JP4161724B2 - Vehicle steering system - Google Patents

Vehicle steering system Download PDF

Info

Publication number
JP4161724B2
JP4161724B2 JP2003020053A JP2003020053A JP4161724B2 JP 4161724 B2 JP4161724 B2 JP 4161724B2 JP 2003020053 A JP2003020053 A JP 2003020053A JP 2003020053 A JP2003020053 A JP 2003020053A JP 4161724 B2 JP4161724 B2 JP 4161724B2
Authority
JP
Japan
Prior art keywords
actuator
abnormality
operating
elasticity
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020053A
Other languages
Japanese (ja)
Other versions
JP2004230975A (en
Inventor
良平 葉山
武夫 飯野
尚武 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003020053A priority Critical patent/JP4161724B2/en
Publication of JP2004230975A publication Critical patent/JP2004230975A/en
Application granted granted Critical
Publication of JP4161724B2 publication Critical patent/JP4161724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、操作部材を車輪に機械的に連結することなく、操作部材の操作に応じて舵角を変化させることができる所謂ステアバイワイヤシステムを採用した車両用操舵装置に関する。
【0002】
【従来の技術】
ステアバイワイヤシステムを採用した操舵装置においては、ステアリングホイールを模した操作部材を車輪に機械的に連結することなく、操舵用アクチュエータの動きを舵角変化が生じるように車輪に伝達している。そのように操作部材を車輪に機械的に連結しない場合、セルフアライニングトルクにより操作部材を直進操舵位置に復帰させることができない。そのため、操作用アクチュエータを用いて操作部材を直進操舵位置に復帰させている。
【0003】
そのような操作用アクチュエータが故障した時の操作部材の異常な動きを防止するため、操作用アクチュエータの異常検知手段を設け、異常検知時に操作用アクチュエータの発生力の操作部材への作用を解除するフェールセーフ手段が必要になる。しかし、操作用アクチュエータの発生力の操作部材への作用を解除すると、操作部材を自動的に直進操舵位置に復帰させることができなくなる。そこで、操作部材を直進操舵位置に復帰させる弾力を発生する弾性部材を備えた弾力付与機構を設けることが考えられる(特許文献1参照)。
【0004】
【特許文献1】
特開2000−53008号公報
【0005】
【発明が解決しようとする課題】
しかし、従来の弾力付与機構は操作部材に弾力を常時作用させる構造であった。すなわち、操作用アクチュエータの異常時だけでなく正常時にも弾力が操作部材に作用する。そのため、車速等の車両走行条件に応じた力が操作部材に作用するように操作用アクチュエータを制御する際に、操作用アクチュエータの応答性が弾力の影響により低下し、操舵フィーリングが低下するという問題がある。
本発明は上記問題を解決することのできる車両用操舵装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の車両用操舵装置は、操作部材と、前記操作部材に作用する力を発生する操作用アクチュエータと、操舵用アクチュエータと、前記操舵用アクチュエータの動きを、前記操作部材を車輪に機械的に連結することなく、舵角変化が生じるように前記車輪に伝達する機構と、前記操作部材の操作に応じて前記操作用アクチュエータと前記操舵用アクチュエータを制御する制御装置と、前記操作用アクチュエータの異常検知手段と、その異常検知時に前記操作用アクチュエータの発生力の操作部材への作用を解除する手段と、前記操作部材を直進操舵位置に復帰させる弾力を発生する弾力付与機構と、前記操作部材への前記弾力の作用を、前記異常検知までは阻止すると共に前記異常検知時に阻止解除する弾力制御機構とを備える。
本発明によれば、操作用アクチュエータの異常時に操作部材を弾力により直進操舵位置に復帰させることができ、しかも、その弾力は操作用アクチュエータの正常時には操作部材に作用することがない。これにより、正常時における操作用アクチュエータの応答性が弾力の影響を受けることはない。
【0007】
前記弾力制御機構は、流体を封入する封入室と、前記流体を前記異常検知までは封入状態に保持すると共に前記異常検知時に封入解除する封入解除機構と、前記封入室における流体容積の変化に応じて変位する弾力規制部材とを有し、前記弾力規制部材は、前記流体の封入状態では前記操作部材への前記弾力の作用の阻止位置に位置され、前記封入状態からの流体の封入解除により、前記操作部材への前記弾力の作用の阻止位置から阻止解除位置に変位されるのが好ましい。
これにより、操作用アクチュエータの異常がない時は、弾力規制部材が弾力の作用の阻止位置から阻止解除位置に変位するのを、流体を封入しておくだけで阻止できる。そして、操作用アクチュエータの異常検知時に、封入室における流体の封入を解除するだけで、操作部材への弾力の作用阻止を解除できる。すなわち、操作部材への弾力の作用阻止と、作用阻止状態から作用状態への変位を、その弾力の大きさに影響されることなく、流体の封入と封入解除だけで行うことができる。よって、その弾力の作用の阻止と阻止解除のための構造をコンパクト化でき、また、大きなエネルギー消費を必要としない。
【0008】
前記流体は、前記封入室に圧縮状態で封入されると共に前記封入解除により膨張するのが好ましい。
これにより、弾力規制部材が弾力の作用の阻止位置から阻止解除位置に変位するのを、弾力だけでなく流体圧力も利用して行うことができ、円滑な変位が可能になる。しかも、その流体圧力の設定に応じて弾力規制部材の変位速度を任意に設定することが可能になる。
この場合、前記圧縮状態の流体は前記封入室から絞り通路を介して排出されることで膨張するのが好ましい。
これにより、操作部材への弾力の作用阻止状態から作用状態への移行時に、圧縮状態の流体の急激な膨張を抑制し、衝撃が作用するのを防止できる。
【0009】
【発明の実施の形態】
図1に示す車両用操舵装置は、ステアリングホイールを模した操作部材1と、操舵用アクチュエータ2と、操舵用アクチュエータ2の動きを、操作部材1を車輪4に機械的に連結することなく舵角変化が生じるように車輪4に伝達するステアリングギヤ機構3とを備える。
【0010】
操舵用アクチュエータ2はブラシレスモータ等の電動モータにより構成できる。ステアリングギヤ機構3は、操舵用アクチュエータ2の回転運動をステアリングロッド7の直線運動に変換する運動変換機構を有し、その運動変換機構は例えば操舵用アクチュエータ2により回転駆動されるボールナットにねじ合わされるボールスクリューをステアリングロッド7と一体的に設けることで構成される。ステアリングロッド7の動きがタイロッド8とナックルアーム9を介して車輪4に伝達されることで車輪4のトー角が変化する。ステアリングギヤ機構3は公知のものを用いることができ、操舵用アクチュエータ2の動きを舵角が変化するように車輪4に伝達できれば構成は限定されない。操舵用アクチュエータ2が駆動されていない状態では、車輪4はセルフアライニングトルクにより直進位置に復帰できるようにホイールアラインメントが設定されている。
【0011】
操作部材1は、車体側により回転可能に支持される入力側回転シャフト10に同行回転するように連結されている。入力側回転シャフト10に操作用アクチュエータ19の出力シャフトが一体化されている。操作用アクチュエータ19は操作部材1に作用する力を発生し、ブラシレスモータ等の電動モータにより構成される。
【0012】
操作部材1の操作角δhを検出する角度センサ11、操作トルクThとして入力側回転シャフト10により伝達されるトルクを検出するトルクセンサ12、車速Vを検出する速度センサ13、舵角δとしてステアリングロッド7の移動量を検出する舵角センサ14が、コンピュータにより構成される制御装置20に接続されている。その制御装置20は操作部材1の操作に応じて操舵用アクチュエータ2と操作用アクチュエータ19を制御する。
【0013】
操作用アクチュエータ19の異常検知手段が設けられている。本実施形態では、制御装置20が目標操作トルクTh* と検出操作トルクThとの偏差をモニターし、その偏差が設定値以上であれば操作用アクチュエータ19が異常であると判断する。その異常検知時に制御装置20は操作用アクチュエータ19への電力供給を遮断し、操作用アクチュエータ19の発生力の操作部材1への作用を解除する。
【0014】
操作部材1を直進操舵位置に復帰させる弾力を発生する弾力付与機構30が設けられている。図2に示すように、弾力付与機構30は、操作用アクチュエータ19のケーシングに一体化されるハウジング32により、回転シャフト10に一体化されるボールスクリューシャフト31を覆う。ハウジング32の一端側に筒状の第1ストッパー33が圧入固定され、他端側に筒状の第2ストッパー34が圧入固定される。スクリューシャフト31にボール38を介してボールナット39がねじ合わされ、ボールナット39は筒状ガイド部材40に圧入固定される。第1ストッパー33の内周33a、第2ストッパー34の内周34aおよびガイド部材40の両端外周40a、40bは多角形あるいは非円形とされ、ガイド部材40は第1ストッパー33および第2ストッパー34に軸方向移動可能かつ相対回転不能に嵌め合わされる。これにより、操作部材1の操作によるボールスクリューシャフト31の回転により、ボールナット39と共にガイド部材40は軸方向移動する。ガイド部材40の外周に筒状の第1、第2スライダー41、42が軸方向相対移動可能に嵌め合わされ、両スライダー41、42の間において弾性部材である圧縮コイルバネ43がガイド部材40に嵌め合わされている。ガイド部材40の外周に両スライダー41、42の抜け止め用段差40c、40dが設けられている。第1スライダー41は一端外周から外方に伸びる受け部41aを有し、受け部41aは第1ストッパー33の第1ストッパー面33cに対向する。第2スライダー42は他端外周から外方に伸びる受け部42aを有し、受け部42aは第2ストッパー34の第2ストッパー面34cに対向する。
【0015】
図2は、操作部材1が直進操舵位置にある時の状態を示す。この時、バネ43の弾力により第1スライダー41は第1ストッパー面33cに押し付けられ、第2スライダー42は第2ストッパー面34cに押し付けられる。
【0016】
左操舵によるボールスクリューシャフト31の回転により、ボールナット39と共にガイド部材40は図において下方に向かい軸方向移動する。すると、図3に示すように、ガイド部材40と同行して第1スライダー41は軸方向移動し、第2スライダー42は第2ストッパー面34cにより軸方向移動を阻止される。これにより、バネ43は圧縮されるので、ガイド部材40を図において上方に向かい軸方向移動させようとする弾力が作用する。すなわち、操作部材1を直進操舵位置に復帰させる弾力が付与される。
また、右操舵によるボールスクリューシャフト31の回転により、ボールナット39と共にガイド部材40は図において上方に向かい軸方向移動する。すると、図4に示すように、ガイド部材40と同行して第2スライダー42は軸方向移動し、第1スライダー41は第1ストッパー面33cにより軸方向移動を阻止される。これにより、バネ43は圧縮されるので、ガイド部材40を図において下方に向かい軸方向移動させようとする弾力が作用する。すなわち、操作部材1を直進操舵位置に復帰させる弾力が付与される。
【0017】
図5に示すように、操作部材1への上記弾力の作用を、操作用アクチュエータ19の異常検知までは阻止すると共に異常検知時に阻止解除する弾力制御機構50が設けられている。図6に示すように、本実施形態の弾力制御機構50は車体側に取り付けられた一対のガスシリンダ50aと、制御装置20に接続された一対の電磁開閉バルブ59により構成される封入解除機構とを有する。各ガスシリンダ50aにおいては、シリンダチューブ51内にピストン52により区画される一対の封入室53、54が設けられ、両封入室53、54はバイパス通路55により連絡される。バイパス通路55は絞り通路とされている。ピストン52に一体化されたピストンロッド56がシリンダチューブ51の外部に突出する。ピストン52の受圧面積は一方の封入室53では他方の封入室54におけるよりも大きくされている。バイパス通路55が電磁開閉バルブ59により開閉される。両封入室53、54に流体としてガスが封入される。ガスの種類は限定されず、本実施形態では空気が封入される。一方のガスシリンダ50aのピストンロッド56に取り付けられた第1規制部材57aが、ハウジング32内に開口32aから挿入され、バネ43の一端と第1スライダー41の受け部41aとの間に配置された第1弾力規制部材58aに連結されている。他方のガスシリンダ50aのピストンロッド56に取り付けられた第2規制部材57bが、ハウジング32内に開口32bから挿入され、バネ43の他端と第2スライダー42の受け部42aとの間に配置された第2弾力規制部材58bに連結されている。
【0018】
操作用アクチュエータ19の異常検知までは、各ピストンロッド56は縮小状態とされ、他方の封入室54にガスは圧縮状態で封入されている。この状態では、図5に示すように両弾力規制部材58a、58bは操作部材1への弾力の作用の阻止位置に位置され、バネ43は両弾力規制部材58a、58bにより圧縮され、弾力は各スライダー41、42に作用されない。制御装置20は操作用アクチュエータ19の異常検知時に電磁開閉バルブ59に開信号を送る。これにより、他方の封入室54のガスは膨張してバイパス通路55を介して一方の封入室53に流動する。すなわち、封入解除機構は異常検知までは他方の封入室54におけるガスを封入状態に保持すると共に異常検知時に封入解除させる。このガスの封入解除により、バネ43の弾力と、一方の封入室53と他方の封入室54とで受圧面積に差があるピストン52に作用するガス圧力とにより、各ピストンロッド56は伸長する。すなわち、封入室53におけるガス容積の変化に応じて弾力規制部材58a、58bは変位し、ガスの封入状態では操作部材1への弾力の作用の阻止位置に位置され、封入状態からのガスの封入解除により、操作部材1への弾力の作用の阻止位置から阻止解除位置に変位される。本実施形態では、その封入解除により図2〜図4に示すように両弾力規制部材58a、58bはスライダー41、42に押し付けられ、操作部材1への弾力の作用の阻止位置から阻止解除位置に変位され、バイパス通路55により構成される絞り通路を介して圧縮状態のガスは他方の封入室54から排出されることで膨張する。
【0019】
図7のフローチャートは制御装置20による両アクチュエータ2、19の制御手順を示す。まず、例えばイグニッションスイッチのオンによる制御装置20への電力供給により制御が開始されると、各センサによる検出データを読み込み(ステップS1)、操作部材1の検出操作角θhと検出車速Vに応じた目標舵角θ* を記憶した関係θ* =G1(θh、V)から求め(ステップS2)、目標舵角θ* と実舵角θとの偏差が低減されるように操舵用アクチュエータ2をフィードバック制御する(ステップS3)。その記憶される関係θ* =G1(θh、V)は、例えば操作角θhが大きく車速Vが小さい程に目標舵角θ* が大きくなるように予め定められる。次に、異常フラグがオンか否かを判断し(ステップS4)、オンでなければ操作用アクチュエータ19の異常が検知されたか否かを判断する(ステップS5)。ステップS5において異常が検知されていれば、異常フラグをオンし(ステップS6)、操作用アクチュエータ19への電力供給を遮断して操作用アクチュエータ19の発生力の操作部材1への作用を解除し、また、電磁開閉バルブ59に開信号を送ることでフェールセーフ処理を行う(ステップS7)。次に、制御を終了するか否かを例えば車両のイグニッションスイッチがオンか否かにより判断し(ステップS8)、終了する場合は異常フラグをオフし(ステップS9)、しかる後に終了し、終了しない場合はステップS1に戻る。ステップS5において異常が検知されていなければ、操作部材1の検出操作角θhと検出車速Vに応じた目標操作トルクTh* を記憶した関係Th* =G2(θh、V)から求め(ステップS10)、目標操作トルクTh* と検出操作トルクThとの偏差を低減するように操作用アクチュエータ19をフィードバック制御する(ステップS11)。その記憶される関係Th* =G2(θh、V)は、例えば操作角θhが大きく車速Vが小さい程に目標操作トルクTh* が小さくなるように予め定められる。しかる後に制御を終了するか否かを判断する。
【0020】
上記実施形態によれば、操作用アクチュエータ19の異常時に操作部材1をバネ43の弾力により直進操舵位置に復帰させることができ、しかも、その弾力は操作用アクチュエータ19の正常時には操作部材1に作用することがない。これにより、正常時における操作用アクチュエータ19の応答性が弾力の影響を受けることはない。また、操作用アクチュエータ19の異常がない時は、弾力規制部材58a、58bが弾力の作用の阻止位置から阻止解除位置に変位するのを、流体を封入しておくだけで阻止できる。そして、操作用アクチュエータ19の異常検知時に、封入室54におけるガスの封入を解除するだけで、操作部材1への弾力の作用阻止を解除できる。すなわち、操作部材1への弾力の作用阻止と、作用阻止状態から作用状態への変位を、その弾力の大きさに影響されることなく、流体の封入と封入解除だけで行うことができる。よって、その弾力の作用の阻止と阻止解除を、例えば大容量の電磁クラッチ等を要することなく行うことができるので構造をコンパクト化でき、また、大きなエネルギー消費を必要としない。また、封入室54においてガスは圧縮状態で封入されるので、弾力規制部材58a、58bが弾力の作用の阻止位置から阻止解除位置に変位するのを、弾力だけでなくガス圧力も利用して行うことができ、円滑な変位が可能になる。しかも、そのガス圧力の設定に応じて弾力規制部材58a、58bの変位速度を任意に設定することが可能になる。さらに、圧縮状態のガスはバイパス通路55により構成される絞り通路を介して封入室54から排出されるので、操作部材1への弾力の作用阻止状態から作用状態への移行時に、圧縮状態のガスの急激な膨張を抑制し、衝撃が作用するのを防止できる。
【0021】
図8、図9は本発明の第1変形例を示し、上記実施形態と異なる弾力付与機構130と弾力制御機構150を備える。
弾力付与機構130は、車体に支持された第2回転シャフト70と、第2回転シャフト70に嵌め合わされた一対のつるまきバネ71a、71bと、回転シャフト10と第2回転シャフト70との間で回転を伝達するギヤ機構72を備える。各バネ71a、71bの一端は車体側に設けられた受け部72a、72bに押し付けられる。各バネ71a、71bの他端側は、弾力制御機構150により操作部材1への弾力の作用を阻止されていない時、図9において破線で示すように第2回転シャフト70に設けられた押し付け部70aに接する。これにより、左右一方への操舵による操作部材1の回転により第2回転シャフト70が一方向に回転すると、一方のバネ71aが押し付け部70aに押し付けられることで弾性変形し、操作部材1を直進操舵位置に復帰させる弾力を発生する。また、左右他方への操舵による操作部材1の回転により第2回転シャフト70が他方向に回転すると、他方のバネ71bが押し付け部70aに押し付けられることで弾性変形し、操作部材1を直進操舵位置に復帰させる弾力を発生する。
弾力制御機構150は、上記実施形態のガスシリンダ50aと同様の車体側に取り付けられたガスシリンダ(図示省略)と、上記実施形態の電磁開閉バルブ59と同様の制御装置に接続された電磁開閉バルブにより構成される封入解除機構とを有する。ガスシリンダのピストンロッド56はワイヤ等の可撓性索体により構成される弾力規制部材158a、158bを介して両バネ71a、71bの他端側に連結され、弾力規制部材158a、158bは車体側に取り付けられたプーリ74a、74bに引っ掛けられている。
操作用アクチュエータ19の異常検知までは、ピストンロッド56は縮小状態とされ、図9において1点鎖線で示すように弾力規制部材158a、158bは操作部材1への弾力の作用の阻止位置に位置され、両バネ71a、71bの他端側は実線で示すように押し付け部70aと接することのない位置に配置される。制御装置20が操作用アクチュエータ19の異常検知時に電磁開閉バルブに開信号を送ることでピストンロッド56が伸長し、弾力規制部材158aは図において破線で示す操作部材1への弾力の作用の阻止解除位置に変位され、各バネ71a、71bの他端側は押し付け部70aに接する。他は上記実施形態と同様で、同様部分は同一符号で示す。
【0022】
図10は本発明の第2変形例を示し、第1変形例と同様の弾力付与機構130と、上記実施形態および第1変形例と異なる弾力制御機構250を備える。
弾力制御機構250は、車体側に取り付けられた一対のガスシリンダ250aと、制御装置20に接続された一対の電磁開閉バルブ260により構成される封入解除機構とを有する。両ガスシリンダ250aの間に両バネ71a、71bが配置される。各ガスシリンダ250aにおいては、シリンダチューブ251の内面とピストン252の受圧面により囲まれる封入室253が設けられ、ピストン252に一体化されたピストンロッド256の先端に弾力規制部材258が取り付けられている。封入室253は電磁開閉バルブ260を介して大気開放口255に通じる。
操作用アクチュエータ19の異常検知までは、封入室253に圧縮状態に保持された高圧ガスが封入され、各ピストンロッド256は伸長状態とされる。この状態では、両弾力規制部材258は操作部材1への弾力の作用の阻止位置に位置され、図において実線で示すように両バネ71a、71bの他端に取り付けられたプーリ259に接し、これにより、両バネ71a、71bの他端側は押し付け部70aと接することのない位置に配置される。制御装置20が操作用アクチュエータ19の異常検知時に電磁開閉バルブ260に開信号を送ることで、封入室253に封入されたガスが大気中に放出されることで膨張し、これによりバネ71a、71bの弾力により各ピストンロッド256は縮小し、弾力規制部材258が操作部材1への弾力の作用の阻止解除位置に変位され、各バネ71a、71bの他端側は図10において破線で示すように押し付け部70aに接することで操作部材1を直進操舵位置に復帰させる弾力を発生する。他は上記実施形態および第1変形例と同様で同様部分は同一符号で示す。
【0023】
図11は本発明の第3変形例を示し、第1変形例と同様の弾力付与機構130と、上記実施形態および第1、第2変形例と異なる弾力制御機構350を備える。弾力制御機構350は、上記実施形態と同様の車体側に取り付けられた一対のガスシリンダ50aと、各ガスシリンダ50aそれぞれの両封入室を連絡するバイパス通路を開閉する上記実施形態と同様の一対の電磁開閉バルブ59を有し、両ガスシリンダ50aは両バネ71a、71bの他端間に配置される。各ガスシリンダ50aのピストンロッド56の先端はフック状に曲げられ、その先端に第2変形例と同様の弾力規制部材258が取り付けられている。
操作用アクチュエータ19の異常検知までは、両ピストンロッド56は縮小状態とされる。この状態では、両弾力規制部材258は操作部材1への弾力の作用の阻止位置に位置され、図において実線で示すように両バネ71a、71bの他端に取り付けられたプーリ259に接し、これにより、両バネ71a、71bの他端側は押し付け部70aと接することのない位置に配置される。制御装置20が操作用アクチュエータ19の異常検知時に各電磁開閉バルブ59に開信号を送ることで各ピストンロッド56は伸長し、これにより弾力規制部材258は操作部材1への弾力の作用の阻止解除位置に変位され、各バネ71a、71bの他端側は図11において破線で示すように押し付け部70aに接することで操作部材1を直進操舵位置に復帰させる弾力を発生する。他は上記実施形態および第1、第2変形例と同様で同様部分は同一符号で示す。
【0024】
上記実施形態や変形例においては封入室に流体としてガスを封入したが、これに代えて液体を封入してもよく、また、封入室に封入される流体は圧縮しなくてもよい。例えば第4変形例として、上記実施形態における各封入室53、54にガスに代えて油を圧縮することなく封入し、他は上記実施形態と同様に構成してもよい。
【0025】
本発明は上記実施形態や変形例に限定されない。例えば、操作部材を直進操舵位置に復帰させる弾力を、異なるタイプのバネやゴム等により発生させてもよい。
【0026】
【発明の効果】
本発明によれば、ステアバイワイヤシステムを採用した車両用操舵装置において、フィーリングを低下させることなく、コンパクトな構造で、大きなエネルギーを消費することなく、さらに衝撃を与えることなく、操作用アクチュエータの異常時に、操作部材を直進操舵位置に復帰させる弾力を作用させることでフェールセーフ機能を奏することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の車両用操舵装置の構成説明図
【図2】本発明の実施形態の車両用操舵装置における操作用アクチュエータの異常検知時の直進操舵状態での弾力付与機構の断面図
【図3】本発明の実施形態の車両用操舵装置における操作用アクチュエータの異常検知時の左操舵状態での弾力付与機構の断面図
【図4】本発明の実施形態の車両用操舵装置における操作用アクチュエータの異常検知時の右操舵状態での弾力付与機構の断面図
【図5】本発明の実施形態の車両用操舵装置における弾力制御機構の構成説明図
【図6】本発明の実施形態の車両用操舵装置における弾力制御機構の要部の構成説明図
【図7】本発明の実施形態の車両用操舵装置における操作用アクチュエータと操舵用アクチュエータの制御手順を示すフローチャート
【図8】本発明の第1変形例の車両用操舵装置における弾力付与機構の配置説明図
【図9】本発明の第1変形例の車両用操舵装置における弾力付与機構と弾力制御機構の構成説明図
【図10】本発明の第2変形例の車両用操舵装置における弾力付与機構と弾力制御機構の構成説明図
【図11】本発明の第3変形例の車両用操舵装置における弾力付与機構と弾力制御機構の構成説明図
【符号の説明】
1 操作部材
2 操舵用アクチュエータ
3 ステアリングギヤ機構
4 車輪
19 操作用アクチュエータ
20 制御装置
30、130 弾力付与機構
50、150、250、350 弾力制御機構
50a ガスシリンダ(封入解除機構)
53、54 封入室
55 バイパス通路(絞り通路)
58a 第1弾力規制部材
58b 第2弾力規制部材
59 電磁開閉バルブ(封入解除機構)
158a、258 弾力規制部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle steering apparatus that employs a so-called steer-by-wire system that can change a rudder angle according to an operation of an operation member without mechanically connecting the operation member to a wheel.
[0002]
[Prior art]
In a steering device that employs a steer-by-wire system, an operation member that imitates a steering wheel is mechanically connected to the wheel, and the movement of the steering actuator is transmitted to the wheel so that the steering angle changes. When the operating member is not mechanically connected to the wheel as described above, the operating member cannot be returned to the straight steering position by the self-aligning torque. Therefore, the operating member is returned to the straight steering position using the operating actuator.
[0003]
In order to prevent an abnormal movement of the operation member when such an operation actuator fails, an abnormality detection means for the operation actuator is provided, and the action of the generated force of the operation actuator on the operation member is canceled when an abnormality is detected. Fail-safe measures are needed. However, if the action of the generated force of the operating actuator on the operating member is released, the operating member cannot be automatically returned to the straight steering position. In view of this, it is conceivable to provide an elastic force applying mechanism including an elastic member that generates an elastic force for returning the operation member to the straight steering position (see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-53008 A
[0005]
[Problems to be solved by the invention]
However, the conventional elasticity applying mechanism has a structure in which elasticity is always applied to the operation member. That is, the elasticity acts on the operation member not only when the operation actuator is abnormal but also when it is normal. Therefore, when the operation actuator is controlled so that a force according to the vehicle traveling condition such as the vehicle speed acts on the operation member, the responsiveness of the operation actuator is reduced due to the influence of elasticity, and the steering feeling is reduced. There's a problem.
It is an object of the present invention to provide a vehicle steering apparatus that can solve the above problems.
[0006]
[Means for Solving the Problems]
The vehicle steering apparatus according to the present invention includes an operation member, an operation actuator that generates a force acting on the operation member, a steering actuator, and a movement of the steering actuator, mechanically using the operation member as a wheel. A mechanism for transmitting to the wheel so that a steering angle change occurs without being connected, a control device for controlling the operating actuator and the steering actuator according to an operation of the operating member, and an abnormality in the operating actuator Detecting means, means for releasing the action of the generated force of the operating actuator on the operating member when the abnormality is detected, an elasticity applying mechanism for generating elasticity for returning the operating member to the straight steering position, and the operating member An elastic force control mechanism that blocks the action of the elastic force until the abnormality is detected and releases the blocking when the abnormality is detected.
According to the present invention, when the operating actuator is abnormal, the operating member can be returned to the straight-ahead steering position by elasticity, and the elasticity does not act on the operating member when the operating actuator is normal. As a result, the response of the operating actuator during normal operation is not affected by elasticity.
[0007]
The elasticity control mechanism includes a sealing chamber that encloses a fluid, a sealing release mechanism that holds the fluid in a sealed state until the abnormality is detected and releases the sealing when the abnormality is detected, and a change in fluid volume in the sealing chamber. The elastic force restricting member is located at a position where the elastic member is prevented from acting on the operation member when the fluid is sealed, and by releasing the fluid from the sealed state, It is preferable that the elastic member is displaced from a blocking position of the elastic force to the operating member to a blocking release position.
As a result, when there is no abnormality in the operating actuator, it is possible to prevent the elasticity regulating member from being displaced from the position where the elasticity is prevented to the position where the elasticity is released by simply sealing the fluid. Then, when an abnormality is detected in the operation actuator, it is possible to cancel the blocking of the action of the elastic force on the operation member only by releasing the fluid from the enclosure chamber. That is, it is possible to prevent the action of the elastic force on the operation member and to change the action from the action-prevented state to the action state by only enclosing and releasing the fluid without being influenced by the magnitude of the elastic force. Therefore, the structure for preventing and releasing the elastic action can be made compact, and no large energy consumption is required.
[0008]
It is preferable that the fluid is sealed in the sealed chamber in a compressed state and expands when the sealed state is released.
As a result, the elasticity regulating member can be displaced from the elasticity inhibiting position to the inhibition releasing position by utilizing not only the elasticity but also the fluid pressure, thereby enabling smooth displacement. Moreover, it is possible to arbitrarily set the displacement speed of the elastic force regulating member according to the setting of the fluid pressure.
In this case, it is preferable that the compressed fluid expands by being discharged from the sealing chamber through the throttle passage.
Thereby, at the time of the transition from the action inhibition state of the elastic force to the operation member to the action state, it is possible to suppress rapid expansion of the fluid in the compressed state and to prevent an impact from acting.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The vehicle steering apparatus shown in FIG. 1 operates the operation member 1 simulating a steering wheel, the steering actuator 2, and the movements of the steering actuator 2 without mechanically connecting the operation member 1 to the wheels 4. And a steering gear mechanism 3 that transmits to the wheels 4 so that a change occurs.
[0010]
The steering actuator 2 can be constituted by an electric motor such as a brushless motor. The steering gear mechanism 3 has a motion conversion mechanism that converts the rotational motion of the steering actuator 2 into the linear motion of the steering rod 7, and the motion conversion mechanism is screwed onto a ball nut that is rotationally driven by the steering actuator 2, for example. The ball screw is provided integrally with the steering rod 7. The movement of the steering rod 7 is transmitted to the wheel 4 through the tie rod 8 and the knuckle arm 9 so that the toe angle of the wheel 4 changes. As the steering gear mechanism 3, a known one can be used, and the configuration is not limited as long as the movement of the steering actuator 2 can be transmitted to the wheels 4 so that the steering angle changes. In a state where the steering actuator 2 is not driven, the wheel alignment is set so that the wheel 4 can return to the straight position by the self-aligning torque.
[0011]
The operation member 1 is connected to an input side rotation shaft 10 rotatably supported by the vehicle body side so as to rotate together. An output shaft of the operation actuator 19 is integrated with the input side rotating shaft 10. The operation actuator 19 generates a force acting on the operation member 1 and is constituted by an electric motor such as a brushless motor.
[0012]
An angle sensor 11 for detecting the operation angle δh of the operation member 1, a torque sensor 12 for detecting the torque transmitted by the input side rotary shaft 10 as the operation torque Th, a speed sensor 13 for detecting the vehicle speed V, and a steering rod as the steering angle δ 7 is connected to a control device 20 configured by a computer. The control device 20 controls the steering actuator 2 and the operation actuator 19 in accordance with the operation of the operation member 1.
[0013]
An abnormality detection means for the operation actuator 19 is provided. In the present embodiment, the control device 20 performs the target operation torque Th * And the detected operation torque Th are monitored, and if the deviation is equal to or greater than a set value, it is determined that the operation actuator 19 is abnormal. When the abnormality is detected, the control device 20 cuts off the power supply to the operation actuator 19 and cancels the action of the generated force of the operation actuator 19 on the operation member 1.
[0014]
A resilience applying mechanism 30 that generates resilience for returning the operation member 1 to the straight steering position is provided. As shown in FIG. 2, the elasticity applying mechanism 30 covers a ball screw shaft 31 integrated with the rotary shaft 10 by a housing 32 integrated with the casing of the operating actuator 19. A cylindrical first stopper 33 is press-fitted and fixed to one end side of the housing 32, and a cylindrical second stopper 34 is press-fitted and fixed to the other end side. A ball nut 39 is screwed onto the screw shaft 31 via a ball 38, and the ball nut 39 is press-fitted and fixed to the cylindrical guide member 40. The inner periphery 33 a of the first stopper 33, the inner periphery 34 a of the second stopper 34, and the outer ends 40 a and 40 b of both ends of the guide member 40 are polygonal or non-circular, and the guide member 40 is connected to the first stopper 33 and the second stopper 34. They are fitted so that they can move in the axial direction but cannot rotate relative to each other. Thereby, the guide member 40 moves in the axial direction together with the ball nut 39 by the rotation of the ball screw shaft 31 by the operation of the operation member 1. The cylindrical first and second sliders 41 and 42 are fitted to the outer periphery of the guide member 40 so as to be axially movable relative to each other, and a compression coil spring 43 that is an elastic member is fitted between the sliders 41 and 42 to the guide member 40. ing. On the outer periphery of the guide member 40, steps 40c and 40d for preventing the sliders 41 and 42 from coming off are provided. The first slider 41 has a receiving portion 41 a that extends outward from the outer periphery of one end, and the receiving portion 41 a faces the first stopper surface 33 c of the first stopper 33. The second slider 42 has a receiving portion 42 a extending outward from the outer periphery of the other end, and the receiving portion 42 a faces the second stopper surface 34 c of the second stopper 34.
[0015]
FIG. 2 shows a state when the operation member 1 is in the straight steering position. At this time, the first slider 41 is pressed against the first stopper surface 33c by the elasticity of the spring 43, and the second slider 42 is pressed against the second stopper surface 34c.
[0016]
By rotation of the ball screw shaft 31 by left steering, the guide member 40 together with the ball nut 39 moves downward in the drawing in the axial direction. Then, as shown in FIG. 3, the first slider 41 moves in the axial direction along with the guide member 40, and the second slider 42 is prevented from moving in the axial direction by the second stopper surface 34c. As a result, the spring 43 is compressed, and an elastic force is applied to move the guide member 40 upward in the drawing in the axial direction. That is, the elasticity which returns the operation member 1 to a straight steering position is given.
Further, the guide member 40 together with the ball nut 39 moves upward in the drawing in the axial direction by the rotation of the ball screw shaft 31 by the right steering. Then, as shown in FIG. 4, the second slider 42 moves in the axial direction along with the guide member 40, and the first slider 41 is prevented from moving in the axial direction by the first stopper surface 33c. As a result, the spring 43 is compressed, and an elastic force is applied to move the guide member 40 downward in the drawing in the axial direction. That is, the elasticity which returns the operation member 1 to a straight steering position is given.
[0017]
As shown in FIG. 5, an elastic force control mechanism 50 is provided that prevents the operation of the elastic force on the operating member 1 until the abnormality of the operating actuator 19 is detected and releases the blocking when the abnormality is detected. As shown in FIG. 6, the elasticity control mechanism 50 of the present embodiment includes an enclosing release mechanism configured by a pair of gas cylinders 50 a attached to the vehicle body side and a pair of electromagnetic on-off valves 59 connected to the control device 20. Have Each gas cylinder 50 a is provided with a pair of enclosure chambers 53, 54 defined by a piston 52 in the cylinder tube 51, and both enclosure chambers 53, 54 are connected by a bypass passage 55. The bypass passage 55 is a throttle passage. A piston rod 56 integrated with the piston 52 projects outside the cylinder tube 51. The pressure receiving area of the piston 52 is made larger in one sealing chamber 53 than in the other sealing chamber 54. The bypass passage 55 is opened and closed by an electromagnetic opening / closing valve 59. Gas is sealed in both the sealing chambers 53 and 54 as a fluid. The type of gas is not limited, and air is enclosed in this embodiment. A first restricting member 57 a attached to the piston rod 56 of one gas cylinder 50 a is inserted into the housing 32 from the opening 32 a and is disposed between one end of the spring 43 and the receiving portion 41 a of the first slider 41. It is connected to the first elasticity regulating member 58a. A second regulating member 57b attached to the piston rod 56 of the other gas cylinder 50a is inserted into the housing 32 from the opening 32b and is disposed between the other end of the spring 43 and the receiving portion 42a of the second slider 42. The second elasticity regulating member 58b is connected.
[0018]
Until the abnormality of the operating actuator 19 is detected, each piston rod 56 is in a contracted state, and gas is sealed in the other sealed chamber 54 in a compressed state. In this state, as shown in FIG. 5, the both elastic restriction members 58a and 58b are positioned at the position where the elastic force acting on the operation member 1 is prevented, and the spring 43 is compressed by the both elastic restriction members 58a and 58b. The sliders 41 and 42 are not affected. The control device 20 sends an open signal to the electromagnetic opening / closing valve 59 when the abnormality of the operation actuator 19 is detected. As a result, the gas in the other enclosure chamber 54 expands and flows to the one enclosure chamber 53 via the bypass passage 55. That is, the enclosure release mechanism holds the gas in the other enclosure chamber 54 in an enclosed state until abnormality is detected, and releases the enclosure when abnormality is detected. By releasing the sealing of the gas, each piston rod 56 extends due to the elasticity of the spring 43 and the gas pressure acting on the piston 52 having a difference in pressure receiving area between the one sealing chamber 53 and the other sealing chamber 54. That is, the elasticity regulating members 58a and 58b are displaced according to the change in the gas volume in the sealing chamber 53, and are positioned at a position where the elastic force is applied to the operation member 1 when the gas is sealed, and the gas is sealed from the sealed state. Due to the release, the operation member 1 is displaced from the blocking position of the action of elasticity to the blocking release position. In the present embodiment, as shown in FIGS. 2 to 4, the both elastic force restricting members 58 a and 58 b are pressed against the sliders 41 and 42 by the release of the encapsulation, and the elastic force acting on the operation member 1 is changed from the blocking position to the blocking release position. The gas in the compressed state is displaced through the throttle passage constituted by the bypass passage 55 and is expanded by being discharged from the other enclosure chamber 54.
[0019]
The flowchart of FIG. 7 shows the control procedure of the actuators 2 and 19 by the control device 20. First, for example, when control is started by supplying power to the control device 20 when the ignition switch is turned on, detection data from each sensor is read (step S1), and the detection operation angle θh of the operation member 1 and the detected vehicle speed V are determined. Target rudder angle θ * The relationship θ memorized * = Calculated from G1 (θh, V) (step S2), target steering angle θ * The steering actuator 2 is feedback-controlled so that the deviation between the actual steering angle θ and the actual steering angle θ is reduced (step S3). The memorized relationship θ * = G1 (θh, V) is, for example, the target steering angle θ as the operation angle θh increases and the vehicle speed V decreases. * Is predetermined in advance. Next, it is determined whether or not the abnormality flag is on (step S4). If it is not on, it is determined whether or not an abnormality of the operating actuator 19 has been detected (step S5). If an abnormality is detected in step S5, the abnormality flag is turned on (step S6), the power supply to the operation actuator 19 is cut off, and the action of the generated force of the operation actuator 19 on the operation member 1 is released. Further, a fail-safe process is performed by sending an open signal to the electromagnetic open / close valve 59 (step S7). Next, whether or not to end the control is determined, for example, based on whether or not the ignition switch of the vehicle is on (step S8). If the control is to be ended, the abnormality flag is turned off (step S9). If so, the process returns to step S1. If no abnormality is detected in step S5, the target operation torque Th according to the detected operation angle θh of the operation member 1 and the detected vehicle speed V is determined. * Relationship Th remembered * = Calculated from G2 (θh, V) (step S10), target operation torque Th * And the operation actuator 19 are feedback-controlled so as to reduce the deviation between the detected operation torque Th (step S11). The stored relationship Th * = G2 (θh, V) is, for example, the target operation torque Th as the operation angle θh increases and the vehicle speed V decreases. * Is predetermined so as to be small. Thereafter, it is determined whether or not to end the control.
[0020]
According to the above embodiment, when the operating actuator 19 is abnormal, the operating member 1 can be returned to the straight steering position by the elasticity of the spring 43, and the elasticity acts on the operating member 1 when the operating actuator 19 is normal. There is nothing to do. As a result, the response of the operating actuator 19 during normal operation is not affected by elasticity. Further, when there is no abnormality in the operation actuator 19, it is possible to prevent the elasticity regulating members 58a and 58b from being displaced from the position where the elasticity is prevented to the position where the elasticity is released by simply enclosing the fluid. Then, when the abnormality of the operation actuator 19 is detected, it is possible to cancel the inhibition of the elastic action on the operation member 1 only by releasing the sealing of the gas in the sealing chamber 54. That is, the action of the elastic force on the operation member 1 and the displacement from the action-blocked state to the action state can be performed only by enclosing and releasing the fluid without being influenced by the magnitude of the elastic force. Therefore, the elastic action can be blocked and released without requiring a large-capacity electromagnetic clutch or the like, so that the structure can be made compact and no large energy consumption is required. In addition, since the gas is sealed in the sealed chamber 54 in a compressed state, the elastic force regulating members 58a and 58b are displaced from the elastic action blocking position to the blocking release position using not only the elasticity but also the gas pressure. And smooth displacement is possible. In addition, it is possible to arbitrarily set the displacement speeds of the elasticity regulating members 58a and 58b according to the setting of the gas pressure. Further, since the compressed gas is discharged from the enclosing chamber 54 through the throttle passage constituted by the bypass passage 55, the compressed gas is transferred at the time of transition from the action preventing state of the elasticity to the operation member 1 to the action state. It is possible to suppress the rapid expansion of the resin and prevent the impact from acting.
[0021]
8 and 9 show a first modification of the present invention, which is provided with an elasticity applying mechanism 130 and an elasticity control mechanism 150 which are different from those of the above embodiment.
The elasticity applying mechanism 130 includes a second rotating shaft 70 supported by the vehicle body, a pair of helical springs 71a and 71b fitted to the second rotating shaft 70, and the rotating shaft 10 and the second rotating shaft 70. A gear mechanism 72 for transmitting rotation is provided. One end of each spring 71a, 71b is pressed against receiving portions 72a, 72b provided on the vehicle body side. When the other end side of each spring 71a, 71b is not blocked by the elasticity control mechanism 150 from the action of the elasticity to the operation member 1, as shown by the broken line in FIG. 70a is touched. Accordingly, when the second rotary shaft 70 rotates in one direction due to the rotation of the operation member 1 by steering to the left or right, one spring 71a is elastically deformed by being pressed against the pressing portion 70a, and the operation member 1 is steered straight. Generate elasticity to return to position. Further, when the second rotating shaft 70 rotates in the other direction due to the rotation of the operating member 1 by steering to the left and right other side, the other spring 71b is elastically deformed by being pressed against the pressing portion 70a, thereby moving the operating member 1 to the straight steering position. Generates elasticity to return to.
The elastic force control mechanism 150 includes a gas cylinder (not shown) attached to the vehicle body similar to the gas cylinder 50a of the above embodiment, and an electromagnetic open / close valve connected to a control device similar to the electromagnetic open / close valve 59 of the above embodiment. And an encapsulating release mechanism. The piston rod 56 of the gas cylinder is connected to the other ends of the springs 71a and 71b via elastic restriction members 158a and 158b formed of flexible cords such as wires, and the elastic restriction members 158a and 158b are connected to the vehicle body side. Are hooked on pulleys 74a and 74b attached to the belt.
Until the abnormality of the operating actuator 19 is detected, the piston rod 56 is in a contracted state, and the elastic force restricting members 158a and 158b are positioned at the position where the elastic force acting on the operating member 1 is prevented as shown by the one-dot chain line in FIG. The other ends of the springs 71a and 71b are arranged at positions where they do not come into contact with the pressing portion 70a as indicated by solid lines. When the control device 20 detects an abnormality of the operating actuator 19, the piston rod 56 is extended by sending an open signal to the electromagnetic opening / closing valve, and the elasticity regulating member 158a cancels the inhibition of the action of elasticity on the operating member 1 indicated by a broken line in the figure. The other ends of the springs 71a and 71b are in contact with the pressing portion 70a. Others are the same as the above embodiment, and the same parts are denoted by the same reference numerals.
[0022]
FIG. 10 shows a second modification of the present invention, which includes the elasticity applying mechanism 130 similar to the first modification, and an elasticity control mechanism 250 different from the above embodiment and the first modification.
The elasticity control mechanism 250 includes a pair of gas cylinders 250 a attached to the vehicle body side and a sealing release mechanism configured by a pair of electromagnetic on-off valves 260 connected to the control device 20. Both springs 71a and 71b are arranged between both gas cylinders 250a. Each gas cylinder 250 a is provided with a sealing chamber 253 surrounded by the inner surface of the cylinder tube 251 and the pressure receiving surface of the piston 252, and an elasticity regulating member 258 is attached to the tip of a piston rod 256 integrated with the piston 252. . The enclosing chamber 253 communicates with the atmosphere opening 255 via the electromagnetic opening / closing valve 260.
Until the abnormality of the operating actuator 19 is detected, the high-pressure gas held in the compressed state is sealed in the sealing chamber 253, and each piston rod 256 is extended. In this state, the both elastic force restricting members 258 are positioned at the position where the elastic force is not applied to the operating member 1, and contact the pulley 259 attached to the other ends of the two springs 71a and 71b as shown by solid lines in the figure. Thus, the other ends of the springs 71a and 71b are arranged at positions where they do not contact the pressing portion 70a. When the controller 20 sends an open signal to the electromagnetic opening / closing valve 260 when an abnormality of the operation actuator 19 is detected, the gas sealed in the sealing chamber 253 is discharged into the atmosphere, thereby expanding, and the springs 71a and 71b. As a result, the piston rods 256 are contracted by the elastic force, the elastic force restricting member 258 is displaced to the position where the elastic member is prevented from acting, and the other ends of the springs 71a and 71b are indicated by broken lines in FIG. By contacting the pressing portion 70a, elasticity is generated that returns the operating member 1 to the straight steering position. Others are the same as those in the above embodiment and the first modification, and the same parts are denoted by the same reference numerals.
[0023]
FIG. 11 shows a third modification of the present invention, which includes the elasticity applying mechanism 130 similar to the first modification, and the elasticity control mechanism 350 different from the above-described embodiment and the first and second modifications. The elasticity control mechanism 350 includes a pair of gas cylinders 50a mounted on the vehicle body side similar to the above-described embodiment and a pair of gas cylinders 50a similar to the above-described embodiment that opens and closes bypass passages that connect both the enclosed chambers of each gas cylinder 50a. An electromagnetic opening / closing valve 59 is provided, and both gas cylinders 50a are disposed between the other ends of both springs 71a, 71b. The tip of the piston rod 56 of each gas cylinder 50a is bent into a hook shape, and the same elasticity regulating member 258 as that of the second modification is attached to the tip.
Until the abnormality of the operating actuator 19 is detected, both piston rods 56 are in the contracted state. In this state, the both elastic force restricting members 258 are positioned at the position where the elastic force is not applied to the operating member 1, and contact the pulley 259 attached to the other ends of the two springs 71a and 71b as shown by solid lines in the figure. Thus, the other ends of the springs 71a and 71b are arranged at positions where they do not contact the pressing portion 70a. When the control device 20 detects an abnormality of the operation actuator 19, each piston rod 56 is extended by sending an open signal to each electromagnetic open / close valve 59, whereby the elastic force restricting member 258 cancels the blocking of the action of the elastic force on the operating member 1. The other ends of the springs 71a and 71b are brought into contact with the pressing portion 70a as shown by broken lines in FIG. 11 to generate elasticity that returns the operating member 1 to the straight steering position. Others are the same as those in the above embodiment and the first and second modifications, and the same parts are denoted by the same reference numerals.
[0024]
In the above-described embodiment and modification, gas is sealed as a fluid in the sealing chamber, but instead of this, a liquid may be sealed, and the fluid sealed in the sealing chamber may not be compressed. For example, as a fourth modification, each of the sealing chambers 53 and 54 in the above embodiment may be sealed without compressing oil instead of gas, and the others may be configured in the same manner as in the above embodiment.
[0025]
The present invention is not limited to the above embodiments and modifications. For example, the elasticity for returning the operation member to the straight steering position may be generated by a different type of spring, rubber, or the like.
[0026]
【The invention's effect】
According to the present invention, in a steering apparatus for a vehicle that employs a steer-by-wire system, an operation actuator can be manufactured without a feeling of deterioration, with a compact structure, without consuming a large amount of energy, and without giving an impact. When an abnormality occurs, a fail-safe function can be achieved by applying an elastic force that returns the operating member to the straight-ahead steering position.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the configuration of a vehicle steering system according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of an elasticity applying mechanism in a straight-ahead steering state when an abnormality of an operation actuator is detected in the vehicle steering apparatus according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view of an elasticity applying mechanism in a left steering state when an abnormality is detected in an operation actuator in a vehicle steering apparatus according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of an elastic force applying mechanism in a right steering state when an abnormality of an operation actuator is detected in a vehicle steering apparatus according to an embodiment of the present invention.
FIG. 5 is a diagram illustrating the configuration of an elasticity control mechanism in the vehicle steering apparatus according to the embodiment of the present invention.
FIG. 6 is a configuration explanatory diagram of a main part of the elasticity control mechanism in the vehicle steering system according to the embodiment of the present invention.
FIG. 7 is a flowchart showing a control procedure of the operation actuator and the steering actuator in the vehicle steering apparatus according to the embodiment of the present invention.
FIG. 8 is an explanatory view of the arrangement of the elasticity applying mechanism in the vehicle steering system according to the first modified example of the present invention.
FIG. 9 is a diagram illustrating the configuration of the elasticity applying mechanism and the elasticity control mechanism in the vehicle steering system according to the first modification of the present invention.
FIG. 10 is a diagram illustrating the configuration of an elasticity applying mechanism and an elasticity control mechanism in a vehicle steering apparatus according to a second modification of the present invention.
FIG. 11 is a diagram illustrating the configuration of an elasticity applying mechanism and an elasticity control mechanism in a vehicle steering apparatus according to a third modification of the present invention.
[Explanation of symbols]
1 Operation member
2 Steering actuator
3 Steering gear mechanism
4 wheels
19 Actuator for operation
20 Control device
30, 130 Elasticity imparting mechanism
50, 150, 250, 350 Elasticity control mechanism
50a Gas cylinder (encapsulation release mechanism)
53, 54 Enclosure chamber
55 Bypass passage (throttle passage)
58a First elasticity regulating member
58b Second elasticity regulating member
59 Electromagnetic on-off valve (encapsulation release mechanism)
158a, 258 Elasticity restricting member

Claims (4)

操作部材と、
前記操作部材に作用する力を発生する操作用アクチュエータと、
操舵用アクチュエータと、
前記操舵用アクチュエータの動きを、前記操作部材を車輪に機械的に連結することなく、舵角変化が生じるように前記車輪に伝達する機構と、
前記操作部材の操作に応じて前記操作用アクチュエータと前記操舵用アクチュエータを制御する制御装置と、
前記操作用アクチュエータの異常検知手段と、
その異常検知時に前記操作用アクチュエータの発生力の操作部材への作用を解除する手段と、
前記操作部材を直進操舵位置に復帰させる弾力を発生する弾力付与機構と、
前記操作部材への前記弾力の作用を、前記異常検知までは阻止すると共に前記異常検知時に阻止解除する弾力制御機構とを備える車両用操舵装置。
An operation member;
An operating actuator for generating a force acting on the operating member;
A steering actuator;
A mechanism for transmitting the movement of the steering actuator to the wheel so that a steering angle change occurs without mechanically connecting the operation member to the wheel;
A control device for controlling the operating actuator and the steering actuator in accordance with an operation of the operating member;
An abnormality detection means of the operating actuator;
Means for releasing the action of the generated force of the operating actuator on the operating member when the abnormality is detected;
A resilience providing mechanism for generating resilience for returning the operation member to the straight steering position;
A vehicle steering apparatus comprising: an elastic force control mechanism that blocks the operation of the elastic force on the operation member until the abnormality is detected and releases the blocking when the abnormality is detected.
前記弾力制御機構は、流体を封入する封入室と、前記流体を前記異常検知までは封入状態に保持すると共に前記異常検知時に封入解除する封入解除機構と、前記封入室における流体容積の変化に応じて変位する弾力規制部材とを有し、
前記弾力規制部材は、前記流体の封入状態では前記操作部材への前記弾力の作用の阻止位置に位置され、前記封入状態からの流体の封入解除により、前記操作部材への前記弾力の作用の阻止位置から阻止解除位置に変位される請求項1に記載の車両用操舵装置。
The elasticity control mechanism includes a sealing chamber that encloses a fluid, a sealing release mechanism that holds the fluid in a sealed state until the abnormality is detected and releases the sealing when the abnormality is detected, and a change in fluid volume in the sealing chamber. An elastic restriction member that displaces
The elastic force restricting member is positioned at a position where the elastic member is prevented from acting on the operating member in the fluid sealed state, and the elastic member is released from the sealed state to prevent the elastic member from acting on the operating member. The vehicle steering apparatus according to claim 1, wherein the vehicle steering apparatus is displaced from a position to a blocking release position.
前記流体は、前記封入室に圧縮状態で封入されると共に前記封入解除により膨張する請求項2に記載の車両用操舵装置。The vehicle steering apparatus according to claim 2, wherein the fluid is sealed in the sealed chamber in a compressed state and expands when the sealed state is released. 前記圧縮状態の流体は前記封入室から絞り通路を介して排出されることで膨張する請求項3に記載の車両用操舵装置。The vehicle steering apparatus according to claim 3, wherein the fluid in the compressed state expands by being discharged from the sealing chamber through a throttle passage.
JP2003020053A 2003-01-29 2003-01-29 Vehicle steering system Expired - Fee Related JP4161724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020053A JP4161724B2 (en) 2003-01-29 2003-01-29 Vehicle steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020053A JP4161724B2 (en) 2003-01-29 2003-01-29 Vehicle steering system

Publications (2)

Publication Number Publication Date
JP2004230975A JP2004230975A (en) 2004-08-19
JP4161724B2 true JP4161724B2 (en) 2008-10-08

Family

ID=32949782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020053A Expired - Fee Related JP4161724B2 (en) 2003-01-29 2003-01-29 Vehicle steering system

Country Status (1)

Country Link
JP (1) JP4161724B2 (en)

Also Published As

Publication number Publication date
JP2004230975A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US10029725B2 (en) Torque feedback system for a steer-by-wire vehicle, vehicle having steering column, and method of providing feedback in vehicle
JP4122472B2 (en) Vehicle steering system and control method thereof
KR100841668B1 (en) Steer unit for steer-by-wire
US6138788A (en) Vehicle steering system
CN109533009B (en) Fluid flow control mechanism for steering wheel emulator
US6814177B2 (en) Vehicle steering system
US7484588B2 (en) Closed center steering system
JP4764254B2 (en) Steering reaction force generator for vehicle driving simulation system
JPS6327233B2 (en)
JPH10194152A (en) Steering device for automobile
JP4161724B2 (en) Vehicle steering system
JP4082199B2 (en) Vehicle steering system
JP4110909B2 (en) Vehicle stabilizer device
EP3333046B1 (en) Steering apparatus
JP4193576B2 (en) Vehicle steering system
JP2008518841A (en) Power steering for automobiles
JP4192685B2 (en) Vehicle steering system
JP3923691B2 (en) Vehicle steering system
JP2004231054A (en) Steer-by-wire type steering device
CN115916628A (en) Steering system for vehicle
JP4082204B2 (en) Vehicle steering system
US20090314572A1 (en) Closed center valve steering system with adjustable pressure
KR970007485B1 (en) Electric power steering device
KR200203102Y1 (en) Power steering gear box for a vehicle
JP2002029430A (en) Steering system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4161724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees