JP4165143B2 - Manufacturing method of stem for semiconductor device - Google Patents

Manufacturing method of stem for semiconductor device Download PDF

Info

Publication number
JP4165143B2
JP4165143B2 JP2002222774A JP2002222774A JP4165143B2 JP 4165143 B2 JP4165143 B2 JP 4165143B2 JP 2002222774 A JP2002222774 A JP 2002222774A JP 2002222774 A JP2002222774 A JP 2002222774A JP 4165143 B2 JP4165143 B2 JP 4165143B2
Authority
JP
Japan
Prior art keywords
lead wire
base
stem
resin
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002222774A
Other languages
Japanese (ja)
Other versions
JP2004063963A (en
Inventor
重樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002222774A priority Critical patent/JP4165143B2/en
Publication of JP2004063963A publication Critical patent/JP2004063963A/en
Application granted granted Critical
Publication of JP4165143B2 publication Critical patent/JP4165143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置用ステムとその製造方法に関する。
【0002】
【従来の技術】
図4(c)は従来の半導体装置用ステムの完成図を示したものである。図4(c)において、21は円盤状の金属板材から絞り加工により折り曲げ形成した凹形状のベース、22はベース21に一体形成された半導体素子取り付け部、23はベース21に設けられた貫通孔、24はベース21と導通接続されたアースリード線、25は貫通孔23に挿通された絶縁リード線、26はベース21と絶縁リード線25に充填する硬化した樹脂充填部、27は絶縁リード線25に形成された凹凸部、28a、28bはバリ対策の低温低圧縮で施した際の凹凸部近傍の未充填部、29はベース21の内側に形成された環状壁部内面であって、金属板を凹形状に加工されたベースと、絶縁リード線と未硬化樹脂充填部品30とからなり、前記ベースには前記絶縁リード線を挿通する貫通孔が形成されてあり、前記絶縁リード線の硬化した樹脂充填部には凸部が形成された構成をとる半導体装置用ステムである。なお、図4(a)はタブレット状の未硬化樹脂充填部品30であり、図4(b)はベース21と絶縁リード線25と未硬化樹脂充填部品30とを治具(図示せず)に組み合わせた状態を示す組立図である。
【0003】
上記の構成は、絶縁リード線25と硬化した樹脂充填部26との密着力不足を解決する方法として提案されたもので、図4(b)に組立断面図で示すように、絶縁リード線25と硬化した樹脂充填部26の接触する部分に凹凸部27を形成し、ベース21に挿通したリード線に樹脂を加熱圧入することにより、リード線の凹凸部27と硬化した樹脂充填部26で機械的な引っ掛かりの効果を示すアンカー効果(機械的結合)で、押し込みや引張りなどの外部応力から耐破壊強度を大きくしようとしたものである。
【0004】
【発明が解決しようとする課題】
しかし、上記の構成では合成樹脂を充填する際、絶縁リード線凹凸部近傍に樹脂の未充填部が形成されることによって、リード線と合成樹脂間の耐破壊強度が弱くなる。
【0005】
ベース21ならびに絶縁リード線25は、例えば、FeやFe−Ni合金などの金属からなり、合成樹脂系充填材は、例えば、メラミン、フェノール、エポキシ等からなるが、これらの樹脂充填材は金属と硬化した樹脂充填部26の両者のぬれ性(相溶性)が悪いのが現状であり、そのためベース21ならびに絶縁リード線25と硬化した樹脂充填部26との界面は、接着強度が非常に弱いのである。
【0006】
その為に、半導体素子を半導体素子取り付け部22へ取り付ける時や組立完成後ハウジングに取り付ける時などの実装工程では絶縁リード線25へ、押し込みや引張り力などの外部応力が加わると、絶縁リード線25と硬化した樹脂充填部26との界面に剥離現象が発生し、絶縁リード線25が硬化した樹脂充填部26から、抜けたり傾くなどの不具合が発生するという問題がある。
【0007】
それに対し、絶縁リード線25と硬化した樹脂充填部26間の密着力不足を解決する方法として、図4(b)に示すように、絶縁リード線25の硬化した樹脂充填部26と接触する部分に凹凸部27を形成し、アンカー効果(機械的結合)による抜け防止処理を設けた絶縁リード線25を用いることが広く知られている。
【0008】
図4(a)のsと図4(b)のl、hの関係でl<h<sをとる従来の技術は、図4(b)のような構成で組立てられる。すなわち、lはリード線径、sは絶縁リード線用孔32及びアースリード線用孔31のリード線用に施した孔径、hは凹凸部27の凸部の外径である。これを加熱圧入し、成形・キュアーすると絶縁リード線25の凹凸部27近傍に硬化した樹脂とリード線壁面とに図4(c)に示す凹凸部近傍の未充填部28a、28bが発生するという問題が生じる。
