JP4161369B2 - Vehicle driving force distribution control device - Google Patents

Vehicle driving force distribution control device Download PDF

Info

Publication number
JP4161369B2
JP4161369B2 JP2003367384A JP2003367384A JP4161369B2 JP 4161369 B2 JP4161369 B2 JP 4161369B2 JP 2003367384 A JP2003367384 A JP 2003367384A JP 2003367384 A JP2003367384 A JP 2003367384A JP 4161369 B2 JP4161369 B2 JP 4161369B2
Authority
JP
Japan
Prior art keywords
driving force
force transmission
temperature sensor
housing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367384A
Other languages
Japanese (ja)
Other versions
JP2005132141A (en
Inventor
進 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003367384A priority Critical patent/JP4161369B2/en
Priority to DE602004028782T priority patent/DE602004028782D1/en
Priority to EP04016104A priority patent/EP1495901B1/en
Priority to US10/886,652 priority patent/US7147094B2/en
Publication of JP2005132141A publication Critical patent/JP2005132141A/en
Application granted granted Critical
Publication of JP4161369B2 publication Critical patent/JP4161369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、四輪駆動車の車両用駆動力配分制御装置に関する。   The present invention relates to a vehicle driving force distribution control device for a four-wheel drive vehicle.

車両用駆動力配分制御装置は、エンジンから一方の回転軸に伝達されるトルクを他方の回転軸へ伝達するものであり、その駆動力伝達装置は、四輪駆動車の駆動軸と従動軸間に配設されてエンジンから駆動軸に伝達されたトルクを従動軸へ伝達し、車両を四輪駆動状態とする。四輪駆動車には、四輪駆動と二輪駆動とを適宜切り換えるパートタイム方式、常時四輪を駆動するフルタイム方式の他に、必要に応じて四輪駆動状態と二輪駆動状態との間を遷移するスタンバイ方式がある。   The vehicle driving force distribution control device transmits torque transmitted from the engine to one rotating shaft to the other rotating shaft, and the driving force transmitting device is provided between the driving shaft and the driven shaft of a four-wheel drive vehicle. The torque transmitted from the engine to the drive shaft is transmitted to the driven shaft, and the vehicle is brought into a four-wheel drive state. For four-wheel drive vehicles, in addition to the part-time method that switches between four-wheel drive and two-wheel drive as appropriate, and the full-time method that always drives the four-wheel drive, it is possible to switch between the four-wheel drive state and the two-wheel drive state as necessary. There is a standby method to transition.

スタンバイ方式では、一般に、トランスミッション及びトランスファを備えたトランスアクスルは、エンジンの駆動力を左右一対のフロントアクスルを介してそれぞれ前輪に伝達するようになっている。又、トランスアクスルは、エンジンの駆動力をプロペラシャフトを介して駆動力伝達装置に伝達する。駆動力伝達装置は、ドライブピニオンシャフトを介してリアディファレンシャルに連結され、そのリアディファレンシャルは左右一対のリアアクスルを介してそれぞれ後輪に連結されている。   In the standby system, in general, a transaxle including a transmission and a transfer transmits the driving force of the engine to the front wheels via a pair of left and right front axles. The transaxle transmits the driving force of the engine to the driving force transmission device via the propeller shaft. The driving force transmission device is connected to the rear differential via a drive pinion shaft, and the rear differential is connected to the rear wheels via a pair of left and right rear axles.

駆動力伝達装置は、一般に、湿式多板式の電磁クラッチ機構を備え、クラッチ機構に内蔵された電磁コイルを通電制御することにより、各クラッチ板を互いに摩擦係合させ、プロペラシャフトを介して伝達されるエンジンの駆動力を、リアディファレンシャルに伝達する。リアディファレンシャルに伝達された駆動力は左右一対のフロントアクスルを介してそれぞれ後輪に伝達される。このクラッチ板の摩擦係合力は、電磁コイルに供給する電流値によって決まり、摩擦係合力が大きいほど、後輪への駆動力の伝達が大きい。つまり、スタンバイ方式では、駆動力伝達装置が、摩擦係合力を制御することによって、4輪駆動状態又は2輪駆動状態のいずれかを選択するとともに、4輪駆動状態において前輪と後輪との間の駆動力配分率を制御する。   In general, a driving force transmission device includes a wet multi-plate electromagnetic clutch mechanism, and by energizing and controlling an electromagnetic coil built in the clutch mechanism, the clutch plates are frictionally engaged with each other and transmitted via a propeller shaft. The driving force of the engine is transmitted to the rear differential. The driving force transmitted to the rear differential is transmitted to the rear wheels through a pair of left and right front axles. The frictional engagement force of the clutch plate is determined by the current value supplied to the electromagnetic coil, and the greater the frictional engagement force, the greater the transmission of driving force to the rear wheels. That is, in the standby system, the driving force transmission device selects either the four-wheel driving state or the two-wheel driving state by controlling the frictional engagement force, and between the front wheels and the rear wheels in the four-wheel driving state. To control the driving force distribution ratio.

後輪に対する駆動力配分割合が大きくなると、クラッチ板の摩擦係合力が大きくなり、発生する摩擦熱によって駆動力伝達装置内の潤滑油の温度が上昇する。潤滑油は温度が上昇すると粘度は下がる性質があり、伝達される駆動力も小さくなる。このとき、要求される駆動力を伝達するにはクラッチ板の摩擦係合力をさらに大きくする必要があるが、クラッチ板の摩擦係合力を大きくすれば油温はさらに上昇する。よって、潤滑油の温度の上昇は駆動力伝達装置の損傷につながる。このため、油温を測定する温度センサを設け、油温が一定値を超えると駆動力の伝達割合を下げてクラッチ板の摩擦係合力を減じ、油温を下げる駆動力伝達装置が考案されている(特許文献1および2参照)。   When the driving force distribution ratio for the rear wheels increases, the frictional engagement force of the clutch plate increases, and the temperature of the lubricating oil in the driving force transmission device rises due to the generated frictional heat. Lubricating oil has the property that the viscosity decreases as the temperature rises, and the transmitted driving force also decreases. At this time, in order to transmit the required driving force, it is necessary to further increase the frictional engagement force of the clutch plate. However, if the frictional engagement force of the clutch plate is increased, the oil temperature further increases. Therefore, a rise in the temperature of the lubricating oil leads to damage to the driving force transmission device. For this reason, a temperature sensor for measuring the oil temperature is provided, and when the oil temperature exceeds a certain value, a driving force transmission device has been devised that reduces the friction engagement force of the clutch plate by lowering the transmission ratio of the driving force to reduce the oil temperature. (See Patent Documents 1 and 2).

