en) Ophthalmic needle and method for manufacturing the same
JP4169888B2 (en) Medical heat exchange bag and manufacturing method thereof
US20190059994A1 (en) Stent delivery system including anode-type electrical cautery tip
JP4429581B2 (en) Bag making method
JP4740150B2 (en) Medical wire
JPH02271873A (en) Catheter with expanding body and production thereof
CN110461403A (en) The manufacturing method of foley's tube and medical elongate body
US11439791B2 (en) Catheter and manufacturing method of catheter
JP7431007B2 (en) Balloon catheter and balloon manufacturing method
KR102005973B1 (en) Sealing apparatus and method of operating dress thereof
JP2008259695A (en) Guide wire port manufacturing method
US10850075B2 (en) Balloon catheter and manufacturing method of elongated member for balloon catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees