JP4169376B2 - Tissue cell pressure sensitivity tester - Google Patents

Tissue cell pressure sensitivity tester Download PDF

Info

Publication number
JP4169376B2
JP4169376B2 JP31154496A JP31154496A JP4169376B2 JP 4169376 B2 JP4169376 B2 JP 4169376B2 JP 31154496 A JP31154496 A JP 31154496A JP 31154496 A JP31154496 A JP 31154496A JP 4169376 B2 JP4169376 B2 JP 4169376B2
Authority
JP
Japan
Prior art keywords
culture chamber
pressure
volume
gas
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31154496A
Other languages
Japanese (ja)
Other versions
JPH10150977A (en
Inventor
淳也 江頭
敏雄 酒井
Original Assignee
株式会社美和製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社美和製作所 filed Critical 株式会社美和製作所
Priority to JP31154496A priority Critical patent/JP4169376B2/en
Publication of JPH10150977A publication Critical patent/JPH10150977A/en
Application granted granted Critical
Publication of JP4169376B2 publication Critical patent/JP4169376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、血管内皮細胞、平滑筋細胞などの組織細胞の圧力感受性試験に用いる生体組織の圧力感受性試験装置に関し、特に多様な圧力感受性試験を行えるようにした生体組織の圧力感受性試験装置に関するものである。
【0002】
【従来の技術】
近年、病理のメカニズムの解明や薬理効果を研究する上で、骨、臓器、神経、血管などの生体の組織細胞が周囲から受ける圧力を感知し、この圧力に対して種々の反応を示す圧力感受性を有することが注目され、この生体組織の圧力感受性を試験するために幾つかの試験装置が提案されている。
【0003】
初期においては、図3に示すように、直接に組織細胞101に重り102を載せることにより組織細胞101に圧力を加える装置が用いられたのであるが、この装置では組織細胞101に均一に圧力が作用せず、試験結果の信頼性に疑問が感じられている。
【0004】
そこで、図4に示すように、組織細胞をフラスコ201内に収容し、このフラスコ201を三方弁202を介して圧力計(水銀血圧計)203とヘリウムガスボンベ204及び圧力設定バルブ205とを並列に接続し、組織細胞に剪断応力や張力を作用させずに均等な圧力が作用するようにした組織細胞圧力感受性試験装置が用いられるようなっている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの従来の組織細胞圧力感受性試験装置では、大気圧よりも低圧の圧力に対する組織細胞の圧力感受性を試験することはできず、又、例えば血圧のように周期的な変動を伴う圧力に対する組織細胞圧力感受性を試験することもできない。
【0006】
本発明は、大気圧よりも低圧の圧力に対する組織細胞の圧力感受性試験や周期的に変動する圧力に対する組織細胞の圧力感受性試験など多様な圧力感受性試験を行えるようにした組織細胞圧力感受性試験装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、体組織からなる試料を収容して密封される容積不変の培養チャンバーと、この培養チャンバーに所定の導入圧で気体を導入する加圧手段と、前記培養チャンバーに開閉手段を介して接続された大気連通路と、前記培養チャンバーに接続され前記培養チャンバー内を減圧する真空ポンプと、を備え、前記加圧手段、前記大気連通通路、前記真空ポ ンプと培養チャンバーと接続状態を切り替え前記培養チャンバー内の圧力を変化させ、前記試料に加える圧力を変化させることを特徴とする。
【0008】
従って、本第1発明によれば、加圧手段により所定の導入圧で気体を導入することにより培養チャンバーの内圧を大気圧以上の所定の導入圧にすることができ、大気圧以上の圧力に対する組織細胞圧力感受性試験を行うことができる。
【0011】
又、本第1発明によれば、容積不変の培養チャンバーから気体を導出したり、真空ポンプで培養チャンバーの内圧を大気圧以下の所定の圧力にすることができ、大気圧以下の負圧に対する組織細胞圧力感受性試験が行える。
【0012】
又、本第1発明によれば、加圧機能と減圧機能との両方を備えるので、培養チャンバーの内圧を自由に変動させることができ、例えば加圧機能と減圧機能とを交互に周期的に作用させることにより、培養チャンバーの内圧を周期的に変動させ、周期的に変動する圧力に対する組織細胞圧力感受性を試験できるようになるのである。
【0014】
又、前記培養チャンバーが気体の容積が可変に形成され、前記培養チャンバーの気体の容積を縮小してその内圧を増大させる加圧手段と、前記培養チャンバーの気体の容積を拡大してその内圧を減少させる減圧手段とを備えるように構成できる。
【0015】
大気圧中で培養チャンバー内に試料を収容し、培養チャンバーを密閉した後、培養チャンバーの気体の容積を縮小することにより組織細胞の大気圧以上の圧力感受性を試験でき、又、培養チャンバーの気体の容積を拡大することにより組織細胞の大気圧以下の圧力感受性を試験できる。
【0016】
上記において、培養チャンバーにおいて気体の容積を可変とする具体的な構成としては、培養チャンバーをシリンダとこれの内部に摺動可能に、かつ、気密状に内嵌されたピストンとで構成したり、培養チャンバーの一部又は全部を弾性体で形成したりすればよい。培養チャンバーを弾性体で形成する場合には、無理無く大きく変形できるようにするために、培養チャンバーを蛇腹状に形成することが好ましい。
【0017】
又、上記において、培養チャンバーは、直接に培養チャンバーの一部を手で押し引きして拡縮してもよいが、容積拡大率及び/又は容積縮小率を正確に制御するために、加圧手段と減圧手段との少なくとも一方は機械的に培養チャンバーを拡縮する機械機構で構成することが好ましく、これら加圧手段と減圧手段とを機械機構で構成することが更に好ましい。
【0018】
これら加圧手段と減圧手段とは互いに独立して設けてもよいが、部品点数を削減すると共に構成を簡単にして、コストダウンを図るためには、例えばスライダクランク機構、クランク機構、カム機構、パンタグラフ機構のように往復動作する機構を用いて、加圧手段と減圧手段とを一体化することが有利である。又、これらの中では、培養チャンバーの内圧を多様に調整できるようにするために、培養チャンバーをクランクアームに連接するコネクチングロッドとクランクアームとの連接点の位置を調整することにより容積変化率を調整することができるスライダクランク機構又はクランク機構を用いることが推奨される。
【0019】
更に本第2発明に係る組織細胞圧力感受性試験装置は、上記第1発明の特徴に加え、前記培養チャンバーに気体の容積を可変にする空間が連通され、この空間の気体の容積を縮小して前記培養チャンバーの内圧を増大させる加圧手段と、この空間の気体の容積を拡大して前記培養チャンバーの内圧を減少させる減圧手段とを備えることを特徴とする。
【0020】
第2発明によれば、大気圧中で培養チャンバー内に試料を収容し、培養チャンバーを密閉した後、前記空間の気体の容積を縮小することにより培養チャンバーの内圧を大気圧よりも高めることができ、組織細胞の大気圧以上の圧力感受性を試験できる。又、前記空間の気体の容積を拡大することにより培養チャンバーの内圧を大気圧よりも下げることができ、組織細胞の大気圧以下の圧力感受性を試験できる。
【0021】
又、このように培養チャンバーの他にこれに連通する拡縮可能な空間を設け、この空間を拡縮することにより培養チャンバーの内圧を制御する場合には、空間を周期的に拡縮させても、この拡縮に伴う機械的振動が培養チャンバーに伝達され難いので、培養チャンバーが振動して試料にこの振動に対する圧力感受性を発現させることがほとんどなくなり、信頼性の高い試験を行うことができる。
【0022】
第2発明において、容積可変の空間は具体的には、シリンダとこれの内部に摺動可能に、かつ、気密状にピストンを内嵌し、このピストンによりシリンダ内に区画された空間で構成したり、一部又は全部を弾性体で形成した容器内の空間で構成したりすればよい。この空間を一部又は全部を弾性体で形成した容器内に形成する場合には、空間を無理無く大きく拡縮できるようにするために、弾性として蛇腹状に形成されたベローを用いることが好ましい。
【0023】
本第発明の加圧手段及び減圧手段についての詳細な説明は、前記の加圧手段及び減圧手段のそれと重複するので、紙幅を節約するためにここでは省略する。
【0024】
【発明の実施の形態】
以下、本発明の一実施の形態に係る組織細胞圧力感受性試験装置を図面に基づいて説明する。
【0025】
図1の構成図に示すように、この組織細胞圧力感受性試験装置は、容積不変の培養チャンバー1と、この培養チャンバー1に空気を所定の導入圧で培養チャンバーに導入する加圧空気導入路2と、この加圧空気導入路2を開閉する開閉弁3とを備え、又、図示しない圧力容器から加圧されたヘリウム(He)ガスを培養チャンバー1に導入する加圧ヘリウム導入路4と、この加圧ヘリウム導入路4を開閉する開閉弁5とを備えている。
【0026】
前記加圧空気導入路2及び加圧ヘリウム導入路4にはそれぞれニードルバルブからなる流量調整弁6、7を介在させてあり、これら流量調整弁6、7の下流側で加圧空気導入路2と加圧ヘリウム導入路4とを合流導入路8に合流させている。又、この合流導入路8には除菌フィルター9を介在させて培養チャンバー1内に雑菌が侵入することを防止している。
【0027】
前記培養チャンバー1には図示しない開口部とこれを開閉する蓋とが設けられ、この開口部から培養試料10を培養チャンバー1内に入れた後、この開口部が蓋で密閉される。
【0028】
又、前記培養チャンバー1には、大気中に連通させた大気連通路11が接続され、この大気連通路11にはニードルバルブからなる流量調整弁12と開閉弁13と、別の除菌フィルター9を介在させてある。
【0029】
更に、前記培養チャンバー1には、真空ポンプ14と、ベロー15とが並列に接続され、真空ポンプ14と培養チャンバー1とを接続する吸引路16にはニードルバルブからなる流量調整弁17と開閉弁18とを介在させてある。
【0030】
上記ベロー15の一端は固定設置された固定鏡板19で閉塞され、その他端を閉塞する可動鏡板20は加圧兼減圧手段21によって固定鏡板19に向かって進退するようにしている。
【0031】
この加圧兼減圧手段21は、モータ22と、モータ22によって回転駆動されるクランクアーム23と、このクランクアーム23にベロー15の可動鏡板19を連結するコネクチングロッド24とを備え、このコネクチングロッド24をクランクアーム23に連接する連接点25とクランクアーム23の回転軸心との距離を調節できるようにしてある。
【0032】
前記培養チャンバー1の下側にはヒーター26が設けられ、培養チャンバー1内の温度が所定の培養温度になるように、培養チャンバー1内に設けた温度センサ27の検出温度を参照して、このヒーター26の動作を調整する温度調整装置28が設けられる。
【0033】
又、前記培養チャンバー1の内圧は圧力モニター29を介して圧力制御部29に検出され、圧力制御部30は、培養チャンバー1の内圧が一定になるように開閉弁3、5を開閉制御するようにしてある。
【0034】
この組織細胞圧力感受性試験装置の培養チャンバー1内に試料10を収容して、培養チャンバー1を密閉した後、温度調整装置28によりヒーター26を作動させて培養チャンバー1内の温度を例えば0℃〜50℃の所定値に調整させてから、加圧空気導入路2の開閉弁3と大気連通路11の開閉弁13とを開弁することにより、培養チャンバー1内を空気でパージする。
【0035】
更にこの後、大気連通路11の開閉弁13を閉弁してから加圧空気導入路2の開閉弁3又は加圧ヘリウム導入路4の開閉弁5を開弁して培養チャンバー1内の圧力を所定の導入圧に保持し、所定時間経過後に大気連通路11の開閉弁13を開弁することにより、図2(A)に示すように、所定時間にわたり所定の圧力で培養試料10を加圧することができる(定圧加圧試験)。
【0036】
又、上述したように培養チャンバー1内を空気パージし、大気連通路11の開閉弁13を閉弁した後、加圧空気導入路2の開閉弁3又は加圧ヘリウム導入路4の開閉弁5を開弁して培養チャンバー1内の圧力を所定時間にわたり所定の導入圧に保持することと、大気連通路11の開閉弁13を所定時間にわたり開弁して培養チャンバー1の内圧を大気圧に減圧することとを交互に繰り返すことにより、図2(B)に示すように、培養チャンバー1の内圧を大気圧以上で矩形パルス状に変化させることができ、培養試料10を大気圧以上で矩形パルス状に変化する圧力で加圧することができる(矩形パルス加圧試験)。
【0037】
更に、培養チャンバー1内を空気パージし、大気連通路11の開閉弁13を閉弁した後、加圧空気導入路2の開閉弁3又は加圧ヘリウム導入路4の開閉弁5を開弁して培養チャンバー1内の圧力を所定の上限圧まで上昇させた後、加圧兼減圧手段21を作動させて前記ベロー15内の空間の拡縮を繰り返すことにより、図2(C)に示すように、培養チャンバー1の内圧を三角波形状に変化させて、培養試料10を大気圧以上で三角形パルス状に変化する圧力で加圧することができる(三角パルス加圧試験)。
【0038】
一方、上述したように培養チャンバー1内を空気パージし、大気連通路11の開閉弁13を閉弁した後、真空ポンプ14を所定時間にわたり作動させてから大気連通路11の開閉弁13を開弁することにより、図2(D)に示すように、所定の時間にわたり所定の負圧を培養試料10に印加することができる(定圧減圧試験)。
【0039】
又、この真空ポンプ14の作動と大気連通路11の開閉弁13の開弁を周期的に繰り返 ことにより、図2(E)に示すように、大気圧以下で矩形パルス状に変化させることができ、培養試料10に大気圧以下で矩形パルス状に変化する負圧を印加することができる(矩形パルス減圧試験)。
【0040】
更に、上述したように培養チャンバー1内を空気パージし、大気連通路11の開閉弁13を閉弁した後、真空ポンプ14を作動させて培養チャンバー1の内圧を所定の負圧に減圧した後、加圧兼減圧手段21を作動させて前記ベロー15内の空間の拡縮を繰り返すことにより、図2(F)に示すように、培養チャンバー1の内圧を三角波形状に変化させて、培養試料10を大気圧以下で三角形パルス状に変化する圧力で加圧することができる(三角パルス減圧試験)。
【0041】
このように、ベロー15内の空間の拡縮により培養チャンバー1の内圧を変化させる場合には、ベロー15の拡縮状態を調整することにより培養チャンバー1の内圧の上限が大気圧よりも高くすると共に、下限を大気圧よりも低くすることができ、培養チャンバー1の内圧を大気圧の上下にわたって交番的に変化させ、この交番的に変動する圧力に対する組織細胞の圧力感受性試験(交番変動圧試験)を行うことができる。
【0042】
即ち、例えば、培養チャンバー1内を空気パージし、ベロー15内の空間が最も小さくなるようにベロー15を縮小させた状態で、大気連通路11の開閉弁13を閉弁し、加圧空気導入路2の開閉弁3又は加圧ヘリウム導入路4の開閉弁5を開弁して培養チャンバー1内の圧力を所定の上限圧まで上昇させてからベロー15を拡大すると、図2(G)に示すように、培養チャンバー1の内圧を大気圧以下に減圧させることができ、ベロー15を連続して拡縮することにより培養チャンバー1内の圧力を大気圧よりも高圧の上限と大気圧よりも低圧の下限との間で三角波パルス状に変化させることができ、或いは、ベロー15を間欠的に拡縮することにより図2(H)に示すように、台形ないし矩形パルス状に変化させることができる。
【0043】
なお、上述の矩形パルス波加圧試験あるいは矩形パルス波減圧試験では、毎分10サイクル程度の圧力変化の試験に適用できるが、ベロー15の拡縮を利用する場合には、モータ19の回転数を制御することによりパルスの周波数を任意に変化させることができ、例えば毎分600回程度の非常に高サイクルの圧力変化の試験も行うことができる。
【0044】
又、前記培養チャンバー1にその内圧が一定以上になるときに培養チャンバー1を大気中に連通させる安全弁や、その内圧が一定以下の負圧になるときに培養チャンバー1を大気中に連通させる安全弁を設けてもよい。
【0045】
更に、前記ヒーター23と共に、又はこれに代えて冷却器を設け、培養チャンバー1内の培養試料10を室温よりも低温に冷却するようにしてもよい。
【0046】
更に、この実施例では、培養チャンバー1と別にベロー15を設け、この内部の空間を拡縮するようにしているが、例えば培養チャンバー1をシリンダとこれの内部に摺動可能に、かつ、気密状に内嵌されたピストンとで構成し、このピストンを加圧兼減圧手段21で駆動することにより、培養チャンバー1の容積を拡縮できるように構成してもよい。
【0047】
加えて、培養チャンバー1の内圧を変動させる形態は矩形波形や三角波形に限定されることはなく、例えばサイン曲線状や階段状に変化せけることも可能である。
【0048】
更に加えて、上記の実施例では加圧気体として空気とヘリウムとを用いているが、この他に二酸化炭素(CO)、酸素(O)、水素(H)などを加圧気体として用いることができる。
【0049】
【発明の効果】
以上に説明したように、本第1発明によれば、試料に一定圧を印加するこれまでの加圧試験に加えて、大気圧以上で変動する圧力を印加する矩形パルス加圧試験、三角パルス加圧試験などの圧力変動加圧試験や、大気圧以下の負圧を印加する減圧試験、大気圧以下で変動する負圧を印加する矩形パルス波減圧試験、三角形パルス波減圧試験などの圧力変動減圧試験や、大気圧よりも高圧と大気圧よりも低圧との間で変動する圧力を印加する交番変動圧試験など多様な試験が可能になる。従って、組織細胞の圧力感受性をより多様に試験することができ、病理のメカニズムの解明や薬理効果の研究の範囲を飛躍的に拡大することができる効果を奏する。
【0052】
加えて、本第発明によれば、培養チャンバーに気体の容積を可変にする空間が連通され、この空間の気体の容積を縮小して培養チャンバーの内圧を増大させる手段と、この空間の気体の容積を拡大して培養チャンバーの内圧を減少させる手段とを備えるので、試料を培養チャンバー内に封入した後、前記空間の気体の容積を拡縮することにより、培養チャンバーの内圧を増減させるサイクル時間を本第1発明の場合よりも短くすることができ、例えば毎分600回程度の高周波数で培養チャンバーの内圧を増減させることができ、病理のメカニズムの解明や薬理効果の研究の範囲を更に飛躍的に拡大することができる効果を奏する。
【0053】
特に、本第発明によれば、培養チャンバー及びこれに連通する空間の密封性を保持することが容易である上、培養チャンバーの振動などの問題が生じるおそれがなく、一層信頼性の高い試験を行うことができる効果が得られる。
【図面の簡単な説明】
【図1】 本発明の構成図である。
【図2】 本発明を用いる種々の感受性試験の培養チャンバー内圧波形図である。
【図3】 従来例の構成図である。
【図4】 他の従来例の構成図である。
【符号の説明】
1 培養チャンバー
2 加圧空気導入路
3 開閉弁
4 加圧ヘリウム導入路
5 開閉弁
8 合流導入路
10 培養試料
11 大気連通路
13 開閉弁
14 真空ポンプ
15 ベロー
16 吸引路
18 開閉弁
21 加圧兼減圧手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure sensitivity test apparatus for biological tissues used for pressure sensitivity tests of tissue cells such as vascular endothelial cells and smooth muscle cells, and more particularly to a pressure sensitivity test apparatus for biological tissues that can perform various pressure sensitivity tests. It is.
[0002]
[Prior art]
In recent years, in order to elucidate the mechanism of pathology and study pharmacological effects, it senses the pressure received by surrounding tissue cells of bones, organs, nerves, blood vessels, etc., and shows various responses to this pressure. In order to test the pressure sensitivity of this living tissue, several test devices have been proposed.
[0003]
In the initial stage, as shown in FIG. 3, a device for applying pressure to the tissue cell 101 by directly placing the weight 102 on the tissue cell 101 was used. In this device, the tissue cell 101 is uniformly pressurized. There is doubt about the reliability of the test results.
[0004]
Therefore, as shown in FIG. 4, tissue cells are accommodated in a flask 201, and a pressure gauge (mercury sphygmomanometer) 203, a helium gas cylinder 204, and a pressure setting valve 205 are placed in parallel in the flask 201 via a three-way valve 202. A tissue cell pressure sensitivity test apparatus is used which is connected so that a uniform pressure can be applied without applying shear stress or tension to tissue cells.
[0005]
[Problems to be solved by the invention]
However, these conventional tissue cell pressure sensitivity test devices cannot test the pressure sensitivity of tissue cells to pressures lower than atmospheric pressure, and are sensitive to pressures with periodic fluctuations such as blood pressure. Nor can tissue cell pressure sensitivity be tested.
[0006]
The present invention relates to a tissue cell pressure sensitivity test apparatus capable of performing various pressure sensitivity tests such as a pressure sensitivity test of tissue cells against a pressure lower than atmospheric pressure and a pressure sensitivity test of tissue cells against a periodically changing pressure. It is intended to provide.
[0007]
[Means for Solving the Problems]
The present invention includes a volume-changing culture chamber that contains and seals a sample of body tissue, a pressurizing unit that introduces a gas into the culture chamber at a predetermined introduction pressure, and an opening / closing unit that is connected to the culture chamber. with the atmosphere communication passage connected, and a vacuum pump for reducing the pressure of which is connected to the culture chamber said culture chamber, said pressurizing means, said atmosphere communicating passage, the connection between the vacuum pump and the culture chamber The pressure in the culture chamber is changed, and the pressure applied to the sample is changed.
[0008]
Therefore, according to the first aspect of the present invention, the gas can be introduced at a predetermined introduction pressure by the pressurizing means , so that the internal pressure of the culture chamber can be set to a predetermined introduction pressure of atmospheric pressure or higher. A tissue cell pressure sensitivity test can be performed.
[0011]
Further, according to the first aspect of the present invention, gas can be derived from the culture chamber whose volume does not change, or the internal pressure of the culture chamber can be set to a predetermined pressure of atmospheric pressure or less with a vacuum pump . Tissue cell pressure sensitivity test can be performed.
[0012]
Further, according to the first invention, since both the pressurizing function and the decompression function are provided, the internal pressure of the culture chamber can be freely changed. For example, the pressurization function and the decompression function are alternately and periodically. By acting, it is possible to periodically change the internal pressure of the culture chamber, and to test the sensitivity of the tissue cell pressure to the periodically changing pressure.
[0014]
In addition, the culture chamber has a gas volume variably formed, a pressurizing means for reducing the gas volume of the culture chamber to increase its internal pressure, and expanding the gas volume of the culture chamber to increase its internal pressure. It can comprise so that the pressure reduction means to reduce may be provided .
[0015]
After the sample is placed in the culture chamber at atmospheric pressure and the culture chamber is sealed, the pressure sensitivity of the tissue cells above atmospheric pressure can be tested by reducing the volume of the gas in the culture chamber. It is possible to test the pressure sensitivity of tissue cells below atmospheric pressure by enlarging the volume.
[0016]
In the above, as a specific configuration for making the gas volume variable in the culture chamber, the culture chamber is configured with a cylinder and a piston that is slidable inside the cylinder and is airtightly fitted therein, A part or all of the culture chamber may be formed of an elastic body. When the culture chamber is formed of an elastic body, it is preferable to form the culture chamber in a bellows shape so that it can be deformed greatly without difficulty.
[0017]
In the above, the culture chamber may be directly expanded / reduced by manually pushing and pulling a part of the culture chamber, but in order to accurately control the volume expansion rate and / or the volume reduction rate, the pressurizing means is used. At least one of the pressure reducing means and the pressure reducing means is preferably constituted by a mechanical mechanism that mechanically expands and contracts the culture chamber, and more preferably, the pressure means and the pressure reducing means are constituted by a mechanical mechanism.
[0018]
These pressurizing means and pressure reducing means may be provided independently of each other, but in order to reduce the number of parts, simplify the configuration, and reduce costs, for example, a slider crank mechanism, a crank mechanism, a cam mechanism, It is advantageous to integrate the pressurizing unit and the depressurizing unit using a mechanism that reciprocates like a pantograph mechanism. Among these, in order to be able to adjust the internal pressure of the culture chamber in various ways, the volume change rate can be adjusted by adjusting the position of the connecting contact between the connecting rod connecting the culture chamber to the crank arm and the crank arm. It is recommended to use a slider crank mechanism or crank mechanism that can be adjusted.
[0019]
Furthermore, in the tissue cell pressure sensitivity test apparatus according to the second invention , in addition to the feature of the first invention, a space for changing the volume of gas is communicated with the culture chamber, and the volume of gas in the space is reduced. A pressurizing means for increasing the internal pressure of the culture chamber and a decompression means for reducing the internal pressure of the culture chamber by expanding the volume of gas in the space.
[0020]
According to the second aspect of the present invention , after the sample is accommodated in the culture chamber at atmospheric pressure and the culture chamber is sealed, the internal pressure of the culture chamber is increased from the atmospheric pressure by reducing the volume of the gas in the space. It is possible to test the pressure sensitivity of tissue cells above atmospheric pressure. Further, by expanding the volume of the gas in the space, the internal pressure of the culture chamber can be lowered below atmospheric pressure, and the pressure sensitivity of tissue cells below atmospheric pressure can be tested.
[0021]
In addition, in this way, in addition to the culture chamber, a space that can be expanded and contracted is provided, and when the internal pressure of the culture chamber is controlled by expanding and contracting this space, even if the space is expanded and contracted periodically, Since mechanical vibration accompanying expansion and contraction is difficult to be transmitted to the culture chamber, the culture chamber is hardly vibrated to cause the sample to exhibit pressure sensitivity to the vibration, and a highly reliable test can be performed.
[0022]
In the second invention, in the space variable volume Specifically, slidably inside and this cylinder, and then fitted to the piston airtightly, composed space defined in the cylinder by the piston Or a part or all of the space in the container formed of an elastic body. In the case where this space is partially or entirely formed in a container formed of an elastic body , it is preferable to use a bellows formed as a bellows as an elastic body so that the space can be expanded and contracted without difficulty. .
[0023]
Detailed description of the pressurizing means and the pressure reducing means of the present second invention, since the overlap with that of the previous SL pressurization means and decompression means, is omitted here in order to save paper width.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a tissue cell pressure sensitivity test apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0025]
As shown in the block diagram of FIG. 1, the tissue cell pressure sensitivity test apparatus includes a culture chamber 1 that does not change volume, and a pressurized air introduction path 2 that introduces air into the culture chamber 1 at a predetermined introduction pressure. And an on-off valve 3 for opening and closing the pressurized air introduction path 2, and a pressurized helium introduction path 4 for introducing helium (He) gas pressurized from a pressure vessel (not shown) into the culture chamber 1, An open / close valve 5 for opening and closing the pressurized helium introduction path 4 is provided.
[0026]
The pressurized air introduction path 2 and the pressurized helium introduction path 4 are respectively provided with flow rate adjustment valves 6 and 7 each consisting of a needle valve, and the pressurized air introduction path 2 is provided downstream of the flow rate adjustment valves 6 and 7. And the pressurized helium introduction path 4 are merged with the merge introduction path 8. In addition, bacteria are prevented from entering the culture chamber 1 by interposing a sterilization filter 9 in the merging introduction path 8.
[0027]
The culture chamber 1 is provided with an opening (not shown) and a lid for opening and closing the culture chamber 1. After the culture sample 10 is put into the culture chamber 1 from the opening, the opening is sealed with the lid.
[0028]
The culture chamber 1 is connected to an atmosphere communication path 11 communicated with the atmosphere. The atmosphere communication path 11 is connected to a flow rate adjusting valve 12 and an on-off valve 13 including a needle valve, and another sterilization filter 9. Is interposed.
[0029]
Furthermore, a vacuum pump 14 and a bellows 15 are connected in parallel to the culture chamber 1, and a flow rate adjusting valve 17, which is a needle valve, and an open / close valve are connected to the suction path 16 connecting the vacuum pump 14 and the culture chamber 1. 18 is interposed.
[0030]
One end of the bellows 15 is closed by a fixed end plate 19 fixedly installed, and a movable end plate 20 that closes the other end is advanced and retracted toward the fixed end plate 19 by a pressurizing / depressurizing means 21.
[0031]
The pressurizing / depressurizing means 21 includes a motor 22, a crank arm 23 that is rotationally driven by the motor 22, and a connecting rod 24 that connects the movable end plate 19 of the bellows 15 to the crank arm 23. The distance between the connecting contact 25 connected to the crank arm 23 and the rotational axis of the crank arm 23 can be adjusted.
[0032]
A heater 26 is provided on the lower side of the culture chamber 1, referring to the temperature detected by the temperature sensor 27 provided in the culture chamber 1 so that the temperature in the culture chamber 1 becomes a predetermined culture temperature. A temperature adjusting device 28 for adjusting the operation of the heater 26 is provided.
[0033]
The internal pressure of the culture chamber 1 is detected by the pressure control unit 29 via the pressure monitor 29, and the pressure control unit 30 controls the open / close valves 3 and 5 so that the internal pressure of the culture chamber 1 becomes constant. It is.
[0034]
After the sample 10 is accommodated in the culture chamber 1 of this tissue cell pressure sensitivity test apparatus and the culture chamber 1 is sealed, the heater 26 is operated by the temperature adjustment device 28 to change the temperature in the culture chamber 1 to, for example, 0 ° C. After adjusting to a predetermined value of 50 ° C., the inside of the culture chamber 1 is purged with air by opening the opening / closing valve 3 of the pressurized air introduction path 2 and the opening / closing valve 13 of the atmosphere communication path 11.
[0035]
After that, the on-off valve 13 of the pressurized air introduction path 2 or the on-off valve 5 of the pressurized helium introduction path 4 is opened after closing the on-off valve 13 of the atmosphere communication path 11 to increase the pressure in the culture chamber 1. Is maintained at a predetermined introduction pressure, and the on-off valve 13 of the atmospheric communication passage 11 is opened after a predetermined time has elapsed, so that the culture sample 10 is applied at a predetermined pressure for a predetermined time as shown in FIG. Pressure (constant pressure test).
[0036]
Further, as described above, the inside of the culture chamber 1 is purged with air, and the open / close valve 13 of the atmospheric communication passage 11 is closed, and then the open / close valve 3 of the pressurized air introduction passage 2 or the open / close valve 5 of the pressurized helium introduction passage 4. To maintain the pressure in the culture chamber 1 at a predetermined introduction pressure for a predetermined time, and to open the on-off valve 13 of the atmosphere communication path 11 for a predetermined time to bring the internal pressure of the culture chamber 1 to atmospheric pressure. By alternately repeating the depressurization, as shown in FIG. 2 (B), the internal pressure of the culture chamber 1 can be changed to a rectangular pulse at atmospheric pressure or higher, and the culture sample 10 is rectangular at atmospheric pressure or higher. Pressurization can be performed at a pressure that changes in a pulse shape (rectangular pulse pressurization test).
[0037]
Further, the inside of the culture chamber 1 is purged with air, and the open / close valve 13 of the atmospheric air passage 11 is closed, and then the open / close valve 3 of the pressurized air introduction path 2 or the open / close valve 5 of the pressurized helium introduction path 4 is opened. After raising the pressure in the culture chamber 1 to a predetermined upper limit pressure, the pressurizing / depressurizing means 21 is operated to repeatedly expand and contract the space in the bellows 15, as shown in FIG. By changing the internal pressure of the culture chamber 1 to a triangular wave shape, the culture sample 10 can be pressurized with a pressure that changes in a triangular pulse shape above atmospheric pressure (triangular pulse pressure test).
[0038]
On the other hand, after purging the inside of the culture chamber 1 and closing the opening / closing valve 13 of the atmosphere communication path 11 as described above, the vacuum pump 14 is operated for a predetermined time and then the opening / closing valve 13 of the atmosphere communication path 11 is opened. By performing the valve operation, a predetermined negative pressure can be applied to the culture sample 10 for a predetermined time as shown in FIG.
[0039]
Furthermore, by to repeat the opening of the opening and closing valve 13 of the hydraulic and air communication passage 11 of the vacuum pump 14 periodically, as shown in FIG. 2 (E), is changed into a rectangular pulse form below atmospheric pressure The negative pressure which changes to a rectangular pulse shape below atmospheric pressure can be applied to the culture sample 10 (rectangular pulse decompression test).
[0040]
Furthermore, after purging the inside of the culture chamber 1 as described above and closing the open / close valve 13 of the air communication passage 11, the vacuum pump 14 is operated to reduce the internal pressure of the culture chamber 1 to a predetermined negative pressure. Then, by operating the pressurizing / depressurizing means 21 and repeatedly expanding and reducing the space in the bellows 15, the internal pressure of the culture chamber 1 is changed to a triangular wave shape as shown in FIG. Can be pressurized with a pressure that changes in a triangular pulse shape below atmospheric pressure (triangular pulse decompression test).
[0041]
Thus, when changing the internal pressure of the culture chamber 1 by expansion / contraction of the space in the bellows 15, the upper limit of the internal pressure of the culture chamber 1 is made higher than the atmospheric pressure by adjusting the expansion / contraction state of the bellows 15, The lower limit can be made lower than the atmospheric pressure, the internal pressure of the culture chamber 1 is changed alternately above and below the atmospheric pressure, and a pressure sensitivity test (alternating pressure fluctuation test) of tissue cells against this alternately changing pressure is performed. It can be carried out.
[0042]
That is, for example, the inside of the culture chamber 1 is purged with air, and the bellows 15 is reduced so that the space in the bellows 15 is minimized, and the on-off valve 13 of the atmosphere communication path 11 is closed to introduce pressurized air. When the opening / closing valve 3 of the passage 2 or the opening / closing valve 5 of the pressurized helium introduction passage 4 is opened to increase the pressure in the culture chamber 1 to a predetermined upper limit pressure and then the bellows 15 is enlarged, FIG. As shown, the internal pressure of the culture chamber 1 can be reduced to below atmospheric pressure, and the bellows 15 are continuously expanded and contracted to reduce the pressure in the culture chamber 1 to an upper limit higher than atmospheric pressure and lower than atmospheric pressure. Can be changed to a triangular pulse shape between the lower limit and the bellows 15 can be changed into a trapezoidal or rectangular pulse shape as shown in FIG.
[0043]
Note that the rectangular pulse wave pressurization test or the rectangular pulse wave decompression test described above can be applied to a pressure change test of about 10 cycles per minute. However, when the expansion / contraction of the bellows 15 is used, the rotation speed of the motor 19 is changed. By controlling the frequency of the pulse, it is possible to arbitrarily change the frequency of the pulse. For example, a very high cycle pressure change test of about 600 times per minute can be performed.
[0044]
In addition, a safety valve that allows the culture chamber 1 to communicate with the atmosphere when the internal pressure of the culture chamber 1 exceeds a certain level, or a safety valve that allows the culture chamber 1 to communicate with the atmosphere when the internal pressure reaches a certain level or less. May be provided.
[0045]
Furthermore, a cooler may be provided together with or in place of the heater 23 to cool the culture sample 10 in the culture chamber 1 to a temperature lower than room temperature.
[0046]
Furthermore, in this embodiment, a bellows 15 is provided separately from the culture chamber 1 so as to expand and contract the interior space. For example, the culture chamber 1 is slidable inside the cylinder and the inside thereof and is airtight. It is also possible to configure such that the volume of the culture chamber 1 can be expanded or contracted by driving the piston with the pressurizing / depressurizing means 21.
[0047]
In addition, the form of changing the internal pressure of the culture chamber 1 is not limited to a rectangular waveform or a triangular waveform, and can be changed to, for example, a sine curve shape or a step shape.
[0048]
In addition, in the above embodiment, air and helium are used as the pressurized gas, but in addition, carbon dioxide (CO 2 ), oxygen (O 2 ), hydrogen (H 2 ), etc. are used as the pressurized gas. Can be used.
[0049]
【The invention's effect】
As described above, according to the first invention, in addition to the conventional pressurization test in which a constant pressure is applied to the sample, a rectangular pulse pressurization test in which a pressure fluctuating above atmospheric pressure is applied, a triangular pulse Pressure fluctuation such as pressure fluctuation test such as pressure test, decompression test applying negative pressure below atmospheric pressure, rectangular pulse wave decompression test applying negative pressure fluctuating below atmospheric pressure, triangular pulse wave decompression test Various tests such as a decompression test and an alternating fluctuating pressure test in which a pressure varying between a pressure higher than atmospheric pressure and a pressure lower than atmospheric pressure is applied are possible. Therefore, the pressure sensitivity of tissue cells can be tested in various ways, and the effect of elucidating the pathological mechanism and studying the pharmacological effect can be greatly expanded.
[0052]
In addition, according to the second invention, the space for the volume of gas in the variable communicates with the culture chamber, and hand stage Ru increase the internal pressure of the culture chamber by reducing the volume of gas in this space, this space since expanding the volume of the gas and a means for Ru reduce the internal pressure of the culture chamber, after enclosing the sample into the culture chamber, Ri by to scaling the volume of gas in the space, the internal pressure of the culture chamber The cycle time for increasing / decreasing the flow rate can be made shorter than in the case of the first invention. For example, the internal pressure of the culture chamber can be increased / decreased at a high frequency of about 600 times per minute, elucidating the pathological mechanism and the pharmacological effect. There is an effect that the scope of research can be further expanded dramatically.
[0053]
In particular, according to the second invention, it is easy to maintain the sealing properties of the culture chamber and the space communicating therewith, and there is no risk of problems such as vibration of the culture chamber, and a more reliable test. The effect which can be performed is acquired.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of the present invention.
FIG. 2 is a culture chamber internal pressure waveform diagram of various susceptibility tests using the present invention.
FIG. 3 is a configuration diagram of a conventional example.
FIG. 4 is a configuration diagram of another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Culture chamber 2 Pressurized air introduction path 3 On-off valve 4 Pressurized helium introduction path 5 On-off valve 8 Confluence introduction path 10 Culture sample 11 Atmospheric communication path 13 On-off valve 14 Vacuum pump 15 Bellow 16 Suction path 18 On-off valve 21 Pressure reducing means

Claims (2)

生体組織からなる試料を収容して密封される容積不変の培養チャンバーと、この培養チャンバーに所定の導入圧で気体を導入する加圧手段と、前記培養チャンバーに開閉手段を介して接続された大気連通路と、前記培養チャンバーに接続され前記培養チャンバー内を減圧する真空ポンプと、を備え、前記加圧手段、前記大気連通通路、前記真空ポンプと培養チャンバーと接続状態を切り替え前記培養チャンバー内の圧力を変化させ、前記試料に加える圧力を変化させることを特徴とする組織細胞圧力感受性試験装置。A volume-invariant culture chamber that contains and seals a sample of living tissue, a pressurizing means for introducing a gas into the culture chamber at a predetermined introduction pressure, and an atmosphere connected to the culture chamber via an opening / closing means And a vacuum pump that is connected to the culture chamber and depressurizes the inside of the culture chamber, and switches each connection state between the pressurizing means, the air communication path, and the vacuum pump and the culture chamber. A tissue cell pressure sensitivity test apparatus characterized in that the pressure applied to the sample is changed by changing the internal pressure. 前記培養チャンバーに気体の容積が可変にする空間が連通され、この空間の気体の容積を縮小して前記培養チャンバーの内圧を増大させる加圧手段と、この空間の気体の容積を拡大して前記培養チャンバーの内圧を減少させる減圧手段とを備えることを特徴とする請求項1に記載の組織細胞圧力感受性試験装置。  A space for changing the volume of gas is communicated with the culture chamber, a pressurizing means for reducing the volume of gas in the space to increase the internal pressure of the culture chamber, and expanding the volume of gas in the space to increase the volume of the gas. The tissue cell pressure sensitivity test apparatus according to claim 1, further comprising a decompression unit that reduces the internal pressure of the culture chamber.
JP31154496A 1996-11-22 1996-11-22 Tissue cell pressure sensitivity tester Expired - Fee Related JP4169376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31154496A JP4169376B2 (en) 1996-11-22 1996-11-22 Tissue cell pressure sensitivity tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31154496A JP4169376B2 (en) 1996-11-22 1996-11-22 Tissue cell pressure sensitivity tester

Publications (2)

Publication Number Publication Date
JPH10150977A JPH10150977A (en) 1998-06-09
JP4169376B2 true JP4169376B2 (en) 2008-10-22

Family

ID=18018519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31154496A Expired - Fee Related JP4169376B2 (en) 1996-11-22 1996-11-22 Tissue cell pressure sensitivity tester

Country Status (1)

Country Link
JP (1) JP4169376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067176A (en) * 2009-09-28 2011-04-07 Saitama Univ Introduction of material into animal cell by utilizing pressure change
CN108130274B (en) * 2017-08-18 2024-01-23 上海健康医学院 Cell culture device and method under association effect of pressure and unidirectional strain
CN108823084A (en) * 2018-06-04 2018-11-16 武宣县东胜食用菌有限公司 A kind of spontaneous oxygenation circulating air device for culturing liquid strain and cultural method

Also Published As

Publication number Publication date
JPH10150977A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US8584538B2 (en) Fatigue testing system for prosthetic devices
US4178918A (en) Automatic blood pressure measuring and recording system
RU2005141753A (en) AIR VALVE, ELECTRONIC BLOOD PRESSURE METER AND AIR MASSAGER
WO2007072647A1 (en) Electronic blood pressure meter having blood pressure calculation system
JP4169376B2 (en) Tissue cell pressure sensitivity tester
US6730040B2 (en) 3-point radial artery pressure pulse wave transducer using pneumatic system
CN110013233A (en) Pulse condition analyser and its control method
US9596996B2 (en) Blood pressure measurement device, control method of electronic sphygmomanometer and control program of electronic sphygmomanometer
JPH024316A (en) Blood pressure measuring apparatus
US4167181A (en) Apparatus for automatically depressurizing a variable-volume inflatable enclosure
CN106980096B (en) Soft tissue simulator for magnetic resonance test and simulation test method
CN209003982U (en) A kind of novel internal diameter adjustable arm cartridge type electronic sphygmomanometer
CN107988073A (en) Split type digital control pressure adjustable high pressure cell culture apparatus and its regulation and control method
JP2002078687A (en) Pressure pulse wave measuring system for radial artery
CN108309256B (en) Pulse feeling device and pulse feeling instrument
EP1142531B1 (en) Portable automatic sphygmomanometer with monitoring and classification of the physical activity of a patient by means of fuzzy logics processing
JP3622539B2 (en) Blood pressure measurement device using piezoelectric diaphragm pump
CN109602408B (en) Finger blood pressure simulator, control method and detection method
CN210542379U (en) Feedback regulation type abdomen pressing device
CN208488690U (en) A kind of confined chamber of volume adjustable
JPH0277233A (en) Cuff pressure control method and apparatus in hemomanometer
GB2575945A (en) System for non-invasive blood pressure measurement
CN2703497Y (en) Blood-pressure measuring device
CN1692877A (en) Method for regulating pressure of band of hempiezometer, and said hemopiezometer
JP7097658B1 (en) Bathing transformer capsule

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees