JP4163055B2 - Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same - Google Patents

Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same Download PDF

Info

Publication number
JP4163055B2
JP4163055B2 JP2003179987A JP2003179987A JP4163055B2 JP 4163055 B2 JP4163055 B2 JP 4163055B2 JP 2003179987 A JP2003179987 A JP 2003179987A JP 2003179987 A JP2003179987 A JP 2003179987A JP 4163055 B2 JP4163055 B2 JP 4163055B2
Authority
JP
Japan
Prior art keywords
spring
heat
stainless steel
resistant
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003179987A
Other languages
Japanese (ja)
Other versions
JP2005015826A (en
Inventor
直行 川畑
好則 谷本
正治 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Chuo Hatsujo KK
Proterial Ltd
Original Assignee
Nippon Seisen Co Ltd
Chuo Hatsujo KK
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, Chuo Hatsujo KK, Hitachi Metals Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2003179987A priority Critical patent/JP4163055B2/en
Publication of JP2005015826A publication Critical patent/JP2005015826A/en
Application granted granted Critical
Publication of JP4163055B2 publication Critical patent/JP4163055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱ばね、特に自動車、航空機、発電設備等のエンジン系、排気系等のような高温環境下で使用されるばねを形成するために、特に高温での強度と耐へたり性とを改善した耐熱ばね用ステンレス鋼線及びそれを用いてなる耐熱ばね製品に関する。
【0002】
【従来の技術】
自動車エンジンで発生する排ガスを浄化して環境を維持し、またエンジン回転に伴なう騒音低減し、しかも自動車のレスポンス性を向上し、高出力化のためにマフラーが用いられている。
【0003】
このマフラーとして最近では例えば図5に示すように、1〜3個(図5の例では2個)の壁により小室a1,a2、a3に区切りかつ小室a1で開口する排気管bを架け渡して金属製容器cで被包したものであって、流入管dから流入した排ガスが、小径の細穴から小室a2内に流入する際に容積が膨張する容積増幅作用によって、騒音低下等の前記機能を発揮させる。この排ガスは小室a2で開口する側管eをへて小室a1を通り前記排気管bをへて排出される。また前記流入管dと排気管bとに並べてその間には、小室a1,a3とで開口しかつ小室a3端に、エンジンの回転状況、排気の量などに応じて小室a3の内圧が大となるとき内圧に応じて徐々に開放するダンパーfが付設された戻り管gを設けている。なおダンパfは排ガスの流入圧力が大となることによりばねhに抗して開放され、これにより図5に破線で示す戻り管gを通る排ガス通路を生じて排ガス量を増加させる。
【0004】
ところで、近年の自動車性能の飛躍的な向上に伴なって排ガス温度も高温化しそのため、マフラー、付属用部品等、特に前記ばね製品については、高温環境中でも予め設定されたばね特性を維持すべく、耐熱性、耐酸化性などとともに、ばね製品としての弾性、熱による耐へたり性を高めた製品が不可欠となっている。
【0005】
従来、このような高温状態で使用されるばね用材料として、従来、SUS304、SUS316,SUS631,SUS631J1などに代表されるオーステナイト系ステンレス鋼線が用いられ、又JIS−G4311の「耐熱鋼棒」、例えば高NiとしたSUH660などが耐熱材として、ときにばね用途で用いられている。
【0006】
しかし、これらステンレス鋼の耐熱温度はせいぜい400〜500℃程度に留まり、更に高い温度では例えばσ相を形成して高温酸化、熱腐食を発生させ、また高温時には弾性が低下し、繰返し使用に伴なってへたり性が大きくなるなど、寿命面においても満足できないものであり、使用範囲も前記温度以下程度で制約されている。
【0007】
こうした要請に応えるべく、例えば18Cr−3Mo−5NbにTi,Al等を添加したNi基合金のInconel718材(Inconelは登録商標)が提案されている。このものは、C≦0.1,Cr:18.0〜21.0、Co:12.0〜15.0、Mo:3.5〜5.0、Ti:2.0〜4.0%と、Al:1.0〜3.0を含み残部実質的にNiからなるNi基合金である(特許文献1)。
【0008】
また、C:0.02〜0.30%,Si:0.02〜3.5%,Mn:0.02〜2.5%,Ni:10〜50%,Cr:12〜25%,Ti:1.0〜5.0%,Al:0.002〜1.0%を含有し、かつNb:0.1〜3.0%,B:0.001〜0.01%,Mo:0.1〜4.0%の1 種以上を含有して、Ti+Al+Nbが3.0〜7.0%とする耐熱ステンレス鋼線が、耐へたり性を向上するものとして提案されている(特許文献2)。
【0009】
特許文献1 特開2000−109955号公報
特許文献2 特願平11−161574号公報
【0010】
【発明が解決しようとする課題】
しかしながら、例えば前者のInconel718材は、特許文献1に記載のごとくNi基合金製のばね用材料であり、耐熱特性自体は前記SUH660材に比して優れているものの、Niを50%以上含み、さらに12〜15%のCoも含むなど高価であって、しかも溶解、熱間圧延での製造歩留まりが良好とはいえず、生産性も良好とはいえず普及には至っていない。
【0011】
さらに特許文献2の提案によるものは、粒界に析出するη相と、基地であるγ相結晶内に析出するγ’相との重量比を0.01〜30%としている。ところでこのη相と熱へたり性との関係を調べた結果、η相が存在すると高温強度が急激に低下して、熱へたり性は大きくなりやすい傾向にあることが判明した。また、Ti、Al,Nbなどの第三元素において、例えばTi/Alの比を5以上と大きくしたものでは700℃のような高温環境に長時間晒すと、疑安定な前記γ’が有害なη相に変態し、その結果高温強度を低下させることも判明した。
【0012】
したがってこのような材料では、自動車用のマフラーなどの長期に亘って高温に晒され、しかもコストダウンが必須の用途には採用しがたい。
【0013】
本発明は、Fe基のオーステナイト系ステンレス鋼線中の各成分の調整による基地強化とγ’相による析出強化を図りながらη層の生成を抑えるとともに、大して高価格とすることなくばね製品としての加工性と高温環境中でのばねへたり性とを改善し得る耐熱ばね用のステンレス鋼線とそれを用いた耐熱ばね製品の提供を目的としている。
【0014】
【課題を解決するための手段】
本件請求項1に係る発明は、質量%で、C≦0.20%以下、Si≦1.0%、Mn≦2.0%、Ni:25〜30%、Cr:10〜16%、Mo:0.1〜1.0%、Al:1.0を越え2.0%以下、Ti:2.5〜3.5%、Nb:0.1〜0.7%を含み、又は前記組成に加えて、0.02%以内のB,Mg,Caのいずれか1種以上、及び/又は0.2%以内のZrを添加させ、しかも残部を不可避不純物及びFeとし、
かつTi/Al=1.8〜3.2、及び1.8Al+Ti+0.5Nb=4.8〜6.2に調整したステンレス鋼からなり、
しかも溶体化熱処理と該溶体化熱処理後の冷間加工とによって、引張強さが900〜1300MPa、0.2%耐力と前記引張強さとの比(耐力/引張強さ×100)が80〜92%であることを含む特性を有することにより高温耐熱へたり性を向上したことを特徴とする耐熱ばね用ステンレス鋼線である。
【0015】
本件請求項2に係る発明は、横断面におけるJIS−G0551の結晶粒度番号の平均値が、3〜7であること、請求項3に係る発明は、表面に0.2〜5μm厚さのNiメッキによって被覆したことを含むこと、請求項4に係る発明は、600℃×100Hrの加熱におけるη相生成量が、横断面面積比で10%以下であることを含むことを夫々特徴としている。
【0016】
又請求項5に係る発明は、 前記溶体化処理が、下記式(1)により算出した温度(℃)で行い、かつ前記冷間加工は加工率30〜50%の冷間伸線加工であることを特徴とする。
【0017】
温度(℃)={480/(Ti/Al)+(920〜980)}… (1)
【0018】
さらに請求項6に係る発明は、請求項1〜5のいづれかに記載の耐熱ばね用ステンレス鋼線によってコイル巻されたばねからなる耐熱ばね製品であり、請求項7に係る発明は、前記ばねが、コイル巻中心径(D)とこれを構成する前記耐熱ばね用ステンレス鋼線の線径(d)との比(D/d)が、3〜20倍のねじり用ばねであること、請求項8に係る発明は、前記ばねがコイル巻中心径(D)とこれを構成する前記ステンレス鋼線の線径(d)との比(D/d)が、3〜15倍の圧縮コイル用ばねであること、請求項9に係る発明は、前記ばねが、排気管内の排ガス経路切替用として用いられるものであることを特徴としている。
【0019】
【発明の実施の形態】
本発明に係る耐熱ばね用ステンレス鋼線は、その組成として、質量%で、C≦0.20%以下、Si≦1.0%、Mn≦2.0%、Ni:25〜30%、Cr:10〜16%、Mo:0.1〜1.0%、Al:1.0を越え2.0%以下、Ti:2.5〜3.5%、Nb:0.1〜0.7%を含み、又は前記組成に加えて、0.02%以内のB,Mg,Caのいずれか1種以上、及び/又は0.2%以内のZrを添加させ、しかも残部を不可避不純物及びFeとしたステンレス鋼である
【0020】
不可避不純物」として、金属組成において避け得ない不可避不純物の存在を認めている。前記組成に加えて、0.02%以内のB,Mg,Caのいずれか1種以上の添加、及び/又は0.2%以内のZrの添加させることは、前記B、Zrの添加は粒界強化作用による高温での強度を高め、他方、前記CaやMgは熱間加工時の延性を改善するとともに、高温引張りを向上することで有効である。
【0021】
さらに、耐熱ばね用ステンレス鋼線においては、Ti/Al=1.8〜3.2とし、かつ1.8Al+Ti+0.5Nb=4.8〜6.2に調整している。通常、これらAl,Ti及びNbの添加は、その後の時効処理などによって母材中のNiと化合した金属間化合物γ’相(Ni3(Al,Ti,Nb))を析出させ、高温強度を高めることができるが、一方ではγ’はより安定なη相に変化しやすく、それに伴なって高温強度を低下させる要因ともなっている。
【0022】
したがって、特に使用温度が600〜800℃での高温特性を長時間にわたって安定維持させる為には前記γ’をより安定な状態で存在させる必要があり、前者関係式(Ti/Al)でη相の生成を抑えながらも、後者関係式(1.8Al+Ti+0.5Nb)によって高温引張り強度を維持させることが好ましいとの結論に至り、両者の最適範囲として、各々1.8〜3.2と、4.8〜6.2とした。
【0023】
すなわち、前記成分のステンレス鋼において、前者Ti/Alの関係が3.2を越えるものでは、η相の生成が比較的低い温度で起こり、一方、1.8を下回るように小さくすると各成分同士のバランスを損ねて、加工性低下などの問題の原因となり、より好ましくは2.0〜3.0とする。
【0024】
また、後者の1.8Al+Ti+0.5Nbについても、4.8未満では高温引張り強度が満足できず、逆に6.2を越える程大きいと熱間加工性が低下することとなってコストアップの要因となり、より好ましくは5.2〜5.8とする。
【0025】
こうして調整されたステンレス鋼は、溶体化熱処理と冷間加工、例えば冷間伸線加工によって所定線径に加工し、この冷間加工によって引張強さ900〜1300MPaの半硬質状態でありながらも、0.2%耐力と引張強さとの耐力比(0.2%耐力/引張強さ×100)を80〜92%とする。
【0026】
すなわち、一般的なばね用ステンレス鋼線を規定している例えばJIS−G4314では、引張強さとして約1600〜2200MPaの高強度にすることとし、高強度化によってばね弾性を向上させている。しかし、高温環境に晒されることを前提とする金属材料では、熱によって材料強度が低下(軟化)しやすい傾向を有するが、この時の強度低下率、即ち熱へたり率は、1300MPaを越える程高くした引張強さでは低下率が大きくなり、一方、当初強度が900MPa未満のものではばね材料として弾性を欠き好ましくないことから、ばね用鋼線として十分な弾性を発揮する引張強さとして900〜1300MPa(好ましくは、1000〜1200MPa)の範囲に設定している。
【0027】
しかも、このような比較的低い引張り強度を補足する必要から、前記耐力比を高くすることによって、結果的にばねとしての必要な弾性効果を発揮させる。このため、前記耐力比の範囲を80〜93%としている。即ち、前記耐力比が80%未満のものでは弾性特性が十分とは言えず所定のばね応力が発揮できず、また93%を越える程大きくしたものでは、使用環境温度に伴なう熱へたり率が大きくなって、寿命低下の原因となる。
【0028】
この耐力比を、一般的なばね用ステンレス鋼線、例えばSUS304ステンレス鋼線と比較すると、SUS304鋼線を仮に本発明の引張強度と同等程度の引張強さとなるように加工した場合の耐力比は60〜70%程度と低く、また、これを更に加工した硬質仕上げのものでも約80%よりも小に留まるものであったことから、本発明の前記組成、特性の高強度ステンレス鋼線の弾性特性が優れていることが解る。このように、本発明の耐熱ばね用ステンレス鋼線は、比較的低い強度でありながらもSUS304の硬質線材よりも高い耐力比を有しており弾性特性に優れているものと言える。耐力比でより好ましくは83〜93、さらには85〜93である。
【0029】
こうした機械的特性とする為には、前記組成の調整とともに該鋼線の横断面における結晶粒度の大きさの平均値を3〜7の粗大結晶にするのがよい。この結晶粒度の大きさ表示については、JIS−G0551に規定の計測方法、基準に基づき、例えば粒度番号3とは結晶粒の断面積が0.0156mm2 、また同粒度番号7では0.00098mm2 に相当する大きさとされている。なおその測定においては、鋼線の横断面を顕微鏡観察によって任意に選択した10点以上の結晶粒について測定した値を換算し、その平均値で示すこととする。
【0030】
このような粗大結晶粒度は、例えばオーステナイト系ステンレス鋼では通常の熱処理状態で得られるものと同程度のものであって、仮にこれを前記強度が得られる程度の伸線加工をしたものでは、その加工に伴って長手方向に伸びた長形の結晶粒に変化し、横断面方向での結晶粒大きさも微細化するにも拘わらず、本発明では、実質的に熱処理状態と同程度の前記範囲を有するものである。
【0031】
一方、前記η相(Ni3Ti:HCP構造)については、例えば図4に示すように、樹枝状に粒界に生成する組織であって、加熱温度の上昇に伴なって結晶中の疑安定なγ’(Ni3(Al,Ti,Nb))が変化することにより生ずる。このη相が析出すると高温での強度が急激に低下し、耐熱へたり性が低下して寿命が短くなることから、本発明では、少なくとも600℃×100Hrでのη相の析出量が、横断面面積比で10%以下、好ましくは5%以下にすることが好ましい。その為に、予め調整されたステンレス鋼材料を選定し、かつ所定の引張強さ及び耐力比になる条件での溶体化熱処理、冷間加工を施す。
【0032】
また前記η相は、例えば10%シュウ酸溶液中での電解エッチングや、王水など強酸溶液中に浸して腐食させ、顕微鏡による通像解析、あるいはTEM(Trasmission Electron Microscope)などでの残器分析によって確認できる。
【0033】
このような特性を持つ本発明のステンレス鋼線を得るには、前記調整された組成のステンレス鋼を所定線径になるまで伸線加工と熱処理をくり返し、さらに最終の溶体化熱処理を、 温度(℃)={480/(Ti/Al)+950}で、具体的には{480/(Ti/Al)}+(920〜980)}の許容範囲の温度条件で行って結晶粒を粗大にした上で冷間伸線するのがよく、さらに好ましくは鋼線の表面に0.2〜5μm程度のNiメッキが残留するように皮膜処理し、伸線加工、その後のばね成形加工での潤滑性を高める。また、前記伸線加工としては例えば30〜50%程度の比較的低い加工率で行なわれる。
【0034】
高強度ステンレス鋼線は、単に冷間加工した前記鋼線を所定長さにカットし、コイリング加工などばね成形したままのもの、あるいはその後に、例えば温度600〜750℃×30min.〜24Hr.程度の条件でエージング処理を施し、より強度向上を図ることも好ましい。
【0035】
なお高強度ステンレス鋼線の組成において、Cは、鋼線中のCrやNと結合して炭窒化物を形成し高温強度を高めることで有効であるが、多量に含有すると耐食性を低下させる原因となる。この為、その上限を0.20%とし、好ましくは0.02〜0.08%としている。
【0036】
Siは、溶解時の脱酸剤として用いられ、固溶することで耐熱特性を高めることとなるが、過度の添加は高温強度を低下させることとなる為、1.0%以下、好ましくは0.5%以下とする。
【0037】
またMnについても前記Siと同様に脱酸剤として用いられ、母材ステンレス鋼のγ相の相安定元素として有効であるが、2.0%を越える程の添加は高温環境での組織安定性、耐酸化性に弊害をもたらす。
【0038】
Niは、安定したオーステナイト相をもたらし高温強度を高めることとなるが、25%以下では耐熱性が得られにくく、また30%を越える程の添加は価格上昇の原因となることから25〜30%、好ましくは26〜28%とする。
【0039】
Crは、鋼線に耐食性と耐酸化性を付与する上で必須の元素であり、耐熱ばねとして高温環境での使用に耐える為には少なくとも10%は必要であり、一方、16%を越える程多量に含有すると組織的不安定となって、クリープ破断強度や延性の低下をもたらすことから10〜16%とし、好ましくは12.5〜14.5%とする。
【0040】
Moは、オーステナイト相内に固溶し、高温強度を高めるとともに耐へたり性を向上する有効な元素であり、600℃以上の高温環境で所定の耐へたり性をもたせる為には少なくとも0.1以上の添加が必要である。しかし、1.0%以上添加すると伸線加工性やコイリング加工性を低下させ、また組織的不安定による耐食性への影響が懸念されることから0.1〜1.0%、より好ましくは0.2〜0.6%とする。
【0041】
Alは、鋼中に金属間化合物Ni3(Al,Ti)γ’相を析出させ、析出硬化による分散強化現象によって材料の強度や耐力を高めることから少なくとも1.0%を越える添加が必要であるが、2.0%を越えると熱間加工性が低下し、また介在物発生による耐食性低下などの原因となることから1.0%を越えて2.0%とし、好ましくは1.2〜1.4%とする。
【0042】
Tiは、前記AlやNbとともにNiに結合してγ’相を生じさせ高温強度を高めることとなるが、多量に添加するとη相の析出を促進し耐熱特性を低下させることとなることから、本発明では、2.5〜3.5%とした。
【0043】
Nbも前記AlやTiなどと同様にγ’相による高温強度を高める上で必要で、少なくとも0.1%以上の添加とするが、NbはFeに固溶しにくく、0.7%以下とした。
【0044】
高強度ステンレス鋼線を用いて、例えばコイリング加工されることによりコイル巻きされたコイルばねからなる耐熱ばね製品を形成する。前記コイルばねからなる耐熱ばね製品は、コイルばねの利点として、用いるステンレス鋼線の全体に亙ってほぼ均等に圧力が加わることから、局部変形を防ぐことができ、また該ばねにおけるコイル中心径(D)と用いるステンレス鋼線の線径(d)との比率(D/d)を適宜調整することで、最適なばね発生力や弾性特性を得ることができる利点がある。
【0045】
バネの形状や寸法については、これを用いる用途などから適宜設定できるものであり、例えばばねの軸方向に沿って応力を作用させるようにコイル巻した圧縮コイルばねや、密着巻きしてなる引張コイルばね等の他、例えば図6のようにばねの両端部の線材を突出させ、この突出部同士に周方向の応力が付加するようにしたねじりコイルばねとしても形成できる。又トーションバーとして用いることもでき、高強度ステンレス鋼線を平坦処理することにより板ばね状とするなど、種々なばね製品とすることもできる。
【0046】
またばねの形成寸法についても何等限定するものではないが、例えばその用途が図5に例示したマフラー内ダンパー開閉用のばねhとして用いるものでは、0.3〜3mmのステンレス鋼線により、20mm以下の径に巻回したものが用いられ、特に前記ねじりコイルばねとしては、前記ばね比率(D/d)を3〜20とし、一方圧縮ばねにあっては3〜15とすることによりステンレス鋼線自体にかかる付加応力が比較的小さく疲労特性が安定する。特に、前記D/d比率を必要以上に大きくしたものでは十分なはね発生力が得られにくく、又3を下回るものでは、成形加工が困難となる。
【0047】
こうして成形されたばねは、そのまま使用してもよいが、そのバネ特性をさらに向上させる為に低温熱処理を施すことが好ましい。この低温熱処理は、例えば温度550〜750℃、さらには600〜700℃×10分〜5時間の条件で行うのが好ましく、雰囲気は大気中でも無酸化雰囲気中であってもよい。この場合、該バネに一定の応力が付加できるようにした状態で低温熱処理することによって、ばね特性を向上させることもできる。
【0048】
こうして製造された例えば図6のばねhは、排気管内の排ガス切替用として例えば図5に示すようなマフラー内の戻り管gの小室a1に位置する端部のダンパーfをねじり力により押圧し、エンジン回転数の上昇に伴って送られる排気ガスが一次側の小室a3内に充満し、その室内圧力が前記ばねfの弾性以上に達した時に該バネhによって押圧封鎖されていた前記ダンパーfが圧力に応じて開放し、新たな破線で示す流路を形成する。
【0049】
したがって、ガスの充満圧力と前記ばねhの弾性特性との関係付けが適正となるように予め調整することにより、マフラーの性能は常に安定したものとなり、しかも、前記ねじりコイルバネは設置スペースが小さく、また取付け容易でしかも大きな発生力を得ることができる。
【0050】
【実施例】
以下、前記ステンレス鋼線及びそれによる耐熱ばねについて以下のテストを行った。
【0051】
まず、高周波真空誘導炉で溶製し熱間圧延を施して線径5.5mmとした表1に示す化学組成の本発明に係る実施例材(試料A1〜A4)、並びに比較例材として、Inconel 718合金と、SUH660、及び本願発明の組成とはMo,Al量が異なる線材(試料B1〜B3)を選定した。これら各線材に各々冷間伸線加工と熱処理を繰り返しながら細径化して、最終加工率(30〜65%)を考慮した2種類の中間素線径にした後、これを温度1150℃で連続熱処理を行ない、得られた軟質素線を出発材料とした。
【0052】
【表1】

Figure 0004163055
【0053】
次に、この軟質素線をスルファミン酸ニッケル浴によるメッキ法によって、表面にNi層を形成し、これを潤滑剤として加工率40%,60%での連続伸線加工(冷間伸線)を行い、目標仕上線径各々2.4mmのステンレス鋼線を得た。得られた各鋼線の機械的特性を表2に示す。
【0054】
【表2】
Figure 0004163055
【0055】
この結果に見られるように、実施例材の試料A1〜A4は、いずれの加工率のものも引張強さ900〜1300N/mm2 で比較例材よりも若干低いものの、0.2%耐力値が大きくまた耐力/引張強さ×100で示される耐力比についても比較鋼線よりも優れ改善されていた。
【0056】
また、実施例材の結晶組織を観察した結果、40%加工品では4〜6、また60%加工品でも6〜7の横断面結晶粒度を有するものであり、比較例材よりも大きい結晶組織を有するものであった。その要因としては、前記成分調整とともに冷間加工前の熱処理を十分に行ったことによるものと推測される。
【0057】
又その縦断面での結晶組織について観察したところ、前記伸線加工によってその長手方向に沿って若干引き伸ばされた程度のオーステナイト組織が確認され、この結晶組織について任意に抽出された各結晶粒の長さ寸法(L)と幅寸法(d)との比、すなわちL/d×100の結晶アスペクト比の平均値を求めたところ、1.5〜8倍程度であった。
【0058】
そこでこれらステンレス鋼線のばね特性を評価する為、次の試験を行った。
【0059】
(試験1) 時効処理温度に伴なう引張強さと耐力の増減特性
前記冷間加工したステンレス鋼線は通常、ばね形状に成形した後、ばね強度を高める為に、通常、時効処理が施されることから、評価項目として時効処理温度に伴なう引張強さ、耐力の変化を調査した。試験は、各試料について600〜800℃まで50℃毎に処理し調べたものであって、加熱時間は4Hrとした。
【0060】
図1に見られるように、実施例材A1は試験温度600〜750℃の範囲でほぼ安定しているのに対し、例えば比較例材B1のSUH660は温度650℃で最大を示しながらもそれ以降急激に低下している。このことから、本発明の高強度ステンレス鋼線は 時効処理温度に伴なう引張強さと耐力の増減特性において優れている。
【0061】
(試験2) 鋼線の高温引張特性
図2は、試験1の時効条件(600℃〜800℃)で処理した実施例材A1を実際の使用状態を想定した特性試験として、環境温度600℃に加熱された状態で引張強さがどのように変化するかを比較したものであり、比較試料として、前記比較例材B1を選択した。
【0062】
これら結果から明らかなように、実施例材A1はいずれの温度においても引張強さの低下率が小さく、特に加工率40%の700℃では12%と優れている。他方、比較例材B1は、加工率による差はあまり見られず、また温度700℃のもので低下率15%を示したが、それ以外の温度はいずれも18%を越え、熱影響を受け易いものであることが分かる。
【0063】
(試験3) ばねの熱へたり試験
図3は、環境温度雰囲気中おけるばねとしての熱へたり特性を調べたものであり、ばねは前記実施例材A2と比較例材B1,B3の3種類の鋼線について、外径19mm、有効巻数4.6、ばね長さ40mmのコイルばねを試作した。これを600N/mm2 の圧縮荷重を付加して100Hr放置した後、荷重を外した時のばね長さと、当初のばね長さとの比率で示したものであって、数値が大きいもの程、大きく変化したことを示している。
【0064】
この結果に見られるように、比較例材B1は周囲温度の上昇に伴なってへたり率が放物線的に増加しているが、実施例材A1ではへたり率の上昇は少なく、比較例材B3のInconel 718と同等の特性を発揮した。このことから、本発明の高強度ステンレス鋼線は組成的に、比較例材B3に比して安価であるに拘わらず、へたりの少ない寿命向上できるばね製品を提供できる。
【0065】
(試験4) 顕微鏡組織調査
前記試験3で用いたばねについて、環境温度に伴なうη相の生成量の変化を、600℃と700℃で100Hr処理したものを王水でエッチングした顕微鏡組織を画像解析し、面積比を求めた。
【0066】
実施例材A1のばねは、600℃×100Hrでは面積比2.3%と非常に少なく、また700℃でも8.2%であり、前記優れた耐熱へたり性の発揮に寄与していると推定できる。比較例材B1のばねは、600℃で6.8%、700℃では14.2%の析出が確認された。
【0067】
(試験5)
次に、ねじりばね(トーションばね)としての特性を評価するために、試験3で用いた実施例材A1と比較例材B3の線径2.4mmの鋼線を用いて同ばねを製作した。
【0068】
ばねは、図5のマフラーダンパー開閉用として用いる場合、例えばコイル内径9.5mm、巻数14.7、自由角度254度とした図6に示すように密着成形したトーションコイルばねhであり、730℃×4Hrの時効処理をしている。この各ばねを応力負荷装置にセットし所定の締付け応力を加えた状態における環境温度と放置時間の違いによるトルク減少率の変化を見た。その結果を図7及び図8に示している。
【0069】
図7は、締付け応力596N/mm2 を負荷したまま試験温度600℃の環境中に所定時間放置した時のトルク減少率の変化を見たものであり、50Hr経過後いずれのばねも緩やかに上昇しているが、実施例材A1のばねの減少率が小さく優れていることが分かる。
【0070】
また図8は、同様の応力で締め付けたまま試験温度500〜650℃に変化させ、100Hr放置したものであり、図7の場合と同様に実施例材A1のばねがすぐれた結果となった。特に温度が高い程優位性が認められ、更にこうしたトーションばねにおける最適な時効処理温度を残留剪断歪から検証したところ、700〜750℃(好ましくは710〜740℃)とするのが最も優れた結果となった。
【0071】
これら結果から明らかなように、本発明の耐熱ステンレス鋼線は、incone1 718と同等以上の耐熱性を備えながらもコスト性、加工性に優れ、特にねじりばねとしたときのばね特性が優れていることが判明した。
【0072】
【発明の効果】
以上説明したように、本発明の耐熱ばね用ステンレス鋼線は、Mo,Al,Ti,Nbを含むとともに、1.8Al+Ti+0.5NbとTi/Alとを各々所定範囲に調整した組成のステンレス鋼に、熱処理と所定の冷間加工を施こし、1000〜1350MPaの引張強さと80〜93%の耐力比を有することから、引張強さに比してより大きな弾性をもたせることとなり、600℃以上の高温環境温度においても優れた熱へたり性を発揮することができる。
【0073】
また耐熱ばね用ステンレス鋼線はinconel 718のように高価なNi、Cr、Mo、Nbの分量を抑え、また溶解歩留りや比較的少ない加工率での冷間加工による製造歩留まりが向上して妥当な範囲のコスト低下も可能となる。
【0074】
したがって、このステンレス鋼によって形成したばね製品は、優れた耐熱性と必要な弾性特性を備えたコイルばねにすることができ、これを排気ガスの経路切替用として、例えばマフラー内のダンパー開閉器に付設することで安定したマフラー性能を持たせることができる。
【図面の簡単な説明】
【図1】本発明の鋼線の時効処理温度に伴なう引張強さの特性比較図である。
【図2】環境温度600℃での引張強さの低下率の変化を示す図である。
【図3】試験温度に伴なう熱へたり率の変化を示す図である。
【図4】η相を示す鋼線の横断面写真(200倍)の一例である。
【図5】(A)はマフラーの構造を示す斜視図、(B)はダンバーを例示する斜視図である。
【図6】ばね試験に用いたねじりばねを例示する斜視図である。
【図7】図6のねじりばねにおける試験時間とトルク減少率の変化を示す図である。
【図8】図6のねじりばねにおける加熱温度とトルク減少率の変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
In order to form a heat-resistant spring, particularly a spring used in a high-temperature environment such as an engine system, an exhaust system, etc. of an automobile, an aircraft, a power generation facility, etc. The present invention relates to a stainless steel wire for heat-resistant springs and a heat-resistant spring product using the same.
[0002]
[Prior art]
Purifies the exhaust gas generated by automobile engines to maintain the environment, and the noise associated with engine rotationTheA muffler is used to reduce the vehicle's responsiveness and improve output.
[0003]
As this muffler, for example, as shown in FIG. 5, recently, an exhaust pipe b that is divided into small chambers a1, a2, and a3 and opened in the small chamber a1 is spanned by 1 to 3 walls (two in the example of FIG. 5). The above-mentioned functions such as noise reduction by the volume amplification function that expands when the exhaust gas flowing in from the inflow pipe d flows into the small chamber a2 from the small-diameter narrow hole is encapsulated in the metal container c. To demonstrate. The exhaust gas is discharged through the side pipe e opened in the small chamber a2 and through the small chamber a1 through the exhaust pipe b. Further, the internal pressure of the small chamber a3 becomes large depending on the rotational state of the engine, the amount of exhaust gas, etc. at the end of the small chamber a3 and between the inflow pipe d and the exhaust pipe b. A return pipe g provided with a damper f that gradually opens according to the internal pressure is provided. The damper f is opened against the spring h when the inflow pressure of the exhaust gas becomes large, thereby generating an exhaust gas passage through the return pipe g indicated by a broken line in FIG. 5 to increase the amount of exhaust gas.
[0004]
By the way, the exhaust gas temperature has also become higher with the dramatic improvement of automobile performance in recent years. Therefore, the muffler, accessory parts, etc., especially the spring products, are heat resistant in order to maintain the preset spring characteristics even in a high temperature environment. Products that have improved elasticity and heat resistance as well as elasticity and heat resistance as spring products are indispensable.
[0005]
Conventionally, as a spring material used in such a high temperature state, conventionally, an austenitic stainless steel wire typified by SUS304, SUS316, SUS631, SUS631J1, etc. is used, and “heat-resistant steel rod” of JIS-G4311, For example, high-Ni SUH660 is sometimes used as a heat-resistant material for springs.
[0006]
However, the heat-resistant temperature of these stainless steels remains at most about 400 to 500 ° C., and at higher temperatures, for example, a σ phase is formed to cause high-temperature oxidation and thermal corrosion. In other words, it is unsatisfactory in terms of life, for example, the sagability is increased, and the range of use is limited to about the above temperature or less.
[0007]
In order to meet such a demand, for example, an Inconel 718 material (Inconel is a registered trademark) of Ni-based alloy in which Ti, Al or the like is added to 18Cr-3Mo-5Nb has been proposed. This is C ≦ 0.1, Cr: 18.0 to 21.0, Co: 12.0 to 15.0, Mo: 3.5 to 5.0, Ti: 2.0 to 4.0% And Al: 1.0-3.0, the balance being a Ni-based alloy substantially consisting of Ni (Patent Document 1).
[0008]
Further, C: 0.02 to 0.30%, Si: 0.02 to 3.5%, Mn: 0.02 to 2.5%, Ni: 10 to 50%, Cr: 12 to 25%, Ti : 1.0 to 5.0%, Al: 0.002 to 1.0%, and Nb: 0.1 to 3.0%, B: 0.001 to 0.01%, Mo: 0 A heat-resistant stainless steel wire containing 0.1 to 4.0% of one or more and Ti + Al + Nb of 3.0 to 7.0% has been proposed as improving sag resistance (Patent Documents) 2).
[0009]
Patent Document 1 JP 2000-109955 A
Patent Document 2 Japanese Patent Application No. 11-161574
[0010]
[Problems to be solved by the invention]
However, for example, the former Inconel 718 material is a spring material made of a Ni-based alloy as described in Patent Document 1, and the heat resistance itself is superior to that of the SUH660 material, but contains 50% or more of Ni, Furthermore, it is expensive because it contains 12 to 15% Co. Moreover, it cannot be said that the production yield in melting and hot rolling is good, and the productivity is not good, so that it has not spread.
[0011]
Further, according to the proposal of Patent Document 2, the weight ratio between the η phase precipitated at the grain boundary and the γ ′ phase precipitated in the base γ phase crystal is 0.01 to 30%. By the way, as a result of investigating the relationship between this η phase and heat sagability, it was found that when η phase is present, the high-temperature strength rapidly decreases and the heat sagability tends to increase. Further, in the case of a third element such as Ti, Al, Nb, etc., when the ratio of Ti / Al is increased to 5 or more, for example, when exposed to a high temperature environment such as 700 ° C. for a long time, the above-mentioned stable γ ′ is harmful. It has also been found that it transforms into the η phase, resulting in a decrease in high temperature strength.
[0012]
Therefore, it is difficult to use such a material for an application that is exposed to a high temperature for a long period of time, such as an automobile muffler, and that requires cost reduction.
[0013]
The present invention suppresses the formation of the η layer while improving the base strengthening by adjusting each component in the Fe-based austenitic stainless steel wire and the precipitation strengthening by the γ ′ phase, and as a spring product without greatly increasing the price. The purpose of the present invention is to provide a stainless steel wire for a heat-resistant spring capable of improving workability and spring sagability in a high-temperature environment, and a heat-resistant spring product using the same.
[0014]
[Means for Solving the Problems]
  The invention according to claim 1 is mass%, C ≦ 0.20% or less, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 25-30%, Cr: 10-16%, Mo : 0.1-1.0%, Al: more than 1.0 and 2.0% or less, Ti: 2.5-3.5%, Nb: 0.1-0.7%In addition to or in addition to the above composition, any one or more of B, Mg, Ca within 0.02% and / or Zr within 0.2% is added, and the balance is inevitable impurities and Fe,
  And made of stainless steel adjusted to Ti / Al = 1.8 to 3.2 and 1.8Al + Ti + 0.5Nb = 4.8 to 6.2,
  Moreover, due to the solution heat treatment and the cold working after the solution heat treatment, the tensile strength is 900 to 1300 MPa, and the ratio of 0.2% proof stress to the tensile strength (proof strength / tensile strength × 100) is 80 to 92. It is a stainless steel wire for heat-resistant springs that has improved high-temperature heat-resistant sagability due to having characteristics including%.
[0015]
The invention of claim 2 is,sideThe average value of the grain size number of JIS-G0551 in the cross section is 3 to 7, and the invention according to claim 3 includes that the surface is coated with Ni plating having a thickness of 0.2 to 5 μm, The invention according to item 4 is characterized in that the η phase generation amount in heating at 600 ° C. × 100 Hr includes that the cross-sectional area ratio is 10% or less.
[0016]
In the invention according to claim 5, the solution treatment is performed at a temperature (° C.) calculated by the following formula (1), and the cold working is cold drawing with a working rate of 30 to 50%. It is characterized by that.
[0017]
Temperature (° C.) = {480 / (Ti / Al) +(920-980)} ... (1)
[0018]
The invention according to claim 6 is a heat-resistant spring product comprising a spring coiled by the stainless steel wire for heat-resistant spring according to any one of claims 1 to 5, and the invention according to claim 7 is characterized in that the spring is The ratio (D / d) between the coil winding center diameter (D) and the wire diameter (d) of the stainless steel wire for heat-resistant spring constituting the coil winding diameter is 3 to 20 times torsion spring. In the invention according to the present invention, the ratio (D / d) between the coil winding center diameter (D) and the wire diameter (d) of the stainless steel wire constituting the spring is 3 to 15 times.For compression coilThe invention according to claim 9 that is a spring is characterized in that the spring is used for switching an exhaust gas path in an exhaust pipe.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  The stainless steel wire for heat-resistant springs according to the present invention has a composition of mass%, C ≦ 0.20% or less, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 25-30%, Cr : 10-16%, Mo: 0.1-1.0%, Al: more than 1.0 and 2.0% or less, Ti: 2.5-3.5%, Nb: 0.1-0.7 %In addition to or in addition to the above composition, any one or more of B, Mg, and Ca within 0.02% and / or Zr within 0.2% is added, and the balance is inevitable impurities and Fe Stainless steel.
[0020]
  "`` Inevitable impurities '' admitted the presence of inevitable impurities in the metal composition. In addition to the above composition, addition of at least one of B, Mg and Ca within 0.02% and / or addition of Zr within 0.2%That isThe addition of B and Zr increases the strength at high temperature due to the grain boundary strengthening action, while Ca and Mg are effective in improving ductility during hot working and improving high-temperature tension.The
[0021]
Furthermore, in the stainless steel wire for heat-resistant springs, Ti / Al = 1.8 to 3.2 and 1.8Al + Ti + 0.5Nb = 4.8 to 6.2. Usually, the addition of these Al, Ti and Nb precipitates an intermetallic compound γ ′ phase (Ni3 (Al, Ti, Nb)) combined with Ni in the base material by subsequent aging treatment, etc., and increases the high temperature strength. However, on the other hand, γ ′ is likely to change to a more stable η phase, which is accompanied by a decrease in high-temperature strength.
[0022]
Therefore, in order to stably maintain the high temperature characteristics at a working temperature of 600 to 800 ° C. over a long period of time, it is necessary to make γ ′ exist in a more stable state, and the η phase is expressed by the former relational expression (Ti / Al). It is concluded that it is preferable to maintain the high-temperature tensile strength by the latter relational expression (1.8Al + Ti + 0.5Nb) while suppressing the generation of bismuth, and the optimum ranges of both are 1.8 to 3.2 and 4 respectively. .8 to 6.2.
[0023]
That is, in the stainless steel of the above component, when the former Ti / Al relationship exceeds 3.2, the formation of η phase occurs at a relatively low temperature. This causes a problem such as deterioration of workability and more preferably 2.0 to 3.0.
[0024]
Further, the latter 1.8Al + Ti + 0.5Nb also cannot satisfy the high-temperature tensile strength if it is less than 4.8, and conversely if it exceeds 6.2, the hot workability deteriorates, causing a cost increase. And more preferably 5.2 to 5.8.
[0025]
The stainless steel thus adjusted is processed into a predetermined wire diameter by solution heat treatment and cold working, for example, cold drawing, and even though it is in a semi-rigid state with a tensile strength of 900 to 1300 MPa by this cold working, The yield strength ratio between the 0.2% yield strength and the tensile strength (0.2% yield strength / tensile strength × 100) is 80 to 92%.
[0026]
That is, for example, in JIS-G4314 that defines a general stainless steel wire for springs, the tensile strength is increased to about 1600 to 2200 MPa, and the spring elasticity is improved by increasing the strength. However, a metal material premised on being exposed to a high temperature environment has a tendency that the strength of the material is easily lowered (softened) by heat, but the strength reduction rate at this time, that is, the heat sag rate exceeds 1300 MPa. The higher the tensile strength, the greater the decrease rate, while the initial strength is 900 MPa.Less thanSince the spring material lacks elasticity and is not preferable, the tensile strength that exhibits sufficient elasticity as a spring steel wire is set in the range of 900 to 1300 MPa (preferably 1000 to 1200 MPa).
[0027]
Moreover, since it is necessary to supplement such a relatively low tensile strength, the necessary elastic effect as a spring is exhibited as a result by increasing the yield ratio. For this reason, the range of the yield strength ratio is 80 to 93%. That is, if the yield ratio is less than 80%, the elastic characteristics are not sufficient and the predetermined spring stress cannot be exerted. If the yield ratio is greater than 93%, the heat build-up due to the ambient temperature increases. The rate increases and causes a reduction in life.
[0028]
When this yield strength ratio is compared with a general stainless steel wire for springs, such as a SUS304 stainless steel wire, the yield strength ratio when the SUS304 steel wire is processed to have a tensile strength equivalent to the tensile strength of the present invention is The hardness of the high strength stainless steel wire having the above composition and characteristics of the present invention is low because it is as low as about 60 to 70%, and even a hard finish obtained by further processing it is less than about 80%. It can be seen that the characteristics are excellent. Thus, it can be said that the stainless steel wire for heat-resistant springs of the present invention has a higher yield strength ratio than the hard wire of SUS304 and is excellent in elastic characteristics while having a relatively low strength. The yield strength ratio is more preferably 83 to 93, and even more preferably 85 to 93.
[0029]
In order to obtain such mechanical characteristics, it is preferable to adjust the composition and make the average value of the crystal grain size in the cross section of the steel wire 3 to 7 coarse crystals. Regarding the display of the crystal grain size, based on the measurement method and standard specified in JIS-G0551, for example, the grain size number 3 is 0.0156 mm in the cross-sectional area of the crystal grain.2In the same grain size number 7, 0.00098mm2The size is equivalent to. In the measurement, the values measured for 10 or more crystal grains arbitrarily selected by microscopic observation of the cross section of the steel wire are converted and indicated by the average value.
[0030]
Such coarse crystal grain size is, for example, about the same as that obtained in a normal heat treatment state in austenitic stainless steel, and if this is drawn to such an extent that the above strength is obtained, In the present invention, the above range is substantially the same as the heat treatment state despite the fact that the crystal grains change in the longitudinal direction along with the processing and change in size in the cross-sectional direction. It is what has.
[0031]
On the other hand, the η phase (Ni3Ti: HCP structure) is a structure formed at the grain boundary in a dendritic manner, for example, as shown in FIG. 4, and is a suspicious γ in the crystal as the heating temperature increases. '(Ni3 (Al, Ti, Nb)) is generated by changing. When this η phase is precipitated, the strength at high temperature is drastically decreased, the heat sagability is reduced and the life is shortened. Therefore, in the present invention, the amount of η phase deposited at least at 600 ° C. × 100 Hr is transverse. The surface area ratio is 10% or less, preferably 5% or less. For this purpose, a pre-adjusted stainless steel material is selected, and a solution heat treatment and a cold working are performed under conditions that provide a predetermined tensile strength and yield strength ratio.
[0032]
The η phase is, for example, electrolytic etching in a 10% oxalic acid solution,aqua regiaIt can be confirmed by immersion analysis in a strong acid solution or the like, and image analysis using a microscope, or residual analysis using a TEM (Transmission Electron Microscope).
[0033]
In order to obtain the stainless steel wire of the present invention having such characteristics, the stainless steel having the adjusted composition is repeatedly subjected to wire drawing and heat treatment until a predetermined wire diameter is obtained, and the final solution heat treatment is performed at a temperature ( ° C) = {480 / (Ti / Al) +950}, specifically, the crystal grains were coarsened by performing the temperature conditions within the allowable range of {480 / (Ti / Al)} + (920 to 980)}. It is better to cold-draw at the top, and more preferably, the surface of the steel wire is coated so that Ni plating of about 0.2 to 5 μm remains, and the lubricity in wire drawing and subsequent spring forming To increase. Further, the wire drawing is performed at a relatively low processing rate of about 30 to 50%, for example.
[0034]
The high-strength stainless steel wire is simply a cold-worked steel wire that has been cut into a predetermined length and remains spring-formed, such as coiling, or, for example, at a temperature of 600 to 750 ° C. × 30 min. -24Hr. It is also preferable to perform an aging treatment under such conditions to further improve the strength.
[0035]
In the composition of high-strength stainless steel wire, C is effective by combining with Cr and N in the steel wire to form a carbonitride to increase the high-temperature strength. It becomes. For this reason, the upper limit is made 0.20%, preferably 0.02 to 0.08%.
[0036]
Si is used as a deoxidizing agent at the time of dissolution, and when it is dissolved, the heat resistance is improved. However, excessive addition reduces the high-temperature strength, so 1.0% or less, preferably 0 .5% or less.
[0037]
Mn is also used as a deoxidizer in the same way as Si, and is effective as a phase-stable element for the γ phase of the base stainless steel. However, the addition of more than 2.0% is structural stability in a high-temperature environment. This has a negative effect on oxidation resistance.
[0038]
Ni provides a stable austenite phase and increases the high-temperature strength. However, if it is 25% or less, it is difficult to obtain heat resistance, and addition exceeding 30% causes an increase in price. , Preferably 26 to 28%.
[0039]
Cr is an essential element for imparting corrosion resistance and oxidation resistance to steel wires.As a springIn order to endure use in a high temperature environment, at least 10% is necessary. On the other hand, if it is contained in a large amount exceeding 16%, it becomes structurally unstable and causes a decrease in creep rupture strength and ductility. 16%, preferably 12.5 to 14.5%.
[0040]
Mo is an effective element that dissolves in the austenite phase to increase the high-temperature strength and improve the sag resistance. In order to have a predetermined sag resistance in a high-temperature environment of 600 ° C. or higher, Mo is at least 0. One or more additions are required. However, 1.0% or moreTheIf added, the wire drawing workability and coiling workability are lowered, and the influence on the corrosion resistance due to structural instability is concerned. Therefore, 0.1 to 1.0%, more preferably 0.2 to 0.6%. And
[0041]
Al precipitates the intermetallic compound Ni3 (Al, Ti) γ 'phase in the steel and increases the strength and proof strength of the material by the dispersion strengthening phenomenon due to precipitation hardening, so it is necessary to add more than 1.0%. However, if it exceeds 2.0%, the hot workability is deteriorated and the corrosion resistance is reduced due to inclusions. Therefore, it exceeds 1.0% to 2.0%, preferably 1.2 to 1.4%.
[0042]
Ti binds to Ni together with Al and Nb to form a γ 'phase and increases the high-temperature strength, but if added in a large amount, precipitation of η phase is promoted and heat resistance is reduced. In the present invention, it is 2.5 to 3.5%.
[0043]
Nb is also necessary for increasing the high-temperature strength due to the γ ′ phase as in the case of Al and Ti, and at least 0.1% or more is added, but Nb hardly dissolves in Fe and is 0.7% or less. did.
[0044]
Using a high-strength stainless steel wire, for example, a heat-resistant spring product comprising a coil spring coiled by coiling is formed. The heat-resistant spring product composed of the coil spring has an advantage of the coil spring that pressure is applied almost uniformly over the entire stainless steel wire to be used, so that local deformation can be prevented and the coil center diameter in the spring can be prevented. By appropriately adjusting the ratio (D / d) between (D) and the wire diameter (d) of the stainless steel wire to be used, there is an advantage that optimum spring generation force and elastic characteristics can be obtained.
[0045]
The shape and dimensions of the spring can be set as appropriate depending on the application using the spring. For example, a compression coil spring wound in a coil so that stress is applied along the axial direction of the spring, or a tension coil formed by tight winding In addition to a spring or the like, for example, as shown in FIG. 6, it can be formed as a torsion coil spring in which wire rods at both ends of the spring are protruded and circumferential stress is applied to the protrusions. It can also be used as a torsion bar, and can be made into various spring products such as a flat spring shape by flattening a high-strength stainless steel wire.
[0046]
Further, the formation dimension of the spring is not limited in any way. For example, when the use is used as the spring h for opening and closing the damper in the muffler illustrated in FIG. 5, the stainless steel wire of 0.3 to 3 mm is 20 mm or less. In particular, as the torsion coil spring, the spring ratio (D / d) is set to 3 to 20, while the compression spring is set to 3 to 15 to obtain a stainless steel wire. The applied stress on itself is relatively small and the fatigue characteristics are stabilized. In particular, when the D / d ratio is increased more than necessary, it is difficult to obtain a sufficient splashing force, and when the ratio is less than 3, molding is difficult.
[0047]
The spring formed in this way may be used as it is, but it is preferable to perform a low-temperature heat treatment in order to further improve the spring characteristics. This low-temperature heat treatment is preferably performed, for example, under conditions of a temperature of 550 to 750 ° C., further 600 to 700 ° C. × 10 minutes to 5 hours, and the atmosphere may be in the air or in a non-oxidizing atmosphere. In this case, the spring characteristics can be improved by performing low-temperature heat treatment in a state where a certain stress can be applied to the spring.
[0048]
For example, the spring h of FIG. 6 manufactured in this way presses the damper f at the end located in the small chamber a1 of the return pipe g in the muffler as shown in FIG. The damper f, which is pressed and sealed by the spring h when the exhaust gas sent as the engine speed increases, fills the small chamber a3 on the primary side and the chamber pressure reaches the elasticity of the spring f or higher. It opens according to pressure and forms a flow path indicated by a new broken line.
[0049]
Therefore, by adjusting in advance so that the relationship between the gas filling pressure and the elastic characteristics of the spring h is appropriate, the performance of the muffler is always stable, and the torsion coil spring has a small installation space, Further, it is easy to install and a large generated force can be obtained.
[0050]
【Example】
Hereinafter, the following tests were performed on the stainless steel wire and the heat-resistant spring thereby.
[0051]
First, as an example material (samples A1 to A4) according to the present invention having a chemical composition shown in Table 1 that was melted in a high-frequency vacuum induction furnace and hot-rolled to a wire diameter of 5.5 mm, and a comparative example material, Wire rods (samples B1 to B3) having Mo and Al contents different from those of the Inconel 718 alloy, SUH660, and the composition of the present invention were selected. Each of these wires is reduced in diameter while repeating cold wire drawing and heat treatment to obtain two intermediate wire diameters considering the final processing rate (30 to 65%), and then this is continuously performed at a temperature of 1150 ° C. Heat treatment was performed, and the obtained soft strand was used as a starting material.
[0052]
[Table 1]
Figure 0004163055
[0053]
Next, a Ni layer is formed on the surface of this soft wire by a plating method using a nickel sulfamate bath, and this wire is used as a lubricant for continuous wire drawing (cold wire drawing) at a processing rate of 40% and 60%. And a stainless steel wire having a target finished wire diameter of 2.4 mm was obtained. Table 2 shows the mechanical properties of the obtained steel wires.
[0054]
[Table 2]
Figure 0004163055
[0055]
As can be seen from these results, the samples A1 to A4 of the example materials have tensile strengths of 900 to 1300 N / mm regardless of the processing rate.2Although it was slightly lower than the comparative example material, the 0.2% proof stress value was large, and the proof stress ratio indicated by proof stress / tensile strength × 100 was also improved over the comparative steel wire.
[0056]
Moreover, as a result of observing the crystal structure of the example material, the 40% processed product has a cross-sectional grain size of 4 to 6 and the 60% processed product has a cross-sectional crystal grain size of 6 to 7, which is larger than that of the comparative example material. It was what had. This is presumably because the heat treatment before cold working was sufficiently performed together with the component adjustment.
[0057]
Further, when the crystal structure in the longitudinal section was observed, an austenite structure of a degree slightly stretched along the longitudinal direction was confirmed by the wire drawing, and the length of each crystal grain arbitrarily extracted with respect to this crystal structure. When the ratio of the length dimension (L) to the width dimension (d), that is, the average value of the crystal aspect ratio of L / d × 100, was obtained, it was about 1.5 to 8 times.
[0058]
Therefore, the following test was conducted to evaluate the spring characteristics of these stainless steel wires.
[0059]
(Test 1) Increase / decrease characteristics of tensile strength and proof stress with aging temperature
Since the cold-worked stainless steel wire is usually formed into a spring shape, it is usually subjected to an aging treatment in order to increase the spring strength.itemThe changes in tensile strength and proof stress with aging temperature were investigated. The test was performed by examining each sample from 600 to 800 ° C. every 50 ° C., and the heating time was 4 Hr.
[0060]
As seen in FIG. 1, the example material A1 is almost stable in the range of the test temperature of 600 to 750 ° C., whereas the SUH660 of the comparative example material B1 shows the maximum at the temperature of 650 ° C., but thereafter It has dropped rapidly. For this reason, the high-strength stainless steel wire of the present invention is excellent in the increase / decrease characteristics of tensile strength and proof stress accompanying aging treatment temperature.
[0061]
(Test 2) High-temperature tensile properties of steel wires
FIG. 2 shows how the tensile strength of Example Material A1 treated under the aging conditions of Test 1 (600 ° C. to 800 ° C.) was measured at an environmental temperature of 600 ° C. as a characteristic test assuming an actual use state. The comparison material B1 was selected as a comparative sample.
[0062]
As is clear from these results, Example Material A1 has a small decrease in tensile strength at any temperature, and is particularly excellent at 12% at 700 ° C. at a processing rate of 40%. On the other hand, comparative material B1 showed little difference due to the processing rate, and showed a decrease rate of 15% at a temperature of 700 ° C., but all other temperatures exceeded 18% and were affected by heat. It turns out that it is easy.
[0063]
(Test 3) Spring sag test
Figure 3 shows the ambient temperatureInThe heat sag characteristics as a spring in the spring were investigated, and the springs were the above-mentioned Example material A2 and Comparative Example material B1,B3A coil spring having an outer diameter of 19 mm, an effective winding number of 4.6, and a spring length of 40 mm was prototyped for the three types of steel wires. This is 600 N / mm2This is the ratio between the spring length when the load is removed and the initial spring length after being left to stand for 100 hours after adding the compression load. The larger the value, the greater the change. Yes.
[0064]
As seen in this result,Comparative Example Material B1Although the sag rate increased parabolically with the increase in ambient temperature, the increase in the sag rate was small in Example Material A1, and the same characteristics as Inconel 718 of Comparative Example Material B3 were exhibited. From this fact, the high strength stainless steel wire of the present invention can provide a spring product that can improve the life with less sag despite being compositionally cheaper than the comparative material B3.
[0065]
(Test 4) Microscopic investigation
Regarding the spring used in Test 3, the microscopic structure obtained by etching the change in the amount of η phase produced with the ambient temperature at 600 ° C. and 700 ° C. for 100 hours with aqua regia was subjected to image analysis to obtain the area ratio. It was.
[0066]
The spring of Example material A1 has a very small area ratio of 2.3% at 600 ° C. × 100 Hr, and 8.2% even at 700 ° C., which contributes to the display of the excellent heat sag resistance. Can be estimated. In the spring of the comparative material B1, 6.8% precipitation at 600 ° C. and 14.2% precipitation at 700 ° C. were confirmed.
[0067]
(Test 5)
Next, in order to evaluate the characteristics as a torsion spring (torsion spring), the spring was manufactured using the steel wire having a wire diameter of 2.4 mm of Example material A1 and Comparative example material B3 used in Test 3.
[0068]
When used for opening and closing the muffler damper in FIG. 5, the spring is a torsion coil spring h formed by close contact as shown in FIG. 6 having a coil inner diameter of 9.5 mm, a winding number of 14.7, and a free angle of 254 degrees, and is 730 ° C. * 4Hr aging treatment. Each spring was set in a stress load device, and a change in torque reduction rate due to a difference in environmental temperature and standing time was observed in a state where a predetermined tightening stress was applied. The results are shown in FIGS.
[0069]
FIG. 7 shows the tightening stress of 596 N / mm2The change in the torque reduction rate when left for a predetermined time in an environment at a test temperature of 600 ° C. with a load applied. Both springs gradually rose after 50 hours had passed. It can be seen that the reduction rate of the spring is small and excellent.
[0070]
FIG. 8 shows the test temperature changed to 500 to 650 ° C. while being tightened with the same stress and left for 100 hours. The result is that the spring of Example material A1 was excellent as in FIG. In particular, the higher the temperature, the greater the superiority. Further, when the optimum aging treatment temperature in such a torsion spring was verified from the residual shear strain, the most excellent result was 700 to 750 ° C. (preferably 710 to 740 ° C.). It became.
[0071]
As is clear from these results, the heat-resistant stainless steel wire of the present invention has heat resistance equivalent to or higher than that of incone 1 718, and is excellent in cost and workability, and particularly excellent in spring characteristics when used as a torsion spring. It has been found.
[0072]
【The invention's effect】
As described above, the stainless steel wire for heat-resistant springs of the present invention includes Mo, Al, Ti, and Nb, and is made of stainless steel having a composition in which 1.8Al + Ti + 0.5Nb and Ti / Al are adjusted to a predetermined range. The heat treatment and the predetermined cold working are performed, and since it has a tensile strength of 1000 to 1350 MPa and a proof stress ratio of 80 to 93%, it has a greater elasticity than the tensile strength, and is 600 ° C. or higher. Excellent heat settling can be achieved even at high ambient temperatures.
[0073]
Stainless steel wire for heat-resistant springs is reasonable because it suppresses the amount of expensive Ni, Cr, Mo, and Nb, as in inconel 718, and improves the manufacturing yield due to melting yield and cold working at a relatively low processing rate. The cost of the range can be reduced.
[0074]
Therefore, the spring product formed of stainless steel can be a coil spring having excellent heat resistance and necessary elastic characteristics, and this can be used, for example, as a damper switch in a muffler for switching the exhaust gas path. By attaching, it can have a stable muffler performance.
[Brief description of the drawings]
FIG. 1 is a characteristic comparison diagram of tensile strength with aging treatment temperature of a steel wire of the present invention.
FIG. 2 is a diagram showing a change in the rate of decrease in tensile strength at an environmental temperature of 600 ° C.
FIG. 3 is a diagram showing a change in heat sag rate with test temperature.
FIG. 4 is an example of a cross-sectional photograph (200 ×) of a steel wire showing the η phase.
5A is a perspective view illustrating a structure of a muffler, and FIG. 5B is a perspective view illustrating a damper.
FIG. 6 is a perspective view illustrating a torsion spring used in a spring test.
7 is a diagram showing changes in test time and torque reduction rate in the torsion spring of FIG. 6; FIG.
8 is a graph showing changes in heating temperature and torque reduction rate in the torsion spring of FIG. 6. FIG.

Claims (9)

質量%で、C≦0.20%以下、Si≦1.0%、Mn≦2.0%、Ni:25〜30%、Cr:10〜16%、Mo:0.1〜1.0%、Al:1.0を越え2.0%以下、Ti:2.5〜3.5%、Nb:0.1〜0.7%を含み、又は前記組成に加えて、0.02%以内のB,Mg,Caのいずれか1種以上、及び/又は0.2%以内のZrを添加させ、しかも残部を不可避不純物及びFeとし、
かつTi/Al=1.8〜3.2、及び1.8Al+Ti+0.5Nb=4.8〜6.2に調整したステンレス鋼からなり、
しかも溶体化熱処理と該溶体化熱処理後の冷間加工とによって、引張強さが900〜1300MPa、0.2%耐力と前記引張強さとの比(耐力/引張強さ×100)が80〜92%であることを含む特性を有することにより高温耐熱へたり性を向上したことを特徴とする耐熱ばね用ステンレス鋼線。
% By mass, C ≦ 0.20% or less, Si ≦ 1.0%, Mn ≦ 2.0%, Ni: 25-30%, Cr: 10-16%, Mo: 0.1-1.0% Al: more than 1.0 and not more than 2.0%, Ti: 2.5-3.5%, Nb: 0.1-0.7% included, or in addition to the above composition, within 0.02% Any one of B, Mg, Ca and / or Zr within 0.2% is added, and the balance is inevitable impurities and Fe,
And made of stainless steel adjusted to Ti / Al = 1.8 to 3.2 and 1.8Al + Ti + 0.5Nb = 4.8 to 6.2,
Moreover, due to the solution heat treatment and the cold working after the solution heat treatment, the tensile strength is 900 to 1300 MPa, and the ratio of 0.2% proof stress to the tensile strength (proof strength / tensile strength × 100) is 80 to 92. % Stainless steel wire for heat-resistant springs, which has improved high-temperature heat-resistant sagability by having characteristics including
横断面におけるJIS−G0551の結晶粒度番号の平均値が、3〜7であることを含む請求項1に記載の耐熱ばね用ステンレス鋼線。 The stainless steel wire for heat-resistant springs according to claim 1, wherein the average value of the grain size number of JIS-G0551 in the cross section is 3-7. 表面に0.2〜5μm厚さのNiメッキによって被覆したことを含む請求項1又は2に記載の耐熱ばね用ステンレス鋼線。 The stainless steel wire for heat-resistant springs according to claim 1 or 2, comprising covering the surface with Ni plating having a thickness of 0.2 to 5 µm. 600℃×100Hrの加熱におけるη相生成量が、横断面面積比で10%以下であること含む請求項1〜3のいづれかに記載の耐熱ばね用ステンレス鋼線。 Η phase the amount of heating of 600 ° C. × 100 Hr is resistant spring stainless steel wire according to either of claims 1 to 3 containing 10% or less in cross-sectional area ratio. 前記溶体化処理は、下記式(1)により算出した温度(℃)で行い、かつ前記冷間加工は加工率30〜50%の冷間伸線加工であることを特徴とする請求項1〜4のいずれかに記載の耐熱ばね用ステンレス鋼線。
温度(℃)={480/(Ti/Al)+(920〜980)}… (1)
2. The solution treatment is performed at a temperature (° C.) calculated by the following formula (1), and the cold working is cold drawing at a working rate of 30 to 50%. 4. A stainless steel wire for a heat-resistant spring according to any one of 4 above.
Temperature (° C.) = {480 / (Ti / Al) + (920-980) } (1)
請求項1〜5のいづれかに記載の耐熱ばね用ステンレス鋼線によってコイル巻されたばねからなる耐熱ばね製品。A heat-resistant spring product comprising a spring coiled with the stainless steel wire for a heat-resistant spring according to any one of claims 1 to 5. 前記ばねは、コイル巻中心径(D)とこれを構成する前記耐熱ばね用ステンレス鋼線の線径(d)との比(D/d)が、3〜20倍のねじり用ばねであることを特徴とする請求項6に記載の耐熱ばね製品。The spring is a torsion spring having a ratio (D / d) of a coil winding center diameter (D) to a wire diameter (d) of the stainless steel wire for heat-resistant spring constituting the coil winding center diameter (D). The heat-resistant spring product according to claim 6. 前記ばねは、コイル巻中心径(D)とこれを構成する前記ステンレス鋼線の線径(d)との比(D/d)が、3〜15倍の圧縮コイル用ばねであることを特徴とする請求項6に記載の耐熱ばね製品。The spring is a compression coil spring having a ratio (D / d) of a coil winding center diameter (D) and a wire diameter (d) of the stainless steel wire constituting the coil winding to 3 to 15 times. The heat-resistant spring product according to claim 6. 前記ばねは、排気管内の排ガス経路切替用として用いられるものである請求項7又は8に記載の耐熱ばね製品。The heat-resistant spring product according to claim 7 or 8, wherein the spring is used for switching an exhaust gas path in an exhaust pipe.
JP2003179987A 2003-06-24 2003-06-24 Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same Expired - Lifetime JP4163055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179987A JP4163055B2 (en) 2003-06-24 2003-06-24 Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179987A JP4163055B2 (en) 2003-06-24 2003-06-24 Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same

Publications (2)

Publication Number Publication Date
JP2005015826A JP2005015826A (en) 2005-01-20
JP4163055B2 true JP4163055B2 (en) 2008-10-08

Family

ID=34181160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179987A Expired - Lifetime JP4163055B2 (en) 2003-06-24 2003-06-24 Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same

Country Status (1)

Country Link
JP (1) JP4163055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146876A1 (en) 2012-03-29 2013-10-03 新日鐵住金ステンレス株式会社 High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755432B2 (en) * 2005-03-15 2011-08-24 日本精線株式会社 Alloy wire for heat resistant spring and heat resistant coil spring for high temperature environment using the same
JP4413951B2 (en) * 2007-07-06 2010-02-10 日本特殊陶業株式会社 Spark plug
CN102031461A (en) * 2010-10-22 2011-04-27 重庆仪表材料研究所 Heat-resisting alloy with high yield ratio, high toughness and long-run elasticity stability
CN114134428B (en) * 2020-09-04 2023-02-17 宝武特种冶金有限公司 Nickel-saving iron-based high-temperature alloy for engine valve and manufacturing method thereof
CN113122780B (en) * 2021-04-19 2022-08-16 深圳市泛海统联精密制造股份有限公司 Material and manufacturing process of dental appliance and dental appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146876A1 (en) 2012-03-29 2013-10-03 新日鐵住金ステンレス株式会社 High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same

Also Published As

Publication number Publication date
JP2005015826A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP6259579B2 (en) High-strength stainless steel wire, high-strength spring, and method of manufacturing the same
US6478897B1 (en) Heat-resistant alloy wire
US8460482B2 (en) Heat-resistant alloy spring and Ni-based alloy wire therefor
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JPWO2019172000A1 (en) Method for producing Ni-base superheat-resistant alloy and Ni-base superheat-resistant alloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
JPH07109539A (en) Fe-ni-cr-based superalloy, engine valve and knit mesh for exhaust gas catalyst
WO2017104755A1 (en) Metal gasket and production method therefor
US20040184946A1 (en) High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
JP4163055B2 (en) Stainless steel wire for heat-resistant springs and heat-resistant spring products using the same
JP2008075119A (en) Alloy wire for heat resistant spring, and heat resistant spring product using the same
JP6741876B2 (en) Alloy plate and gasket
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
WO2014104138A1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JP2002256395A (en) High strength and low thermal expansion alloy having excellent twisting and alloy wire thereof
JP4169231B2 (en) High heat resistant alloy wire for spring and high heat resistant alloy spring using the same
JP3752563B2 (en) Heat resistant spheroidal graphite cast iron
JP3977847B2 (en) Heat resistant alloy for engine valves
US7481970B2 (en) Heat resistant alloy for use as material of engine valve
JPH10140279A (en) Co-ni-base alloy
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP4180753B2 (en) Fe-base heat-resistant alloy with excellent cold workability and high-temperature heat stability
JP4755432B2 (en) Alloy wire for heat resistant spring and heat resistant coil spring for high temperature environment using the same
JPH11199987A (en) Heat resistant alloy suitable for cold working
WO2023067850A1 (en) Spring wire comprising co-ni-cr-mo alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term