JP4164172B2 - Chemical solution for ground injection - Google Patents
Chemical solution for ground injection Download PDFInfo
- Publication number
- JP4164172B2 JP4164172B2 JP28761198A JP28761198A JP4164172B2 JP 4164172 B2 JP4164172 B2 JP 4164172B2 JP 28761198 A JP28761198 A JP 28761198A JP 28761198 A JP28761198 A JP 28761198A JP 4164172 B2 JP4164172 B2 JP 4164172B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- ground
- injection
- aqueous solution
- chemical solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、既設構造物の下の地盤の強化、止水及び/又は液状化防止の地盤改良材として特に有用な地盤注入用薬液、更に詳しくは、コロイダルシリカ又は酸性シリカゾルとは異なり、ホモゲルのゲル化時間が長く、実用的な圧縮強度が得られる地盤注入用薬液に関する。
【0002】
【従来の技術】
従来の地盤注入材としては、水ガラスを主剤としたものが多用され、その硬化剤(ゲル化剤)にはポルトランドセメント、消石灰、鉄鋼スラグ等のカルシウム塩類や、硫酸水素ナトリウム、硫酸マグネシウム等の無機塩類、リン酸等の各種酸類、グリオキザール、エチレンカーボネートなどの有機酸、エステル類が使用されてきた。しかし、水ガラスを使用する方法は、既に多数の文献で紹介されているように、耐久性等に問題があり、仮設材としての価値しか認められていない。そのため水ガラスのアルカリ分を嫌って、水ガラスに酸性反応剤を作用させて中性乃至酸性に調整した薬液を注入する方法が種々提案されている。しかしながら、該注入材を中性付近に調整したものは、瞬時に硬化するため注入材としての施工方法が限定される。また、酸性に調整したものは水ガラスと硬化剤との反応により生ずるNa2SO4等の水溶性の塩類が薬液が固結した後にも溶出することになり、このため地下構造物を腐食したり、あるいは水質変化が生じる等の環境上の問題がある。
【0003】
そこで、コロイダルシリカを主剤とした地盤注入材も幾つか提案されている。例えば、中性のシリカゾルを主剤とし、硬化剤として多価金属の無機塩を含む地盤注入材(特開昭54−73407号公報)、珪酸のコロイド溶液とアルカリ金属中性塩を混合してゲル化時間を20時間以内に調整した注入材を地盤に注入する地盤固結法(特公平2−22115号公報)等が提案されている。また、コロイダルシリカに酸を添加するものとして、pHが4〜7およびゲル化時間が20時間以内に調整された珪酸コロイド溶液を用いることを特徴とする地盤注入工法(特開昭59−93786号公報)、珪酸のコロイド溶液と酸とアルカリ金属中性塩を混合して得られる地盤注入用薬液(特公昭64−8677号公報)、珪酸のコロイド溶液および酸性反応剤を混合して得られる酸性コロイダルシリカと水ガラスとからなる地盤注入用薬液(特公平7−10977号公報)等が提案されている。
【0004】
ここで言うコロイダルシリカは一般的にシリカゾルと称して市販されている商品であり、通常イオン交換樹脂に珪酸ソーダを通して得た活性珪酸を加熱等により安定化したものであって平均粒子径が10〜20nmのものが通常用いられている。
【0005】
一方、酸性シリカゾルやコロイダルシリカとは別に、活性珪酸水溶液を主剤とした地盤改良材も幾つか提案されている。例えば、特公平3−20430号公報及び特公平1−55679号公報には、実質的に塩を含まない活性珪酸水溶液(pH2〜4)を主剤とする地盤改良材が提案されている。
【0006】
これら従来提案されている薬液は、ゲルタイムが長いものでも20時間程度であり、このため一つの注入口から注入できる薬液の量は数立方メートルで、地盤の改良範囲は、たかだか注入孔から半径1m付近までに限られるため、幅が数メートルもあるような既設構造物の下の地盤を改良する場合には、既設構造物の床に多数の穴を空け、そこに薬液を流し込む等の煩雑な手段により地盤の改良が計られる。
【0007】
【発明が解決しようとする課題】
既設構造物の液状化防止対策として、薬液注入工法を用いる場合には、より作業を簡素化するため薬液の地盤への浸透距離の大幅な増大が必要であり、ゲル化時間が極めて長く耐久性の優れた地盤注入用薬液が求められている。
【0008】
水ガラスや酸性シリカゾルを主剤とする注入材は、それ自体の耐久性や注入材に接する構造物の耐久性に問題があること、およびコロイダルシリカを主剤とする注入材は活性珪酸を主剤とする注入材と比較してゲルの強度が弱く、ゲル化時間が長い物ほどゲルの強度が弱い傾向があり、また、実用的な固結強度を得るには、高濃度のシリカ分を必要とするだけでなく、コロイダルシリカは、上記したように、活性珪酸を更に、煩雑な手段により安定化したものもので、工業的には製造工程が複雑となり不利である。
また、これまでに提案された注入材もゲル化時間は長いものでも20時間が限度とされ、本発明が提案するようなホモゲルのゲル化時間が2日以上で、かつ実用的なゲル化強度が得られる地盤注入用薬液はこれまで知られていない。
従って、本発明は、ゲル化時間が長く、かつ実用的な圧縮強度が得られる耐久性の優れた地盤注入用薬液を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、特に既設構造物の下部の地盤を改良する場合に、既設構造物の床に多数の穴を空けずに済むようなゲル化時間が極めて長く耐久性の優れた地盤注入用薬液について鋭意研究を重ねた結果、極めて長いゲル化時間を有しかつ十分なゲル強度が得られる地盤注入材を見出し、本発明を完成するに至った。
即ち、本発明は、活性珪酸水溶液と酸性シリカゾル水溶液とを有効成分とする地盤注入用薬液であって、酸性シリカゾル水溶液の配合割合が、活性珪酸水溶液中の全SiO 2 の2〜200重量%であることを特徴とする地盤注入用薬液を提供するものであり、この本発明の地盤注入用薬液を使用することによって、ホモゲル(地盤注入前の状態で薬液を反応させて得られるゲル)のゲル化時間を極めて長くすることができ、しかも、コロイダルシリカ系のグラウトに比べ、低濃度のシリカ分で実用的なゲルの強度が得られ、更にサンドゲルの圧縮強度も実用的な0.5kgf/cm2以上とすることができ、特に既設構造物の下部の地盤の改良材として有用である。
【0010】
【発明の実施の形態】
本発明の地盤注入用薬液は、活性珪酸水溶液のシリカ源の一部代替、もしくは、安定剤として酸性シリカゾル水溶液を用いたところに特徴がある。
本発明で用いる活性珪酸水溶液は、コロイダルシリカの前駆体と言うべき、不安定な珪酸水溶液で、珪酸ソーダなどの水溶性珪酸塩をイオン交換法、解膠法、電気泳動法、電気透析法等によってアルカリイオンを除去することによって得られ、該水溶液中には実質的に塩を含有しないものである。物性的には、該水溶液のpH2〜4のもので、水溶液中の珪酸原子には縮合に関与できるシラノール基を1コ以上有し、分子量1000以下の珪酸水溶液で、平均分子径がコロイダルシリカより微細な1〜2nmの珪酸縮合体を含有する珪酸水溶液で、SiO2の濃度が12重量%以下、好ましくは、2〜10重量%以下のものが好ましい。
また、本発明では、該活性珪酸水溶液に酸性反応剤を加えて、活性珪酸水溶液を安定化させたものを用いてもよい。この場合、pHを2以下に調整することにより、長時間安定であり、必ずしも現場で製造しなくてもよく、工場で生産することができる。
【0011】
又、本発明で使用する酸性シリカゾルは、珪酸ソーダなどのいわゆる水溶性珪酸塩と硫酸などの酸を混合し、pHを酸性領域として得られるものであり珪酸ソーダに由来する多量のナトリウム成分が含まれるものである。特に酸性シリカゾルとしては、下記の酸性反応剤を加えて酸性とした水溶液に、珪酸ソーダ、珪酸カリ等の珪酸アルカリを加えて生成されるpH4未満、好ましくはpH3未満としたものを用いることが好ましい。
酸性シリカゾル水溶液のpHを4未満とした理由は、本発明で使用する活性珪酸水溶液のpHが通常2〜4であるため、一緒に用いる酸性シリカゾル水溶液がpH4より大きくなると活性珪酸が不安定となってゲル化時間が短くなる傾向があるので好ましくないからである。
【0012】
一方、地盤改良材として広く使用されているコロイダルシリカは、通常珪酸ソーダをイオン交換樹脂に通して得られる活性珪酸に少量のナトリウムイオン等を加えて加熱しシリカの核を形成し、これにさらに活性珪酸を加えて安定化するなどの方法によって、縮合して安定化したもので、通常数nm〜数十nmの粒子径を持ち、pHは4〜10のものであり、ゾル状態、即ちコロイド粒子が液体に分散していて流動性を示している状態のものを言い、本発明で用いる活性珪酸や酸性シリカゾルとは明らかに異なる。
【0013】
上記した活性珪酸および酸性シリカゾルのpHの調整等のために用いる酸性反応剤としては、例えば硫酸、塩酸、リン酸等の無機酸、クエン酸、グルコン酸等の有機酸等が挙げられ、この中、構造物に対して腐食の影響が少ないリン酸が特に好ましく用いられる。
本発明の地盤注入用薬液において活性珪酸水溶液に対する酸性シリカゾル水溶液の配合割合は、通常活性珪酸水溶液中の全SiO2の量を基準としてその2〜200wt%、好ましくは10〜200wt%である。この理由は、酸性シリカゾルの量が、200wt%より大きくなると、酸性シリカゾルに含まれるNa2SO4成分により、地下構造物を腐食したり、水質変化が生じるため好ましくないからである。また、酸性シリカゾル水溶液のSiO2の量が2wt%未満では、混合液のpHが高くなる傾向となり、長いゲル化時間を得ることが困難となる。
本発明にかかる地盤注入用薬液は、pHは4未満、好ましくは2未満のものが好ましい。従って、pHを調整する目的で、上記した酸性反応剤を後に本発明の薬液に添加してもよい。pHを4未満とする理由は、このpHが4より大きくなると、ゲル化時間が短くなる傾向があるためである。また、ホモゲルのゲル化時間は、該地盤注入用薬液のpHにより影響するが、通常2日以上、好ましくは10日以上のものが好ましい。
本発明は、上述のように、pHを調整することによりゲル化時間を任意に調整することができ、そのpH調整は、改良する地盤の特性に応じて適宜選択すればよい。また、本発明の薬液を使用した固結砂の一軸圧縮強度は、JISA1216「土の一軸圧縮試験法」に準じた測定法で、通常0.5kgf/cm2以上が好ましい。
【0014】
また、上記2成分の他に、助剤として、硫酸アルミニウム、塩化マグネシウム、炭酸水素ナトリウム、硫酸マグネシウム、硝酸アルミニウム、リン酸アルミニウム、塩化カリウム、塩化カルシウム等の無機塩が配合されていても差し支えない。
本発明では、更に、例えばEDTA、ポリリン酸塩、ポリカルボン酸等の金属イオン封鎖材、N,N'ジブチルチオ尿素、N,N'ジエチルチオ尿素、ジベンジルスルホキシド、N−ドデシルピリジウムクロライド、N−セチルピリジウムクロライド金属等の腐食防止剤、エチレングリコール、ジエチレングリコール、グリセリン、カゼイン、尿素等の珪酸イオンの重合抑制剤等が配合されていても差し支えない。
【0015】
本発明の薬液の調製方法としては、活性珪酸水溶液に酸性シリカゾル水溶液を加えても、酸性シリカゾル水溶液に活性珪酸水溶液を加えてもよい。更に,必要に応じて、pHを調整するための上記の酸性反応剤および各種助剤を加えて本発明の地盤注入用薬液とすることができる。
本発明の地盤注入用薬液は、ゲル化時間が極めて長いので、例えば、既設構造物の液状化防止、既設構造物下の地盤の強化や止水等の地盤改良材として好適に用いることができる。
【0016】
次に、本発明の地盤改良材を用いた注入工法について説明する。
本発明に係る地盤注入用薬液は、上記したように長いゲル化時間を有するので、注入管内で薬液が固結することがないことから、該薬液の混合方式としては、特に限定なく、例えば、1液1工程注入(1ショット法)、2液1工程注入(1.5ショット法)、2液2工程注入(2ショット法)の何れの混合方式でも差し支えない。
該薬液の注入方式としては、公知の注入方式を適用でき、例えば二重管ストレーナー方式と二重管ダブルパッカー方式等が挙げられる。また、パッカーにより注入管口元をシールすること等により単管ロッド方式でも適用できる。
なお、該薬液は、酸性溶液の状態で使用されるが、通常使用される耐酸性の注入機械を使用することにより、装置等の問題なく注入することができる。
【0017】
本発明の地盤注入用薬液は、ゲル化時間が、従来のものと比べて非常に長いにもかかわらず、実用的な圧縮強度が得られることが最大の特徴である。従って、本発明の地盤注入用薬液は、幅が10m程度の既設構造物であれば、構造物の外周から該薬液を注入することができ、既設構造物の床に穴を空けるような施行方法をとらずにその下部の地盤を改良することができる。また、低い圧力で、長い時間をかけて地盤に注入することができることから、既設構造物や近傍への悪影響を及ぼす恐れが少なく、しかも、浸透注入状態が得られるため、浸透理論による解析が適用でき、注入範囲の予測が可能となる。
【0018】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されるものではない。尚、各実施例中、%は重量パーセントである。
【0019】
<活性珪酸水溶液の調製>
JIS K1408号に規定する珪酸ソーダ3号(JIS珪酸ソーダ3号という)を水で希釈してSiO2濃度を3%に調整した珪酸ソーダ水溶液1500mLを、陽イオン交換樹脂(アンバーライト IR 120B;オルガノ(株)社製)1000mLに通して活性珪酸水溶液を得た。この水溶液のpHは2.5であった。
【0020】
<酸性シリカゾルの調製>
57%硫酸70Lに水430Lを加えた硫酸水溶液を激しく攪拌しながら、これに、JIS珪酸ソーダ3号250Lに水250Lを加えた珪酸ソーダ水溶液500Lを除々に滴下して、酸性シリカゾル水溶液を調製した。この水溶液のpHは1.5、全SiO2濃度は10%であった。
【0021】
実施例1〜2:
上記のようにして得た活性珪酸水溶液とJIS珪酸ソーダ3号の20%水溶液を用いて、表1に示す組成のA液及びB液を調製した。またこのA液とB液を混合した薬液のpH及び及びSiO2濃度を表1に示す。
【0022】
実施例3〜5:
上記のようにして調製した活性珪酸水溶液と酸性シリカゾル水溶液とを用いて、表2に示す組成のA液及びB液を調製した。またこのA液とB液を混合した薬液のpH及びSiO2濃度を表2に示す。
【0023】
【表1】
【0024】
【表2】
【0025】
比較例1〜3
30%コロイダルシリカ水溶液と上記のようにして調製した実施例3〜5と同じ酸性シリカゾル水溶液を用いて表3に示す組成のA液及びB液を調製した。またこのA液とB液を混合した薬液のpH及びSiO2 濃度を表3に示す。
【0026】
【表3】
【0027】
<ホモゲルのゲル化時間の測定>
実施例1〜5及び比較例1〜3で調製したA液及びB液を混合した薬液をそれぞれ容器に移して室温でゲル化反応を行い、ホモゲルが得られるまでのゲル化時間を測定した。その結果を表4に示す。なお、ゲル化時間は、薬液を混合後、容器を傾けても中の薬液が流動しなくなった状態までの時間とした。
【0028】
<サンドゲルの一軸圧縮強度の測定>
また、実施例1〜5及び比較例1〜3で調製したA液及びB液を混合した薬液100mLを、5cmΦ×20cmLの型枠に豊浦標準砂を10cmの高さまで詰めた砂層に注ぎ入れ、砂層の固化反応を行った(サンドゲル)。薬液の注入1日後、7日後、28日後のサンドゲルの一軸圧縮強度をJISA1216に準じて測定した。その結果を表4に示す。
【0029】
【表4】
【0030】
尚、実施例3〜5及び比較例1のサンプルについては、1日後はまだ固化が完了せず一軸圧縮強度は測定できなかった。
表4の結果より、本発明の地盤注入用薬液は、コロイダルシリカと酸性シリカゾルを用いた系と比べて、ホモゲルのゲル化時間が長く、シリカ濃度が低いにもかかわらず実用的な圧縮強度が得られることが分かる。
【0031】
【発明の効果】
上記したとおり、本発明の地盤注入用薬液は活性珪酸水溶液と酸性シリカゾル水溶液とを有効成分とし、従来の地盤注入用薬液と比べて、ホモゲルのゲル化時間が、2日以上という極めて長い時間が得られ、それにも拘わらず1.0kgf/cm2以上という十分に実用的な圧縮強度のものが得られる。
従来の酸性シリカゾル系薬液に比べてNa2SO4等の水溶性塩類の含有量を低減でき、酸性シリカゾルと比べて耐久性を向上することができ、コロイダルシリカ系薬液よりも安価に供給できる。
また、ゲルタイムが極めて長い薬液が作成可能なので、幅が10m程度までの既設構造物であれば、構造物外周から低い圧力で長時間かけて薬液注入でき、既設構造物や近傍の付帯設備などに有害な変状を及ぼすことなく、既設構造物下部の地盤強化や止水が可能となる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a chemical solution for ground injection particularly useful as a ground improvement material for strengthening the ground under existing structures, water stoppage and / or liquefaction prevention, and more specifically, unlike colloidal silica or acidic silica sol, The present invention relates to a chemical solution for ground injection, which has a long gelation time and a practical compressive strength.
[0002]
[Prior art]
As the conventional ground injection material, water glass is mainly used, and its hardener (gelling agent) is calcium salt such as Portland cement, slaked lime, steel slag, sodium hydrogen sulfate, magnesium sulfate, etc. Inorganic salts, various acids such as phosphoric acid, organic acids such as glyoxal and ethylene carbonate, and esters have been used. However, the method of using water glass has problems in durability and the like as already introduced in many documents, and only a value as a temporary material is recognized. For this reason, various methods have been proposed that dislike the alkali content of water glass and inject a chemical solution adjusted to neutral or acidic by causing an acidic reactant to act on the water glass. However, since the injection material adjusted to near neutrality is instantly cured, the construction method as the injection material is limited. In addition, those adjusted to acidity will elute even after water solution salts such as Na 2 SO 4 produced by the reaction between water glass and the curing agent consolidate, which corrode underground structures. Or environmental problems such as water quality changes.
[0003]
In view of this, several ground injection materials based on colloidal silica have been proposed. For example, a ground injection material containing neutral silica sol as a main agent and a polyvalent metal inorganic salt as a curing agent (Japanese Patent Laid-Open No. Sho 54-73407), a colloidal solution of silicic acid and an alkali metal neutral salt are mixed to form a gel A ground consolidation method (Japanese Examined Patent Publication No. 2-22115) or the like in which an injection material whose adjustment time is adjusted within 20 hours is injected into the ground has been proposed. Further, as a material for adding an acid to colloidal silica, a ground injection method characterized by using a colloidal silicic acid solution having a pH of 4 to 7 and a gelation time adjusted within 20 hours (Japanese Patent Laid-Open No. 59-93786). Publication), a chemical solution for ground injection obtained by mixing a colloidal solution of silicic acid, an acid and an alkali metal neutral salt (Japanese Patent Publication No. 64-8677), an acid obtained by mixing a colloidal solution of silicic acid and an acidic reactant. A chemical solution for ground injection made of colloidal silica and water glass (Japanese Patent Publication No. 7-10777) has been proposed.
[0004]
Colloidal silica as used herein is a commercial product generally referred to as silica sol, and is obtained by stabilizing activated silicic acid usually obtained by passing sodium silicate through an ion exchange resin by heating or the like, and has an average particle size of 10 to 10. The one with 20 nm is usually used.
[0005]
On the other hand, apart from acidic silica sol and colloidal silica, several ground improvement materials based on an active silicic acid aqueous solution have been proposed. For example, Japanese Patent Publication No. 3-20430 and Japanese Patent Publication No. 1-55679 propose a ground improvement material mainly composed of an active silicic acid aqueous solution (pH 2 to 4) substantially free of salt.
[0006]
These conventionally proposed chemical solutions have a long gel time of about 20 hours, so the amount of chemical solution that can be injected from one injection port is several cubic meters, and the ground improvement range is at most about 1 m radius from the injection hole. In order to improve the ground beneath existing structures that are several meters in width, complicated means such as making many holes in the floor of existing structures and pouring chemicals there The ground will be improved.
[0007]
[Problems to be solved by the invention]
When using the chemical injection method as a countermeasure to prevent liquefaction of existing structures, it is necessary to significantly increase the penetration distance of the chemical into the ground to further simplify the work, and the gelation time is extremely long and durable. Therefore, there is a demand for an excellent chemical solution for ground injection.
[0008]
The injection material mainly composed of water glass or acidic silica sol has a problem in the durability itself or the durability of the structure in contact with the injection material, and the injection material mainly composed of colloidal silica is based on active silicic acid. The strength of the gel tends to be weaker as the gel strength is weaker and the gelling time is longer than that of the injection material, and a high concentration of silica is required to obtain a practical consolidation strength. In addition, colloidal silica is obtained by further stabilizing activated silicic acid by complicated means as described above, and is disadvantageous because the manufacturing process is complicated industrially.
In addition, the injection material proposed so far is limited to 20 hours even if the gelation time is long, and the gelation time of the homogel as proposed in the present invention is 2 days or more and has a practical gelation strength. So far, there is no known chemical solution for injecting ground.
Accordingly, an object of the present invention is to provide a ground-injection chemical solution having a long gelation time and having excellent durability and a practical compressive strength.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have an extremely long gelation time and excellent durability for ground injection so that a large number of holes do not need to be formed in the floor of the existing structure, especially when improving the lower ground of the existing structure. As a result of intensive studies on the chemical solution, the inventors have found a ground injection material that has an extremely long gelation time and provides sufficient gel strength, and has completed the present invention.
That is, the present invention is a chemical solution for ground injection containing an active silicic acid aqueous solution and an acidic silica sol aqueous solution as active ingredients, and the mixing ratio of the acidic silica sol aqueous solution is 2 to 200% by weight of the total SiO 2 in the active silicic acid aqueous solution. The present invention provides a chemical solution for ground injection , and is a homogel (gel obtained by reacting a chemical solution in a state before ground injection) by using the chemical solution for ground injection of the present invention. In addition to the colloidal silica grout, practical gel strength can be obtained with a low concentration of silica, and the compressive strength of sand gel is also practical 0.5 kgf / cm. It can be set to 2 or more, and is particularly useful as a material for improving the ground below the existing structure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The chemical solution for ground injection according to the present invention is characterized in that a part of the silica source of the active silicic acid aqueous solution is substituted or an acidic silica sol aqueous solution is used as a stabilizer.
The active silicic acid aqueous solution used in the present invention is an unstable silicic acid aqueous solution, which should be called a precursor of colloidal silica, and a water-soluble silicate such as sodium silicate ion exchange method, peptization method, electrophoresis method, electrodialysis method, etc. It is obtained by removing alkali ions by the above method, and the aqueous solution contains substantially no salt. Physically, the aqueous solution has a pH of 2 to 4, and the silicic acid atom in the aqueous solution has at least one silanol group that can participate in condensation, and has a molecular weight of 1000 or less, and has an average molecular diameter of colloidal silica. An aqueous silicic acid solution containing a fine 1 to 2 nm silicic acid condensate having a SiO 2 concentration of 12 wt% or less, preferably 2 to 10 wt% or less.
Moreover, in this invention, you may use what added the acidic reagent to this active silicic acid aqueous solution, and stabilized the active silicic acid aqueous solution. In this case, by adjusting the pH to 2 or less, it is stable for a long time, and does not necessarily have to be produced on site, and can be produced in a factory.
[0011]
In addition, the acidic silica sol used in the present invention is obtained by mixing a so-called water-soluble silicate such as sodium silicate with an acid such as sulfuric acid, and having a pH in an acidic region, and contains a large amount of sodium components derived from sodium silicate. It is what In particular, as the acidic silica sol, it is preferable to use an aqueous solution made acidic by adding the following acidic reactant to an aqueous solution made by adding an alkali silicate such as sodium silicate, potassium silicate, etc., preferably less than pH 4, preferably less than pH 3. .
The reason why the pH of the acidic silica sol aqueous solution is less than 4 is that the active silicic acid aqueous solution used in the present invention has a pH of usually 2 to 4. Therefore, when the acidic silica sol aqueous solution used together becomes larger than pH 4, the active silicic acid becomes unstable. This is because the gelation time tends to be short.
[0012]
On the other hand, colloidal silica, which is widely used as a ground improvement material, forms silica nuclei by heating by adding a small amount of sodium ions to activated silicic acid usually obtained by passing sodium silicate through an ion exchange resin. Condensed and stabilized by a method such as adding active silicic acid to stabilize, usually having a particle size of several nm to several tens of nm, pH of 4 to 10, and a sol state, that is, a colloid The particles are dispersed in a liquid and exhibit fluidity, and are clearly different from the active silicic acid or acidic silica sol used in the present invention.
[0013]
Examples of the acidic reactant used for adjusting the pH of the above active silicic acid and acidic silica sol include inorganic acids such as sulfuric acid, hydrochloric acid and phosphoric acid, and organic acids such as citric acid and gluconic acid. In particular, phosphoric acid that has little influence on the structure is preferably used.
The mixing ratio of the acidic silica sol aqueous solution to the active silicic acid aqueous solution in the chemical solution for ground injection of the present invention is usually 2 to 200 wt%, preferably 10 to 200 wt%, based on the total amount of SiO 2 in the active silicic acid aqueous solution. The reason for this is that if the amount of acidic silica sol exceeds 200 wt%, it is not preferable because the Na 2 SO 4 component contained in the acidic silica sol corrodes the underground structure or changes the water quality. Moreover, when the amount of SiO 2 in the acidic silica sol aqueous solution is less than 2 wt%, the pH of the mixed solution tends to be high, and it is difficult to obtain a long gel time.
The ground injection chemical solution according to the present invention has a pH of less than 4, preferably less than 2. Therefore, for the purpose of adjusting the pH, the above-mentioned acidic reactant may be added later to the chemical solution of the present invention. The reason why the pH is less than 4 is that when the pH is higher than 4, the gelation time tends to be shortened. The gelation time of the homogel is influenced by the pH of the chemical solution for ground injection, but is usually 2 days or longer, preferably 10 days or longer.
As described above, in the present invention, the gelation time can be arbitrarily adjusted by adjusting the pH, and the pH adjustment may be appropriately selected according to the characteristics of the ground to be improved. Further, the uniaxial compressive strength of the consolidated sand using the chemical solution of the present invention is preferably a measurement method according to JIS A1216 “Soil uniaxial compressive test method” and is usually preferably 0.5 kgf / cm 2 or more.
[0014]
In addition to the above two components, an inorganic salt such as aluminum sulfate, magnesium chloride, sodium bicarbonate, magnesium sulfate, aluminum nitrate, aluminum phosphate, potassium chloride, calcium chloride may be blended as an auxiliary agent. .
In the present invention, for example, sequestering materials such as EDTA, polyphosphate, polycarboxylic acid, N, N′dibutylthiourea, N, N′diethylthiourea, dibenzylsulfoxide, N-dodecylpyridinium chloride, N- A corrosion inhibitor such as cetylpyridinium chloride metal, or a polymerization inhibitor of silicate ions such as ethylene glycol, diethylene glycol, glycerin, casein, or urea may be blended.
[0015]
As a method for preparing the chemical solution of the present invention, an acidic silica sol aqueous solution may be added to the active silicic acid aqueous solution, or the active silicic acid aqueous solution may be added to the acidic silica sol aqueous solution. Furthermore, if necessary, the above-described acidic reactant for adjusting pH and various auxiliary agents can be added to obtain the ground injection chemical solution of the present invention.
Since the gel solution for ground injection of the present invention has a very long gelation time, it can be suitably used, for example, as a ground improvement material for preventing liquefaction of an existing structure, strengthening the ground under the existing structure, or stopping water. .
[0016]
Next, an injection method using the ground improvement material of the present invention will be described.
Since the chemical solution for ground injection according to the present invention has a long gelation time as described above, since the chemical solution does not solidify in the injection tube, the mixing method of the chemical solution is not particularly limited, for example, Any mixing method of one-liquid one-step injection (one-shot method), two-liquid one-step injection (1.5-shot method), and two-liquid two-step injection (two-shot method) can be used.
As the injection method of the chemical solution, a known injection method can be applied, and examples thereof include a double tube strainer method and a double tube double packer method. In addition, a single tube rod method can be applied by sealing the inlet port with a packer.
In addition, although this chemical | medical solution is used in the state of an acidic solution, it can inject | pour without a problem of an apparatus etc. by using the acid-resistant injection | pouring machine used normally.
[0017]
The main feature of the chemical solution for ground injection according to the present invention is that a practical compressive strength can be obtained although the gelation time is very long as compared with the conventional one. Therefore, if the chemical liquid for ground injection according to the present invention is an existing structure having a width of about 10 m, the chemical liquid can be injected from the outer periphery of the structure, and a hole is formed in the floor of the existing structure. The ground below it can be improved without taking In addition, since it can be injected into the ground over a long period of time at a low pressure, there is little risk of adverse effects on existing structures and nearby areas, and the infiltration injection state can be obtained, so analysis based on infiltration theory is applied. The injection range can be predicted.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. In each example,% is weight percent.
[0019]
<Preparation of active silicic acid aqueous solution>
1500 mL of sodium silicate aqueous solution prepared by diluting sodium silicate 3 (referred to as JIS sodium silicate 3) specified in JIS K1408 with water to adjust the SiO 2 concentration to 3% was added to a cation exchange resin (Amberlite IR 120B; Organo An active silicic acid aqueous solution was obtained by passing through 1000 mL. The pH of this aqueous solution was 2.5.
[0020]
<Preparation of acidic silica sol>
While vigorously stirring a sulfuric acid aqueous solution in which 430 L of water was added to 70 L of 57% sulfuric acid, 500 L of sodium silicate aqueous solution in which 250 L of water was added to 250 L of JIS sodium silicate 3 was gradually added dropwise to prepare an acidic silica sol aqueous solution. . The pH of this aqueous solution was 1.5, and the total SiO 2 concentration was 10%.
[0021]
Examples 1-2:
Using the active silicic acid aqueous solution obtained as described above and a 20% aqueous solution of JIS sodium silicate No. 3, liquid A and liquid B having the compositions shown in Table 1 were prepared. Table 1 shows the pH and the SiO 2 concentration of the chemical solution obtained by mixing the A solution and the B solution.
[0022]
Examples 3-5:
Using the active silicic acid aqueous solution and the acidic silica sol aqueous solution prepared as described above, liquid A and liquid B having the compositions shown in Table 2 were prepared. Table 2 shows the pH and SiO 2 concentration of the chemical solution obtained by mixing the A solution and the B solution.
[0023]
[Table 1]
[0024]
[Table 2]
[0025]
Comparative Examples 1-3
Liquid A and liquid B having the composition shown in Table 3 were prepared using a 30% colloidal silica aqueous solution and the same acidic silica sol aqueous solution as in Examples 3 to 5 prepared as described above. Table 3 shows the pH and SiO 2 concentration of the chemical solution obtained by mixing the A solution and the B solution.
[0026]
[Table 3]
[0027]
<Measurement of gelation time of homogel>
The chemical solutions obtained by mixing the liquid A and the liquid B prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were transferred to containers and subjected to a gelation reaction at room temperature, and the gelation time until a homogel was obtained was measured. The results are shown in Table 4. The gelation time was defined as the time from mixing the chemical solution to the state where the chemical solution in the container stopped flowing even when the container was tilted.
[0028]
<Measurement of uniaxial compressive strength of sand gel>
In addition, 100 mL of the chemical solution obtained by mixing the liquid A and the liquid B prepared in Examples 1 to 5 and Comparative Examples 1 to 3 was poured into a sand layer packed with Toyoura standard sand to a height of 10 cm in a 5 cmΦ × 20 cmL formwork, The sand layer was solidified (sand gel). The uniaxial compressive strength of the sand gel 1 day, 7 days, and 28 days after the injection of the chemical solution was measured according to JIS A1216. The results are shown in Table 4.
[0029]
[Table 4]
[0030]
In addition, about the sample of Examples 3-5 and the comparative example 1, solidification was not completed yet after one day but the uniaxial compressive strength was not able to be measured.
From the results in Table 4, the chemical solution for ground injection of the present invention has a longer gelation time of homogel and a practical compressive strength despite the low silica concentration compared to the system using colloidal silica and acidic silica sol. You can see that
[0031]
【The invention's effect】
As described above, the chemical solution for ground injection of the present invention comprises an active silicic acid aqueous solution and an acidic silica sol aqueous solution as active ingredients, and the gelation time of the homogel is 2 days or longer as compared with conventional chemical solutions for ground injection. Despite this, a sufficiently practical compressive strength of 1.0 kgf / cm 2 or more can be obtained.
Compared to conventional acidic silica sol chemicals, the content of water-soluble salts such as Na 2 SO 4 can be reduced, durability can be improved compared to acidic silica sols, and it can be supplied at a lower cost than colloidal silica chemicals.
In addition, since a chemical solution with an extremely long gel time can be created, if it is an existing structure with a width of up to about 10 m, the chemical solution can be injected from the outer periphery of the structure at a low pressure over a long period of time. It is possible to strengthen the ground and stop the water under the existing structure without causing any harmful deformation.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28761198A JP4164172B2 (en) | 1998-10-09 | 1998-10-09 | Chemical solution for ground injection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28761198A JP4164172B2 (en) | 1998-10-09 | 1998-10-09 | Chemical solution for ground injection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000109834A JP2000109834A (en) | 2000-04-18 |
JP4164172B2 true JP4164172B2 (en) | 2008-10-08 |
Family
ID=17719521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28761198A Expired - Fee Related JP4164172B2 (en) | 1998-10-09 | 1998-10-09 | Chemical solution for ground injection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4164172B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4507393B2 (en) * | 2000-11-22 | 2010-07-21 | 名古屋カレット株式会社 | Ground hardening method |
JP5200238B2 (en) * | 2006-07-20 | 2013-06-05 | 富士化学株式会社 | Method for producing silica sol |
JP5720060B2 (en) * | 2010-05-19 | 2015-05-20 | 富士化学株式会社 | Method for producing consolidated material for ground injection |
CN114016501B (en) * | 2021-10-20 | 2023-08-11 | 天津大学 | Cement soil compressive strength calculation method considering influence of salt content |
-
1998
- 1998-10-09 JP JP28761198A patent/JP4164172B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000109834A (en) | 2000-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010517923A (en) | Coagulation / curing accelerator for hydraulic binder and preparation method thereof | |
EP0273445B1 (en) | Chemical grout for ground injection and method for accretion | |
JP4679811B2 (en) | Silica solution for ground injection and ground injection method | |
JP4164172B2 (en) | Chemical solution for ground injection | |
JP3091178B2 (en) | Manufacturing method of ground consolidation agent | |
JP3714586B2 (en) | Solidification material for ground injection | |
JP3072346B2 (en) | Ground injection material | |
JPS61256951A (en) | Degradation prevention for set concrete | |
JP3205900B2 (en) | Grout material for ground injection | |
JP2000109835A (en) | Chemical liquid to be injected in soil | |
JP4018942B2 (en) | Silica-based grout and ground improvement method | |
JPS60144382A (en) | Grouting method and grouting apparatus | |
JP4757428B2 (en) | Alkaline silica for solidification of ground, apparatus for producing the same, and ground consolidation material | |
JP3226510B2 (en) | Ground hardening method | |
JP3150380B2 (en) | Ground injection agent and its injection method | |
JP4679787B2 (en) | Ground injection material | |
JP2001031968A (en) | Injection material for ground | |
JPH11269458A (en) | Grout for ground injection | |
JP4094285B2 (en) | Silicate-based soil stabilization chemicals | |
JP2017036659A (en) | Grouting method inhibiting sulfuric acid ion from being eluted into ground | |
JP2853772B2 (en) | Ground injection agent | |
JP3431725B2 (en) | Ground injection agent | |
JPS629155B2 (en) | ||
JP2946478B2 (en) | Ground injection method | |
JPH06330037A (en) | Grouting agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050428 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080728 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130801 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |