JP4161014B2 - Purification method for contaminated geology with organochlorine compounds - Google Patents

Purification method for contaminated geology with organochlorine compounds Download PDF

Info

Publication number
JP4161014B2
JP4161014B2 JP36437198A JP36437198A JP4161014B2 JP 4161014 B2 JP4161014 B2 JP 4161014B2 JP 36437198 A JP36437198 A JP 36437198A JP 36437198 A JP36437198 A JP 36437198A JP 4161014 B2 JP4161014 B2 JP 4161014B2
Authority
JP
Japan
Prior art keywords
methane
contaminated
geology
water
organochlorine compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36437198A
Other languages
Japanese (ja)
Other versions
JP2000185274A (en
Inventor
久 楡井
謙二 難波
美緒 竹内
隆 楠田
一夫 香村
喜計 鈴木
充夫 吉田
芳二郎 品田
正一 上砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Co Ltd
Original Assignee
Astec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Co Ltd filed Critical Astec Co Ltd
Priority to JP36437198A priority Critical patent/JP4161014B2/en
Publication of JP2000185274A publication Critical patent/JP2000185274A/en
Application granted granted Critical
Publication of JP4161014B2 publication Critical patent/JP4161014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は地質の浄化工法に係り、殊に有機塩素化合物による汚染地質の浄化工法に係る。本明細書において「地質」とは地面及び地下の固相、液相及び気相の全てを指称するものであり土壌、地層、透水層、地下水、地下における空洞部、地下空気等を意味する。
【0002】
【従来の技術及びその課題】
有機塩素化合物、殊にトリクロロエチレン及びテトラクロロエチレンは低沸点塩素系溶剤であり、脱脂性において優れているために機械の洗浄や、ドライクリーニング工場、メッキ工場、半導体工場等で汎用されているが、体内に蓄積すると肝臓障害や中枢神経障害を惹起し、又極く微量であっても発癌性を呈することが判明しており、環境庁による水質環境基準においても検査対象項目とされ基準値が、それぞれ 0.03mg/l 以下及び 0.01mg/l 以下とされている物質である。
【0003】
化学物質審査規制法により製造についての届け出が義務づけられ且つ井戸水等の地下水の水質検査項目に指定されていても、上記の有機塩素化合物は使用され続けているために、これらによる土壌や地下水等地質の汚染地域は現在も拡大しつつあり、従って浄化処理が強く要望されているが、根本的な浄化対策は下記の通り無いに等しいのが実状である。
【0004】
即ち、有機塩素系化合物により汚染された地質の浄化対策としては、
(1) コンクリート槽による埋め込みや不透水シートによる遮水工法等の封じ込め処理法、
(2) 曝気処理法及び
(3) メタン資化性菌利用法
等がある。又、汚染土壌や汚染地層に関しては、土壌ガス吸引法や地下空気吸引法がある。
【0005】
これらの対策の内で対策 (1) は現在最も汎用されているが、この対策は対症 療法的なものであって爾後における漏洩の可能性を免れ得ないのである。対策 (2) は有機塩素系化合物が気化し易いと云う性質を利用するものであるが、気化させ且つ無害化するためには大規模な施設 (曝気プラント) を必要とし、然も環境基準値以下の濃度に迄低下させるためには実際には極めて長時間、例えば場合により数年を要するのである。対策 (3) はメタン資化性菌、即ちメタンを栄養 源とする菌は好気条件下でメタノール、ホルムアルデヒド及び蟻酸を経てメタンを炭酸ガスと水とに分解するが、メタンの酸化酵素であるメタン・モノオキシゲナーゼ (methane monooxygenase) を産生しており、この酵素が有機塩素系化合 物にも作用して最終的には炭酸ガス、水及び塩素イオンに迄分解することを利用するものであって学問的乃至実験室的には有効性が立証されているが、上記の酵素を活性化させるためには誘導基質としてメタンが要求され、従って地質中の有機塩素系化合物を分解させる場合にはメタンガスを井戸から直接的に注入する等の手法が採用されるものであるが、必ずしも実用的ではなく、メタンガスは可燃性であるために危険も伴うので、未だ実証試験の段階にある対策なのである。