【0009】
この方法は絶縁リード線25が硬化した樹脂充填部26から抜けることを防ぐには効果的である。しかし、この方法だけでは、バリ対策のため、低圧圧縮及び全工程200℃以下で行うので、前記絶縁リード線25に設けた凹凸部27の近傍で凹凸部近傍の未充填部28a、28bが残り、半導体素子を半導体素子取り付け部22へ取り付ける時や組立完成後、ハウジングに取り付ける時などの実装工程において、絶縁リード線25へ加わる押し込みや引張り力などの外部応力により、絶縁リード線25が硬化した樹脂充填部26から剥離を起こしたり、傾くなどの不具合が発生するという問題は依然解決せずに残る。
【0010】
そして、その改善のために図3に示す方法が考えられる。101は円盤状の金属板材から絞り加工により折り曲げ形成した凹形状のベース、102はベース101に一体形成された半導体素子取り付け部、103はベース101に設けられた貫通孔、104はベース101と導通接続されたアースリード線、105は貫通孔103に挿通された絶縁リード線、106はベース101と絶縁リード線105に充填する硬化した樹脂充填部、107は絶縁リード線105に形成された凹凸部、108はバリ対策の低温低圧縮で施した際の凹凸部近傍の未充填部、109はベース101の内側に形成された環状壁部内面であって、金属板を凹形状に加工されたベースと、絶縁リード線と未硬化樹脂充填部品110とからなり、凹凸部107の上下から、個別の未硬化樹脂充填部品110を充填することを行うことが考えられる。
【0011】
しかし、上記に示す方法で未硬化樹脂充填部品110を溶融充填固化することは樹脂界面で大量の気泡が発生することと、上部及び下部の未硬化樹脂充填部品110が加熱圧入による充填で樹脂同士がなじんでいない界面が生じることが懸念される。
【0012】
本発明は上記問題を解決するためのものであり、半導体素子を半導体素子取り付け部へ取り付ける時や組立完成後ハウジングに取り付ける時などの実装工程において加わる絶縁リード線への押し込み・引張り力などの外部応力で、前記絶縁リード線と硬化した樹脂充填部間の界面が剥離することなく、又、絶縁リード線が傾くことや剥離することなどのない半導体装置用ステムとその製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため本発明は、ベースに一体に形成した半導体レーザ素子の取り付け部及び絶縁リード線、合成樹脂系充填材により充填してなるステムを備えた半導体装置用ステムの製造方法において、粉末状の合成樹脂に粒径を粒度として所定の粒度毎に分級設定された中から選択したフィラーを投入、混合させる工程と、フィラーを混合させた粉末状の合成樹脂をベース開口部の内径に金型の内径を合わせた金型に入れ、プレス成型により打錠して、絶縁リード線に施した凸部の外径より小さく絶縁リード線の線径より大きい孔径の絶縁リード線用孔を有する未硬化樹脂充填部品を形成する工程と、ベース開口部側から未硬化樹脂充填部品を絶縁リード線に施した凸部まで挿通して組立てる工程と、未硬化樹脂充填部品をベース内部にキュアー・成型する際の低温低圧縮する工程とからなる製造方法である。この様な製造方法によればリード線の凹部近傍に硬化した樹脂未充填部を作らないようにすることができる。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照しながら説明する。
【0016】
図1(a)は本発明に係る半導体装置用ステムを示したもので、図1(b)は図1(a)のX−X線に沿った断面図である。図1(a)および図1(b)において、1は円盤状の金属板材から絞り加工により折り曲げ形成した凹形状のベース、2はベース1に一体形成された半導体素子取り付け部、3はベース1に設けられた貫通孔、4はベース1と導通接続されたアースリード線、5は貫通孔3に挿通された絶縁リード線、6はベース1と絶縁リード線5に充填する硬化した樹脂充填部、7は絶縁リード線5に形成された凹凸部、8はバリ対策の比較的低圧で熱圧縮成形を施した際の凹凸部近傍の未充填部、9はベース1の内側に形成された環状壁部内面という構成をとり、前記絶縁リード線5の凹凸部7の金属ベースの閉口部側に凹凸部近傍の未充填部が形成された半導体装置用ステムである。
【0017】
ここで、未硬化樹脂充填部品10は液状からなるAステージもしくは半固体のBステージからなり、ベースの内側形状を合わせ、且つ絶縁リード線凸部の外径未満にした孔を形成したものである。
【0018】
図2(a)、(b)、(c)および図2(d)は本発明に係る半導体装置用ステムの製造方法を工程処理順に示したもので、図2(a)はベース1にリード線を挿通した組立断面図、図2(b)は図2(a)のリード線に未硬化樹脂充填部品10のアースリード線用孔11と絶縁リード線用孔12との位置を合わせた後、未硬化樹脂充填部品10を凹凸部7まで挿通した組立断面図、図2(c)は完全に未硬化樹脂充填部品10がベース1に加熱圧縮された完成品断面図である。
【0019】
未硬化樹脂充填部品10は例えば、熱硬化性樹脂からなり、その熱硬化性樹脂にはフィラーを混入させてある。
【0020】
フィラーの含有量を、適宜増すことでリード引張り強度が強くなる。
【0021】
フィラーの粒度は粒径の異なる3種、0.25mmから1.27mm、0.25mmから0.85mm及び0.25mmから0.60mmの中から選定した。
【0022】
このとき、未硬化樹脂充填部品10の必要タブレット重量と、バラツキを21±1mgとし、そのスペックを満たす粒径を選定した。特性は例えば、比重は2、ガラス転移点は190℃、線膨張係数1×10-5/℃、吸湿率は0.3wt%で多官能型エポキシ、高Tg・低熱膨張の特徴を有するもので、特に膨張係数は金属に近づく。
【0023】
次に、ベース内側の内径に金型の内径を合わせた金型に入れ、且つ絶縁リード線に施した凸部の外径より小さい孔径で、プレス成型した未硬化樹脂充填部品を形成する。
【0024】
特に接着性、絶縁リード線5の引張り強度などで優れていた粒度0.25mmから0.60mmの間で粉末を得、プレス成型により、図2(d)のとおり打錠して、図2(c)から、l<s<hという関係とし、例えば、孔径sは0.5mm程度とし、未硬化樹脂充填部品10を得た。
【0025】
ここで、絶縁リード線5と前記未硬化樹脂充填部品10の関係は図2(c)のとおり、l<s<hとするものである。絶縁リード線5は直径を適宜選択可能で、例えば、直径0.45mm程度のFeやFe−Ni合金などの金属からなり、凹凸部7の形状は適宜選択可能であり、例えば、凹凸部7を得、凸部の外径を0.78mm程度とし、また、合成樹脂系充填材も適宜選択可能で、ここでは熱硬化性樹脂を用いた。
【0026】
上記の絶縁リード線5と未硬化樹脂充填部品10をベース開口部側から絶縁リード線5に施した凸部まで未硬化樹脂充填部品10を挿通して組立てる。
【0027】
次に、未硬化樹脂充填部品10をベース内部にキュアー・成型する際に低温低圧縮する。
【0028】
そして、絶縁リード線5の凹凸部近傍にて、未硬化樹脂充填部品10が加熱圧入され、ベース開口部側の凹凸部近傍の未充填部を充填させる。
【0029】
上記の方法は、ベース開口部側の凹凸部近傍の未充填部8を無くし、引張りや押し込みなどの外部応力から前記絶縁リード線とステムを保護するための半導体装置用ステムの製造方法である。これによれば、半導体素子を半導体素子取り付け部2へ取り付ける時や組立完成後ハウジングに取り付ける時など実装する時に加わる外部応力で、前記ステムおよび絶縁リード線と硬化した樹脂充填部6間との界面に剥離現象が発生することがない一工程のみの半導体装置用ステムの製造方法である。
【0030】
なお、前記製造方法は全工程で200℃を超えないため、組立てる以前に金属めっきを施しておける。従って、半導体装置用ステムを製造後、後処理のめっき工程を必要としない、且つ低温低圧圧縮で製造するため貫通孔側のバリの発生を抑制するものである。
【0031】
また、実施形態では、合成樹脂系充填材として熱硬化性樹脂を挙げたが、感圧形接着剤や低融点ガラス及び溶融粘度の比較的高い熱可塑性樹脂等を用いることも可能である。
【0032】
更に、未硬化樹脂充填部品10はベース内側とほぼ同形の形状に打錠して充填するため、樹脂の使用率がほぼ100%であり樹脂廃棄物の発生が殆どない。
【0033】
以上、本発明による半導体装置およびその製造方法の一実施形態について説明したが、本発明の思想に逸脱しない限り適宜変更可能である。
【0034】
【発明の効果】
以上、説明したように本発明の半導体装置用ステムは金属と合成樹脂充填材の接着強度は粉末状の合成樹脂にフィラーを投入、混合させた構成であるから接着強度が大きくなる。また、無機フィラーの含有量を制御することにより接着強度を制御することも可能である。
【0035】
また、絶縁リード線に施した凹凸部により、硬化した樹脂充填部が絶縁リード線と接触面積を大きくする役割を果たすと共に、絶縁リード線が係り止めを目的とした特有な形状部を有しているため、アンカー効果(機械的結合)による硬化した樹脂充填部と絶縁リード線との引張り強度が強くなる。
【0036】
なお、絶縁リード線と未硬化樹脂充填部品の関係は、l<s<hとするもので、lはリード線径、sは絶縁リード線及びアースリード線のリード線用の孔径、hは凹凸部の凸部の外径である。sがhより小さいことにより、未硬化樹脂充填部品を加熱圧入することで、絶縁リード線の凹凸部近傍のベース開口部側が充填される効果を示す。
【0037】
さらにまた、本発明の半導体装置用ステムの製造方法によれば、一工程の成形で合成樹脂系充填材を充填させることができ、全工程200℃以下で行う低温低圧縮により、ステムを効率よく提供できる効果を得ることができる。
【0038】
更に、低温で製造できるため樹脂材種の種別範囲が広い効果がある。
【0039】
そして、さらに本発明は、半導体素子取り付け部に半導体素子を取り付ける時や組立完成後ハウジングに取り付ける時など、実装を施す際の外部応力による絶縁リード線と硬化した樹脂充填部の耐破壊強度の向上で、剥離現象や傾くなどの不良率の低減を図れるといった多大の効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施形態における半導体装置用ステムを示すもので、
(a)は、斜視図
(b)は、図1(a)のX−X線に沿った断面図
【図2】本発明の実施形態による半導体装置用ステムの製造工程の詳細説明断面図を示すもので、
(a)は、ベースと絶縁リードの組立断面図
(b)は、絶縁リード線に樹脂を挿通させた組立断面図
(c)は、未硬化樹脂充填材が溶融して硬化したステム完成品の断面図
(d)は、合成樹脂系充填材をプレス成型した未硬化樹脂充填部材を示す図
【図3】本発明の課題克服で提案された絶縁リード線と樹脂の組立を示す断面図
【図4】従来の実施形態によるステムの製造工程を示すもので、
(a)は、合成樹脂系充填材をプレス成型した未硬化樹脂充填部材を示す図
(b)は、絶縁リード線と樹脂の組立断面図
(c)は、未硬化樹脂充填材が溶融して硬化したステム完成品の断面図
【符号の説明】
1、21、101 ベース
2、22、102 半導体素子取り付け部
3、23、103 貫通孔
4、24、104 アースリード線
5、25、105 絶縁リード線
6、26、106 硬化した樹脂充填部
7、27、107 凹凸部
8、28a、28b 凹凸部近傍の未充填部
9、29、109 環状壁部内面
10、30、110 未硬化樹脂充填部品
11、31 アースリード線用孔
12、32 絶縁リード線用孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stem for a semiconductor device and a manufacturing method thereof.