特開2003−136989号公報Japanese Patent Laid-Open No. 2003-136989 特開2003−136990号公報JP 2003-136990 A

特許文献1および2の例では、駆動力伝達装置を制御する電子制御装置(以下、ECU=Electronic Control Unitと称することもある)は水や埃の影響を受けにくい場所に取り付けられているため、駆動力伝達装置とは離れた場所に位置していることが多い。このため、駆動力伝達装置のハウジング内に温度センサを取り付け、その温度センサの出力端子から延びたリード線をハウジングの外部に引き出さなければならない。そして、リード線とハウジングとの間は、ハウジング内部への水分などの浸入を防止するためにシールしておく必要がある。したがって、従来の駆動力伝達装置においては、温度センサの取り付けに手間がかかり、コストが高くつくという問題があった。   In the examples of Patent Documents 1 and 2, an electronic control device that controls the driving force transmission device (hereinafter also referred to as ECU = Electronic Control Unit) is attached to a place that is not easily affected by water or dust. It is often located at a location away from the driving force transmission device. For this reason, it is necessary to attach a temperature sensor in the housing of the driving force transmission device and to draw out a lead wire extending from the output terminal of the temperature sensor to the outside of the housing. And it is necessary to seal between the lead wire and the housing in order to prevent moisture and the like from entering the inside of the housing. Therefore, the conventional driving force transmission device has a problem that it takes time to install the temperature sensor and the cost is high.

また、駆動力伝達装置のハウジング内に温度センサを配置するのではなく、たとえば、車体の駆動力伝達装置から少し離れた箇所に温度センサを取り付けて、この温度センサにより駆動力伝達装置の温度を検出し、その温度と電磁コイルへの通電電流より、潤滑油の温度を計算する構成が考えられる。しかしながら、この構成では、温度センサを水分などから保護するために、たとえば、車体に密封構造のケースを取り付け、このケース内に温度センサを取り付けなければならず、やはり温度センサの取り付けに手間がかかってしまう。   Also, instead of placing a temperature sensor in the housing of the driving force transmission device, for example, a temperature sensor is attached at a location slightly away from the driving force transmission device of the vehicle body, and the temperature of the driving force transmission device is adjusted by this temperature sensor. A configuration is conceivable in which the temperature of the lubricating oil is calculated based on the detected temperature and the current supplied to the electromagnetic coil. However, in this configuration, in order to protect the temperature sensor from moisture and the like, for example, a case with a sealed structure must be attached to the vehicle body, and the temperature sensor must be attached in this case. End up.

さらに、温度によって抵抗値が変化する熱抵抗素子を温度センサとして使用する場合、リード線自体に含まれる抵抗分の影響を受け、正しい抵抗値(即ち、温度)を測定できない可能性がある。また、リード線の長さあるいは配線位置によってはノイズの影響を受け、正しい温度を測定できない可能性もある。   Further, when a thermal resistance element whose resistance value varies with temperature is used as a temperature sensor, there is a possibility that a correct resistance value (that is, temperature) cannot be measured due to the influence of the resistance contained in the lead wire itself. Also, depending on the length of the lead wire or the wiring position, there is a possibility that the correct temperature cannot be measured due to the influence of noise.

温度センサをリード線を介してECUに接続する場合、コネクタを使用するのが一般的で、防水性のあるものが必須となる。コネクタ接続を行なう場合、コネクタピンにおける接触抵抗の影響を受け、正しい抵抗値を測定できない可能性がある。また、コネクタ組み付け時に半嵌合状態となって組み付け不良が発生することもある。   When the temperature sensor is connected to the ECU via a lead wire, a connector is generally used, and a waterproof one is essential. When a connector is connected, there is a possibility that the correct resistance value cannot be measured due to the influence of the contact resistance at the connector pin. Further, when the connector is assembled, it may be in a semi-fitted state, resulting in an assembly failure.

そこで、本発明の課題は、上述の技術的課題を解決し、温度センサなどの温度検出手段の取り付けに要する手間を軽減でき、これによりコストの低減を図り、なおかつ、駆動力伝達装置の温度を正確に測定することのできる車両用駆動力配分制御装置を提供することにある。   Therefore, the problem of the present invention is to solve the above technical problem and reduce the time and effort required for mounting temperature detecting means such as a temperature sensor, thereby reducing the cost and reducing the temperature of the driving force transmission device. It is an object of the present invention to provide a vehicle driving force distribution control device capable of accurately measuring.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、上記課題を解決するための車両用駆動力配分制御装置を提供するものである。即ち
駆動源からの駆動力を駆動力伝達部を介して複数の車輪に配分する車両用駆動力配分制御装置において、
駆動力伝達部とは別個に設けられる樹脂製のハウジングと、ハウジングの内部に取り付けられ、駆動力伝達部の温度を測定する温度センサと、ハウジングに格納され、温度センサからの温度情報を処理するセンサ信号処理回路と、ハウジングを駆動力伝達部に固着するための、ハウジングと一体的に成型された樹脂製のブラケットと、そのブラケットに設けられて駆動力伝達部で発生する熱を温度センサへ伝える熱伝導部と、を含み、
熱伝導部は金属製の熱伝導部材によって構成されて、インサート成形により前記樹脂製のブラケットと一体化されており、
温度センサは、ハウジング内で熱伝導部材の一端との間で熱伝導可能に取り付けられ、
樹脂製のブラケットが駆動力伝達部に密着固定するときに、熱伝導部材の一端が一緒に固定されることにより、駆動力伝達部で発生する熱を温度センサに伝えることを特徴とする
The present invention provides a vehicle driving force distribution control device for solving the above-described problems. That is ,
In a vehicle driving force distribution control device that distributes driving force from a driving source to a plurality of wheels via a driving force transmission unit,
A resin housing provided separately from the driving force transmission unit, a temperature sensor that is mounted inside the housing and measures the temperature of the driving force transmission unit, and is stored in the housing, and processes temperature information from the temperature sensor A sensor signal processing circuit, a resin bracket integrally molded with the housing for fixing the housing to the driving force transmission portion, and heat generated in the driving force transmission portion provided on the bracket to the temperature sensor and a heat-conducting portion tell, only including,
The heat conduction part is composed of a metal heat conduction member, and is integrated with the resin bracket by insert molding,
The temperature sensor is mounted in the housing so as to be able to conduct heat between one end of the heat conducting member,
When the resin bracket is closely fixed to the driving force transmitting portion, one end of the heat conducting member is fixed together, thereby transferring heat generated in the driving force transmitting portion to the temperature sensor .

本発明では、温度センサを駆動力伝達部(上述の駆動力伝達装置)内に組み付けずにECUに内蔵するため、温度センサの出力端子から延びたリード線を駆動力伝達装置のハウジングの外部に引き出す必要はない。したがって、ハウジングに温度センサ取り付け用の穴をあける必要もなく、ハウジング内にあるモータ内部への水分などの浸入を防止するためにリード線とハウジングとの間にシール材を用いる必要もなくなる。よって、駆動力伝達部のハウジングの構造も単純なものとなり製造コストも低減できる。   In the present invention, since the temperature sensor is built in the ECU without being assembled in the driving force transmission unit (the above-described driving force transmission device), the lead wire extending from the output terminal of the temperature sensor is provided outside the housing of the driving force transmission device. There is no need to pull it out. Therefore, there is no need to make a hole for attaching the temperature sensor in the housing, and there is no need to use a sealing material between the lead wire and the housing in order to prevent moisture and the like from entering the motor inside the housing. Therefore, the structure of the housing of the driving force transmission unit is simplified and the manufacturing cost can be reduced.

本発明によって、温度センサとECUを接続するケーブルが不要となり、そのケーブルの部品コストおよび組み付けに要するコストを削減できる。   According to the present invention, a cable for connecting the temperature sensor and the ECU becomes unnecessary, and it is possible to reduce the cost of parts of the cable and the cost required for assembly.

また、従来は駆動力伝達部内に設置されていた温度センサとECUを接続するケーブルが不要となったことにより、駆動力伝達部とECUを接続するケーブルのコネクタのピン数を減らすことができる。その結果、該コネクタを小型化してコストを削減することができる。さらに、温度センサ(熱抵抗素子)に対するケーブル自体の持つ抵抗値およびコネクタ間で生ずる接触抵抗の影響もなくなり、温度センサの測定値の信頼性が向上する。   In addition, since the cable for connecting the temperature sensor and the ECU, which has conventionally been installed in the driving force transmission unit, is no longer necessary, the number of pins of the connector of the cable connecting the driving force transmission unit and the ECU can be reduced. As a result, the connector can be miniaturized and the cost can be reduced. Further, the influence of the resistance value of the cable itself on the temperature sensor (thermal resistance element) and the contact resistance generated between the connectors is eliminated, and the reliability of the measured value of the temperature sensor is improved.

また、駆動力伝達部と温度センサは熱伝導路によって接続されるため、従来のケーブル接続時におけるノイズが温度測定に影響を及ぼすという問題も解消する。さらに、温度センサはECU内にあるため、ノイズ対策を行なう場合でもECUのプリント基板上の配線あるいは部品配置の検討を行なうだけで対応可能で、従来のようにコストアップ要因となるシールドケーブルのような耐ノイズ性の高いケーブルを使用したり、ケーブルの取りまわしを検討することを行なわなくてもよい。耐ノイズ試験も車両を用意することなくECU単体のみで実施することも可能となるので、ECU開発・評価日程の自由度が高まり、開発期間の短縮あるいは開発コストの低減につながる。   Further, since the driving force transmission unit and the temperature sensor are connected by a heat conduction path, the problem that noise during connection of a conventional cable affects temperature measurement is also solved. In addition, since the temperature sensor is in the ECU, even if noise countermeasures are taken, it can be handled simply by examining the wiring on the printed circuit board of the ECU or the arrangement of components, as in the case of a shielded cable that causes a cost increase as in the past. It is not necessary to use a cable with high noise resistance or to consider the cable routing. Since the noise resistance test can be performed only by the ECU alone without preparing a vehicle, the degree of freedom in the ECU development / evaluation schedule is increased, leading to a shortened development period or a reduced development cost.

本発明の熱伝導部はケーブルよりも太くて強度も大きい。つまり、該熱伝導部が断線する確率はケーブルより低いので故障率も低くなる。従来構成で故障が発生した場合、温度センサ,ケーブル,ECUの全てを調べなければならなかったが、本発明では温度センサはECUに内蔵され、熱伝導部はECUと一体構成のため、ECUのみを調べることで故障の原因を究明することが可能となる。よって、故障の原因解析に要する時間も短縮される。   The heat conducting part of the present invention is thicker and stronger than the cable. That is, since the probability that the heat conducting part is disconnected is lower than that of the cable, the failure rate is also low. When a failure occurs in the conventional configuration, all of the temperature sensor, the cable, and the ECU had to be examined. However, in the present invention, the temperature sensor is built in the ECU, and the heat conduction unit is integrated with the ECU, so only the ECU. By examining the above, it becomes possible to investigate the cause of the failure. Therefore, the time required for failure cause analysis is also shortened.

また、本発明の熱伝導部は金属製の熱伝導部材がインサート成形によりブラケットと一体化されているため、ECUの製造工程にも大きな影響を及ぼすことはない。また、ECUを車体に組み付ければ同時に熱伝導部も車体に固着されるので、ECU組み付け時の作業負荷は増大しない。   In addition, since the metal heat conduction member is integrated with the bracket by insert molding, the heat conduction part of the present invention does not significantly affect the manufacturing process of the ECU. Further, when the ECU is assembled to the vehicle body, the heat conduction part is also fixed to the vehicle body at the same time, so that the work load at the time of assembling the ECU does not increase.

また、本発明の車両用駆動力配分制御装置は、センサ信号処理回路による処理後の信号に基づいて駆動力伝達部を制御する構成をとることができる。
Further , the vehicle driving force distribution control device of the present invention can be configured to control the driving force transmission unit based on a signal after processing by the sensor signal processing circuit.

駆動力伝達部は、電磁コイルを駆動することによりクラッチ版の摩擦係合力を制御する。この電磁コイルの温度上昇および摩擦係合力により駆動力伝達部を満たす潤滑用オイルの温度が上昇すると潤滑用オイルの粘性が下がる(粘性が弱くなる)。するとクラッチ板間でのトルク伝達力も小さくなる。つまり、車輪の駆動力が弱くなるので、運転者は違和感を受け所望の駆動力を得ようとしてアクセルを更に踏み込む。この結果、燃費が悪化したり、油温が異常に上昇して駆動力伝達部が損傷する恐れもある。よって、本構成では、潤滑用オイル温度を常時監視しているので、運転者の要求に応じた駆動力制御を行なうことができ、駆動力伝達部の損傷を防ぐこともできる。   The driving force transmission unit controls the frictional engagement force of the clutch plate by driving the electromagnetic coil. When the temperature of the lubricating oil that fills the driving force transmitting portion increases due to the temperature rise of the electromagnetic coil and the frictional engagement force, the viscosity of the lubricating oil decreases (the viscosity becomes weak). Then, the torque transmission force between the clutch plates is also reduced. That is, since the driving force of the wheels becomes weak, the driver feels uncomfortable and further depresses the accelerator to obtain a desired driving force. As a result, fuel consumption may deteriorate, or the oil temperature may rise abnormally and the driving force transmission unit may be damaged. Therefore, in this configuration, since the lubricating oil temperature is constantly monitored, the driving force control according to the driver's request can be performed, and the driving force transmission unit can be prevented from being damaged.

駆動力伝達部内の油温を正確に計測するために、温度センサをECUに内蔵し、熱伝導を行なうバスバー等を介して該ECUを駆動力伝達部に固定する構成とした。   In order to accurately measure the oil temperature in the driving force transmission unit, a temperature sensor is built in the ECU, and the ECU is fixed to the driving force transmission unit via a bus bar or the like that conducts heat.

以下、本発明を前輪駆動ベースの四輪駆動車に具体化した実施例について図面を用いて説明する。   Embodiments of the present invention embodied in a front wheel drive-based four-wheel drive vehicle will be described below with reference to the drawings.

図1は、本実施形態における四輪駆動車の概略構成図を示す。図1において、四輪駆動車1は、内燃機関であるエンジン2およびトランスアクスル3を備えている。トランスアクスル3は、トランスミッション3a、フロントディファレンシャル3bおよびトランスファ3c等を有している。前記フロントディファレンシャル3bは左右一対のフロントアクスル4a,4bと連結され、その一対のフロントアクスル4a,4bにはそれぞれ前輪5a,5bがそれぞれ連結されている。従って、エンジン2の駆動力は、トランスミッション3a、フロントディファレンシャル3bおよび左右一対のフロントアクスル4a,4bを介して前輪5a,5bにそれぞれトルク伝達される。   FIG. 1 is a schematic configuration diagram of a four-wheel drive vehicle in the present embodiment. In FIG. 1, a four-wheel drive vehicle 1 includes an engine 2 and a transaxle 3 which are internal combustion engines. The transaxle 3 includes a transmission 3a, a front differential 3b, a transfer 3c, and the like. The front differential 3b is connected to a pair of left and right front axles 4a and 4b, and front wheels 5a and 5b are connected to the pair of front axles 4a and 4b, respectively. Accordingly, the driving force of the engine 2 is transmitted to the front wheels 5a and 5b via the transmission 3a, the front differential 3b and the pair of left and right front axles 4a and 4b, respectively.

また、トランスファ3cはプロペラシャフト6に連結され、そのプロペラシャフト6は駆動力伝達装置7(本発明における駆動力伝達部)に駆動連結されている。従って、エンジン2の駆動力は、トランスミッション3a、トランスファ3cおよびプロペラシャフト6を介して駆動力伝達装置7に伝達される。駆動力伝達装置7はドライブピニオンシャフト8を介してリアディファレンシャル9に連結され、そのリアディファレンシャル9は左右一対のリアアクスル10a,10bに連結されている。そして、リアアクスル10a,10bには、それぞれ後輪11a,11bが連結されている。   The transfer 3c is connected to a propeller shaft 6, and the propeller shaft 6 is drivingly connected to a driving force transmission device 7 (a driving force transmission unit in the present invention). Therefore, the driving force of the engine 2 is transmitted to the driving force transmission device 7 via the transmission 3a, the transfer 3c, and the propeller shaft 6. The driving force transmission device 7 is connected to a rear differential 9 via a drive pinion shaft 8, and the rear differential 9 is connected to a pair of left and right rear axles 10a and 10b. Rear wheels 11a and 11b are connected to the rear axles 10a and 10b, respectively.

駆動力伝達装置7は、図示しない湿式多板式の電磁クラッチ機構を備え、同電磁クラッチ機構には電磁コイル7a(図2参照)と互いに接離可能な複数のクラッチ板を有している。そして、電磁コイル7aに後記する駆動力配分用電子制御ユニット21からの制御信号(指令値)に基づいて給電される電流値に応じて各クラッチ板は互いに摩擦係合し、ドライブピニオンシャフト8にプロペラシャフト6の駆動力が駆動力伝達装置7に満たされた潤滑用オイルを介してトルク伝達される。   The driving force transmission device 7 includes a wet multi-plate electromagnetic clutch mechanism (not shown), and the electromagnetic clutch mechanism includes a plurality of clutch plates that can contact and separate from the electromagnetic coil 7a (see FIG. 2). Then, the clutch plates are frictionally engaged with each other in accordance with a current value supplied based on a control signal (command value) from the driving force distribution electronic control unit 21 which will be described later to the electromagnetic coil 7a, and the drive pinion shaft 8 Torque is transmitted to the driving force of the propeller shaft 6 via the lubricating oil filled in the driving force transmission device 7.

詳述すると、プロペラシャフト6(即ち、エンジン2)からドライブピニオンシャフト8(即ち、後輪11a,11b)に伝達される駆動力は、クラッチ板の摩擦係合力によって決まり、摩擦係合力が大きいほど大きい。そして、その摩擦係合力は電磁コイル7aに供給する電流値によって決まる。つまり、駆動力伝達装置7は、摩擦係合力を制御することによって、四輪駆動状態または二輪駆動状態のいずれかを選択するとともに、四輪駆動状態において前輪5a,5bと後輪11a,11bとの間の駆動力配分率を制御する。   More specifically, the driving force transmitted from the propeller shaft 6 (that is, the engine 2) to the drive pinion shaft 8 (that is, the rear wheels 11a and 11b) is determined by the frictional engagement force of the clutch plate. large. The frictional engagement force is determined by the current value supplied to the electromagnetic coil 7a. That is, the driving force transmission device 7 selects either the four-wheel driving state or the two-wheel driving state by controlling the friction engagement force, and in the four-wheel driving state, the front wheels 5a and 5b and the rear wheels 11a and 11b To control the driving force distribution ratio between.

次に、図2を用いて駆動力伝達装置7を駆動制御する駆動力伝達制御回路の電気的構成について説明する。駆動力伝達制御回路は、駆動力配分用電子制御ユニット(以下、駆動力配分用ECUという)21を備えている。駆動力配分用ECU21は、CPU22,ROM23,RAM24,入出力回路25,駆動回路35,およびこれらの構成を接続するバスライン26が備えられている。CPU22は、ROM23に記憶された各種プログラムに従って駆動力伝達装置7を駆動制御、すなわち、電磁コイル7aを通電制御するための各種演算処理を実行する。ROM23は、駆動力伝達装置7の電磁コイル7aを通電制御するための各種プログラム、各種のデータおよび各種のマップデータを格納している。RAM24は、前記CPU22の演算処理結果を一時記憶したり、各種データを記憶する。   Next, the electrical configuration of the driving force transmission control circuit that controls the driving force transmission device 7 will be described with reference to FIG. The driving force transmission control circuit includes a driving force distribution electronic control unit (hereinafter referred to as a driving force distribution ECU) 21. The driving force distribution ECU 21 includes a CPU 22, a ROM 23, a RAM 24, an input / output circuit 25, a driving circuit 35, and a bus line 26 for connecting these components. The CPU 22 executes various arithmetic processes for driving control of the driving force transmission device 7 according to various programs stored in the ROM 23, that is, energization control of the electromagnetic coil 7a. The ROM 23 stores various programs for controlling energization of the electromagnetic coil 7a of the driving force transmission device 7, various data, and various map data. The RAM 24 temporarily stores the arithmetic processing result of the CPU 22 and stores various data.

CPU22は、入出力回路25を介してスロットルバルブに設けられたスロットル開度センサ32と接続されている。CPU22は、スロットル開度センサ32からの検出信号に基づいてスロットルバルブの開度(スロットル開度)を算出する。   The CPU 22 is connected to a throttle opening sensor 32 provided on the throttle valve via an input / output circuit 25. The CPU 22 calculates the throttle valve opening (throttle opening) based on the detection signal from the throttle opening sensor 32.

CPU22は、入出力回路25を介して前輪5a,5bおよび後輪11a,11bの車輪の回転を検出する車輪速センサ33a〜33dと接続されている。CPU22は車輪速センサ33a〜33dからの検出信号を入力し、各検出信号に基づいて前輪5a,5bおよび後輪11a,11bの車輪を算出する。また、CPU22は、前輪5a,5bの両車輪速から前輪平均車輪速を求めるとともに、後輪11a,11bの両車輪速から後輪平均車輪速を算出する。さらに、CPU22は、前輪平均車輪速と後輪平均車輪速とから両者の差の絶対値である差動回転速度を算出する。   The CPU 22 is connected to wheel speed sensors 33a to 33d that detect the rotation of the wheels of the front wheels 5a and 5b and the rear wheels 11a and 11b via the input / output circuit 25. The CPU 22 receives detection signals from the wheel speed sensors 33a to 33d, and calculates the wheels of the front wheels 5a and 5b and the rear wheels 11a and 11b based on the detection signals. Further, the CPU 22 obtains the average front wheel speed from both wheel speeds of the front wheels 5a and 5b and calculates the average rear wheel speed from both wheel speeds of the rear wheels 11a and 11b. Further, the CPU 22 calculates a differential rotational speed that is an absolute value of a difference between the front wheel average wheel speed and the rear wheel average wheel speed.

CPU22は、入出力回路25を介してECUに内蔵される温度センサ34と接続されている。CPU22は、温度センサ34からの検出信号を入力し、同検出信号をセンサ信号処理回路37で処理を行なった結果に基づいて駆動力伝達装置7に充填された潤滑用オイルの油温を推定演算するようになっている。   The CPU 22 is connected to a temperature sensor 34 built in the ECU via an input / output circuit 25. The CPU 22 receives the detection signal from the temperature sensor 34 and estimates the oil temperature of the lubricating oil charged in the driving force transmission device 7 based on the result of processing the detection signal by the sensor signal processing circuit 37. It is supposed to be.

CPU22は、入出力回路25を介して駆動力伝達装置7の電磁コイル7aに電流を給電する駆動回路35に接続されている。CPU22は、駆動回路35に同CPU22が算出した電流値を電磁コイル7aに給電するためのデューティ比制御信号を出力する。駆動回路35は、デューティ比制御信号に基づいて駆動し、CPU22が算出した電流値を電磁コイル7aに給電する。   The CPU 22 is connected to a drive circuit 35 that supplies current to the electromagnetic coil 7 a of the drive force transmission device 7 via the input / output circuit 25. The CPU 22 outputs a duty ratio control signal for feeding the current value calculated by the CPU 22 to the electromagnetic coil 7 a to the drive circuit 35. The drive circuit 35 is driven based on the duty ratio control signal and feeds the current value calculated by the CPU 22 to the electromagnetic coil 7a.

ROM23に格納される各種プログラムのうちには、通電制御プログラムが含まれる。通電制御プログラムは、二輪駆動モードおよび四輪駆動モードにおいて、その時の走行状態に対する前記電磁コイル7aに供給する電流値を算出し、その算出した電流値で電磁コイル7aを入出力回路25を介して通電制御するプログラムである。   Among the various programs stored in the ROM 23, an energization control program is included. In the two-wheel drive mode and the four-wheel drive mode, the energization control program calculates a current value to be supplied to the electromagnetic coil 7a with respect to the traveling state at that time, and uses the calculated current value to connect the electromagnetic coil 7a via the input / output circuit 25. This program controls energization.

つまり、CPU22は、ドライバがモード選択スイッチ31を四輪駆動モードにセットすると、算出したスロットル開度,差動回転速度,車速,および油温に基づいて、四輪駆動モードためのマップデータから電磁コイル7aに給電する目標電流値をデューティ比として求める。そして、CPU22は、その求めたデューティ比に対するデューティ比制御信号を入出力回路25を介して駆動回路35に出力する。   That is, when the driver sets the mode selection switch 31 to the four-wheel drive mode, the CPU 22 determines the electromagnetic wave from the map data for the four-wheel drive mode based on the calculated throttle opening, differential rotation speed, vehicle speed, and oil temperature. A target current value to be supplied to the coil 7a is obtained as a duty ratio. Then, the CPU 22 outputs a duty ratio control signal corresponding to the obtained duty ratio to the drive circuit 35 via the input / output circuit 25.

また、ドライバがモード選択スイッチ31を二輪駆動モードにセットすると、CPU22は二輪駆動モードとなり、電磁コイル7aへの通電を遮断して前記摩擦係合力を「0」にし、二輪駆動モードに基づく駆動力配分率制御をする。   When the driver sets the mode selection switch 31 to the two-wheel drive mode, the CPU 22 enters the two-wheel drive mode, cuts off the energization to the electromagnetic coil 7a and sets the friction engagement force to “0”, and the driving force based on the two-wheel drive mode. Control allocation rate.

次に、駆動力配分用ECU21の駆動力伝達装置7への取り付け方法について説明する。まず、駆動力配分用ECU21について説明する。   Next, a method for attaching the driving force distribution ECU 21 to the driving force transmission device 7 will be described. First, the driving force distribution ECU 21 will be described.

図3に駆動力配分用ECU21の外観を示す。図3(a)は上面から見た図、図3(b)はコネクタ43,44のある側面から見た図である。駆動力配分用ECU21の樹脂製の筐体部51は、図3のようにブラケット41a,41bと一体的に形成されている。また、蓋50は樹脂製でも金属性でも構わない。   FIG. 3 shows an appearance of the driving force distribution ECU 21. FIG. 3A is a view as seen from above, and FIG. 3B is a view as seen from the side where the connectors 43 and 44 are located. The resin casing 51 of the driving force distribution ECU 21 is formed integrally with the brackets 41a and 41b as shown in FIG. The lid 50 may be made of resin or metal.

図4は駆動力配分用ECU21の内部構成の一例を示した図である。駆動力伝達装置7の駆動制御およびその他の制御に必要な回路素子とともに温度センサ34がプリント基板48に実装されている。   FIG. 4 is a diagram showing an example of the internal configuration of the driving force distribution ECU 21. A temperature sensor 34 is mounted on a printed circuit board 48 together with circuit elements necessary for driving control of the driving force transmission device 7 and other controls.

図5は、駆動力配分用ECU21の駆動力伝達装置7への取り付け例を示す図である。駆動力配分用ECU21はブラケット41a,41bによって駆動力伝達装置7を内蔵するハウジング36に、取り付け螺子46a,46bおよびカラー45a,45bを用いて取り付けられる。   FIG. 5 is a diagram illustrating an example in which the driving force distribution ECU 21 is attached to the driving force transmission device 7. The driving force distribution ECU 21 is attached to the housing 36 containing the driving force transmission device 7 by means of brackets 41a and 41b using mounting screws 46a and 46b and collars 45a and 45b.

図6(a)はその詳細を説明するための、駆動力配分用ECU21の図4のX−X’線に沿った断面の拡大図である。ブラケット41aには金属製のカラー45a(本発明の熱伝導部)およびバスバー47(本発明の熱伝導部)がインサート成型されている。このとき、カラー45aおよびバスバー47は熱伝導可能なように互いに接触している。また、カラー45aおよびバスバー47は一体型の部品として製作してもよい。バスバー47は駆動力配分用ECU21の筐体部51の側壁部と温度センサ34に挟まれるように配置され温度センサ34と接触している。   FIG. 6A is an enlarged view of a cross section taken along the line X-X ′ of FIG. 4 of the driving force distribution ECU 21 for explaining the details. A metal collar 45a (heat conducting portion of the present invention) and a bus bar 47 (heat conducting portion of the present invention) are insert-molded on the bracket 41a. At this time, the collar 45a and the bus bar 47 are in contact with each other so as to conduct heat. Further, the collar 45a and the bus bar 47 may be manufactured as an integral part. The bus bar 47 is disposed so as to be sandwiched between the temperature sensor 34 and the side wall portion of the casing 51 of the driving force distribution ECU 21, and is in contact with the temperature sensor 34.

温度センサ34の特性(温度測定可能範囲)とバスバー47から伝えられる熱情報の整合が取れない場合、即ちバスバー47から伝えられる熱が温度センサ34の測定範囲の上限を超える場合は、温度センサ34とバスバー47の間に樹脂板などの熱伝導効果を減衰させる部材を挿入して油温を正確に測定するような手段を講じてもよい。また、バスバー47の筐体部51内の露出面積が大きく、筐体部51内の温度が必要以上に上昇する場合には、筐体部51内におけるバスバー47の露出面積を必要最小限に小さくして、バスバー47の放熱を抑制するようにしてもよい。   When the characteristics (temperature measurement possible range) of the temperature sensor 34 and the heat information transmitted from the bus bar 47 cannot be matched, that is, when the heat transmitted from the bus bar 47 exceeds the upper limit of the measurement range of the temperature sensor 34, the temperature sensor 34 A member for attenuating the heat conduction effect such as a resin plate may be inserted between the bus bar 47 and the oil temperature may be measured accurately. Further, when the exposed area of the bus bar 47 in the casing 51 is large and the temperature in the casing 51 rises more than necessary, the exposed area of the bus bar 47 in the casing 51 is reduced to the minimum necessary. Then, the heat radiation of the bus bar 47 may be suppressed.

なお、本実施例においてバスバー47は、板状の導体をブラケット41aにインサート成型可能な形状に曲げ加工している。よって、バスバー47の形状はブラケット41aの形状に依存することになる。また、バスバー47に用いる導体の形状は、ブラケット41aのインサート成型を妨げず、温度センサ34に有効な熱情報を伝導可能なものであれば形状(例えば棒状)に制約はない。   In this embodiment, the bus bar 47 is formed by bending a plate-like conductor into a shape that can be insert-molded into the bracket 41a. Therefore, the shape of the bus bar 47 depends on the shape of the bracket 41a. The shape of the conductor used for the bus bar 47 is not limited as long as it does not hinder the insert molding of the bracket 41a and can transmit heat information effective to the temperature sensor 34 (for example, a rod shape).

カラー45aは、図6(b)のように金属板を円筒状に曲げ加工したもので、螺子46aが挿入されて駆動力伝達装置7に固定される。なお、金属板の加工方法についての制約は特にない。   The collar 45a is formed by bending a metal plate into a cylindrical shape as shown in FIG. 6B, and a screw 46a is inserted and fixed to the driving force transmission device 7. In addition, there is no restriction | limiting in particular about the processing method of a metal plate.

次に、駆動力伝達装置7から温度センサ34への熱伝導の状態について述べる。図2において、ROM23に格納される通電制御プログラムにより、二輪駆動モードおよび四輪駆動モードにおいて、その時の走行状態に対する前記電磁コイル7aに供給する電流値を算出し、その算出した電流値で電磁コイル7aを通電制御すると、駆動力伝達装置7は、クラッチ版の摩擦係合力を制御する。この摩擦係合力により駆動力伝達装置7を満たす潤滑用オイルの温度が上昇し、これに伴いハウジング36の温度も上昇する。   Next, the state of heat conduction from the driving force transmission device 7 to the temperature sensor 34 will be described. In FIG. 2, in the two-wheel drive mode and the four-wheel drive mode, the current value supplied to the electromagnetic coil 7a for the running state at that time is calculated by the energization control program stored in the ROM 23, and the electromagnetic coil is calculated with the calculated current value. When energization control of 7a is performed, the driving force transmission device 7 controls the friction engagement force of the clutch plate. Due to this frictional engagement force, the temperature of the lubricating oil that fills the driving force transmission device 7 rises, and accordingly, the temperature of the housing 36 also rises.

ハウジング36の熱はカラー45aに伝わりバスバー47を経由して温度センサ34に伝わる。温度センサ34はバスバー47の温度を基に駆動力伝達装置7の潤滑用オイルの温度を推定する。   The heat of the housing 36 is transmitted to the collar 45 a and is transmitted to the temperature sensor 34 via the bus bar 47. The temperature sensor 34 estimates the temperature of the lubricating oil of the driving force transmission device 7 based on the temperature of the bus bar 47.

温度センサ34によって測定される潤滑用オイルの温度(即ち、バスバー47の温度)は、実際の潤滑用オイルの温度とは異なる。これは、ハウジング36,カラー45a,およびバスバー47における伝導損失(放熱)によるものである。これは、実際の測定により潤滑用オイルの実際の温度と温度センサ34によって測定される温度との相関関係を求め、マップデータとしてROM23に記憶し、潤滑用オイル温度測定プログラム実行時に該データマップを用いて潤滑用オイルの実際の温度を推定するようにすればよい。また、前記相関関係は、ハウジング36,カラー45a,およびバスバー47を構成する材質の熱特性から理論的に求めることも可能である。   The temperature of the lubricating oil measured by the temperature sensor 34 (that is, the temperature of the bus bar 47) is different from the actual temperature of the lubricating oil. This is due to conduction loss (heat radiation) in the housing 36, the collar 45a, and the bus bar 47. This is because the correlation between the actual temperature of the lubricating oil and the temperature measured by the temperature sensor 34 is obtained by actual measurement, stored in the ROM 23 as map data, and this data map is stored when the lubricating oil temperature measurement program is executed. It may be used to estimate the actual temperature of the lubricating oil. The correlation can also be theoretically obtained from the thermal characteristics of the materials constituting the housing 36, the collar 45a, and the bus bar 47.

上記実施例では、駆動力伝達装置7はリアディファレンシャル9と同一のケースに収納されているが、プロペラシャフト6の中央部に配置したり、あるいは、トランスファ3cと同一のケースに収納する方法を採ってもよい。   In the above embodiment, the driving force transmission device 7 is housed in the same case as the rear differential 9. However, the driving force transmission device 7 may be disposed in the center of the propeller shaft 6 or housed in the same case as the transfer 3 c. May be.

以上、本発明の実施の形態を説明したが、これらはあくまで例示にすぎず、本発明はこれらに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。   Although the embodiments of the present invention have been described above, these are merely examples, and the present invention is not limited to these embodiments, and the knowledge of those skilled in the art can be used without departing from the spirit of the claims. Various modifications based on this are possible.

本発明の一実施例である四輪駆動車の概略構成を示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed schematic structure of the four-wheel drive vehicle which is one Example of this invention. 駆動力伝達制御回路を説明するための図。The figure for demonstrating a driving force transmission control circuit. 駆動力配分用ECUの外観図。The external view of ECU for driving force distribution. 駆動力配分用ECUの内部構成の一例を示す図。The figure which shows an example of the internal structure of ECU for driving force distribution. 駆動力配分用ECUの取り付け方法を説明するための図。The figure for demonstrating the attachment method of ECU for driving force distribution. 温度センサへの熱伝導方法の詳細を説明するための図。The figure for demonstrating the detail of the heat conduction method to a temperature sensor.

符号の説明Explanation of symbols

1 四輪駆動車
6 プロペラシャフト
7 駆動力伝達装置(駆動力伝達部)
7a 電磁コイル
21 駆動力配分用電子制御ユニット(ECU)
34 温度センサ
36 ハウジング
37 センサ信号処理回路
41a ブラケット
45a カラー(熱伝導部)
46a 取り付け螺子
47 バスバー(熱伝導部)
1 Four-wheel drive vehicle 6 Propeller shaft 7 Drive force transmission device (drive force transmission part)
7a Electromagnetic coil 21 Driving force distribution electronic control unit (ECU)
34 Temperature sensor 36 Housing 37 Sensor signal processing circuit 41a Bracket 45a Color (heat conduction part)
46a Mounting screw 47 Bus bar (heat conduction part)

Claims (2)

駆動源からの駆動力を駆動力伝達部を介して複数の車輪に配分する車両用駆動力配分制御装置において、
前記駆動力伝達部とは別個に設けられる樹脂製のハウジングと、
前記ハウジングの内部に取り付けられ、前記駆動力伝達部の温度を測定する温度センサと、
前記ハウジングに格納され、前記温度センサからの温度情報を処理するセンサ信号処理回路と、
前記ハウジングを前記駆動力伝達部に固着するための、前記ハウジングと一体的に成型された樹脂製のブラケットと、
そのブラケットに設けられて前記駆動力伝達部で発生する熱を前記温度センサへ伝える熱伝導部と、
を含み、
前記熱伝導部は金属製の熱伝導部材によって構成されて、インサート成形により前記樹脂製のブラケットと一体化されており、
前記温度センサは、前記ハウジング内で前記熱伝導部材の一端との間で熱伝導可能に取り付けられ、
前記樹脂製のブラケットが前記駆動力伝達部に密着固定するときに、前記熱伝導部材の一端が一緒に固定されることにより、前記駆動力伝達部で発生する熱を前記温度センサに伝えることを特徴とする車両用駆動力配分制御装置。
In a vehicle driving force distribution control device that distributes driving force from a driving source to a plurality of wheels via a driving force transmission unit,
A resin-made housing provided separately from the driving force transmission unit;
A temperature sensor attached to the inside of the housing and measuring the temperature of the driving force transmission unit;
A sensor signal processing circuit that is stored in the housing and processes temperature information from the temperature sensor;
A resin-made bracket integrally molded with the housing for fixing the housing to the driving force transmission unit;
A heat conduction unit provided on the bracket and transmitting heat generated by the driving force transmission unit to the temperature sensor;
Only including,
The heat conduction part is composed of a metal heat conduction member, and is integrated with the resin bracket by insert molding,
The temperature sensor is mounted in the housing so as to be capable of conducting heat between one end of the heat conducting member,
When the resin bracket is firmly fixed to the driving force transmitting portion, one end of the heat conducting member is fixed together, thereby transferring heat generated in the driving force transmitting portion to the temperature sensor. A vehicle driving force distribution control device.
前記センサ信号処理回路による処理後の信号に基づいて前記駆動力伝達部を制御するものである請求項1に記載の車両用駆動力配分制御装置。   The vehicle driving force distribution control device according to claim 1, wherein the driving force transmission unit is controlled based on a signal after processing by the sensor signal processing circuit.
JP2003367384A 2003-07-09 2003-10-28 Vehicle driving force distribution control device Expired - Fee Related JP4161369B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003367384A JP4161369B2 (en) 2003-10-28 2003-10-28 Vehicle driving force distribution control device
DE602004028782T DE602004028782D1 (en) 2003-07-09 2004-07-08 Control unit for a drive train
EP04016104A EP1495901B1 (en) 2003-07-09 2004-07-08 Drive power transmission control device
US10/886,652 US7147094B2 (en) 2003-07-09 2004-07-09 Drive power transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367384A JP4161369B2 (en) 2003-10-28 2003-10-28 Vehicle driving force distribution control device

Publications (2)

Publication Number Publication Date
JP2005132141A JP2005132141A (en) 2005-05-26
JP4161369B2 true JP4161369B2 (en) 2008-10-08

Family

ID=34645400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367384A Expired - Fee Related JP4161369B2 (en) 2003-07-09 2003-10-28 Vehicle driving force distribution control device

Country Status (1)

Country Link
JP (1) JP4161369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026553A1 (en) * 2008-06-03 2009-12-10 Magna Powertrain Ag & Co Kg Method for mathematically determining the oil temperature in a coupling unit
JP5381850B2 (en) * 2010-03-25 2014-01-08 新日鐵住金株式会社 Method for predicting temperature in gear device for railway vehicle
JP2014064419A (en) 2012-09-21 2014-04-10 Hitachi Automotive Systems Ltd Electronic control device

Also Published As

Publication number Publication date
JP2005132141A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1167724B1 (en) Electronically controlled throttle device
US8733210B2 (en) Control apparatus for automatic transmission
EP1830088A1 (en) Method and device for detecting abnormality of vehicle and sensor unit of the device
EP0596392B1 (en) Internal combustion engine air supply device
US10953853B2 (en) Photographing apparatus for vehicle and heating device
US9039277B2 (en) Temperature sensor, manufacturing process and corresponding method of assembly
US9022646B2 (en) Sensor module for acquiring the temperature in the interior of a vehicle, and device for determining the temperature in the interior of a vehicle
JP3843202B2 (en) Electric power steering device
CN108068622B (en) Automobile with a detachable front cover
KR20150048873A (en) Wheel speed sensor
JP4161369B2 (en) Vehicle driving force distribution control device
US7147094B2 (en) Drive power transmission control device
EP1326083A1 (en) System for detecting abrasion of brush of direct current motor
KR20000023460A (en) Electric motor actuator
US20130214793A1 (en) Electrical diagnostic tool
US11522323B2 (en) High-voltage plug connection part for a high-voltage plug connector of a motor vehicle, high-voltage electrical system, and motor vehicle
US20190329756A1 (en) A controller for hybrid vehicles
JP4614674B2 (en) Battery tray device
JP5196746B2 (en) Fan drive control method and battery overheat protection device in battery overheat protection device
US6644850B2 (en) Temperature sensing device for an internal-combustion engine
CN203657833U (en) Frequency output type humiture sensor with fan
CN206493991U (en) Double pinion electric powered steering housing
WO2020055007A1 (en) Clutch coil thermal fuse heat sink activation
CN116576903A (en) Detection device for crankshaft position sensor
JP2009040097A (en) Casing monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4161369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees