JP4165629B2 - Power measuring device for measuring the received signal power and the received interference power - Google Patents

Power measuring device for measuring the received signal power and the received interference power Download PDF

Info

Publication number
JP4165629B2
JP4165629B2 JP2000125312A JP2000125312A JP4165629B2 JP 4165629 B2 JP4165629 B2 JP 4165629B2 JP 2000125312 A JP2000125312 A JP 2000125312A JP 2000125312 A JP2000125312 A JP 2000125312A JP 4165629 B2 JP4165629 B2 JP 4165629B2
Authority
JP
Japan
Prior art keywords
power
signal
means
received
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2000125312A
Other languages
Japanese (ja)
Other versions
JP2001313588A (en
Inventor
友直 湯沢
Original Assignee
モトローラ・インコーポレイテッドMotorola Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モトローラ・インコーポレイテッドMotorola Incorporated filed Critical モトローラ・インコーポレイテッドMotorola Incorporated
Priority to JP2000125312A priority Critical patent/JP4165629B2/en
Publication of JP2001313588A publication Critical patent/JP2001313588A/en
Application granted granted Critical
Publication of JP4165629B2 publication Critical patent/JP4165629B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本願発明は、符号分割多元接続(CDMA)通信装置に関し、さらに詳しくは受信電力中の信号電力および雑音干渉電力を求める電力測定装置に関する。 The present invention relates to code division multiple access (CDMA) communication system, and more particularly, to a power measuring device for determining the signal power and noise interference power in the received power.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
近年CDMA通信を利用するデジタル無線電話システムが急速に普及している。 Digital wireless telephone system that utilizes the recent CDMA communication are rapidly spreading. CDMA通信では、信号送信時に特定の拡散符号と呼ばれる擬似乱数列、例えばPN符号を用いて、送信信号を1シンボル毎に乗算(拡散)し、受信時に送信時の拡散符号と同じ符号を用いて元の信号に変換する逆拡散処理を行う。 In CDMA communications, the pseudo random number sequence is called a specific spreading code during signal transmission, for example using a PN code, multiplied by the transmission signal for each symbol (diffusion), using the same reference numerals and the transmission time of the spread code at the reception It performs despreading processing of converting the original signal. 送受信時にこのような変換処理を施すことにより、同一の符号で拡散/逆拡散を行う送受信間のみで通信が成立する。 By performing such conversion processing upon reception, transmission and reception only between the communication is established to perform the spreading / despreading with the same reference numerals. 送信時に拡散処理を行うため、例えば、1シンボルを128チップ(ビット)で拡散すると、通信帯域幅は極めて広くなるが、拡散および逆拡散符号の一致した基地局と移動局のみに通信回線が設定されるので、その通信帯域に収容できる回線数は飛躍的に増大する。 To perform the diffusion process at the time of transmission, for example, when dispersed one symbol at 128-chip (bit), the communication bandwidth is very wide, spreading and despreading code matching the base station and the communication line only to the mobile station of the set since the number of lines that can be accommodated in the communication band is greatly increased.
【0003】 [0003]
CDMA通信方式では、同一搬送波上に多数の回線が設定され、各回線は上述した拡散符号の相違のみで識別される。 In a CDMA communication system, a large number of lines are set on the same carrier, each line is identified only by the difference of spread codes described above. しかしながら、同一セル内では同じ搬送周波数が使用されるので、拡散符号が異なっていても回線同士では相互干渉として影響を及ぼす。 However, since in the same cell the same carrier frequency is used, influences as mutual interference is also line between have different spreading codes. 各移動局からの送信電力が同一であるとすると、基地局近傍において、基地局に近い移動局からの送信電波の強度は遠くにある移動局のそれと比べると強い。 When the transmission power from each mobile station is the same, the base station near the strength of the radio wave transmitted from a mobile station near the base station as compared with that of the mobile station in the distance strong. この結果、基地局から遠い移動局は基地局から近い移動局の送信電波により干渉を受け正常に信号を受信することが困難になる。 As a result, distant mobile station from the base station becomes difficult to receive the signal correctly receive the interference by the transmission waves of a mobile station near the base station. そこで、一般に移動局は、基地局との距離が近くなるに従い送信電力の強度を弱める制御を行う。 Therefore, in general the mobile station performs a control to weaken the strength of the transmission power as the distance is closer to the base station.
【0004】 [0004]
図1は、上述した送信電力を制御する従来技術の一例を示す移動機10の概略ブロック図である。 Figure 1 is a schematic block diagram of the mobile device 10 showing an example of a conventional technique for controlling the transmission power as described above. 基地局と移動局との間の通信チャネルにはパイロット・チャネル、シンク・シャネル、トラフィック・チャネル等の様々なチャネルが用意され、これらのチャネルを介して両局間における制御信号、音声信号などの信号が伝送される。 The pilot channel for communication channel between a base station and a mobile station, sync Chanel, various channels such as traffic channels are provided, the control signals between the two stations through these channels, such as audio signals signal is transmitted. 移動局の電力制御のために、基地局は基地局の送信電力の強度を移動局に送信し、移動局は受信した信号強度を観測し、送信電力と受信電力との差から送信信号が回線上でどの程度減衰したかを求める。 For power control of the mobile station, the base station transmits the strength of the transmission power of the base station to the mobile station, the mobile station observes the received signal strength, the transmission signal from the difference between the transmission power and the reception power times seek how much attenuation on the line. 一般に、送信信号の減衰は基地局と移動局との距離に比例していると推定され、その減衰の程度を求めることにより、移動局の送信信号の強度を制御することが可能となる。 In general, the attenuation of the transmitted signal is estimated to be proportional to the distance between the base station and the mobile station, by obtaining the degree of damping, it is possible to control the intensity of the transmission signal of the mobile station. 換言すれば、移動局は、受信端における受信信号の電力を測定することにより基地局と移動局との距離を推定する。 In other words, the mobile station estimates the distance between the base station and the mobile station by measuring the power of the received signal at the receiving end. その推定された距離に基づき、移動局の送信電力を決定する。 Based on the estimated distance, to determine the transmission power of the mobile station. 本明細書では、基地局から送られる上記パイロット・チャネルが同じシンボル符号を繰り返し送信しているので、パイロット・チャネル上のシンボル符号の電力を測定する。 In the present specification, the pilot channel sent from the base station is transmitting repeatedly the same symbol code, measures the power of the symbol codes over a pilot channel.
【0005】 [0005]
図1は従来の信号電力の測定装置10を示す。 Figure 1 shows a measuring device 10 of the conventional signal power. 基地局から伝送された送信信号は、アンテナ11を介して受信回路12に送られる。 Transmission signal transmitted from the base station is sent to the receiving circuit 12 via the antenna 11. 受信回路12は、周波数変換を行った後にベースバンドの受信信号を抽出し、自動利得制御回路13へ送る。 Receiving circuit 12 extracts the received baseband signal after the frequency conversion, sent to the automatic gain control circuit 13. 自動利得制御回路13は、受信信号の強度を一定に保つため、回路13の入力信号の包絡線を抽出し、その包絡線の変化に応じて回路13の利得を制御する。 Automatic gain control circuit 13, in order to maintain the strength of the received signal constant, to extract the envelope of the input signal of the circuit 13, controls the gain of the circuit 13 in response to a change in its envelope. 即ち、回路13の出力信号14は、A/D変換器15に与えられるとともに、検波回路16に与えられ、そこで出力信号14の包絡線を検出する。 That is, the output signal 14 of the circuit 13, together with the applied to the A / D converter 15 is given to the detection circuit 16, where it detects the envelope of the output signal 14. 検波回路16の出力17は、ループ利得を与える増幅回路18に送られるとともに、出力17をデジタルに変換するA/D変換器19に入力される。 The output 17 of the detection circuit 16 are directed to the amplifier circuit 18 to provide a loop gain, is input to the A / D converter 19 for converting the output 17 to the digital. 後述するように、出力17は、現在受信しているチャネルの全受信電力P1に相当する。 As described later, the output 17 corresponds to the total received power P1 of the channel currently being received. 増幅回路18に与えられた出力17は、増幅された後、制御信号として自動利得制御回路13の利得を与える。 Output 17 provided to the amplifying circuit 18 is amplified, giving the gain of the automatic gain control circuit 13 as a control signal.
【0006】 [0006]
A/D変換器15は、出力信号14をデジタルに変換し、その信号列は基地局における拡散処理後の信号列に対応する。 A / D converter 15 converts the output signal 14 into a digital, the signal sequence corresponding to the signal sequence after the spreading processing in the base station. そこでその信号列は乗算回路20において基地局で用いられたのと同じ符号列である逆拡散符号21と乗算することにより、逆拡散処理が行われる。 Therefore the signal sequence by multiplying a despreading code 21 is the same code sequence as that used in the base station in the multiplier circuit 20, despreading processing is performed. 乗算回路20の出力は、復調回路22において、各シンボル毎に積分され、基地局から送信された信号P 0が再現される。 The output of the multiplier circuit 20, the demodulation circuit 22 is integrated for each symbol, it is reproduced signal P 0 transmitted from the base station.
【0007】 [0007]
次に、受信信号の電力とその信号に含まれる雑音について検討する。 Next, consider the noise contained in the power and the signal of the received signal. 図2は、受信回路12からの出力信号に含まれる信号電力Sc、雑音電力Ncおよび干渉電力Icの構成をそれぞれ表わす。 Figure 2 represents signal power Sc contained in the output signal from the receiving circuit 12, the noise power Nc and interference power Ic the structure, respectively. 受信回路12からの出力信号は、逆拡散処理前であるので、送信局での拡散処理におけるチップ・レートに相当する帯域幅fcを有している。 The output signal from the receiving circuit 12 are the pre-despreading processing, and has a bandwidth fc corresponding to the chip rate in the diffusion process in the transmitting station. 信号電力Scは所望の信号が有する電力であり、雑音電力Ncは雑音電力で受信回路12において発生した雑音が支配的である。 Signal power Sc is the power with the desired signal, the noise power Nc is the noise generated in the receiver circuit 12 in the noise power is dominant. また、干渉電力Icは、CDMA通信特有の雑音で、異なる拡散符号によって生成された送信信号によって引き起こされる雑音である。 Further, interference power Ic is a CDMA communication specific noise is the noise caused by the transmission signal generated by the different spreading codes. これら信号電力Sc、雑音電力Ncおよび干渉電力Icからなる入力信号を逆拡散符号で逆拡散および積分処理した後の各電力の配分は、図3に示すとおりとなる。 These signal power Sc, the noise power Nc and the distribution of power after an input signal consisting of the interference power Ic despreading and integration process in the despreading code is as shown in FIG. つまり、帯域幅はシンボル・レートに相当する幅fsに狭まり、信号電力Ss、雑音電力Nsおよび干渉電力Isからなる。 That is, the bandwidth is narrowed in width fs corresponding to the symbol rate, signal power Ss, consisting noise power Ns and interference power Is. 干渉を別途キャンセルしなかぎり逆拡散符号との相関関係によって発生した干渉電力Isと雑音電力Nsを識別することができないので、干渉電力Isと雑音電力NsはまとめてNIsとして識別される。 It is impossible to identify the interference power Is and noise power Ns generated by the correlation of the interference separately cancellation Shinano unless despreading code, interference power Is and noise power Ns is identified as NIs collectively. 従って、逆拡散後の信号(Ss+NIs)から信号電力(Ss)と雑音電力(NIs)とを求め、その比をA/D変換器19の出力P1(アンテナ入力電力に相当する。)に乗じることにより、アンテナ11に入力される信号電力が求められる。 Therefore, by multiplying the despread signal (Ss + NIs) determined signal power and (Ss) and a noise power (NIs) from (corresponding to the antenna input power.) The specific power P1 of the A / D converter 19 Accordingly, the signal power input to the antenna 11 is obtained.
【0008】 [0008]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
図4は、アンテナ入力(dBm)と測定アンテナ入力電力との関係を示すグラフである。 Figure 4 is a graph showing the relation between antenna input and (dBm) and the measured antenna input power. アンテナ11に入力される信号電力が増大するにつれ、出力P1はその入力に比例して大きくなる。 As the signal power input to the antenna 11 increases, the output P1 becomes larger in proportion to the input. 逆に、アンテナ11への入力信号の電力を小さくすれば、同様に出力P1も減少する。 Conversely, by reducing the power of the input signal to the antenna 11, Similarly, the output P1 is also reduced. しかしながら、アンテナ入力信号の電力がある値(例えば、‐110dBm:この数値は受信機およびその周辺回路の設計によって異なる。)以下になると、入力をいくら小さくしてもA/D変換器19の出力P1は小さくならず、ほぼ一定の値を与える。 However, there is a power of the antenna input signal value (e.g., -110 dBm:. This number varies depending on the design of the receiver and its peripheral circuits) or less, much less to the output of the A / D converter 19 inputs P1 does not become smaller, give a substantially constant value. アンテナ入力が‐100 dBmを下回ると減少の変化が少なくなり、‐110 dBm以下ではほぼ一定となる。 Change of decrease the antenna input is below -100 dBm is reduced, substantially constant in the following -110 dBm. これは、受信回路12で発生する内部熱雑音が常時出力され、検波回路16および増幅回路18を介して自動利得制御回路13の利得を制御するからである。 This internal thermal noise generated in the receiving circuit 12 is output continuously, because controlling the gain of the automatic gain control circuit 13 via a detection circuit 16 and the amplifier circuit 18.
【0009】 [0009]
他方、受信した信号電力について検討すると、アンテナに入力された信号電力がある値(例えば‐100 dBm)を越える場合、内部熱雑音電力より十分大きいとみなせるので、逆拡散後の信号電力は一定の値を示す。 On the other hand, considering the received signal power, and if the difference exceeds a certain signal power inputted to the antenna value (e.g. -100 dBm), so can be regarded as sufficiently larger than the internal thermal noise power, signal power after despreading constant It shows the value. 図5は、干渉電力がないとした場合におけるアンテナ入力における信号電力(横軸)と、逆拡散後に得られる信号電力値(縦軸)との関係を示す。 Figure 5 shows the signal power (horizontal axis) at the antenna input in the case where there is no interference power, the relationship between the signal power value obtained after despreading (vertical axis). 図から分かるように、‐100 dBmを越える領域では、信号電力が雑音電力より大きく支配的であるので、自動利得制御回路13の働きにより、信号電力はほぼ一定になる。 As can be seen, in the area exceeding -100 dBm, the signal power is greater dominant than the noise power, by the action of the automatic gain control circuit 13, signal power is substantially constant. これに対し、‐100 dBm以下では内部雑音電力と信号電力との相対比に応じて変化するため直線的には減少しない。 In contrast, not decrease linearly changes according to the relative ratio of the internal noise power and the signal power is below -100 dBm.
【0010】 [0010]
以上のように、従来、受信信号電力を求めるためには、受信電力がある閾値を境にして異なる求め方をする必要があり、これは非常に煩雑であるとともに、アンテナ入力電力が‐110 dBmないし‐100 dBmの範囲である場合は、2つの求め方を組み合わせて算出する必要があり、受信信号電力を求める処理は単純ではない。 As described above, conventionally, in order to determine the received signal power, it is necessary to make different Determination by the boundary of a receive power threshold, with this is very complicated, the antenna input power -110 dBm If to be in the range of -100 dBm, it is necessary to calculate a combination of two Determination, process of obtaining the received signal power is not simple. また、自動利得回路はアナログ回路であり、自動利得回路の出力が一定(飽和)となるレベルが変動するおそれがある。 The automatic gain circuit is an analog circuit, the level of the output of the automatic gain circuit is constant (saturated) is likely to fluctuate. さらに、図4に示されるように、内部雑音電力が支配的な領域(‐100 dBm以下の領域)で、干渉電力が存在すると受信電力を正しく計算できないという問題がある。 Furthermore, as shown in FIG. 4, in a dominant region internal noise power (-100 dBm or less in the region), it is impossible to correctly calculate the reception power and the interference power present.
【0011】 [0011]
【課題を解決するための手段】 In order to solve the problems]
本発明は、上記課題を解決するために成されたもので、アンテナ入力電力の大きさに影響されることなく、場合分けをすることなく受信信号電力および受信干渉電力を求めることのできる電力測定装置を提供する。 The present invention has been made to solve the above problems, the power measurement can be determined received signal power and the received interference power without without being influenced by the size of the antenna input power, the case analysis is to provide a device.
【0012】 [0012]
本発明は、スペクトラム拡散された信号を受信し、所望の受信信号の受信信号電力を測定する電力測定装置において、スペクトラム拡散された信号を受信し、受信信号を抽出する受信手段と、受信信号の包絡線レベルに応じた制御信号に基づいて、受信信号の強度を一定に維持する利得制御手段と、利得制御手段の出力信号に基づいて、全受信電力値(P R )を算出する第1演算手段と、利得制御手段の出力信号に対し逆拡散処理を行う逆拡散処理手段と、逆拡散処理手段の出力信号に基づいて、受信信号の信号電力値(P s )を算出する第2演算手段と、制御信号に基づいて受信手段の入力における全電力値(R r )を算出する受信電力演算手段と、第1演算手段の出力である全受信電力値(P R )、第2演算手段の出力である信号電力値(P s The present invention receives a spread spectrum signal, the power measurement device for measuring the received signal power of the desired received signal, a receiving means for receiving a spread spectrum signal, and extracts a reception signal, the received signal based on a control signal corresponding to the envelope level, and gain control means for maintaining the strength of the received signal constant, based on the output signal of the gain control means, first calculation for calculating a total reception power value (P R) means and, despreading processing means for performing despreading processing on the output signal of the gain control means based on the output signal of the despreading means, second calculating means for calculating the signal power value of the received signal (P s) When the received power calculating means for calculating a total power value (R r) at the input of the receiving means on the basis of the control signal, the total received power value which is the output of the first calculation means (P R), the second arithmetic means signal power value as the output (P s および受信電力演算手段の出力である全電力値(R r )に基づいて受信信号の受信信号電力値(S r )を算出する信号電力演算手段と、から構成される電力測定装置である。 A signal power calculating means for calculating and total power value which is the output of the receiving power calculating unit received signal power value of the received signal based on the (R r) and (S r), is a power measurement device comprising. さらに、本発明において、受信信号の受信電力(S r )は、式R r・(P S /P R )を演算することにより求められる。 Further, in the present invention, the received power of the received signal (S r) is determined by calculating the-formula R r (P S / P R ).
【0013】 [0013]
【実施例】 【Example】
図6は、本発明を一実施例である符号分割多元接続(CDMA)通信方式の受信機における電力測定装置30の概略ブロック図である。 Figure 6 is a schematic block diagram of a power measurement device 30 in the receiver of the present invention is an example code division multiple access (CDMA) communication system. CDMA通信方式の受信機は、前述したように基地局との間で送信電力を制御する必要がある。 The receiver of the CDMA communication system, it is necessary to control the transmit power with the base station as described above. 本発明は、CDMA通信方式の受信機に適用でき、W−CDMAにも応用が可能である。 The present invention is applicable to a receiver of a CDMA communication system, is applicable to W-CDMA.
【0014】 [0014]
基地局から所定の拡散符号で拡散された信号が送信されるとする。 Signal spread by a predetermined spreading code from the base station is to be transmitted. 移動局において、送信信号の電力の減衰を検出するためには、基地局からの送信信号パターンが移動局側で判明していることが望ましい。 In the mobile station, in order to detect the attenuation of the power of the transmission signal, it is desirable that the transmission signal pattern from a base station has been found by the mobile station. そこで、ここでは基地局から既知の同じ信号パターンが繰り返し送られるN個のパイロット・シンボル(P 1 ,P 2 ,・・・P N )の受信電力を求め、その受信電力に基づき移動局からの送信電力を制御する。 Therefore, where repeatedly the same signal pattern from a base station of the known transmitted are of N pilot symbols (P 1, P 2, ··· P N) obtains a reception power, from the mobile station based on the received power to control the transmission power.
【0015】 [0015]
次に、図6に示された電力測定装置30の動作を説明する。 Next, the operation of the power measurement device 30 shown in FIG. 基地局から送られた送信信号は、アンテナ31によって受信され、高周波増幅回路32で増幅される。 Transmission signal transmitted from the base station is received by antenna 31, it is amplified by the RF amplifier circuit 32. 増幅された高周波増幅回路32の出力信号は、ミキサ33でローカル周波数信号と混合されて中間周波(IF)信号に変換される。 The output signal of the amplified high-frequency amplifier circuit 32 is converted is mixed with a local frequency signal by the mixer 33 into an intermediate frequency (IF) signal. このIF信号は、自動利得制御回路34に入力され、利得制御信号35に応答して利得制御が行われ、ミキサ36に与えられる。 The IF signal is input to the automatic gain control circuit 34, gain control is performed in response to the gain control signal 35 is supplied to the mixer 36. 利得制御されたIF信号はミキサ36で再びローカル周波数信号と混合され、ベース・バンド信号37に変換される。 Gain-controlled IF signal is mixed with a local frequency signal again by the mixer 36, it is converted into a base band signal 37. なお、ベース・バンド信号は、一般に、複素記号で表現されるが、簡略化のため便宜上実数表現で記述する。 The base band signal is described generally, although represented by a complex symbol, for convenience the real representation for simplicity. ベース・バンド信号37は、当業者でよく知られたナイキスト・フィルタ38で波形整形された後、A/D変換器39でアナログ信号からデジタル信号に変換される。 Base band signal 37, subjected to waveform shaping by the Nyquist filter 38 well known in the art, is converted from an analog signal to a digital signal by the A / D converter 39.
【0016】 [0016]
ベース・バンド信号37は、さらに検波回路40に与えられ、その包絡線を検出し出力する。 Base band signal 37 is further provided to the detection circuit 40, and outputs detects the envelope. 検波回路40は、よく知られたダイオード検波回路を用いることができる。 Detection circuit 40 may use the well-known diode detection circuit. 検波回路40からの出力は受信中のチャネルの全電力に相当し、この全電力値は、後述するように受信中の信号電力を算出する際に利用される。 The output from the detection circuit 40 corresponds to the total power of the channel being received, the total power value is used when calculating the signal power being received, as will be described later. 検波回路40の出力は、ローパス・フィルタ41で高域信号を濾波したの後、利得制御信号として自動利得制御回路34に与えられる。 The output of the detection circuit 40, after the filtering the high frequency signal by the low pass filter 41 is supplied to an automatic gain control circuit 34 as a gain control signal. ローパス・フィルタ41の時定数は、例えば、100μSないし1mSの値が選ばれる。 The time constant of the low pass filter 41, for example, no 100μS value of 1mS selected. 自動利得制御回路34は、利得制御信号35に応じて、IF信号の電力強度を一定に保持すべく制御する。 Automatic gain control circuit 34, in response to the gain control signal 35 is controlled to hold the power strength of the IF signal constant.
【0017】 [0017]
A/D変換器39から出力されるデジタル信号は、乗算回路42で逆拡散符号43と掛け合わされ逆拡散演算が実行される。 Digital signal output from the A / D converter 39, the despreading operation is performed is multiplied by the despread code 43 in the multiplication circuit 42. 基地局で拡散処理に使用された拡散符号と同一である逆拡散符号を有する移動局のみが正しく復調処理が行われることになる。 Only mobile station having a despreading code is identical to the spreading code used for spreading processing at the base station so that the correct demodulation processing is performed. A/D変換器39からのデジタル信号のサンプル列をx nとし、逆拡散符号列をc nとすると、逆拡散処理を行った乗算器42の出力信号列y nは式(1)で表わされる。 The sample sequence of digital signals from the A / D converter 39 and x n, when the despreading code sequence and c n, the output signal sequence y n of the multiplier 42 performs inverse diffusion processing represented by the formula (1) It is.
【0018】 [0018]
【数1】 [Number 1]
n =c n・x n y n = c n · x n
次に、出力信号列y nは、積分回路44に与えられ、シンボル毎に積算される。 Then, the output signal train y n is given to the integrating circuit 44 is accumulated for each symbol. すなわち、i番目のシンボル出力P iは、式(2)で表わされる。 That, i th symbol output P i is represented by the formula (2).
【数2】 [Number 2]
ここで、N pはパイロット・シンボルの数、N sはシンボルあたりのチップ数を表わし、iはパイロット・シンボルの番号(0≦i≦N p ‐1)を示す。 Here, N p is the number of pilot symbols, N s represents the number of chips per symbol, i is illustrates a pilot symbol number (0 ≦ i ≦ N p -1 ).
【0019】 [0019]
基地局から送信される各P iの各位相角と振幅は既知であるから、適当に回転およびスケーリングを行うことによりすべての送信パイロット・ベクトルP iは等価なベクトルと考えることができる。 Since the phase angle and amplitude of each P i transmitted from the base station are known, all of the transmission pilot vector P i by performing a proper rotation and scaling can be is considered equivalent vector. そこで、位相角の影響を無視すると、全パイロット・シンボルの平均ベクトルP(バー)は、式(3)となる。 Therefore, ignoring the effect of the phase angle, the average vector P of all pilot symbols (bar) becomes Equation (3).
【数3】 [Number 3]
雑音の性質により受信信号の平均ベクトルP(バー)に含まれる雑音は1/N pに減少する。 Noise included in the average vector P of the received signal (bar) by the nature of the noise is reduced to 1 / N p. 従って、N pを適当な数(たとえば4ないし8)以上に設定すれば、平均ベクトルP(バー)は信号電力のみからなると考えられる。 Therefore, by setting the N p (to eg 4 to 8) suitable number or more, the average vector P (bar) is considered to consist of only the signal power. さらに、平均ベクトルP(バー)と各シンボル出力P iとの差分ベクトルは、雑音ベクトルと考えられる。 Moreover, the difference vector of the mean vector P and (bars) and each symbol output P i is considered noise vector.
【0020】 [0020]
そこで、積分回路44のシンボル出力P iを、平均ベクトル演算回路45に送り、式(3)に従って平均ベクトルP(バー)を算出する。 Therefore, the symbol output P i of the integration circuit 44, the feed to the average vector computing circuit 45 calculates the average vector P (bar) in accordance with Equation (3). この平均ベクトルP(バー)はさらに信号電力演算回路46に与えられ、式(4)に示す平均ベクトルP(バー)の絶対値を二乗することにより、信号電力P Sが求められる。 The average vector P (bar) is supplied further to the signal power calculation circuit 46, by squaring the absolute value of the average vector P shown in Equation (4) (bar), the signal power P S is determined.
【数4】 [Number 4]
また、雑音・干渉電力P NIは、受信したパイロット・シンボルP iの分散と考えられるので、雑音電力演算回路47は、雑音・干渉電力P NIを式(5)に従って算出する。 Also, the noise and interference power P NI, this could be a distributed pilot symbols P i received noise power calculation circuit 47, a noise-interference power P NI is calculated according to Equation (5).
【数5】 [Number 5]
次に、A/D変換器39の出力信号列x nが電力演算器48に与えられ、この信号列から全電力P Rが式(6)により求められる。 Then, the output signal train x n of the A / D converter 39 is supplied to the power calculator 48, the total power P R from the signal sequence is obtained by the equation (6).
【数6】 [6]
ここに、αはシンボルあたりのチップ数N Sと逆拡散符号列の絶対値|c n |によって決まる定数で、式(7)で求められ、全電力P Rを信号電力P Sおよび雑音・干渉電力P NIと直接比較するために、これらのスケーリングを一致させるために使用される。 Here, alpha is the absolute value of the number of chips N S despreading code sequence per symbol | c n | at the determined constant, given by Equation (7), the signal power P S and the noise and interference total power P R to compare directly the power P NI, it is used to match these scaling.
【数7】 [Equation 7]
信号電力P S 、雑音・干渉電力P NI 、および全電力P Rは、図7に示すように、帯域f sでシンボル当たりに換算した電力をそれぞれ与えるが、これらの間には式(8)の関係がある。 Signal power P S, the noise and interference power P NI, and total power P R, as shown in FIG. 7, provide power calculated per symbol in the band f s respectively, but between these equations (8) relationship of.
【数8】 [Equation 8]
ここで、P Iは干渉電力の中で拡散符号の直交性によって、雑音・干渉電力P NIに寄与しない分を示し、逆拡散処理を行うと無くなる。 Here, P I is the orthogonality of the spreading codes in the interference power, it shows the amount that does not contribute to the noise and interference power P NI, no The reverse spreading processing.
【0021】 [0021]
次に、検波回路40の出力信号をローパス・フィルタ49に与え、その出力をA/D変換器50に加える。 Then, given the output signal of the detection circuit 40 to the low-pass filter 49 is added to the output to the A / D converter 50. ローパス・フィルタ49の時定数は通常10ms程度に選ばれ、その時定数程度の時間平均をとったからアンテナ受信端における入力電力R rを求めることができる。 The time constant of the low pass filter 49 is usually chosen about 10 ms, it is possible to determine the input power R r at the antenna reception end from taking the time average of approximately the time constant. この入力電力R rは、信号/雑音電力演算回路51に送出され、以下述べるように、アンテナ入力端における信号、雑音電力がそれぞれ計算される。 The input power R r are sent to the signal / noise power calculation circuit 51, as described below, the signal, the noise power is calculated respectively at the antenna input.
【0022】 [0022]
信号電力P S 、雑音電力P NI 、全電力P Rは、ローパス・フィルタ49とほぼ同じ時定数を有するローパス・フィルタ52,53,54にそれぞれ与えられる。 Signal power P S, the noise power P NI, the total power P R is applied respectively to the low-pass filter 52, 53 and 54 having substantially the same time constant as the low pass filter 49. ローパス・フィルタ52,53,54は、どのような構成であってもよいが、例えば、式(9)ないし(11)で示す計算式を実行する演算回路でもよい。 Low-pass filter 52, 53, 54, any configuration is may be, but for example, may be a computing circuit for executing a formula represented by the formulas (9) to (11).
【数9】 [Equation 9]
【数10】 [Number 10]
【数11】 [Number 11]
ここで、Mは平均化するサンプル数(スロット数)で、ローパス・フィルタ61と同等の時定数となるように選ばれる。 Here, M is a number of samples to be averaged (number of slots) is selected to be the time constant of the equivalent low-pass filter 61. また、mはサンプルの番号である。 In addition, m is the number of the sample. ローパス・フィルタ52,53,54の出力P Sd ,P NId ,P Rdは、それぞれ信号/雑音電力演算回路51に送られる。 Output P Sd of the low-pass filter 52, 53, 54, P NID, P Rd is sent to each signal / noise power calculation circuit 51.
【0023】 [0023]
信号/雑音電力演算回路51は、入力電力R r 、およびローパス・フィルタ52,53,54の出力である信号電力P Sd 、雑音電力P NId 、全電力P Rdからアンテナ端における信号電力S rおよび雑音電力N rが、式(12)および式(13)から求められる。 Signal / noise power calculation circuit 51, input power R r, and signal power P Sd which is the output of the low pass filter 52, 53 and 54, the noise power P NID, and signal power S r at the antenna end from the total power P Rd noise power N r is determined from equation (12) and (13).
【数12】 [Number 12]
【数13】 [Number 13]
以上のように、本実施例に従えば、入力レベルに応じて計算方法を切り換える必要がなく、また自動制御増幅回路の動作状態に影響されずに入力信号電力を求めることができる。 As described above, according to this embodiment, it is not necessary to switch the calculation method in accordance with the input level, and may be obtained input signal power without being affected by the operating state of the automatic control amplifier circuit. また、自動制御増幅回路あるいはA/D変換器までの利得を予め求め記憶しておく必要がない。 Moreover, it is not necessary to previously calculated stored gain to automatic control amplifier or A / D converter. さらに、干渉電力や雑音電力に対していかなる条件を設ける必要がない。 Furthermore, there is no need to provide any condition for interference power and noise power.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】送信電力を制御する従来技術の一例を示す移動機の概略ブロック図である。 1 is a schematic block diagram of a mobile device showing an example of a conventional technique for controlling the transmission power.
【図2】受信回路からの出力信号に含まれる信号電力Sc、雑音電力Ncおよび干渉電力Icそれぞれの構成を表わす【図3】逆拡散後の信号電力Sc、雑音電力Ncおよび干渉電力Icからなる入力信号の各電力配分を示す【図4】アンテナ入力(dBm)と測定アンテナ入力電力との関係を示すグラフである。 [2] signal power Sc contained in the output signal from the reception circuit, the noise power Nc and interference power Ic represent each configuration Figure 3 signal power Sc despread consists noise power Nc and interference power Ic Figure 4 shows the respective power distribution of the input signal is a graph showing the relation between antenna input and (dBm) and the measured antenna input power.
【図5】干渉電力がないとした場合におけるアンテナ入力における信号電力(横軸)と、逆拡散後に得られる信号電力値(縦軸)との関係を示す。 Figure 5 shows the signal power at the antenna input in the case where there is no interference power (horizontal axis), the relationship between the signal power value obtained after despreading (vertical axis).
【図6】本発明を一実施例である符号分割多元接続(CDMA)通信方式の受信機における電力測定装置の概略ブロック図である。 6 is a schematic block diagram of a power measuring device in the receiver of the present invention is an example code division multiple access (CDMA) communication system.
【図7】ベースバンド信号の電力配分を示す図である。 7 is a diagram showing the power distribution of the baseband signal.
【符号の説明】 DESCRIPTION OF SYMBOLS
10:測定装置11:アンテナ12:受信回路13:自動利得制御回路14:出力信号15,19:A/D変換器16:検波回路17:出力18:増幅回路20:乗算回路21:逆拡散符号22:復調回路30:電力測定装置31:アンテナ32:高周波増幅回路33:ミキサ34:自動利得制御回路35:利得制御信号36:ミキサ37:ベース・バンド信号38:ナイキスト・フィルタ39:A/D変換器40:検波回路41:ローパス・フィルタ42:乗算回路43:逆拡散符号44:積分回路45:平均ベクトル演算回路46:信号電力演算回路47:雑音電力演算回路48:電力演算器49:ローパス・フィルタ50:A/D変換器51:信号/雑音電力演算回路52,53,54:ローパス・フィルタ 10: measuring device 11: antenna 12: reception circuit 13: automatic gain control circuit 14: Output signal 15, 19: A / D converter 16: detection circuit 17: Output 18: amplifier circuit 20: multiplication circuit 21: despreading code 22: demodulation circuit 30: power measuring device 31: antenna 32: radio frequency amplifier circuit 33: mixer 34: automatic gain control circuit 35: a gain control signal 36: mixer 37: base band signal 38: Nyquist filter 39: A / D converter 40: the detection circuit 41: low-pass filter 42: multiplication circuit 43: despreading code 44: integration circuit 45: the mean vector computing circuit 46: signal power calculating circuit 47: noise power calculating circuit 48: power calculator 49: a low-pass filter 50: A / D converter 51: signal / noise power calculation circuit 52, 53 and 54: low-pass filter

Claims (12)

  1. スペクトラム拡散された信号を受信し、所望の受信信号の受信信号電力を測定する電力測定装置において、 The power measurement device receives the spread spectrum signal, measures the received signal power of the desired received signal,
    スペクトラム拡散された信号を受信し、前記受信信号を抽出する受信手段と、 Receiving means for receiving a spread spectrum signal, and extracts the received signal,
    前記受信信号の包絡線レベルに応じた制御信号に基づいて、前記受信信号の強度を一定に維持する利得制御手段と、 And gain control means based on the control signal corresponding to the envelope level of the received signal, to maintain the strength of the received signal constant,
    前記利得制御手段の出力信号に基づいて、全受信電力値(P R )を算出する第1演算手段と、 Based on the output signal of said gain control means, a first calculating means for calculating a total reception power value (P R),
    前記利得制御手段の出力信号に対し逆拡散処理を行う逆拡散処理手段と、 And despreading means for performing despreading processing on the output signal of said gain control means,
    前記逆拡散処理手段の出力信号に基づいて、前記受信信号の信号電力値(P s )を算出する第2演算手段と、 Based on the output signal of the despreading means, second calculating means for calculating the signal power value of the received signal (P s),
    前記制御信号に基づいて前記受信手段の入力における全電力値(R r )を算出する受信電力演算手段と、 Received power calculation means for calculating a total power value (R r) at the input of said receiving means based on the control signal,
    前記第1演算手段の出力である全受信電力値(P R )、前記第2演算手段の出力である信号電力値(P s )および前記受信電力演算手段の出力である全電力値(R r )に基づいて前記受信信号の受信信号電力値(S r )を算出する信号電力演算手段と、 The total received power value which is the output of the first calculation means (P R), the second signal power value as the output of the calculation means (P s) and the total power value is the output of the received power calculating means (R r a signal power calculating means for calculating received signal power value of the received signal (S r) on the basis of)
    から構成されることを特徴とする電力測定装置。 Power measuring apparatus, characterized in that they are composed of.
  2. 前記受信信号の受信電力(S r )は、式R r・(P S /P R )を演算することにより求められることを特徴とする請求項1記載の受信信号電力測定装置。 The received power of the received signal (S r) the formula R r · (P S / P R) received signal power measurement apparatus according to claim 1, wherein the determined by calculating.
  3. 前記利得制御手段の出力信号をデジタルに変換するA/D変換器をさらに含むことを特徴とする請求項1記載の電力測定装置。 Power measurement apparatus according to claim 1, further comprising an A / D converter for converting an output signal of said gain control means to digital.
  4. 前記制御信号は、ナイキスト・フィルタで信号波形が整形されてから前記逆拡散処理手段に加えられることを特徴とする請求項1記載の電力測定装置。 The control signal, the power measuring apparatus according to claim 1, wherein the signal waveform at the Nyquist filter is applied to the despread processing unit after being shaped.
  5. 前記第2演算手段は、前記受信信号に含まれるパイロット・シンボルを1シンボル毎に積分する積分回路を含むことを特徴とする請求項1記載の電力測定装置。 It said second computing means, the power measuring apparatus according to claim 1, characterized in that it comprises an integrating circuit for integrating the pilot symbols included in the received signal for each symbol.
  6. 前記第2演算手段は、前記積分回路から出力される積分された全シンボルの平均を演算して、平均ベクトルを算出する平均ベクトル演算手段を含むことを特徴とする請求項5記載の電力測定装置。 Said second computing means, said average of all symbols integrated is output from the integrating circuit calculates, power measurement apparatus according to claim 5, characterized in that it comprises an average vector calculating means for calculating an average vector .
  7. 前記第2演算手段は、前記平均ベクトルの絶対値を二乗して前記信号電力値を算出する信号電力演算回路を含むことを特徴とする請求項6記載の電力測定装置。 It said second computing means, the power measuring apparatus according to claim 6, characterized in that it comprises a signal power calculating circuit for calculating the signal power value by squaring the absolute value of the average vector.
  8. 1シンボル毎に積分された前記パイロット・シンボルの分散を演算することにより雑音干渉電力(P NI )を求める第3演算手段をさらに含むことを特徴とする請求項6記載の電力測定装置。 Noise interference power (P NI) power measurement apparatus according to claim 6, further comprising a third arithmetic means for obtaining by calculating the variance of the integrated the pilot symbols for each symbol.
  9. 前記受信信号に含まれる雑音干渉電力(NI r )は、式R r・(P NI /P R )を演算することにより求められることを特徴とする請求項8記載の受信信号電力測定装置。 The noise interference power included in the received signal (NI r) the formula R r · (P NI / P R) received signal power measurement apparatus according to claim 8, wherein a obtained by calculating.
  10. スペクトラム拡散された受信信号を受信し、前受信信号中に含まれるパイロット・シンボルから受信信号電力を測定する電力測定装置において、 Receiving a received signal which is spread spectrum, the power measurement device for measuring the received signal power from the pilot symbols included in the previous reception signal,
    前記受信信号を抽出する受信手段と、 Receiving means for extracting the received signal,
    前記受信信号を検波して前記受信信号の包絡線レベルに応じた制御信号を検出し、前記受信信号の振幅を一定に維持する利得制御手段と、 And gain control means for said received signal by detecting detects a control signal corresponding to the envelope level of the received signal, to maintain the amplitude of the received signal constant,
    前記利得制御手段の出力信号をデジタルに変換してデジタル受信信号を出力するA/D変換器と、 An A / D converter for outputting a digital received signal by converting an output signal of said gain control means to a digital,
    前記デジタル受信信号に含まれる前記パイロット・シンボルから、全受信電力値(P R )を算出する第1演算手段と、 From the pilot symbols included in the digital received signal, a first calculating means for calculating a total reception power value (P R),
    前記デジタル受信信号に対し逆拡散処理を行う逆拡散処理手段と、 And despreading means for performing despreading processing on the digital received signal,
    前記逆拡散処理手段の出力信号にに含まれる前記パイロット・シンボルを1シンボル毎に積分し、さらに積分された全ての前記シンボルを平均して求められた平均ベクトルの絶対値を二乗し、前記受信信号の信号電力値(P s )を算出する第2演算手段と、 Wherein the pilot symbols included in the output signal of the despreading means is integrated for each symbol, further integrated all the symbols are averaged squared absolute value of the average vector obtained, the receiving second arithmetic means for calculating signal power values of the signals (P s),
    前記制御信号をデジタル信号に変換するA/D変換器を含み、前記制御信号に基づいて前記受信手段の入力における全電力値(R r )を算出する受信電力演算手段と、 Includes an A / D converter for converting the control signal into a digital signal, and the received power calculating means for calculating a total power value (R r) at the input of said receiving means based on the control signal,
    前記第1演算手段の出力である全受信電力値(P R )、前記第2演算手段の出力である信号電力値(P s )および前記受信電力演算手段の出力である全電力値(R r )に基づいて前記受信信号の受信信号電力値(S r )を算出する信号電力演算手段と、 The total received power value which is the output of the first calculation means (P R), the second signal power value as the output of the calculation means (P s) and the total power value is the output of the received power calculating means (R r a signal power calculating means for calculating received signal power value of the received signal (S r) on the basis of)
    から構成されることを特徴とする電力測定装置。 Power measuring apparatus, characterized in that they are composed of.
  11. 前記受信信号の受信電力(S r )は、式R r・(P S /P R )を演算することにより求められることを特徴とする請求項10記載の電力測定装置。 The received power of the received signal (S r) the formula R r · (P S / P R) power measurement apparatus according to claim 10, wherein the determined by calculating.
  12. 前記全受信電力値(P R )は、前記デジタル受信信号に含まれる前記パイロット・シンボルのサンプル列の二乗和をシンボル数で除することにより求められることを特徴とする請求項10記載の電力測定装置。 The total received power value (P R), the power measurement of claim 10, wherein a obtained by dividing the sum of squares of the sample sequence of the pilot symbols included in the digital received signal in number of symbols apparatus.
JP2000125312A 2000-04-26 2000-04-26 Power measuring device for measuring the received signal power and the received interference power Active JP4165629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125312A JP4165629B2 (en) 2000-04-26 2000-04-26 Power measuring device for measuring the received signal power and the received interference power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125312A JP4165629B2 (en) 2000-04-26 2000-04-26 Power measuring device for measuring the received signal power and the received interference power

Publications (2)

Publication Number Publication Date
JP2001313588A JP2001313588A (en) 2001-11-09
JP4165629B2 true JP4165629B2 (en) 2008-10-15

Family

ID=18635290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125312A Active JP4165629B2 (en) 2000-04-26 2000-04-26 Power measuring device for measuring the received signal power and the received interference power

Country Status (1)

Country Link
JP (1) JP4165629B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816470B2 (en) 2001-09-18 2004-11-09 Interdigital Technology Corporation Method and apparatus for interference signal code power and noise variance estimation
US6928104B2 (en) 2002-07-18 2005-08-09 Interdigital Technology Corporation Scaling using gain factors for use in data detection for wireless code division multiple access communication systems

Also Published As

Publication number Publication date
JP2001313588A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
KR100690132B1 (en) Method and apparatus for determining signal to noise ratio
US6973065B2 (en) CDMA/TDD mobile communication system and method
CN1109422C (en) SIR measurement apparatus
JP5323791B2 (en) For use in a wireless communication system, a system and method for providing an accurate estimate of the received signal interference
EP1064732B1 (en) Method and system for providing an estimate of the signal strength of a received signal
EP0928074B1 (en) Transmission power control in a CDMA/TDD radio communication system
CN1086081C (en) Rake receiver and spread spectrum radio telecommunication apparatus having the rake receiver
US6192040B1 (en) Method and apparatus for producing channel estimate of a communication channel in a CDMA communication system
US7167456B2 (en) Apparatus for estimating propagation path characteristics
CN1092458C (en) Transmission power control method in CDMA system and mobile station using same
US6977915B2 (en) Method and system for controlling device transmit power in a wireless communication network
US7376107B2 (en) Spread spectrum communication system and transmission power control method therefor
US6292519B1 (en) Correction of signal-to-interference ratio measurements
JP3522678B2 (en) Communication terminal apparatus and demodulation method
EP0886389B1 (en) Transmission power control for variable bit rate CDMA mobile telephone system
CN1178411C (en) Pilot strength measurement and multipath delay searcher for CDMA receiver
JP2723094B2 (en) Cdma receiving device
US6243410B1 (en) Demodulator having an infinite-duration impulse response filter with dynamic coeffiecient scaling
JP3998718B2 (en) Cdma coherent signal processing for communication systems
JP3805520B2 (en) Speed ​​estimation apparatus and method in a mobile communication
CN1169310C (en) Doppler spread estimation system
US20050018641A1 (en) Method and equipment for regulating dynamically an average area of a channel estimation
EP0961937B1 (en) Determining angle of arrival of a signal
KR100787841B1 (en) Method and apparatus for determining the closed loop power control set point in a wireless packet data communication system
JP3444270B2 (en) Calibration system of an array antenna receiving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250