[0002]
[Prior art]
FIG. 4C shows a completed view of a conventional stem for a semiconductor device. In FIG. 4C, 21 is a concave base formed by bending a disk-shaped metal plate by drawing, 22 is a semiconductor element mounting portion integrally formed with the base 21, and 23 is a through-hole provided in the base 21. , 24 is a ground lead wire that is conductively connected to the base 21, 25 is an insulating lead wire inserted through the through hole 23, 26 is a cured resin filling portion that fills the base 21 and the insulating lead wire 25, and 27 is an insulating lead wire. 25 is an uneven portion formed in 25, 28a and 28b are unfilled portions in the vicinity of the uneven portion when subjected to low-temperature and low compression as a countermeasure against burrs, 29 is an inner surface of an annular wall portion formed inside the base 21, The base includes a base processed into a concave shape, an insulating lead wire, and an uncured resin-filled component 30, and a through-hole through which the insulating lead wire is inserted is formed in the base. A cured resin filling portion of a semiconductor device stem to adopt a configuration in which the convex portion is formed. 4A shows a tablet-shaped uncured resin-filled component 30, and FIG. 4B shows the base 21, the insulating lead wire 25, and the uncured resin-filled component 30 as a jig (not shown). It is an assembly drawing which shows the combined state.
[0003]
The above configuration has been proposed as a method for solving the shortage of adhesion between the insulating lead wire 25 and the cured resin filling portion 26. As shown in the assembly sectional view of FIG. And forming a concavo-convex portion 27 at a portion where the cured resin filling portion 26 comes into contact, and heat-pressing the resin into the lead wire inserted through the base 21, thereby forming a machine with the concavo-convex portion 27 of the lead wire and the cured resin filling portion 26. This is an anchor effect (mechanical coupling) that shows the effect of a general catch, and is intended to increase the fracture strength from external stresses such as indentation and tension.
[0004]
[Problems to be solved by the invention]
However, in the above configuration, when the synthetic resin is filled, an unfilled portion of the resin is formed in the vicinity of the concave portion of the insulating lead wire, so that the fracture resistance between the lead wire and the synthetic resin is weakened.
[0005]
The base 21 and the insulating lead wire 25 are made of, for example, a metal such as Fe or Fe—Ni alloy, and the synthetic resin filler is made of, for example, melamine, phenol, epoxy, etc. These resin fillers are made of metal. At present, the wettability (compatibility) of the cured resin filling portion 26 is poor, and therefore, the adhesive strength is very weak at the interface between the base 21 and the insulating lead wire 25 and the cured resin filling portion 26. is there.
[0006]
Therefore, when an external stress such as pushing or pulling force is applied to the insulating lead wire 25 in a mounting process such as when the semiconductor element is attached to the semiconductor element attaching portion 22 or attached to the housing after assembly is completed, the insulating lead wire 25 There is a problem that a peeling phenomenon occurs at the interface between the resin filled portion 26 and the cured resin filling portion 26, and the insulation lead wire 25 comes out of the cured resin filled portion 26 and is not inclined.
[0007]
On the other hand, as a method for solving the shortage of adhesion between the insulating lead wire 25 and the cured resin filling portion 26, as shown in FIG. 4B, the portion of the insulating lead wire 25 that contacts the cured resin filling portion 26 It is widely known to use an insulating lead wire 25 in which a concavo-convex portion 27 is formed on the surface and an anti-disengagement treatment by an anchor effect (mechanical coupling) is provided.
[0008]
The conventional technique in which l <h <s in the relationship between s in FIG. 4 (a) and l and h in FIG. 4 (b) is assembled in the configuration as shown in FIG. 4 (b). That is, l is the lead wire diameter, s is the hole diameter provided for the lead wires of the insulating lead wire hole 32 and the ground lead wire hole 31, and h is the outer diameter of the convex portion of the concave and convex portion 27. When this is hot-pressed, molded and cured, unfilled portions 28a and 28b in the vicinity of the concavo-convex portion shown in FIG. 4C are generated in the cured resin and the lead wire wall surface in the vicinity of the concavo-convex portion 27 of the insulating lead wire 25. Problems arise.
[0009]
This method is effective in preventing the insulating lead wire 25 from coming off from the cured resin filling portion 26. However, with this method alone, low pressure compression and the entire process are performed at 200 ° C. or less to prevent burrs, so that unfilled portions 28a and 28b near the concavo-convex portions remain in the vicinity of the concavo-convex portions 27 provided on the insulating lead wire 25. In the mounting process such as when the semiconductor element is attached to the semiconductor element attaching portion 22 or after the assembly is completed and attached to the housing, the insulating lead wire 25 is hardened by external stress such as pushing or pulling force applied to the insulating lead wire 25. The problem of occurrence of defects such as peeling or tilting from the resin filling portion 26 still remains unsolved.
[0010]
And the method shown in FIG. 3 can be considered for the improvement. 101 is a concave base formed by bending a disk-shaped metal plate material, 102 is a semiconductor element mounting portion formed integrally with the base 101, 103 is a through hole provided in the base 101, and 104 is electrically connected to the base 101. The connected ground lead wire, 105 is an insulated lead wire inserted through the through-hole 103, 106 is a cured resin-filled portion filling the base 101 and the insulated lead wire 105, and 107 is an uneven portion formed on the insulated lead wire 105. , 108 is an unfilled portion in the vicinity of the concavo-convex portion when applied at low temperature and low compression as a countermeasure against burrs, and 109 is an inner surface of the annular wall portion formed inside the base 101, which is a base formed by processing a metal plate into a concave shape And an insulating lead wire and an uncured resin-filled part 110, and the individual uncured resin-filled parts 110 are filled from above and below the concavo-convex portion 107. It is conceivable.
[0011]
However, melt-filling and solidifying the uncured resin-filled part 110 by the method described above generates a large amount of bubbles at the resin interface, and the upper and lower uncured resin-filled parts 110 are filled with each other by filling by heating and press-fitting. There is concern that an unfamiliar interface will occur.
[0012]
The present invention is for solving the above-mentioned problems, and external force such as pushing and pulling force on an insulating lead wire applied in a mounting process such as when a semiconductor element is attached to a semiconductor element attachment portion or when it is attached to a housing after assembly is completed. To provide a stem for a semiconductor device in which the interface between the insulating lead wire and the cured resin filling portion does not peel due to stress, and the insulating lead wire does not tilt or peel off, and a method for manufacturing the same. Objective.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for manufacturing a stem for a semiconductor device including a mounting portion of a semiconductor laser element integrally formed on a base, an insulating lead wire, and a stem filled with a synthetic resin filler. Filling the powdered synthetic resin with a particle size as a particle size, and adding and mixing the filler selected from the classification set for each predetermined particle size, and setting the powdered synthetic resin mixed with the filler to the inner diameter of the base opening Placed in a mold with the same inner diameter of the mold , pressed by press molding , and has a hole for an insulation lead wire having a hole diameter smaller than the outer diameter of the convex portion formed on the insulation lead wire and larger than the wire diameter of the insulation lead wire forming an uncured resin filler pieces, a step of assembling the uncured resin filling member from the base opening portion side is inserted to the convex portion is subjected to the insulated lead wire, based interior uncured resin filler pieces Is a manufacturing method comprising a step of cold low compression when curing-molding. According to such a manufacturing method, it is possible to prevent a cured resin-unfilled portion from being formed near the concave portion of the lead wire.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0016]
FIG. 1A shows a stem for a semiconductor device according to the present invention, and FIG. 1B is a cross-sectional view taken along line XX of FIG. 1 (a) and 1 (b), 1 is a concave base formed by bending a disk-shaped metal plate by drawing, 2 is a semiconductor element mounting part integrally formed with the base 1, and 3 is a base 1 4 is a ground lead wire electrically connected to the base 1, 5 is an insulated lead wire inserted into the through hole 3, and 6 is a cured resin filling portion that fills the base 1 and the insulated lead wire 5. , 7 is an uneven portion formed on the insulated lead wire 5, 8 is an unfilled portion near the uneven portion when heat compression molding is performed at a relatively low pressure as a countermeasure against burrs, and 9 is an annular formed inside the base 1. This is a stem for a semiconductor device, which has a configuration of an inner wall surface, and an unfilled portion in the vicinity of the concavo-convex portion is formed on the closed side of the metal base of the concavo-convex portion 7 of the insulating lead wire 5.
[0017]
Here, the uncured resin-filled part 10 is composed of a liquid A stage or a semi-solid B stage, and is formed with a hole whose inner shape is matched to the outer diameter of the insulating lead wire protrusion. .
[0018]
2 (a), 2 (b), 2 (c) and 2 (d) show a method for manufacturing a stem for a semiconductor device according to the present invention in the order of process processing. FIG. 2B is an assembled cross-sectional view through which the wire is inserted, and after the positions of the ground lead wire hole 11 and the insulated lead wire hole 12 of the uncured resin-filled component 10 are aligned with the lead wire of FIG. FIG. 2C is a sectional view of the finished product in which the uncured resin-filled component 10 is completely heated and compressed by the base 1.
[0019]
The uncured resin-filled component 10 is made of, for example, a thermosetting resin, and a filler is mixed in the thermosetting resin.
[0020]
The lead tensile strength is increased by appropriately increasing the filler content.
[0021]
The particle size of the filler was selected from among three types having different particle sizes, 0.25 mm to 1.27 mm, 0.25 mm to 0.85 mm, and 0.25 mm to 0.60 mm.
[0022]
At this time, the necessary tablet weight of the uncured resin-filled component 10 and the variation were set to 21 ± 1 mg, and the particle size satisfying the specifications was selected. For example, the specific gravity is 2, the glass transition point is 190 ° C., the linear expansion coefficient is 1 × 10 −5 / ° C., the moisture absorption is 0.3 wt%, and it has the characteristics of polyfunctional epoxy, high T g and low thermal expansion In particular, the expansion coefficient approaches that of metal.
[0023]
Next, an uncured resin-filled part that is press-molded is formed with a hole diameter that is smaller than the outer diameter of the convex portion formed on the insulating lead wire, and placed in a mold in which the inner diameter of the mold is matched with the inner diameter of the base.
[0024]
In particular, a powder having a particle size of 0.25 mm to 0.60 mm, which was excellent in adhesiveness and tensile strength of the insulating lead wire 5, was obtained, and pressed as shown in FIG. From c), l <s <h, for example, the hole diameter s was about 0.5 mm, and an uncured resin-filled part 10 was obtained.
[0025]
Here, the relationship between the insulating lead wire 5 and the uncured resin-filled component 10 is l <s <h as shown in FIG. The diameter of the insulating lead wire 5 can be appropriately selected. For example, the insulating lead wire 5 is made of a metal such as Fe or Fe—Ni alloy having a diameter of about 0.45 mm, and the shape of the uneven portion 7 can be appropriately selected. The outer diameter of the protrusions is about 0.78 mm, and a synthetic resin filler can be selected as appropriate. Here, a thermosetting resin was used.
[0026]
The insulating lead wire 5 and the uncured resin-filled component 10 are assembled by inserting the uncured resin-filled component 10 from the base opening side to the convex portion formed on the insulating lead wire 5.
[0027]
Next, when the uncured resin-filled part 10 is cured and molded inside the base, it is subjected to low temperature and low compression.
[0028]
Then, the uncured resin-filled component 10 is heated and pressed in the vicinity of the concavo-convex portion of the insulating lead 5 to fill the unfilled portion near the concavo-convex portion on the base opening side.
[0029]
The above method is a method for manufacturing a stem for a semiconductor device for eliminating the unfilled portion 8 in the vicinity of the concavo-convex portion on the base opening side and protecting the insulating lead wire and the stem from external stress such as pulling and pushing. According to this, the interface between the stem and the insulating lead wire and the cured resin filling portion 6 due to an external stress applied when mounting the semiconductor element to the semiconductor element mounting portion 2 or mounting to the housing after assembly is completed. This is a method for manufacturing a stem for a semiconductor device in only one process in which no peeling phenomenon occurs.
[0030]
In addition, since the said manufacturing method does not exceed 200 degreeC at all processes, metal plating can be given before an assembly. Accordingly, after the semiconductor device stem is manufactured, a post-treatment plating step is not required, and since it is manufactured by low-temperature and low-pressure compression, generation of burrs on the through-hole side is suppressed.
[0031]
Moreover, although thermosetting resin was mentioned as a synthetic resin type filler in embodiment, it is also possible to use a pressure sensitive adhesive, a low melting glass, a thermoplastic resin having a relatively high melt viscosity, or the like.
[0032]
Furthermore, since the uncured resin-filled component 10 is compressed and filled in the same shape as the inside of the base, the resin usage rate is almost 100% and there is almost no generation of resin waste.
[0033]
As mentioned above, although one Embodiment of the semiconductor device by this invention and its manufacturing method was described, unless it deviates from the thought of this invention, it can change suitably.
[0034]
【The invention's effect】
As described above, since the stem for a semiconductor device of the present invention has a configuration in which a filler is added to and mixed with a powdered synthetic resin, the adhesive strength between the metal and the synthetic resin filler increases. It is also possible to control the adhesive strength by controlling the content of the inorganic filler.
[0035]
In addition, the cured resin-filled portion plays a role in increasing the contact area with the insulated lead wire due to the uneven portions formed on the insulated lead wire, and the insulated lead wire has a specific shape portion for locking purposes. Therefore, the tensile strength between the cured resin filling portion and the insulating lead wire due to the anchor effect (mechanical coupling) is increased.
[0036]
The relationship between the insulation lead wire and the uncured resin-filled part is such that l <s <h, where l is the lead wire diameter, s is the hole diameter for the lead wire of the insulation lead wire and the ground lead wire, and h is the unevenness. It is the outer diameter of the convex part of a part. When s is smaller than h, an effect of filling the base opening side in the vicinity of the concavo-convex portion of the insulating lead wire by hot-pressing the uncured resin-filled part is shown.
[0037]
Furthermore, according to the method for manufacturing a stem for a semiconductor device of the present invention, the synthetic resin filler can be filled in one step molding, and the stem can be efficiently processed by low temperature and low compression performed at 200 ° C. or less in all steps. The effect which can be provided can be acquired.
[0038]
Furthermore, since it can be manufactured at a low temperature, there is an effect that the range of types of resin materials is wide.
[0039]
Further, the present invention further improves the fracture resistance of the insulation lead wire and the cured resin-filled portion due to external stress when mounting, such as when the semiconductor element is attached to the semiconductor element attachment portion or when the assembly is attached to the housing. Thus, it is possible to obtain a great effect that the defect rate such as a peeling phenomenon or tilting can be reduced.
[Brief description of the drawings]
FIG. 1 shows a stem for a semiconductor device in an embodiment of the present invention.
(A) is a perspective view (b) is a cross-sectional view taken along the line XX of FIG. 1 (a). FIG. 2 is a detailed cross-sectional view of a manufacturing process of a stem for a semiconductor device according to an embodiment of the present invention. To show
(A) is an assembly cross-sectional view of the base and the insulation lead (b) is an assembly cross-sectional view (c) in which the resin is inserted through the insulation lead wire, and is a completed stem product in which the uncured resin filler is melted and cured. Sectional view (d) is a view showing an uncured resin-filled member obtained by press-molding a synthetic resin-based filler. FIG. 3 is a sectional view showing an assembly of an insulating lead wire and a resin proposed in overcoming the problems of the present invention. 4 shows a manufacturing process of a stem according to a conventional embodiment.
(A) is a diagram showing an uncured resin-filled member obtained by press-molding a synthetic resin-based filler. (B) is an assembly cross-sectional view of an insulating lead wire and a resin. Cross section of the cured stem finished product 【Explanation of symbols】
1, 21, 101 Base 2, 22, 102 Semiconductor element mounting portion 3, 23, 103 Through hole 4, 24, 104 Ground lead wire 5, 25, 105 Insulated lead wire 6, 26, 106 Cured resin filling portion 7, 27, 107 Uneven portion 8, 28a, 28b Unfilled portion 9, 29, 109 near uneven portion Inner wall surface 10, 30, 110 Uncured resin-filled parts 11, 31 Holes for ground lead wire 12, 32 Insulated lead wire Hole

Claims (1)

ベースに一体に形成した半導体レーザ素子の取り付け部及び絶縁リード線、合成樹脂系充填材により充填してなるステムを備えた半導体装置用ステムの製造方法において、粉末状の合成樹脂に粒径を粒度として所定の粒度毎に分級設定された中から選択したフィラーを投入、混合させる工程と、前記フィラーを混合させた前記粉末状の合成樹脂をベース開口部の内径に金型の内径を合わせた金型に入れ、プレス成型により打錠して、前記絶縁リード線に施した凸部の外径より小さく前記絶縁リード線の線径より大きい孔径の絶縁リード線用孔を有する未硬化樹脂充填部品を形成する工程と、ベース開口部側から前記未硬化樹脂充填部品を絶縁リード線に施した凸部まで挿通して組立てる工程と、前記未硬化樹脂充填部品をベース内部にキュアー・成型する際の低温低圧縮する工程とからなることを特徴とした半導体装置用ステムの製造方法。 In a manufacturing method of a semiconductor device stem having a mounting portion of a semiconductor laser element formed integrally with a base, an insulating lead wire, and a stem filled with a synthetic resin filler , the particle size of the powdered synthetic resin is reduced. A step in which a filler selected from among the classification set for each predetermined particle size is added and mixed, and the powdered synthetic resin mixed with the filler is combined with the inner diameter of the base opening to match the inner diameter of the mold An uncured resin-filled part having a hole for an insulation lead wire having a hole diameter smaller than the outer diameter of the convex portion formed on the insulation lead wire and larger than the wire diameter of the insulation lead wire , which is put into a mold and compressed by press molding. forming, a step of assembling by inserting the base opening side to the convex portion subjected to the uncured resin filler pieces to insulated lead wire, cure the uncured resin filled parts inside base The method of manufacturing a semiconductor device for stem characterized by comprising the step of low temperature low compression when-molding.
JP2002222774A 2002-07-31 2002-07-31 Manufacturing method of stem for semiconductor device Expired - Fee Related JP4165143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222774A JP4165143B2 (en) 2002-07-31 2002-07-31 Manufacturing method of stem for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222774A JP4165143B2 (en) 2002-07-31 2002-07-31 Manufacturing method of stem for semiconductor device

Publications (2)

Publication Number Publication Date
JP2004063963A JP2004063963A (en) 2004-02-26
JP4165143B2 true JP4165143B2 (en) 2008-10-15

Family

ID=31942713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222774A Expired - Fee Related JP4165143B2 (en) 2002-07-31 2002-07-31 Manufacturing method of stem for semiconductor device

Country Status (1)

Country Link
JP (1) JP4165143B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991173B2 (en) * 2005-04-27 2012-08-01 京セラ株式会社 Light-emitting element mounting substrate and light-emitting device using the same
CN107271250B (en) * 2017-08-09 2023-05-16 济南大学 Mould for pressing friction and wear test sample
CN115910933A (en) * 2022-11-21 2023-04-04 无锡市博精电子有限公司 Integrated glass packaging tube seat and production process thereof

Also Published As

Publication number Publication date
JP2004063963A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CN101436572B (en) Package for integrated circuit lead
US8153460B2 (en) Surface mount optoelectronic component with lens having protruding structure
US6495083B2 (en) Method of underfilling an integrated circuit chip
US20090050957A1 (en) Semiconductor device and method of manufacturing the same
US5904505A (en) Process for producing encapsulated semiconductor device having metal foil material covering and metal foil
US8481367B2 (en) Method of manufacturing circuit device
WO2000070678A1 (en) Chip package with molded underfill
US10312178B2 (en) Semiconductor device
EP1395101A4 (en) Method of manufacturing electronic part and electronic part obtained by the method
JP2009200416A (en) Semiconductor apparatus and method of manufacturing the same
US20050051927A1 (en) Thermoplastic adhesive preform for heat sink attachment
US5940687A (en) Wire mesh insert for thermal adhesives
JP4165143B2 (en) Manufacturing method of stem for semiconductor device
KR20080096435A (en) Substrate with pin, manufacturing method thereof, and semiconductor product
US20150250063A1 (en) Molded power supply system having a thermally insulated component
TWI658518B (en) Method for manufacturing circuit part and circuit part
US2899611A (en) Capacitor
WO1988006395A1 (en) Process for manufacturing plastic pin grid arrays and the product produced thereby
EP2619810A1 (en) Electronic component
US20220336408A1 (en) Semifinished Product for Populating with Components and, Method for Populating Same with Components
JP2014036046A (en) Mold package, and method of manufacturing the same
JP4204178B2 (en) Manufacturing method of semiconductor device package and semiconductor device package
CN210289455U (en) Injection molding component for vehicle door handle
JP2616471B2 (en) Semiconductor element mounting method
JPS5853169A (en) Lead wire device and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees