JP4161025B2 - Global thermal image recording apparatus, global thermal image recording method and system - Google Patents

Global thermal image recording apparatus, global thermal image recording method and system Download PDF

Info

Publication number
JP4161025B2
JP4161025B2 JP2005068204A JP2005068204A JP4161025B2 JP 4161025 B2 JP4161025 B2 JP 4161025B2 JP 2005068204 A JP2005068204 A JP 2005068204A JP 2005068204 A JP2005068204 A JP 2005068204A JP 4161025 B2 JP4161025 B2 JP 4161025B2
Authority
JP
Japan
Prior art keywords
thermal image
global
global thermal
image recording
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005068204A
Other languages
Japanese (ja)
Other versions
JP2006250733A (en
Inventor
晁 梅干野
貴史 淺輪
隆史 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005068204A priority Critical patent/JP4161025B2/en
Publication of JP2006250733A publication Critical patent/JP2006250733A/en
Application granted granted Critical
Publication of JP4161025B2 publication Critical patent/JP4161025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Description

本発明は、地表面や建物表面等の3次元的空間から放射される全球の赤外線を検出し、画像化する為の熱画像収録装置及び熱画像収録方法とそのシステムに関する。 The present invention detects the infrared global emitted from the three-dimensional space such as the ground surface or a building surface, the thermal image recording apparatus and a thermal image recording method for imaging and relates to the system.

従来から、樹木や建物等の対象物の全球を視野に納めた熱画像(以下、全球熱画像と記す)を3次元的な空間分布として捕らえることが出来る全球熱画像収録装置やシステムについては本発明者が特許文献1で開示している。   Conventionally, a global thermal image recording device and system that can capture a thermal image (hereinafter referred to as a global thermal image) that contains the entire globe of an object such as a tree or building as a field of view as a three-dimensional spatial distribution. The inventor discloses in Patent Document 1.

図9は特許文献1に開示された全球熱画像収録装置の系統図を示すものである。図9に於いて、全球熱画像を得るためには、赤外検出カメラ3を旋回雲台19上で一次走査しながらパン及びチルトさせつつ対象物1の計測ポイントを中心に上下、左右に旋回させて全球に亘って撮像して熱画像を得ている。   FIG. 9 is a system diagram of the global thermal image recording apparatus disclosed in Patent Document 1. In FIG. 9, in order to obtain a global thermal image, the infrared detection camera 3 is swung up and down and left and right around the measurement point of the object 1 while being panned and tilted while performing primary scanning on the swivel head 19. Thus, a thermal image is obtained by capturing an image over the entire globe.

上述の図9の構成を具体的に説明すると、樹木、建物等の対象物1から放射する赤外線2の強弱は赤外線検出カメラ3を介して赤外線検出カメラ3内の赤外線検出器3aで検出される。   9 will be described in detail. The intensity of the infrared ray 2 radiated from the object 1 such as a tree or a building is detected by the infrared detector 3a in the infrared detection camera 3 via the infrared detection camera 3. .

赤外線2はウィンド3bを介してガルバノミラー等の走査光学系3c、フォーカス用の対物レンズ3d、チョッパ3e、リレーレンズ3f並びに冷却剤(液体窒素やアルゴン等)や冷却素子で冷却されたHgCdTe等の赤外線検出器3aを有し、走査光学系3cはガルバノドライブ3gで、対物レンズ3dはフォーカスドライブ3hで、チョッパ3eはチョッパモータ3jで夫々駆動され、対象物1は通常ガルバノドライバ3gで走査光学系3cを介して2次元的に線順次走査され赤外線の温度分布画像信号の強弱を検出するが、図9の構成では1次元的に走査する様に成される。   The infrared rays 2 are transmitted through a window 3b, such as a scanning optical system 3c such as a galvano mirror, a focusing objective lens 3d, a chopper 3e, a relay lens 3f, and HgCdTe cooled by a coolant (liquid nitrogen, argon, etc.) or a cooling element. The scanning optical system 3c is driven by a galvano drive 3g, the objective lens 3d is driven by a focus drive 3h, the chopper 3e is driven by a chopper motor 3j, and the object 1 is usually scanned by a galvano driver 3g. The intensity of the infrared temperature distribution image signal is detected by two-dimensional line-sequential scanning through 3c, but the configuration in FIG. 9 is configured to scan one-dimensionally.

赤外線検出カメラ3内の赤外線検出器3aで検出した対象物1の温度分布画像信号はプリアンプ4に供給され、図示しないが放射率補正、リニアライズイング、レベル調整、センス調整、等の補正調整手段を介してアナログ−デジタル変換器(ADC)5で標本化及び符号化が行なわれて、デジタル−データに変換される。   The temperature distribution image signal of the object 1 detected by the infrared detector 3a in the infrared detection camera 3 is supplied to the preamplifier 4, and although not shown, correction adjustment means such as emissivity correction, linearizing, level adjustment, sense adjustment, etc. Are sampled and encoded by an analog-digital converter (ADC) 5 and converted into digital-data.

ADC5からのデジタル−データは画像メモリ6a及び6bに供給され、赤(R)、緑(G)、青(B)の信号を発生させる疑似カラー発生回路7のカラーパレット(メモリ)7R,7G,7Bに供給されて、デジタル−データのレベル(温度)に応じて定められた色付けがなされる。   The digital data from the ADC 5 is supplied to the image memories 6a and 6b, and the color palettes (memory) 7R, 7G, and 7P of the pseudo color generation circuit 7 for generating red (R), green (G), and blue (B) signals. 7B, and coloration determined according to the level (temperature) of the digital data is performed.

これらカラーパレット7R,7G,7Bからの各データはデジタル−アナログ変換回路(DAC)8(8R,8G,8B)でアナログの温度分布カラー画像信号に変換されて陰極線管(CRT)や液晶表示装置(LCD)等のモニタ用の表示装置9に供給されて画面上に対象物1の画像が色別された温度分布パターンとして表示される。   Each data from the color palettes 7R, 7G, and 7B is converted into an analog temperature distribution color image signal by a digital-analog conversion circuit (DAC) 8 (8R, 8G, and 8B), and a cathode ray tube (CRT) and a liquid crystal display device. The image is supplied to a monitor display device 9 such as (LCD) and the image of the object 1 is displayed on the screen as a color distribution pattern classified by color.

マイクロコンピュータ(CPU)10はADC5、画像メモリ6a及び6b、疑似カラー発生器7、DAC8を制御すると共にインタフェース11を介して赤外線カメラ3のガルバノドライブ3g等が検出カメラコントローラ12を介して制御している。   A microcomputer (CPU) 10 controls the ADC 5, the image memories 6 a and 6 b, the pseudo color generator 7, the DAC 8, and controls the galvano drive 3 g of the infrared camera 3 through the detection camera controller 12 through the interface 11. Yes.

ROM13及びRAM14等はCPU10が通常有しているワーク用のメモリであり操作部15はキーボード等の入力部である。   The ROM 13 and the RAM 14 are work memories that the CPU 10 normally has, and the operation unit 15 is an input unit such as a keyboard.

上述の様に構成した全球を視野に収めることが可能な熱画像収録装置16の赤外線検出カメラ3を屋外環境観測車に植立した電動伸縮ポール18の旋回雲台19上に載置する。又、三脚等に設置することも出来る。   The infrared detection camera 3 of the thermal image recording device 16 capable of keeping the entire globe configured as described above is placed on the swivel head 19 of the electric telescopic pole 18 planted in the outdoor environment observation vehicle. It can also be installed on a tripod.

雲台制御部及び熱画像収録装置16の制御部を含む表示装置9等も観測車内に配設されている。更に通風筒付乾湿球白金温度計、プロペラ式微風向風速計、ネオ日射計等の気象観測装置が観測車の屋根に配設されている。   A display device 9 including a pan head control unit and a control unit of the thermal image recording device 16 is also provided in the observation vehicle. In addition, a weather observation device such as a wet and dry bulb platinum thermometer with a ventilator, a propeller type wind direction anemometer, or a neo-radiometer is arranged on the roof of the observation vehicle.

赤外線検出カメラ3の光学走査系は目的に応じて三種類の波長帯3〜5μm、5.5〜7.9μm、8〜13μmが用いられ、波長3〜5μm帯では赤外線検出器3aはInSbが用いられ、波長5.5〜7.9μm及び8〜13μm帯ではHgCdTeが用いられる旨の記載がある。   The optical scanning system of the infrared detection camera 3 uses three types of wavelength bands of 3 to 5 μm, 5.5 to 7.9 μm, and 8 to 13 μm according to the purpose. In the wavelength band of 3 to 5 μm, the infrared detector 3a is made of InSb. There is a description that HgCdTe is used in the wavelength band of 5.5 to 7.9 μm and 8 to 13 μm.

上述の如き全球熱画像収録装置で観測される対象物1の赤外線検出器3aで検出した対象物1の温度分布画像信号は対象物1周辺の空間の放射温度分布であり、対象物1の表面温度ではない。即ち、赤外検出カメラ3で低放射率のガラスの様な対象物1を観測すると、対象物1と対向する面からの放射が対象物1に反射して映り、対象物1の正確な表面温度は計測出来なくなる。更に、観測される放射エネルギは、大気の影響を受けて減衰しているので大気に対する補正を施さない限り対象物1の表面温度を計測出来ない。   The temperature distribution image signal of the object 1 detected by the infrared detector 3a of the object 1 observed by the global thermal image recording apparatus as described above is a radiation temperature distribution in the space around the object 1, and the surface of the object 1 It's not temperature. That is, when the object 1 such as glass with low emissivity is observed with the infrared detection camera 3, the radiation from the surface facing the object 1 is reflected on the object 1, and the accurate surface of the object 1 is reflected. Temperature cannot be measured. Furthermore, since the observed radiant energy is attenuated by the influence of the atmosphere, the surface temperature of the object 1 cannot be measured unless correction for the atmosphere is performed.

上記した対象物1への対向面からの反射による映り込み及び大気の減衰による数°Cの対象物1の表面温度の観測誤差は、建物や広場等の熱環境の計測や評価に於ける環境観測で大きな問題となる。   The observation error of the surface temperature of the object 1 at several degrees C due to the reflection from the opposite surface to the object 1 and the attenuation of the atmosphere described above is the environment in the measurement and evaluation of the thermal environment such as buildings and open spaces. It becomes a big problem in observation.

又、全球熱画像収録装置に限らず、建物の壁面や地表面の温度等をグローブ温度計、或いは純放射を計測する放射収支計等を用いての温度計測でも限定された特殊な場合を除いては、非接触で対象物1の表面温度を観測することが困難であった。   Also, not limited to the global thermal image recording device, except for special cases where temperature measurement using a globe thermometer or a radiation balance meter that measures pure radiation is also performed, such as the temperature of the building wall or ground surface. Thus, it was difficult to observe the surface temperature of the object 1 in a non-contact manner.

更に、放射温度から、対象物1の表面温度を計測し把握するには対象物1の放射率等の除去による補正が必要となり、対象物1の表面温度を遠隔から非接触で計測することは出来ない問題があった。
特開平10−136263号公報(図3)
Further, in order to measure and grasp the surface temperature of the target object 1 from the radiation temperature, correction by removing the emissivity of the target object 1 is necessary, and it is possible to measure the surface temperature of the target object 1 remotely without contact. There was a problem that could not be done.
Japanese Patent Laid-Open No. 10-136263 (FIG. 3)

本発明は上述の課題を解決するために成されたもので、本発明が解決しようとする課題は、全球熱画像収録装置によって計測した放射温度分布画像を対象物の表面温度分布画像に変換可能な熱画像収録装置及び熱画像収録方法とそのシステムを提供することにある。 The present invention has been made to solve the above-mentioned problems. The problem to be solved by the present invention is that a radiation temperature distribution image measured by a global thermal image recording device can be converted into a surface temperature distribution image of an object. thermal image recording apparatus and a thermal image recording method and to provide the system.

第1の本発明の全球熱画像収録装置は、対象物から放射される赤外線を赤外線検出カメラにより検出し、画像化する様にした全球熱画像収録装置に於いて、赤外線検出カメラにより対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出手段と、全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成手段と、3次元熱画像の各計測面の放射率及び各計測面と対向する反射面の放射率を付加する放射率付加手段と、放射率付加手段で付加された3次元熱画像に光線追跡法でシミュレートを施し、各計測面に映り込んだ対向する反射面からの放射成分を除去する反射面成分除去手段と、を具備し、放射される赤外線から放射温度を得た上、反射成分除去手段で反射成分を除去する演算により、放射温度から対象物の各計測面の表面温度を取得するように成したものである。又、第2の本発明の全球熱画像収録装置は、第1の発明に於いて、前記全球熱画像の収録時に大気状態を計測する大気計測手段と、大気補正を施す大気補正手段とを具備してなるものである。 The global thermal image recording apparatus according to the first aspect of the present invention is a global thermal image recording apparatus in which infrared rays emitted from an object are detected and imaged by an infrared detection camera. A global thermal image detecting means for detecting a global thermal image of a total radiation in a space in which the entire globe is viewed, and a 3D geometric information forming means for obtaining a 3D thermal image by adding the spatial 3D geometric information to the global thermal image Emissivity adding means for adding the emissivity of each measurement surface of the three-dimensional thermal image and the emissivity of the reflecting surface facing each measurement surface, and a ray tracing method for the three-dimensional thermal image added by the emissivity addition means And a reflection surface component removal means for removing radiation components from the opposing reflection surfaces reflected on each measurement surface, and obtaining the radiation temperature from the emitted infrared radiation, and removing the reflection components For calculation to remove reflection component by means Ri, in which form to obtain the surface temperature of the measurement surface of the object from a radiation temperature. A global thermal image recording apparatus according to a second aspect of the present invention includes, in the first invention, atmospheric measurement means for measuring an atmospheric state during recording of the global thermal image, and atmospheric correction means for performing atmospheric correction. It is made.

第3の本発明の全球熱画像収録方法は対象物から放射される赤外線を赤外線検出カメラにより検出し、画像化する様にした全球熱画像収録方法に於いて、赤外線検出カメラにより対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出ステップと、全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成ステップと、3次元熱画像の各計測面の放射率及び各計測面と対向する反射面の放射率を付加する放射率付加ステップと、放射率付加ステップで付加された3次元熱画像に光線追跡法でシミュレートを施し、各計測面に映り込んだ対向する反射面からの放射成分を除去する反射成分除去ステップと、を具備し、放射される赤外線から得られる放射温度から、反射成分除去ステップにおける反射成分を除去する演算により、放射温度から対象物の各計測面の表面温度を取得するように成したものである。 The global thermal image recording method of the third aspect of the present invention is a global thermal image recording method in which infrared rays emitted from an object are detected and imaged by an infrared detection camera. A global thermal image detection step for detecting a global thermal image of the total radiation of the space in which the field of view is stored, and a 3D geometric information forming step for obtaining a 3D thermal image by adding the spatial 3D geometric information to the global thermal image; An emissivity adding step for adding the emissivity of each measurement surface of the three-dimensional thermal image and the emissivity of the reflecting surface facing each measurement surface, and the ray tracing method to the three-dimensional thermal image added in the emissivity adding step. subjected to simulated, anda reflection component removing step of removing the radiation components from the reflective surface which faces it reflected on the measurement surface, the radiation temperature obtained from infrared radiation emitted, the reflection component removing step The operation of removing the kick reflective component, in which form to obtain the surface temperature of the measurement surface of the object from a radiation temperature.

第4の本発明の全球熱画像収録システムは、対象物から放射される赤外線を検出する赤外線検出カメラと、赤外線検出カメラで検出された赤外線を画像化する様にした全球熱画像収録装置とで構成される全球熱画像収録システムに於いて、全球熱画像収録装置として、赤外線検出カメラにより対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出手段と、全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成手段と、3次元熱画像の各計測面の放射率及び該各計測面と対向する反射面の放射率を付加する放射率付加手段と、放射率付加手段で付加された3次元熱画像に光線追跡法でシミュレートを施し、各計測面に映り込んだ対向する反射面からの放射の反射成分を除去する反射成分除去手段とを具備して、放射される赤外線から放射温度を得た上、反射成分除去手段で反射成分を除去する演算により、放射温度から対象物の各計測面の表面温度を取得するように成したものである。 A global thermal image recording system according to a fourth aspect of the present invention includes an infrared detection camera that detects infrared rays radiated from an object, and a global thermal image recording device that images infrared rays detected by the infrared detection camera. In the configured global thermal image recording system, as a global thermal image recording device, a global thermal image detection means for detecting a global thermal image of the total radiation of the space in which the entire spherical of the object is viewed by an infrared detection camera; Three-dimensional geometric information forming means for obtaining a three-dimensional thermal image by adding spatial three-dimensional geometric information to a global thermal image, the emissivity of each measurement surface of the three-dimensional thermal image, and the reflection surface facing each measurement surface The emissivity adding means for adding emissivity, and the three-dimensional thermal image added by the emissivity adding means are simulated by the ray tracing method, and the reflection component of the radiation from the opposing reflecting surface reflected on each measurement surface Remove reflection And and a partial removal means, upon obtaining radiation temperature from infrared radiation emitted by operation of removing the reflection component in the reflected component removing means, so as to obtain the surface temperature of each measurement surface of the object from a radiation temperature It was made.

本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムによれば、放射温度から、表面温度を遠隔から非接触で計測することが可能となり、都市空間や建造物の表面温度分布やヒートアイランド現象の観測及び把握に役立つものが得られる効果を有する。 According All Tamanetsu image record device and Zentamanetsu image recording method of the present invention and its system, the radiation temperature, the surface temperature becomes possible to measure without contact from a remote surface temperature distribution of the urban space and buildings In addition, it has the effect of obtaining something useful for observing and grasping the heat island phenomenon.

以下、本発明の1形態例を示す全球熱画像収録装置及び全球熱画像収録方法とそのシステムの構成を図1乃至図8によって説明する。図1は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1形態例の原理構成を示すフローチャート、図2は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1形態例を示す観測される放射温度説明用の線図、図3は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムによって撮像された全球熱画像を示す全球熱画像図、図4は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの3次元熱画像図、図5は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1実施例を示すフローチャート、図6は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの撮像時の放射率付加方法を説明するための対象物とカメラの関係を示す説明図、図7は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの対向する反射面からの放射を説明するための線図、図8は本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムで計測する部屋の間取りを示す平面図である。 Hereinafter will be described the entire Tamanetsu image record device and Zentamanetsu image From process showing one embodiment of the present invention and the structure of that system by FIGS. 1-8. FIG. 1 is a flowchart showing the basic configuration of one embodiment of the global thermal image recording apparatus and global thermal image recording method and system according to the present invention, and FIG. 2 is the global thermal image recording apparatus and global thermal image recording method and system according to the present invention. FIG. 3 is a global thermal image recording apparatus, a global thermal image recording method and a global thermal image showing a global thermal image captured by the system according to the present invention. 4 and FIG. 4 are three-dimensional thermal image diagrams of the global thermal image recording apparatus and global thermal image recording method and system of the present invention. FIG. 5 is a schematic diagram of the global thermal image recording apparatus and global thermal image recording method and system of the present invention. FIG. 6 is a flowchart showing one embodiment, and FIG. 6 is a diagram showing the relationship between an object and a camera for explaining the global thermal image recording apparatus and global thermal image recording method of the present invention and the emissivity addition method during imaging of the system. 7 is a diagram for explaining radiation from the opposing reflecting surfaces of the global thermal image recording apparatus and global thermal image recording method and system of the present invention, and FIG. 8 is a global thermal image recording apparatus and global of the present invention. It is a top view which shows the floor plan which shows the thermal image recording method and the room measured with the system.

図1のフローチャートは図9の従来技術で説明したと同様の赤外線検出カメラ3(ボロメータを用いたカメラでも良い)及び熱画像収録装置16を用いて対象物1の表面温度の演算方法を示すもので、第1のステップS1では赤外線検出カメラ3によって対象物1の建物の壁面である対象面T1等からの空間の全放射を撮像することで全球熱画像を取得する、この全球熱画像は図3のサーモグラフに示す様に空間の全放射温度分布の観測が可能となり、図2に示す赤外線検出カメラ3から距離L1にある対象物1の対象面T1からの放射成分Aと、隣接する対象物1との間に距離L2を有する対向する反射面T2からの放射の反射成分Bを含んでいる。従って、赤外線検出カメラ3の赤外検出器3aの出力の放射成分はA+Bとなる。尚、図3は後述するも建物内部の壁面を撮像したもので、50部分は入口のドア、51は室内の隣室との境にある入口扉、52は天井の照明である。   The flowchart of FIG. 1 shows a method of calculating the surface temperature of the object 1 using the same infrared detection camera 3 (may be a camera using a bolometer) and the thermal image recording device 16 as described in the prior art of FIG. In the first step S1, a global thermal image is obtained by imaging the total radiation of the space from the target surface T1, which is the wall surface of the building of the object 1, by the infrared detection camera 3, and this global thermal image is shown in FIG. As shown in the thermograph 3, the total radiation temperature distribution in the space can be observed, and the radiation component A from the object surface T1 of the object 1 at a distance L1 from the infrared detection camera 3 shown in FIG. It includes a reflection component B of radiation from the opposing reflection surface T2 having a distance L2 between the object 1 and the object 1. Therefore, the radiation component of the output of the infrared detector 3a of the infrared detection camera 3 is A + B. FIG. 3 shows an image of a wall inside the building, which will be described later. Reference numeral 50 denotes an entrance door, 51 denotes an entrance door on the boundary with an adjacent room, and 52 denotes ceiling illumination.

次の第2ステップS2では全球熱画像から3次元幾何情報を付加して、図4及び第3ステップS3に示す様な3次元熱画像を作成する。   In the next second step S2, three-dimensional geometric information is added from the global thermal image to create a three-dimensional thermal image as shown in FIG. 4 and the third step S3.

第4ステップS4では撮像した壁面毎の各面の指向放射率を与える。第6ステップS6では対象物1の対象面T1と対向する反射面T2からの放射成分Bを除去し、同時に第5ステップS5の様に室内の空気の温度や湿度などの環境状態を計測し、大気による放射の減衰の影響を考慮した第7ステップに示す大気補正を行なつた後に第8ステップS8に示す様に対象物1の各面の表面温度情報を得ている。   In the fourth step S4, the directional emissivity of each surface for each captured wall surface is given. In the sixth step S6, the radiation component B from the reflecting surface T2 facing the target surface T1 of the target object 1 is removed, and at the same time, environmental conditions such as the temperature and humidity of the indoor air are measured as in the fifth step S5, After performing atmospheric correction shown in the seventh step in consideration of the influence of attenuation of radiation by the atmosphere, surface temperature information of each surface of the object 1 is obtained as shown in an eighth step S8.

上述の図2に示す対象物1の対象面T1で観測される放射温度をTとしたとき下記の数1の式1の関係が成り立つ。

Figure 0004161025
1式でθn、n、τ(Ln、ε(θ)はそれぞれ下記に示すものとする。図2で距離L、L=L、対象面温度及び対向する対象面温度T、T=Tの関係にある。 Relationship of Equation 1 number below 1 when the radiation temperature observed in the target surface T1 of the object 1 shown in FIG. 2 described above was T R holds.
Figure 0004161025
In Equation 1, θ n, L n, τ (L n ) , T n, and ε (θ n ) are as shown below. In FIG. 2, the distances L 1 , L 2 = L n , the target surface temperature, and the opposing target surface temperatures T 1 , T 2 = T n are in a relationship.

ここで、

Figure 0004161025
である。
上記した1式から明らかなように観測される対象面の放射温度Tは対象面T1の対象面温度Tのθ方向への放射率ε(θ)と光線の対象面Tへの入射角θに大きく依存していることが解り対象面の表面温度Tは1式から対象面からの放射を減算することで容易に求まる。 here,
Figure 0004161025
It is.
As is clear from the above-mentioned formula 1, the radiation temperature T R of the target surface observed is the emissivity ε (θ n ) of the target surface temperature T n of the target surface T1 in the θ n direction and the light target surface T n . the surface temperature T n that is understood target surface that greatly depends on the incident angle theta n of easily obtained by subtracting the radiation from the object surface from one set.

次に、図5に示すフローチャートによって、3及び図4で説明したサーモグラフの対象物である室内の壁面等の全球熱画像を取り込み各面の表面温度を演算してサーモグラフ化する方法を詳記する。   Next, referring to the flowchart shown in FIG. 5, a method for acquiring a global thermal image of the wall surface of the room, which is the object of the thermograph described in FIGS. 3 and 4, and calculating the surface temperature of each surface to make a thermograph in detail. I will write.

先ず、図4の室内の状態を説明するために、図8にサーモグラフ化した図4の俯瞰図の平面図を示す。図4で括弧内の数字は放射温度を示している。図8に於いて、赤外線検出カメラ3を室内の撮像地点52に置いて全球方向に撮像した場合の(1)乃至(4)方向の構造物を(1)乃至(4)の四角の枠内に示す、50は建物の入口ドア、51は隣室との入口扉、53は階段、54はエレベータ、55は(4)方向の壁面、56は金属製の郵便受けを示し、床から1mの距離に置かれた赤外線検出カメラ3の撮像地点52は階段の左コーナから8mの地点に置かれている。天井の高さは3mである。   First, in order to explain the indoor state of FIG. 4, FIG. 8 shows a plan view of the overhead view of FIG. The numbers in parentheses in FIG. 4 indicate the radiation temperature. In FIG. 8, the structures in the directions (1) to (4) when the infrared detection camera 3 is placed at the imaging point 52 in the room and imaged in the global direction are shown in the square frame of (1) to (4). , 50 is the entrance door of the building, 51 is the entrance door to the adjacent room, 53 is the staircase, 54 is the elevator, 55 is the wall in the (4) direction, 56 is a metal mailbox, and is 1 m from the floor The imaging point 52 of the placed infrared detection camera 3 is placed 8 m from the left corner of the stairs. The height of the ceiling is 3m.

上記した対象物である室内の壁面等の真の表面温度を取得するためのフローチャートを図5に示す。先ず、対象物1である各面の全球熱画像を撮像し、第1ステップST1に示す様に3次元熱画像を作成する。更に、後述するも対象物1への入射角や材質によって図6の材料1及び材料2に示す様に放射率が異なった値を示すので、第2ステップST2に示す様に各部の物性データを用意して置く。又、対象物1である壁面への入射角に応じた放射率を記録した例えば、図6の材料1、材料2・・・に示す様なデータベースを別途用意する。ここでは、以下このデータベースを物性DBと記す。   FIG. 5 shows a flowchart for obtaining the true surface temperature of the wall surface of the room that is the above-described object. First, a global thermal image of each surface that is the object 1 is taken, and a three-dimensional thermal image is created as shown in the first step ST1. Further, as will be described later, since the emissivity differs depending on the incident angle and material to the object 1 as shown in the materials 1 and 2 in FIG. 6, the physical property data of each part is obtained as shown in the second step ST2. Prepare and place. Further, for example, a database as shown in Material 1, Material 2,... Of FIG. 6 in which the emissivity corresponding to the incident angle to the wall surface that is the object 1 is recorded is prepared separately. Hereinafter, this database is referred to as physical property DB.

図6は建物57、58を赤外線検出カメラ3によって撮像し、全球熱画像59を取得する場合の一つの手順を示すもので、建物58の壁面60を含めた全周の走査はパン方向Pに360°、チルト方向Cに180°走査し、壁面60を含めた全周の走査を完了し、全球熱画像を得る。   FIG. 6 shows one procedure in the case where the buildings 57 and 58 are imaged by the infrared detection camera 3 and the global thermal image 59 is acquired. Scanning of the entire circumference including the wall surface 60 of the building 58 is performed in the pan direction P. Scan 360 ° and 180 ° in the tilt direction C, complete scanning of the entire circumference including the wall surface 60, and obtain a global thermal image.

今、建物58の単位ピクセル61で示す位置を撮像している場合、赤外線検出カメラ3が観測する壁面60からの放射は当然、大気の影響を受ける。又、建物57のガラス窓64に観測される放射は、対向する建物58のガラス窓63からの放射成分65を含んでいる。また、建物58の単位ピクセル61にある窓に観測される放射には、対向する天空の雲62からの放射成分が含まれる。   If the position indicated by the unit pixel 61 of the building 58 is imaged now, the radiation from the wall surface 60 observed by the infrared detection camera 3 is naturally affected by the atmosphere. Further, the radiation observed on the glass window 64 of the building 57 includes a radiation component 65 from the glass window 63 of the opposing building 58. In addition, the radiation observed in the window in the unit pixel 61 of the building 58 includes a radiation component from the cloud 62 in the opposite sky.

3次元幾何情報と全球熱画像を統合して作成される3次元熱画像の各面に、第3ステップST3に示す様に上述の用意した物性DB番号を割当てる。更に、第16ステップST16に示す様に空間の温度や湿度等の大気状態や多重反射の回数等も設定した初期データをメモリして置く。   As shown in the third step ST3, the prepared physical property DB number is assigned to each surface of the three-dimensional thermal image created by integrating the three-dimensional geometric information and the global thermal image. Further, as shown in the sixteenth step ST16, initial data in which the atmospheric state such as the temperature and humidity of the space, the number of multiple reflections, and the like are set is stored in memory.

3次元熱画像はCAD等によって描画された3次元幾何モデルに全球熱画像がテクスチャとして貼られたものである。   A three-dimensional thermal image is obtained by pasting a global thermal image as a texture on a three-dimensional geometric model drawn by CAD or the like.

第4ステップST4では3次元熱画像の全表面をメッシュ分割し、各メッシュにメッシュ番号、放射温度、物性DB番号、メッシュの法線ベクトルを保存する。この際に分割生成されたメッシュの位置に貼られているテクスチャの輝度情報を読み取り、放射温度をメモリ等に保存される。又、第16ステップST16で設定された大気状態から第17ステップST17に示す様に大気の透過率を計算し、第18ステップST18の様にメモリ等に保存する。これらの計算はブーゲランベルトの式で行われる。   In the fourth step ST4, the entire surface of the three-dimensional thermal image is divided into meshes, and the mesh number, radiation temperature, physical property DB number, and normal vector of the mesh are stored in each mesh. At this time, the luminance information of the texture pasted at the position of the mesh generated by division is read, and the radiation temperature is stored in a memory or the like. Further, the atmospheric transmittance is calculated from the atmospheric state set in the sixteenth step ST16 as shown in the seventeenth step ST17 and stored in a memory or the like as in the eighteenth step ST18. These calculations are performed using the Bouguerant-Belt equation.

第5ステップST5ではメッシュ化された3次元画像が得られる。第6ステップST6ではレイトレース(光線追跡法)等で、計算対象メッシュの選択がなされる。第7ステップST7では赤外線検出カメラ3の撮像地点52を原点とし、壁面上の対象のメッシュに視線を延長する。   In the fifth step ST5, a meshed three-dimensional image is obtained. In the sixth step ST6, a calculation target mesh is selected by ray tracing (ray tracing method) or the like. In the seventh step ST7, the imaging point 52 of the infrared detection camera 3 is set as the origin, and the line of sight is extended to the target mesh on the wall surface.

次の、第8ステップST8及び第9ステップST9では図7のA及び図7のBに示す様に視線の入射角計算と対象のメッシュまでの距離計算がなれる。第10ステップST10では対象のメッシュに対応した物性DBや放射温度等のそのメッシュの情報を取得する。次の第11ステップST11では図7のCの様に物性DBから入射角を内挿して指向放射率を読み取り、第12ステップST12ではキルヒホッフの法則から放射率を与えることで反射率を算出する。   Next, in the eighth step ST8 and the ninth step ST9, as shown in FIG. 7A and FIG. 7B, the line-of-sight incident angle and the distance to the target mesh can be calculated. In the tenth step ST10, information on the mesh such as a physical property DB and a radiation temperature corresponding to the target mesh is acquired. In the next eleventh step ST11, as shown in FIG. 7C, the incident angle is interpolated from the physical property DB to read the directional emissivity, and in the twelfth step ST12, the reflectivity is calculated by giving the emissivity from Kirchhoff's law.

第13ステップST13では設定した回数だけ反射を追ったか否かの判断がなされNOの場合は図7のDの様に第14ステップST14に進む第14ステップST14では対象対向メッシュの探索が成され、第15ステップST15では対象対向メッシュへの視線延長がなされ、第15ステップST15終了後は第8ステップST8及び第9ステップST9の頭に戻される。ここで、図7のE及び図7のFに示す対象対向メッシュの面間距離Ln+1や入射角θn+1の計算がなされ、対象対向メッシュの数だけ繰り返して計算が成される。第13ステップST13がYESの場合は第19ステップST19に進み、1式に基づく放射温度補正が行われる。 In the thirteenth step ST13, it is determined whether or not the reflection has been followed for the set number of times. If NO, the process proceeds to the fourteenth step ST14 as shown in D of FIG. In the fifteenth step ST15, the line of sight is extended to the target facing mesh, and after the fifteenth step ST15, the head is returned to the heads of the eighth step ST8 and the ninth step ST9. Here, the inter-surface distance L n + 1 and the incident angle θ n + 1 of the target facing mesh shown in E of FIG. 7 and F of FIG. 7 are calculated, and the calculation is repeated by the number of target facing meshes. When 13th step ST13 is YES, it progresses to 19th step ST19, and radiation temperature correction based on 1 type is performed.

第19ステップST19の終了後は第20ステップST20より対象メッシュの表面温度が求められる。第21ステップST21では全てのメッシュに関して表面温度の計算が終了したか否かの判断がなされ、YESであれば第22ステップST22に進みLCD等の表示装置やカラープリンタ、メモリ等の記録媒体に3次元表面温度分布画像を表示或いは印画、記憶する。第21ステップST21がNOの場合は第6ステップST6の頭に戻される。   After the completion of the 19th step ST19, the surface temperature of the target mesh is obtained from the 20th step ST20. In the 21st step ST21, it is determined whether or not the calculation of the surface temperature has been completed for all the meshes. If YES, the process proceeds to the 22nd step ST22, and a display device such as an LCD, a color printer, a recording medium such as a memory, etc. Displays, prints, and stores a three-dimensional surface temperature distribution image. When 21st step ST21 is NO, it returns to the head of 6th step ST6.

図7は1式に基づく表面温度計算までの対象メッシュと対象対向メッシュの計算手順を図式化したもので、A、B・・・Hの順序で計算、検索が行われる。即ち、Aでは赤外線検出カメラ3の原点から対象メッシュまでの距離を計算し、Bでは入射角を計算するなどである。図7での図5との対応部分にはステップ番号を付してあるので同一動作の説明は省略する。   FIG. 7 is a diagram illustrating the calculation procedure of the target mesh and the target opposing mesh up to the surface temperature calculation based on Formula 1, and the calculation and search are performed in the order of A, B... That is, in A, the distance from the origin of the infrared detection camera 3 to the target mesh is calculated, and in B, the incident angle is calculated. 7 corresponding to those in FIG. 5 are denoted by step numbers, and the description of the same operations is omitted.

本発明の熱画像収録装置及び熱画像収録方法とそのシステムによれば、放射温度から、表面温度を遠隔から非接触で計測することが可能となり、都市空間や建造物の表面温度分布やヒートアイランド現象の観測及び把握に役立つものが得られる効果を有する。 According thermal image recording apparatus and a thermal image recording method of the present invention and its system, the radiation temperature, the surface temperature becomes possible to measure without contact from a remote surface temperature distribution and heat island urban space and buildings It has the effect of obtaining something useful for observing and grasping phenomena.

従って、本発明によれば、建造物の構造診断やヒートアイランド現象の現状把握などに利用可能となる。これらを列挙すると
(1)構造物の構造診断や剥離診断
(2)断熱診断
(3)熱収支の検討ヒートアイランド形成の影響要因の把握
(4)生活空間の熱環境の問題把握
等の場面での使用が想定されるが特に、(2)乃至(4)では放射温度でなく表面温度が必要となる。
Therefore, according to the present invention, the present invention can be used for structural diagnosis of buildings and grasping the current state of the heat island phenomenon. These are listed as follows: (1) Structural diagnosis and peeling diagnosis of structures (2) Thermal insulation diagnosis (3) Examination of heat balance Grasping influence factors of heat island formation (4) Grasping problems of thermal environment in living space Although use is assumed, in particular, in (2) to (4), the surface temperature is required instead of the radiation temperature.

本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1形態例の原理構成を示すフローチャートである。It is a flowchart which shows the principle structure of one example of a global thermal image recording device of this invention, a global thermal image recording method, and its system. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1形態例を示す観測される放射温度説明用の線図である。1 is a diagram for explaining an observed radiation temperature, showing an embodiment of a global thermal image recording apparatus, a global thermal image recording method and a system thereof according to the present invention. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムによって撮像された全球熱画像を示す全球熱画像図である。It is a global thermal image figure which shows the global thermal image imaged with the global thermal image recording device of this invention, the global thermal image recording method, and its system. 本発明に用いるセンサの全球熱画像収録装置及び全球熱画像収録方法とそのシステムの3次元熱画像図である。It is a 3D thermal image figure of the global thermal image recording device of the sensor used for this invention, a global thermal image recording method, and its system. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの1実施例を示すフローチャートである。It is a flowchart which shows one Example of the global thermal image recording device of this invention, the global thermal image recording method, and its system. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの撮像時の放射率付加方法を説明するための対象物とカメラの関係を示す説明図である。It is explanatory drawing which shows the relationship between the target object and camera for demonstrating the emissivity addition method at the time of imaging of the global thermal image recording device of this invention, the global thermal image recording method, and its system. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムの対向する反射面からの放射を説明するための線図である。It is a diagram for demonstrating the radiation | emission from the reflective surface which the global thermal image recording device of this invention, a global thermal image recording method, and its system oppose. 本発明の全球熱画像収録装置及び全球熱画像収録方法とそのシステムで計測する部屋の間取りを示す平面図である。It is a top view which shows the floor plan which measures the global thermal image recording device of this invention, the global thermal image recording method, and its system. 従来の全球熱画像収録装置の系統図である。It is a systematic diagram of the conventional global thermal image recording device.

符号の説明Explanation of symbols

1‥‥対象物、3‥‥赤外線検出カメラ、10‥‥CPU、16‥‥熱画像収録装置、52‥‥撮像地点、57,58‥‥建物、59‥‥全球熱画像、60‥‥壁面、61‥‥単位ピクセル(メッシュ)、63,64‥‥ガラス窓
DESCRIPTION OF SYMBOLS 1 ... Object, 3 ... Infrared detection camera, 10 ... CPU, 16 ... Thermal image recording device, 52 ... Imaging point, 57, 58 ... Building, 59 ... Global thermal image, 60 ... Wall surface , 61 Unit pixel (mesh), 63, 64 Glass window

Claims (6)

対象物から放射される赤外線を赤外線検出カメラにより検出し、画像化する様にした全球熱画像収録装置に於いて、
前記赤外線検出カメラにより前記対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出手段と、
前記全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成手段と、
前記3次元熱画像の各計測面の放射率及び該各計測面と対向する反射面の放射率を付加する放射率付加手段と、
前記放射率付加手段で付加された前記3次元熱画像に光線追跡法でシミュレートを施し、前記各計測面に映り込んだ対向する前記反射面からの放射の反射成分を除去する反射成分除去手段と、
を具備し、
前記放射される赤外線から放射温度を得た上、前記反射成分除去手段で反射成分を除去する演算により、前記放射温度から前記対象物の各計測面の表面温度を取得することを特徴とする全球熱画像収録装置。
In a global thermal image recording device that detects infrared rays emitted from an object with an infrared detection camera and images them,
A global thermal image detection means for detecting a global thermal image of the total radiation of the space in which the entire globe of the object is stored in the field of view by the infrared detection camera;
Three-dimensional geometric information forming means for obtaining a three-dimensional thermal image by adding spatial three-dimensional geometric information to the global thermal image;
Emissivity adding means for adding the emissivity of each measurement surface of the three-dimensional thermal image and the emissivity of the reflection surface facing each measurement surface;
Reflection component removal means for simulating the three-dimensional thermal image added by the emissivity addition means by a ray tracing method and removing a reflection component of radiation from the opposing reflection surface reflected on each measurement surface When,
Comprising
Obtaining the surface temperature of each measurement surface of the object from the radiation temperature by calculating the radiation temperature from the emitted infrared radiation and then removing the reflection component by the reflection component removing means Thermal image recording device.
前記全球熱画像の収録時に大気状態を計測する大気計測手段と、大気補正を施す大気補正手段とを具備してなることを特徴とする請求項1記載の全球熱画像収録装置。   2. The global thermal image recording apparatus according to claim 1, further comprising atmospheric measurement means for measuring an atmospheric state during recording of the global thermal image and atmospheric correction means for performing atmospheric correction. 対象物から放射される赤外線を赤外線検出カメラにより検出し、画像化する様にした全球熱画像収録方法に於いて、
前記赤外線検出カメラにより前記対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出ステップと、
前記全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成ステップと、
前記3次元熱画像の各計測面の放射率及び該各計測面と対向する反射面の放射率を付加する放射率付加ステップと、
前記放射率付加ステップで付加された前記3次元熱画像に光線追跡法でシミュレートを施し、前記各計測面に映り込んだ対向する前記反射面からの放射の反射成分を除去する反射成分除去ステップと、
を具備し、
前記放射される赤外線から得られる放射温度から、前記反射成分除去ステップにおける反射成分を除去する演算により、前記放射温度から前記対象物の各計測面の表面温度を取得することを特徴とする全球熱画像収録方法。
In the global thermal image recording method in which infrared rays emitted from an object are detected and imaged by an infrared detection camera,
A global thermal image detection step of detecting a global thermal image of the total radiation of the space in which the entire globe of the object is viewed by the infrared detection camera;
A three-dimensional geometric information forming step of obtaining a three-dimensional thermal image by adding spatial three-dimensional geometric information to the global thermal image;
An emissivity adding step of adding an emissivity of each measurement surface of the three-dimensional thermal image and an emissivity of a reflection surface facing each measurement surface;
A reflection component removal step of simulating the three-dimensional thermal image added in the emissivity addition step by a ray tracing method and removing a reflection component of radiation from the opposing reflection surface reflected on each measurement surface When,
Comprising
A global heat characterized in that a surface temperature of each measurement surface of the object is obtained from the radiation temperature by an operation of removing a reflection component in the reflection component removal step from a radiation temperature obtained from the emitted infrared radiation. Image recording method.
前記全球熱画像の収録時に大気状態を計測しておくことで、大気補正を施して大気減衰の影響を除去したことを特徴とする請求項3記載の全球熱画像収録方法。   The global thermal image recording method according to claim 3, wherein the atmospheric state is measured at the time of recording the global thermal image to perform atmospheric correction to remove the influence of atmospheric attenuation. 対象物から放射される赤外線を検出する赤外線検出カメラと、前記赤外線検出カメラで検出された赤外線を画像化する様にした全球熱画像収録装置とで構成される全球熱画像収録システムに於いて、
前記全球熱画像収録装置として、
前記赤外線検出カメラにより前記対象物の全球を視野に収めた空間の全放射の全球熱画像を検出する全球熱画像検出手段と、
前記全球熱画像に空間の3次元幾何情報を付加して3次元熱画像を得る3次元幾何情報形成手段と、
前記3次元熱画像の各計測面の放射率及び該各計測面と対向する反射面の放射率を付加する放射率付加手段と、
前記放射率付加手段で付加された前記3次元熱画像に光線追跡法でシミュレートを施し、前記各計測面に映り込んだ対向する前記反射面からの放射の反射成分を除去する反射成分除去手段と、
を具備して、前記放射される赤外線から放射温度を得た上、前記反射成分除去手段で反射成分を除去する演算により、前記放射温度から前記対象物の各計測面の表面温度を取得することを特徴とする全球熱画像収録システム。
In a global thermal image recording system composed of an infrared detection camera that detects infrared rays radiated from an object and a global thermal image recording device configured to image infrared rays detected by the infrared detection camera,
As the global thermal image recording device,
A global thermal image detection means for detecting a global thermal image of the total radiation of the space in which the entire globe of the object is stored in the field of view by the infrared detection camera;
Three-dimensional geometric information forming means for obtaining a three-dimensional thermal image by adding spatial three-dimensional geometric information to the global thermal image;
Emissivity adding means for adding the emissivity of each measurement surface of the three-dimensional thermal image and the emissivity of the reflection surface facing each measurement surface;
Reflection component removal means for simulating the three-dimensional thermal image added by the emissivity addition means by a ray tracing method and removing a reflection component of radiation from the opposing reflection surface reflected on each measurement surface When,
And obtaining the surface temperature of each measurement surface of the object from the radiation temperature by calculating the radiation temperature from the emitted infrared light and removing the reflection component by the reflection component removing means. A global thermal image recording system.
前記全球熱画像の収録時に大気状態を計測する大気計測手段と、大気補正を施す大気補正手段とを具備してなることを特徴とする請求項5記載の全球熱画像収録システム。 6. The global thermal image recording system according to claim 5 , further comprising atmospheric measurement means for measuring an atmospheric state during recording of the global thermal image and atmospheric correction means for performing atmospheric correction .
JP2005068204A 2005-03-10 2005-03-10 Global thermal image recording apparatus, global thermal image recording method and system Active JP4161025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068204A JP4161025B2 (en) 2005-03-10 2005-03-10 Global thermal image recording apparatus, global thermal image recording method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068204A JP4161025B2 (en) 2005-03-10 2005-03-10 Global thermal image recording apparatus, global thermal image recording method and system

Publications (2)

Publication Number Publication Date
JP2006250733A JP2006250733A (en) 2006-09-21
JP4161025B2 true JP4161025B2 (en) 2008-10-08

Family

ID=37091401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068204A Active JP4161025B2 (en) 2005-03-10 2005-03-10 Global thermal image recording apparatus, global thermal image recording method and system

Country Status (1)

Country Link
JP (1) JP4161025B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103767B2 (en) * 2006-03-27 2012-12-19 日産自動車株式会社 Temperature detection device
CN104220854B (en) * 2012-06-26 2017-10-24 翰昂系统有限公司 Utilize temperature measuring equipment in the vehicle of three-dimensional thermal imaging
CN106716089B (en) * 2014-09-29 2019-04-30 富士胶片株式会社 Infrared view acquisition device and infrared view acquisition methods
JP6931548B2 (en) * 2017-04-14 2021-09-08 株式会社Uacj Information processing equipment, temperature measurement system, information processing equipment control method, and control program
CN107576417B (en) * 2017-09-04 2019-05-10 电子科技大学 A kind of round-the-clock surface temperature generation method
KR101999806B1 (en) * 2018-03-30 2019-07-12 공주대학교 산학협력단 Method and system for temperature measurement of vehicle heating sheet method for measuring temperature for heater evaluation in consideration of hot row handling in vehicle heat sheet

Also Published As

Publication number Publication date
JP2006250733A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP6415034B2 (en) System and method for remote inspection of aircraft structures
JP4161025B2 (en) Global thermal image recording apparatus, global thermal image recording method and system
JP5816778B2 (en) Laser scanner with additional detector
US9804577B1 (en) Remotely operated mobile stand-off measurement and inspection system
US9488589B2 (en) Mapping damaged regions on objects
CN108072459A (en) A kind of method for measuring steel billet temperature field and calculating its radiation intensity
CN202471261U (en) CCD temperature measuring device
US10365369B2 (en) Laser scanner and method
US20120257049A1 (en) Method for visualizing spatially-resolved measurement results and corresponding measuring arrangement
WO2011128927A2 (en) Measuring thermal parameters of a building envelope
JP2005037366A (en) Infrared structure-diagnosis system, and method for infrared structure-diagnosis
CN114119614A (en) Method for remotely detecting cracks of building
US5045699A (en) Heat imaging camera with a cooled detector mosaic
CN116754076A (en) Inversion method for high-heterogeneity surface temperature of urban complex three-dimensional scene
JP2005300179A (en) Infrared structure diagnosis system
Hess et al. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures
Lin et al. Thermal texture selection and correction for building facade inspection based on thermal radiant characteristics
JPH10136263A (en) Thermal picture recording device/method
Scaioni et al. High-resolution texturing of building facades with thermal images
Griffith Infrared thermography systems
Asawa et al. Portable recording system for spherical thermography and its application to longwave mean radiant temperature estimation
JP7465698B2 (en) Peeling diagnostic device
Mongelli et al. Photogrammetric survey to support non destructive tests at St. Alexander Catacombs in Rome
Asano et al. Development of an urban thermal environment measurement system using a new spherical thermography technique
Deeb et al. Building envelope assessment using thermal infrared and lidar scanning: Palmer Station, Antarctica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150