JP4166560B2 - Avalanche photodiode and manufacturing method thereof - Google Patents

Avalanche photodiode and manufacturing method thereof Download PDF

Info

Publication number
JP4166560B2
JP4166560B2 JP2002365336A JP2002365336A JP4166560B2 JP 4166560 B2 JP4166560 B2 JP 4166560B2 JP 2002365336 A JP2002365336 A JP 2002365336A JP 2002365336 A JP2002365336 A JP 2002365336A JP 4166560 B2 JP4166560 B2 JP 4166560B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
type
electric field
avalanche photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002365336A
Other languages
Japanese (ja)
Other versions
JP2004200302A5 (en
JP2004200302A (en
Inventor
栄治 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002365336A priority Critical patent/JP4166560B2/en
Publication of JP2004200302A publication Critical patent/JP2004200302A/en
Publication of JP2004200302A5 publication Critical patent/JP2004200302A5/ja
Application granted granted Critical
Publication of JP4166560B2 publication Critical patent/JP4166560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信用のアバランシェフォトダイオード及びその製造方法に関し、特に低暗電流を実現するものである。
【0002】
【従来の技術】
従来のアバランシェフォトダイオードとして、メサ型pn接合フォトダイオードで問題となる表面リーク暗電流を低減し、低暗電流で信頼性の高い超格子アバランシェフォトダイオードを実現する技術が渡邊らによって開示されている(例えば、特許文献1参照)。さらに渡邊らは、Ti注入されたガードリングを有することにより、低い暗電流特性を実現でき、光レシーバ用として高速性と高信頼性を実現できる実用的なアバランシェフォトダイオードが得られることを述べている(例えば、非特許文献1参照)。
【0003】
【特許文献1】
特開平7−312442号公報(第3頁、第1図)
【非特許文献1】
JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.18.NO.12,DECEMBER 2000.(第2000頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、従来のアバランシェフォトダイオードは、受光領域周辺部でのエッジ・ブレークダウンを防ぐため、周辺部の電界緩和層のp導電型を補償してガードリングを形成しているので、トレンチを形成しTiイオン注入を行なわなければならず、エッチングストッパー層を設けることが必要であり、また、ガードリング部の光吸収層の電界強度が高くなるのでトンネル暗電流が大きくなるなどの問題点があった。
【0005】
本発明は、上記のような問題点を解決するためになされたものであり、簡便な構造で低い暗電流を有するアバランシェフォトダイオード及びその製造方法を得る事を目的としている。
【0006】
【課題を解決するための手段】
本発明に係るアバランシェフォトダイオードは、半導体基板上に、半導体層として少なくともアバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とを順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成したものである。
また、本発明に係るアバランシェフォトダイオードの製造方法は、半導体基板上に、半導体層として少なくともアバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とをエピタキシャル成長装置により順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成したものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1は、本発明の実施の形態1に係るアバランシェフォトダイオードの構造を示す断面図である。ここでは第1導電型としてn型、第2導電型としてp型を用いている。
【0008】
各半導体層の作製は、n型InP基板2上に、有機金属気相成長法(MO−CVD)や分子線エピタキシャル成長法(MBE)などを用いて実現できる。本実施の形態1は、以下の工程順で作製したものである。前記n型InP基板2上に、キャリア濃度1〜5×1018cm−3のn型InPバッファ層3を厚み0.1〜1μmに、i型AlInAsアバランシェ増倍層4を厚み0.1〜0.3μmに、キャリア濃度0.5〜1×1018cm−3のp型InP電界緩和層5を厚み0.03〜0.06μmに、キャリア濃度1〜5×1015cm−3のp型GaInAs光吸収層6を厚み1〜1.5μmに、キャリア濃度0.01〜1×1017cm−3のn型InP窓層7を厚み0.5〜1μmに、キャリア濃度1〜5×1018cm−3のp型GaInAsコンタクト層8を厚み0.1〜0.5μmに順次成長させた。
【0009】
次に、直径25μmの円形をくり貫いたSiOx膜をマスクとして、マスクのかかっていない円形部にp型導電領域11をZn選択熱拡散手法で形成する。続いて前記p型GaInAsコンタクト層8が、前記p型導電領域11上で幅5μmの同心円状にだけ残るようにエッチング除去される。このウェハにSiNx表面保護膜兼反射防止膜10を蒸着形成し、前記p型GaInAsコンタクト層8の上部にある前記SiNx表面保護膜兼反射防止膜10を取り除き、前記p型GaInAsコンタクト層8の上にp電極9をAuZnで形成する。最後に前記n型InP基板2において、n型InPバッファ層3が積層されている面と逆の面を研摩し、n電極1をAuGeNiで形成する。
【0010】
上記の工程で作製されたアバランシェフォトダイオードの動作を以下に説明する。n電極側が+、p電極側が−となるように外部から逆バイアス電圧を加えた状態で、前記p電極9側から前記p型導電領域11に検出しようとする光を入射させる。ここで、光通信波長帯である1.3μm帯あるいは1.5μm帯の近赤外領域の光を入射させると、光は前記p型GaInAs光吸収層6において吸収されて電子−ホール対を発生し、電子は前記n電極1側、ホールは前記p電極9側に移動する。逆バイアス電圧が充分に高い時、前記i型AlInAsアバランシェ増倍層4において電子はイオン化して新たな電子−ホール対を生成し、新たに生成された電子、ホールと共にさらなるイオン化を引き起こす事によって、電子、ホールが雪崩的に増倍するアバランシェ増倍が引き起こされる。
【0011】
次に、図1に示す本発明の構造における電界強度について説明する。図2は図1のA−A’断面における電界強度分布を表した図であり、図3は図1のB−B’断面及びC−C’断面における電界強度分布を表した図である。図2及び図3の横軸の符号は積層された半導体層を示している。図2に示すように、最も高電界となる部分は前記i型AlInAsアバランシェ増倍層4となる。さらに図3のB−B’断面における電界強度分布が示すように、その中でも前記p型導電領域11直下の受光領域中央部が最も高い領域となり、周辺部にゆく程電界強度は小さくなる。また図3のC−C’断面における電界強度分布が示すように、前記p型導電領域11の周辺部の電界強度は拡散領域の有限の曲率により中央部よりも高くなるが、図3のB−B’断面における電界強度分布と比較すると前記i型AlInAsアバランシェ増倍層4にかかる電界強度よりは低いため、エッジ・ブレークダウンとして知られる周辺部での電流を抑えることができ、アバランシェフォトダイオードとして働かせることができる。
【0012】
さらに、拡散領域周辺の電界強度が局所的に高い領域、すなわち図3のC−C’断面において前記p型導電領域11の周辺部で電界強度が高くなっている部分は、前記p型GaInAs光吸収層6よりもバンドギャップの大きな半導体層である前記n型InP窓層7と接合することにより、前記電界強度が高くなっている部分からのトンネル暗電流を抑制する事ができる。従って、図1に示した本発明の構造を有するアバランシェフォトダイオードは、エッジ・ブレークダウンを抑制するガードリングと呼ばれる構造をわざわざ作製せずに済み、簡便に低暗電流で高信頼性を有するアバランシェフォトダイオードを実現することができる。
【0013】
上記実施の形態1では、増倍層をAlInAsとしたものについて説明したが、InPに格子整合し電子のイオン化率がホールのイオン化率より大きい半導体であればよく、GaInAsPや、AlInAs/AlGaInAs超格子やAlInAs/GaInAsP超格子構造としてもよい。また、その他の層においても、InPに格子整合しておりバンドギャップの似通った半導体層であれば、GaInAsPやAlGaInAsなどにしてもよい。
【0014】
本実施の形態1は、Zn選択熱拡散手法によって前記p型導電領域11を形成した場合について説明したが、p導電型を付与する原子であればよい。また、本実施の形態1では、前記p電極9側から前記p型導電領域11に検出しようとする光を入射させる表面入射型構造について説明したが、逆に前記n型InP基板2側から光を入射させる裏面入射型構造であってもよく、実施の形態1と同様の効果がある。さらに、本実施の形態1は電子のイオン化率が高い増倍層について説明したが、ホールのイオン化率が高い増倍層であっても第1導電型をn型からp型、第2導電型をp型からn型に入れ替えることにより、実施の形態1と同様の効果がある。
【0015】
実施の形態2.
本実施の形態2は、実施の形態1と同様にアバランシェフォトダイオードを作製するが、p型導電領域11の作製手法だけが異なっており、以下に説明する。p型導電領域11は直径25μmの円形をくり貫いたフォト・レジスト膜をマスクとして、Beをイオン注入した後にフォト・レジスト膜を除去し、700℃で12時間熱アニーリング処理を行い形成される。
【0016】
図4は、p型導電領域11の作製手法の違いによる層接合部でのキャリア濃度分布を示した図である。横軸の符号は積層された半導体層を示しており、前記p型導電領域11と前記n型InP窓層7との層接続部におけるキャリア濃度分布が図示されている。図4中にZn拡散という名称で示された曲線は実施の形態1で述べたZn選択熱拡散手法により前記p型導電領域11を作製した場合のキャリア濃度分布であり、Be注入という名称で示された曲線は本実施の形態2で述べたBeイオン注入により前記p型導電領域11を作製した場合のキャリア濃度分布である。イオン注入して形成した前記p型導電領域11は、階段型接合を形成する選択熱拡散手法に比べ傾斜型接合に近くなるため、接合部での最高電界強度を低く抑えることができ、トンネル暗電流を抑制できるという効果がある。
【0017】
実施の形態3.
本実施の形態3は、実施の形態1と同様にアバランシェフォトダイオードを作製するが、p型導電領域11の作製手法だけが異なっており、以下に説明する。p型導電領域11は、直径25μmの円形をくり貫いたSiOx膜をマスクとして、p型導電領域11をZn選択熱拡散手法で形成した後に、拡散の供給源であるZn膜および前記SiOx膜を除去し、さらに再度熱拡散処理を行い前記p型導電領域11内部のZnを拡散させる。
【0018】
図4中にZn追加拡散という名称で示された曲線は本実施の形態3で述べた処理により前記p型導電領域11を作製した場合のキャリア濃度分布である。拡散の供給源であるZn膜を除去した状態で熱拡散処理し前記p型導電領域11を作製したことにより、実施の形態1で述べたZn選択熱拡散手法の場合と比較して、前記層接合部でのキャリア濃度の変化は傾斜型接合に近くなる。従って、前記層接合部での最高電界強度を低く抑えることができ、トンネル暗電流を抑制できるという効果がある。
【0019】
実施の形態4.
本実施の形態4は、実施の形態1で示した半導体成長時において、前記p型GaInAs光吸収層6と前記n型InP窓層7との間に、n型GaInAsP遷移層12を追加して積層する点が異なっている。実施の形態1で前記p型GaInAs光吸収層6を成長させたのに続き、キャリア濃度0.01〜1×1017cm−3の前記n型GaInAsP遷移層12を厚み0.01〜0.05μmに成長させた後、前記n型InP窓層7以降を成長させる。
【0020】
図5は伝導帯及び価電子帯の層接合部でのエネルギー分布を示している。横軸の符号は積層された半導体層を示しており、縦軸はエネルギーを示している。前記n型GaInAsP遷移層12の価電子帯エネルギーは、前記p型GaInAs光吸収層6よりも低く、前記n型InP窓層7よりも高い値であり、すなわち当該p型GaInAs光吸収層6と当該n型InP窓層7との間であるため、前記n型GaInAsP遷移層12を挟むことにより、前記p型GaInAs光吸収層6と前記n型InP窓層7が直接層接合されている実施の形態1の場合と比べて、前記価電子帯の不連続量は小さくなり、前記p型GaInAs光吸収層6より流れてくるホールが流れやすくなりヘテロ界面でのホールのパイル・アップを防ぐ事ができることとなり、より高速な光応答を実現できるという効果がある。
【0021】
上記実施の形態4では、前記n型GaInAsP遷移層12は単層とした場合について説明したが、階段状に段階的にバンドギャップを変化させた複数層としてもよく、これにより前記価電子帯の不連続量はより小さくなり、さらにホールが流れやすくなるので、さらなる高速な光応答を実現できる。また、図5において破線で示すように、連続的にバンドギャップを変化させた層としてもよい。
【0022】
【発明の効果】
以上のように、本発明によれば、半導体基板上に、半導体層として少なくともアバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とを順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成することにより、簡便に低暗電流で高信頼性を有するアバランシェフォトダイオード及びその製造方法を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係るアバランシェフォトダイオードの構造を示す断面図である。
【図2】 図1のA−A’断面における電界強度分布を表した図である。
【図3】 図1のB−B’断面及びC−C’断面における電界強度分布を表した図である。
【図4】 本発明の説明で、p型導電領域11の作製手法の違いによる層接合部でのキャリア濃度分布を示した図である。
【図5】 本発明の説明で、伝導帯及び価電子帯の層接合部でのエネルギー分布を示した図である。
【符号の説明】
1 n電極、2 n型InP基板、3 n型InPバッファ層、4 i型AlInAsアバランシェ増倍層、5 p型InP電界緩和層、6 p型GaInAs光吸収層、7 n型InP窓層、8 p型GaInAsコンタクト層、9p電極、10 SiNx表面保護膜兼反射防止膜、11 p型導電領域、12n型GaInAsP遷移層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an avalanche photodiode for optical communication and a method for manufacturing the same , and particularly to achieve a low dark current.
[0002]
[Prior art]
As a conventional avalanche photodiode, Watanabe et al. Discloses a technology for reducing a surface leakage dark current that is a problem in a mesa pn junction photodiode and realizing a highly reliable superlattice avalanche photodiode with a low dark current. (For example, refer to Patent Document 1). Furthermore, Watanabe et al. Stated that the use of a Ti-implanted guard ring can achieve a low dark current characteristic and a practical avalanche photodiode that can achieve high speed and high reliability for an optical receiver. (For example, refer nonpatent literature 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-312442 (page 3, FIG. 1)
[Non-Patent Document 1]
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.18.NO.12, DECEMBER 2000. (Page 2000, Fig. 1)
[0004]
[Problems to be solved by the invention]
However, in the conventional avalanche photodiode, in order to prevent edge breakdown at the periphery of the light receiving region, a guard ring is formed by compensating the p conductivity type of the electric field relaxation layer in the periphery, so that a trench is formed. Ti ion implantation must be performed, an etching stopper layer must be provided, and the electric field strength of the light absorption layer in the guard ring portion is increased, resulting in an increase in tunnel dark current. .
[0005]
The present invention has been made to solve the above-described problems, and an object thereof is to obtain an avalanche photodiode having a simple structure and a low dark current and a method for manufacturing the avalanche photodiode.
[0006]
[Means for Solving the Problems]
In the avalanche photodiode according to the present invention, at least an avalanche multiplication layer, a second conductivity type electric field relaxation layer, a light absorption layer, and a first conductivity type semiconductor window layer are sequentially stacked as a semiconductor layer on a semiconductor substrate. The second conductivity type electric field relaxation layer is formed on the entire surface between the avalanche multiplication layer and the light absorption layer, and the second conductivity type region is formed in the first conductivity type semiconductor window layer. is there.
The method for manufacturing an avalanche photodiode according to the present invention includes at least an avalanche multiplication layer as a semiconductor layer, a second conductivity type electric field relaxation layer, a light absorption layer, and a first conductivity type semiconductor window layer on a semiconductor substrate. Are sequentially stacked by an epitaxial growth apparatus, the second conductivity type electric field relaxation layer is formed on the entire surface between the avalanche multiplication layer and the light absorption layer, and the second conductivity type electric field relaxation layer is formed in the first conductivity type semiconductor window layer. A conductive type region is formed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a cross-sectional view showing the structure of an avalanche photodiode according to Embodiment 1 of the present invention. Here, n-type is used as the first conductivity type, and p-type is used as the second conductivity type.
[0008]
The production of each semiconductor layer can be realized on the n-type InP substrate 2 by using metal organic chemical vapor deposition (MO-CVD), molecular beam epitaxy (MBE), or the like. The first embodiment is manufactured in the following process order. On the n-type InP substrate 2, the n-type InP buffer layer 3 having a carrier concentration 1~5 × 10 18 cm -3 to a thickness 0.1 to 1 [mu] m, thickness 0.1 i-type AlInAs avalanche multiplication layer 4 The p-type InP electric field relaxation layer 5 having a carrier concentration of 0.5 to 1 × 10 18 cm −3 is formed to a thickness of 0.03 to 0.06 μm, and the carrier concentration is 1 to 5 × 10 15 cm −3 . - type GaInAs light-absorbing layer 6 to a thickness 1 to 1.5 [mu] m, n of the carrier concentration 0.01~1 × 10 17 cm -3 - -type InP window layer 7 in a thickness 0.5 to 1 [mu] m, carrier concentration 1 A 5 × 10 18 cm −3 p-type GaInAs contact layer 8 was sequentially grown to a thickness of 0.1 to 0.5 μm.
[0009]
Next, the p-type conductive region 11 is formed by a Zn selective thermal diffusion method in the circular portion where the mask is not applied, using the SiOx film that has been cut through a circle having a diameter of 25 μm as a mask. Subsequently, the p-type GaInAs contact layer 8 is removed by etching so as to remain only concentrically with a width of 5 μm on the p-type conductive region 11. A SiNx surface protection film / antireflection film 10 is formed on the wafer by vapor deposition, the SiNx surface protection film / antireflection film 10 on the p-type GaInAs contact layer 8 is removed, and the p-type GaInAs contact layer 8 is removed. A p-electrode 9 is formed of AuZn. Finally, the surface of the n-type InP substrate 2 opposite to the surface on which the n-type InP buffer layer 3 is laminated is polished, and the n-electrode 1 is formed of AuGeNi.
[0010]
The operation of the avalanche photodiode manufactured by the above process will be described below. In a state where a reverse bias voltage is applied from the outside so that the n electrode side is + and the p electrode side is −, light to be detected is incident on the p-type conductive region 11 from the p electrode 9 side. Here, when light in the near infrared region of the optical communication wavelength band of 1.3 μm band or 1.5 μm band is incident, the light is absorbed in the p -type GaInAs light absorption layer 6 to form an electron-hole pair. As a result, electrons move to the n electrode 1 side and holes move to the p electrode 9 side. When the reverse bias voltage is sufficiently high, electrons are ionized in the i-type AlInAs avalanche multiplication layer 4 to generate new electron-hole pairs, and by causing further ionization together with the newly generated electrons and holes, Avalanche multiplication, in which electrons and holes multiply like an avalanche, is caused.
[0011]
Next, the electric field strength in the structure of the present invention shown in FIG. 1 will be described. 2 is a diagram showing the electric field strength distribution in the AA ′ cross section of FIG. 1, and FIG. 3 is a diagram showing the electric field strength distribution in the BB ′ cross section and the CC ′ cross section of FIG. 2 and 3 indicate the stacked semiconductor layers. As shown in FIG. 2, the highest electric field is the i-type AlInAs avalanche multiplication layer 4. Further, as shown by the electric field intensity distribution in the BB ′ cross section of FIG. 3, the central portion of the light receiving region immediately below the p-type conductive region 11 is the highest region, and the electric field strength decreases toward the peripheral portion. Further, as shown by the electric field strength distribution in the CC ′ cross section of FIG. 3, the electric field strength in the peripheral portion of the p-type conductive region 11 is higher than that in the central portion due to the finite curvature of the diffusion region. Since it is lower than the electric field strength applied to the i-type AlInAs avalanche multiplication layer 4 as compared with the electric field strength distribution in the -B ′ cross section, it is possible to suppress the current in the peripheral portion known as edge breakdown, and an avalanche photodiode Can work as.
[0012]
Further, a region where the electric field strength around the diffusion region is locally high, that is, a portion where the electric field strength is high in the peripheral portion of the p-type conductive region 11 in the CC ′ cross section of FIG. 3 is the p -type GaInAs. By joining with the n type InP window layer 7, which is a semiconductor layer having a larger band gap than the light absorption layer 6, tunnel dark current from the portion where the electric field strength is high can be suppressed. Therefore, the avalanche photodiode having the structure of the present invention shown in FIG. 1 does not have to bother producing a structure called a guard ring that suppresses edge breakdown, and can easily and easily have low dark current and high reliability. A photodiode can be realized.
[0013]
In Embodiment 1 described above, the multiplication layer is made of AlInAs. However, any semiconductor that is lattice-matched to InP and whose electron ionization rate is larger than the hole ionization rate may be used. GaInAsP, AlInAs / AlGaInAs superlattices Or an AlInAs / GaInAsP superlattice structure. In other layers, a GaInAsP, AlGaInAs, or the like may be used as long as it is a semiconductor layer that is lattice-matched to InP and has a similar band gap.
[0014]
In the first embodiment, the case where the p-type conductive region 11 is formed by the Zn selective thermal diffusion method has been described, but any atom that imparts the p-type conductivity may be used. In the first embodiment, the front-illuminated structure in which light to be detected is incident on the p-type conductive region 11 from the p-electrode 9 side has been described. Conversely, the light is incident on the n-type InP substrate 2 side. The back-illuminated structure may be used, and the same effect as in the first embodiment is obtained. Further, the first embodiment has described the multiplication layer having a high electron ionization rate. However, even if the multiplication layer has a high hole ionization rate, the first conductivity type is changed from n-type to p-type, and the second conductivity type. By switching from p-type to n-type, the same effects as in the first embodiment can be obtained.
[0015]
Embodiment 2. FIG.
In the second embodiment, an avalanche photodiode is manufactured in the same manner as in the first embodiment, but only the manufacturing method of the p-type conductive region 11 is different, and will be described below. The p-type conductive region 11 is formed by ion-implanting Be after using a photo-resist film cut through a circle having a diameter of 25 μm as a mask, removing the photo-resist film, and performing a thermal annealing process at 700 ° C. for 12 hours.
[0016]
FIG. 4 is a diagram showing the carrier concentration distribution at the layer junction due to the difference in the manufacturing method of the p-type conductive region 11. The abscissa indicates the stacked semiconductor layers, and the carrier concentration distribution in the layer connection between the p-type conductive region 11 and the n -type InP window layer 7 is illustrated. The curve indicated by the name Zn diffusion in FIG. 4 is the carrier concentration distribution when the p-type conductive region 11 is produced by the Zn selective thermal diffusion method described in the first embodiment, and is indicated by the name Be implantation. The curve shown is the carrier concentration distribution when the p-type conductive region 11 is formed by Be ion implantation described in the second embodiment. The p-type conductive region 11 formed by ion implantation is closer to a tilted junction as compared with a selective thermal diffusion method for forming a step-type junction, so that the maximum electric field strength at the junction can be kept low. There is an effect that current can be suppressed.
[0017]
Embodiment 3 FIG.
In the third embodiment, an avalanche photodiode is manufactured as in the first embodiment, but only a method for manufacturing the p-type conductive region 11 is different, and will be described below. The p-type conductive region 11 is formed by forming a p-type conductive region 11 by a Zn selective thermal diffusion method using a SiOx film cut through a circle having a diameter of 25 μm as a mask, and then forming a Zn film serving as a diffusion source and the SiOx film. Then, the thermal diffusion process is performed again to diffuse Zn in the p-type conductive region 11.
[0018]
A curve indicated by the name of Zn additional diffusion in FIG. 4 is a carrier concentration distribution when the p-type conductive region 11 is formed by the process described in the third embodiment. Compared with the Zn selective thermal diffusion method described in the first embodiment, the p-type conductive region 11 is manufactured by performing thermal diffusion processing in the state where the Zn film as a diffusion source is removed. The change in the carrier concentration at the junction is close to that of the inclined junction. Therefore, the maximum electric field strength at the layer junction can be suppressed, and the tunnel dark current can be suppressed.
[0019]
Embodiment 4 FIG.
In the fourth embodiment, an n type GaInAsP transition layer 12 is provided between the p type GaInAs light absorbing layer 6 and the n type InP window layer 7 during the semiconductor growth shown in the first embodiment. The difference is that they are added and stacked. Following the growth of the p type GaInAs light absorbing layer 6 in the first embodiment, the n type GaInAsP transition layer 12 having a carrier concentration of 0.01 to 1 × 10 17 cm −3 is formed to a thickness of 0.01 to after growth to 0.05 .mu.m, the n - growing type InP window layer 7 or later.
[0020]
FIG. 5 shows the energy distribution at the layer junction in the conduction band and valence band. The abscissa indicates a stacked semiconductor layer, and the ordinate indicates energy. The valence band energy of the n type GaInAsP transition layer 12 is lower than that of the p type GaInAs light absorption layer 6 and higher than that of the n type InP window layer 7, that is, the p type GaInAs light. Since it is between the absorption layer 6 and the n type InP window layer 7, the p type GaInAs light absorption layer 6 and the n type InP window layer 7 are sandwiched between the n type GaInAsP transition layer 12. Compared with the case of the first embodiment in which the layers are directly layer-bonded, the discontinuous amount of the valence band is reduced, and the holes flowing from the p -type GaInAs light absorption layer 6 flow more easily. It is possible to prevent pile-up of the hole, and it is possible to realize a faster optical response.
[0021]
In the fourth embodiment, the case where the n -type GaInAsP transition layer 12 is a single layer has been described. However, a plurality of layers in which the band gap is changed stepwise may be used. Since the amount of discontinuity becomes smaller and holes more easily flow, an even faster optical response can be realized. Further, as shown by a broken line in FIG. 5, a layer in which the band gap is continuously changed may be used.
[0022]
【The invention's effect】
As described above, according to the present invention, on the semiconductor substrate, at least the avalanche multiplication layer, the second conductivity type electric field relaxation layer, the light absorption layer, and the first conductivity type semiconductor window layer are sequentially formed as the semiconductor layers. The second conductivity type electric field relaxation layer is formed on the entire surface between the avalanche multiplication layer and the light absorption layer, and the second conductivity type region is formed in the first conductivity type semiconductor window layer. Thus, an avalanche photodiode having a low dark current and high reliability and a method for manufacturing the same can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of an avalanche photodiode according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an electric field intensity distribution in the AA ′ cross section of FIG.
3 is a diagram showing an electric field strength distribution in a BB ′ section and a CC ′ section in FIG. 1. FIG.
FIG. 4 is a diagram illustrating carrier concentration distribution at a layer junction due to a difference in manufacturing method of the p-type conductive region 11 in the description of the present invention.
FIG. 5 is a diagram showing energy distribution at the layer junction of the conduction band and the valence band in the description of the present invention.
[Explanation of symbols]
1 n electrode, 2 n-type InP substrate, 3 n-type InP buffer layer, 4 i-type AlInAs avalanche multiplication layer, 5 p-type InP field relaxation layer, 6 p - -type GaInAs light-absorbing layer, 7 n - -type InP window layer 8 p-type GaInAs contact layer, 9p electrode, 10 SiNx surface protective film and antireflection film, 11 p-type conductive region, 12n - type GaInAsP transition layer.

Claims (6)

半導体基板上に、半導体層として少なくともアバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とを順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成したことを特徴とするアバランシェフォトダイオード。On the semiconductor substrate, at least an avalanche multiplication layer, a second conductivity type electric field relaxation layer, a light absorption layer, and a first conductivity type semiconductor window layer are sequentially laminated as semiconductor layers, and the avalanche multiplication layer and the light are laminated. An avalanche photodiode , wherein the second conductivity type electric field relaxation layer is formed on the entire surface between the absorption layer and a second conductivity type region is formed in the first conductivity type semiconductor window layer. 半導体基板上に、半導体層として少なくとも第1導電型バッファ層と、アバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とを順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成したことを特徴とするアバランシェフォトダイオード。On the semiconductor substrate, at least a first conductivity type buffer layer, an avalanche multiplication layer, a second conductivity type electric field relaxation layer, a light absorption layer, and a first conductivity type semiconductor window layer are sequentially laminated as a semiconductor layer, The second conductivity type electric field relaxation layer is formed on the entire surface between the avalanche multiplication layer and the light absorption layer, and a second conductivity type region is formed in the first conductivity type semiconductor window layer. An avalanche photodiode. 請求項1または2に記載のアバランシェフォトダイオードにおいて、
前記第2導電型電界緩和層は、InPに格子整合しており、前記InPのバンドギャップに相当するバンドギャップを有する半導体層であることを特徴とするアバランシェフォトダイオード。
The avalanche photodiode according to claim 1 or 2,
The avalanche photodiode, wherein the second conductivity type electric field relaxation layer is a semiconductor layer that is lattice-matched to InP and has a band gap corresponding to the band gap of InP.
半導体基板上に、半導体層として少なくともアバランシェ増倍層と、第2導電型電界緩和層と、光吸収層と、第1導電型半導体窓層とをエピタキシャル成長装置により順に積層し、前記アバランシェ増倍層と前記光吸収層との間の全面に前記第2導電型電界緩和層を形成し、前記第1導電型半導体窓層の中に第2導電型領域を形成したことを特徴とするアバランシェフォトダイオードの製造方法。On the semiconductor substrate, at least an avalanche multiplication layer as a semiconductor layer, a second conductivity type electric field relaxation layer, a light absorption layer, and a first conductivity type semiconductor window layer are sequentially laminated by an epitaxial growth apparatus, and the avalanche multiplication layer is formed. The avalanche photodiode is characterized in that the second conductivity type electric field relaxation layer is formed on the entire surface between the first and second light absorption layers, and a second conductivity type region is formed in the first conductivity type semiconductor window layer. Manufacturing method. 請求項4に記載のアバランシェフォトダイオードの製造方法において、
前記第2導電型領域は、前記第1導電型半導体窓層の中に選択熱拡散手法により形成したことを特徴とするアバランシェフォトダイオードの製造方法。
In the manufacturing method of the avalanche photodiode according to claim 4,
The method of manufacturing an avalanche photodiode, wherein the second conductivity type region is formed in the first conductivity type semiconductor window layer by a selective thermal diffusion method.
請求項4に記載のアバランシェフォトダイオードの製造方法において、
前記第2導電型領域は、前記第1導電型半導体窓層の中に選択熱拡散手法により形成した後に、拡散の供給源を除去し、さらに再度熱拡散処理を行うことにより形成したことを特徴とするアバランシェフォトダイオードの製造方法。
In the manufacturing method of the avalanche photodiode according to claim 4,
The second conductivity type region is formed in the first conductivity type semiconductor window layer by a selective thermal diffusion method, then removing a diffusion supply source, and further performing a thermal diffusion process again. A manufacturing method of an avalanche photodiode.
JP2002365336A 2002-12-17 2002-12-17 Avalanche photodiode and manufacturing method thereof Expired - Lifetime JP4166560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365336A JP4166560B2 (en) 2002-12-17 2002-12-17 Avalanche photodiode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365336A JP4166560B2 (en) 2002-12-17 2002-12-17 Avalanche photodiode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004200302A JP2004200302A (en) 2004-07-15
JP2004200302A5 JP2004200302A5 (en) 2005-08-25
JP4166560B2 true JP4166560B2 (en) 2008-10-15

Family

ID=32762917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365336A Expired - Lifetime JP4166560B2 (en) 2002-12-17 2002-12-17 Avalanche photodiode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4166560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11862747B2 (en) 2019-04-05 2024-01-02 Mitsubishi Electric Corporation Semiconductor light-receiving element and method of manufacturing semiconductor light-receiving element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640703B2 (en) 2004-10-25 2017-05-02 Mitsubishi Electric Corporation Avalanche photodiode
US20080191240A1 (en) * 2005-05-18 2008-08-14 Mitsubishi Electric Corporation Avalanche Photo Diode
JP4956944B2 (en) 2005-09-12 2012-06-20 三菱電機株式会社 Avalanche photodiode
JP4985298B2 (en) * 2007-10-10 2012-07-25 三菱電機株式会社 Avalanche photodiode
JP2010135360A (en) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp Avalanche photodiode
JP2022064479A (en) * 2020-10-14 2022-04-26 浜松ホトニクス株式会社 Light sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11862747B2 (en) 2019-04-05 2024-01-02 Mitsubishi Electric Corporation Semiconductor light-receiving element and method of manufacturing semiconductor light-receiving element

Also Published As

Publication number Publication date
JP2004200302A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4609430B2 (en) Avalanche photodiode
JP4220688B2 (en) Avalanche photodiode
JP4234116B2 (en) Avalanche photodiode
JP2762939B2 (en) Superlattice avalanche photodiode
JP6036197B2 (en) Manufacturing method of avalanche photodiode
US8659053B2 (en) Semiconductor light detecting element
US20100133637A1 (en) Avalanche photodiode
JP7024918B1 (en) Avalanche photodiode
JP2013236012A (en) Avalanche photodiode and method for manufacturing the same
JP2006040919A (en) Avalanche photodiode
JP2009252769A (en) Semiconductor light-receiving element
US10079324B2 (en) Semiconductor light-receiving device
US20110303949A1 (en) Semiconductor light-receiving element
JP4166560B2 (en) Avalanche photodiode and manufacturing method thereof
WO2018189898A1 (en) Semiconductor light-receiving element
JP4985298B2 (en) Avalanche photodiode
KR100509355B1 (en) Photo-diode and method for fabricating the same
JP2009004812A (en) Avalanche photo-diode
US10658538B2 (en) Optical detection device
TWI731630B (en) Semiconductor light-receiving element and method for manufacturing semiconductor light-receiving element
CN101232057B (en) Avalanche photodiode
JP5303793B2 (en) Photodiode
JP2008047580A (en) Semiconductor light receiving element
JP2991555B2 (en) Semiconductor light receiving element
JP2008016535A (en) Surface-incident light receiving element and light-receiving module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4166560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term