【0006】
【発明が解決しようとする課題乃至発明の目的】
従って、本発明が解決しようとする課題乃至発明の目的は、有機塩素化合物による汚染の浄化工法であって、従来技術におけるような課題を何等有さず、実施が極めて容易であり且つ種々の地質を対象とし得る浄化工法を提供することにある。
【0007】
本発明者等は、メタン資化性菌が炭酸ガスと水と塩素イオンとに迄有機塩素化合物の完全分解を速い速度でもたらすと云う利点を有しているために、メタン資化性菌を利用する有機塩素化合物汚染の浄化工法を開発するべく鋭意検討を重ねた。
【0008】
その結果、メタン資化性菌利用法が従来から検討されているように、メタン資化性菌は種々の地質環境中に普遍的に存在していること、メタンをガスとしてではなく溶存水の形で使用すれば爆発等の危険を未然に回避することができ且つ地中への浸透性が良好になること、メタン資化性菌が増殖する条件を維持するように好気性環境をもたらす必要性のあること並びに急速且つ広範囲に浸透させるためには透水層に至る迄浸透させる必要性のあること等が判明した。従って、これらの条件を満たす工法を模索し、実験を行った結果、本発明を完成するに至っ
た。
【0009】
【課題を解決するための手段】
本発明によれば、従来のメタン資化性菌利用法が有していた課題は、有機塩素化合物による汚染地質中に、メタンをガスとしてまたは人工的に調整したメタン溶存水ではなく、メタンガスが発生している湖沼水やガス田地帯の地下から取水したメタン溶存天然水を注入する、有機塩素化合物による汚染地質の浄化工法により解決されると共に、所期の目的が達成される。
【0010】
本発明による浄化工法は、地面にピット (穴) を掘削形成し、該ピットにメタン溶存天然水を単に注水することにより実施することができ、従って極めて簡便である。このピットの開口部面積に格別の制限はないが、掘削深度は透水層に迄至らしめるのが好ましい。何故ならば、メタン溶存天然水を透水層に直接的に送れば、急速に且つ広範囲に浸透させることが可能だからであり、又透水層等に存在するメタン資化性菌に好気的環境を与えるからである。本発明による浄化工法に使用されるメタン溶存水としては井戸水、水道水、河川水又は湧水にメタンガスを溶存させて人工的に調製されたものではなく、メタンガスを発生している湖沼水やガス田地帯に内在している地下水、即ち、メタン溶存天然水を利用するのである。何故ならば、このようなメタン溶存天然水は入手が容易であり、コスト的にも有利であり、然も、自然環境の中でメタン資化性菌を適正に含有しているからである。尚、メタン溶存天然水のメタン濃度は一般的には約 500 - 約 30000 Nmol/l の範囲内である。
【0011】
勿論のことながら、本発明によれば、有機塩素化合物に汚染された地質を、メタン資化性菌を含有するメタン溶存天然水に投入して汚染地質を浄化することも可能である。
【0012】
【発明の実施の形態】
本発明による浄化工法の実施の 1 例について、図面を参照しつつ説明する。図 1 に示されているように、先ず地面 10 を掘削して注水用のピット 12 と 数本の観測井戸 14 とを形成する。ピット 12 の掘削深度は透水層 16 に達するように設定しするが、不可能な場合にはピット底から数本の井戸を掘削して深部の透水層に達するようにする。一方観測井戸 14 の掘削深度は種々の深度における有機塩素化合物の濃度を測定し得るように透水層 16 より下部にも設定する。
【0013】
次いで、ピット 12 にメタン溶存水を注水し、ピットに入れられたメタン溶存水 18 の拡散を考慮に入れた所定時間経過後に観測井戸を利用し採水して試料とし、該試料水中の有機塩素化合物の濃度を測定する。
【0014】
【実施例】
次に、実施例により本発明を更に詳細に且つ具体的に説明する。
実施例
先ず、有機塩素系化合物にて汚染された浄化対策予定地域において複数本の試験井戸を掘削し、採水して試料水とし、PID ガスクロマトグラフ法を用いて汚染の状況を詳細に調べた結果、この地域の地下水を汚染している有機塩素化合物はトリクロロエチレンであって、その濃度は 0.20 - 0.05mg/l であること及び汚 染地層は透水層であることが判明した。
【0015】
次いで、地面を掘削してピットを形成した。このピットは幅が 1.5m であり、長さは 10m であり、深さは 3.5m であって、底部は汚染の検出されている透水 層に直接達するものであった。観測井戸としては上記の試験井戸であり、それぞれ数 m づつ離れている井戸を数本利用した。
【0016】
上記の準備を予め整えた上で、ガス田地帯に内在する地下水を取水し、タンク車により上記の浄化対策実施地域に運搬し、上記のピットに注水した。上記の地下水はメタン溶存天然水であり、その平均メタン濃度は約 30000 Nmol/l であり、試験期間は 5 日間とし、ピットへの 1 日当りの注水量は 5 トンに設定された。
【0017】
試験開始直前、即ちピットへのメタン溶存地下水の第 1 回注水直前において トリクロロエチレン濃度を測定した処、既述の通り 0.20 - 0.05mg/l であった が、メタン溶存地下水の注入後 2 日目で濃度は激減し、何れの観測井戸におい ても検知管測定では検出できない濃度迄低下し、この状態は試験期間終了時迄同様であった。この検知管測定による検出限界濃度は 0.1ppm であり、この検出限界濃度を水質汚染濃度に換算すると 0.01mg/l 以下の濃度であることを意味しており、環境庁の定めている既述の基準値である0.03mg/l 以下を完全にクリアー している。
【0018】
【発明の効果】
有機塩素化合物にて汚染された地質の本発明による浄化工法は、基本的には、地面に掘削されたピットにメタン溶存天然水を単に注水するだけなので、実施が極めて容易且つ簡便である。ピットの掘削深度を透水層に達するように設定すれば、メタン資化性菌に好気的環境を与えて活性化させることができ、又メタン溶存天然水が急速且つ広範囲に亘って浸透するので浄化処理効率が向上する。特に、メタンガスが発生している湖沼水やガス田地帯の地下から取水した天然のメタン溶存水を利用すれば、コスト的にも有利となり、又自然環境の中でメタン資化性菌を適正に含有しているので、新たなメタン資化性菌を汚染土壌に送り込むことになり、従って浄化処理効率が向上する。更に、本発明は天然のメタン溶存水に存在するメタン資化性菌を利用しているので、メタン資化性菌が自然環境の中で活性化し高密度で存在しており、従来の人工的に調整した曝気処理等によるメタン溶存水と比較した場合に、浄化処理所要時間が激減する。尚、有機塩素化合物に汚染された水、堆積物、土壌等をメタン溶存天然水の分布地域に搬入し、該メタン溶存天然水により処理して浄化することもできる。
【図面の簡単な説明】
【図1】本発明による浄化工法を実施する要領を示す概略図である。
【符号の説明】
10 : 地面
12 : ピット
14 : 観測井戸
16 : (有機塩素化合物により汚染された) 透水層
18 : (ピット 12 内に注入された) メタン溶存水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a geological purification method, and more particularly to a contaminated geological purification method by an organic chlorine compound. In this specification, “geology” refers to all of the solid phase, liquid phase, and gas phase of the ground and underground, and means soil, formation, permeable layer, ground water, underground cavity, underground air, and the like.
[0002]
[Prior art and problems]
Organochlorine compounds, especially trichlorethylene and tetrachloroethylene, are low-boiling chlorine solvents, and are widely used in machine cleaning, dry cleaning factories, plating factories, semiconductor factories, etc. due to their excellent degreasing properties. Accumulation causes liver damage and central nervous system damage, and even a very small amount has been shown to be carcinogenic. It is a substance with a concentration of mg / l or less and 0.01 mg / l or less.
[0003]
Even if it is obligated to submit a manufacturing report under the Chemical Substances Control Regulation Law and it is specified as a water quality inspection item for groundwater such as well water, the above-mentioned organochlorine compounds continue to be used. The contaminated areas are still expanding, and therefore, there is a strong demand for purification treatment, but the actual purification measures are as follows.
[0004]
In other words, as a measure for the purification of geology contaminated with organochlorine compounds,
(1) Containment treatment methods such as embedding in concrete tanks and impervious sheets,
(2) Aeration treatment method and
(3) Use of methane-utilizing bacteria. Regarding contaminated soil and contaminated strata, there are a soil gas suction method and an underground air suction method.
[0005]
Of these measures, measure (1) is currently the most widely used, but this measure is symptomatic and cannot escape the possibility of leakage after a drought. Measure (2) uses the property that organochlorine compounds are easy to vaporize, but it requires a large-scale facility (aeration plant) to vaporize and detoxify, and it is still an environmental standard value. In practice, it takes a very long time, for example, several years in order to reduce the concentration to the following level. Countermeasure (3) is a methane-utilizing bacterium, that is, a methane-producing bacterium that decomposes methane into carbon dioxide and water through methanol, formaldehyde, and formic acid under aerobic conditions. It produces methane monooxygenase, which utilizes the fact that this enzyme also acts on organochlorine compounds and eventually decomposes into carbon dioxide, water and chloride ions. Although it has been proved effective in academic and laboratory settings, methane is required as an inducing substrate to activate the above-mentioned enzymes. Therefore, methane gas is required when decomposing organochlorine compounds in geology. However, it is not always practical, and because methane gas is flammable, it is dangerous. So there.
[0006]
[Problem to be Solved by the Invention]
Accordingly, the problem to be solved by the present invention or the object of the present invention is a method for purifying contamination by organochlorine compounds, has no problems as in the prior art, is extremely easy to implement, and has various geological features. It is to provide a purification method that can be used as a target.
[0007]
The present inventors have the advantage that methane-assimilating bacteria bring about complete decomposition of organochlorine compounds to carbon dioxide gas, water, and chloride ions at a high rate. We intensively studied to develop a purification method for organic chlorine compound contamination.
[0008]
As a result, the methane-utilizing bacteria are universally present in various geological environments, and the dissolved water is not used as a gas. If it is used in the form, it is necessary to avoid dangers such as explosions, improve the permeability to the ground, and provide an aerobic environment so that the conditions for the growth of methane-utilizing bacteria can be maintained. It has been found that it is necessary to penetrate to the water permeable layer in order to penetrate quickly and widely. Therefore, as a result of searching for a construction method that satisfies these conditions and conducting experiments, the present invention has been completed.
[0009]
[Means for Solving the Problems]
According to the present invention, the problem that the conventional methane-utilizing bacteria utilization method has is that methane gas is not methane-dissolved water prepared as a gas or artificially adjusted in the contaminated geology due to organochlorine compounds, but methane gas. It is solved by the purification method of contaminated geology by organochlorine compounds that injects the generated lake water and natural methane dissolved water taken from the underground of the gas field , and the intended purpose is achieved.
[0010]
The purification method according to the present invention can be carried out by excavating and forming pits (holes) in the ground and simply pouring methane-dissolved natural water into the pits, and is therefore very simple. Although there is no particular limitation on the opening area of the pit, it is preferable that the excavation depth reaches the permeable layer. This is because if methane-dissolved natural water is sent directly to the permeable layer, it can penetrate rapidly and over a wide area, and an aerobic environment is created for methane-utilizing bacteria present in the permeable layer. Because it gives. The methane-dissolved water used in the purification method according to the present invention is not artificially prepared by dissolving methane gas in well water, tap water, river water or spring water, but lake water or gas generating methane gas. The groundwater in the rice field, that is, methane-dissolved natural water is used . This is because such methane-dissolved natural water is easy to obtain and advantageous in terms of cost, and still contains methane-utilizing bacteria appropriately in the natural environment . The methane concentration of methane-dissolved natural water is generally in the range of about 500 to about 30000 Nmol / l.
[0011]
Of course, according to the present invention, it is also possible to purify the contaminated geology by introducing the geology contaminated with the organochlorine compound into methane-dissolved natural water containing methane-utilizing bacteria.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An example of the implementation of the purification method according to the present invention will be described with reference to the drawings. As shown in Fig. 1, the ground 10 is first excavated to form pits 12 for water injection and several observation wells 14. The drilling depth of pit 12 is set to reach the permeable layer 16, but if impossible, several wells are drilled from the bottom of the pit to reach the deep permeable layer. On the other hand, the drilling depth of the observation well 14 is set below the permeable layer 16 so that the concentration of organochlorine compounds at various depths can be measured.
[0013]
Next, methane-dissolved water was poured into pit 12, and after a predetermined time, taking into account the diffusion of methane-dissolved water 18 in the pit, water was collected using the observation well as a sample, and organic chlorine in the sample water was collected. The concentration of the compound is measured.
[0014]
【Example】
Next, the present invention will be described in more detail and specifically by examples.
Example First, multiple test wells were excavated in the planned cleanup area contaminated with organochlorine compounds, sampled to obtain sample water, and the PID gas chromatographic method was used to determine the status of contamination. As a result of detailed investigation, it was found that the organochlorine compound contaminating the groundwater in this area was trichlorethylene, the concentration was 0.20-0.05 mg / l, and the contaminated ground was a permeable layer.
[0015]
Next, a pit was formed by excavating the ground. The pit was 1.5m wide, 10m long and 3.5m deep, with the bottom reaching directly to the permeable layer where contamination was detected. The observation wells are the above test wells, and several wells separated by several meters each were used.
[0016]
After preparing the above preparations in advance, the groundwater existing in the gas field was taken, transported to the above purification countermeasure implementation area by a tank car, and poured into the above pit. The above groundwater is methane-dissolved natural water, the average methane concentration is about 30000 Nmol / l, the test period is 5 days, and the daily water injection to the pit is set to 5 tons.
[0017]
The trichlorethylene concentration was measured immediately before the start of the test, that is, immediately before the first injection of methane-dissolved groundwater into the pit, which was 0.20-0.05 mg / l as described above, but on the second day after the injection of methane-dissolved groundwater. The concentration dropped drastically and decreased to a concentration that could not be detected by detector tube measurement in any observation well, and this state was the same until the end of the test period. The detection limit concentration by this detector tube measurement is 0.1 ppm, which means that this detection limit concentration is 0.01 mg / l or less when converted to water pollution concentration. The standard value of 0.03 mg / l or less is completely cleared.
[0018]
【The invention's effect】
The purification method according to the present invention for geology contaminated with organochlorine compounds is basically very easy and simple to implement because methane-dissolved natural water is simply poured into a pit excavated in the ground. By setting the pit excavation depth to reach the permeable layer, it is possible to activate the methane-utilizing bacteria by providing an aerobic environment, and methane-dissolved natural water penetrates rapidly and over a wide area. Purification efficiency is improved. In particular, the use of natural methane-dissolved water taken from the lake water and gas field area where methane gas is generated is advantageous in terms of cost, and methane-utilizing bacteria are appropriately selected in the natural environment. Since it contains, a new methane-utilizing bacterium will be sent to the contaminated soil, thus improving the purification efficiency. Furthermore, since the present invention uses methane-utilizing bacteria present in natural methane-dissolved water , the methane-utilizing bacteria are activated and present in high density in the natural environment, and the conventional artificial The time required for purification treatment is drastically reduced when compared with methane-dissolved water by aeration treatment or the like adjusted to . In addition, the water, sediment, soil, etc. contaminated with the organic chlorine compound can be carried into the distribution area of the methane-dissolved natural water and treated with the methane-dissolved natural water for purification.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic view showing a procedure for carrying out a purification method according to the present invention.
[Explanation of symbols]
10: Ground
12: Pit
14: Observation well
16: Permeable layer (contaminated by organochlorine compound)
18: Methane-dissolved water (injected into pit 12)

Claims (4)

有機塩素化合物による汚染地質中に、メタンガスを発生している湖沼水やガス田地帯に内在しているメタン溶存天然水を取水して注入することを特徴とする、有機塩素化合物による汚染地質の浄化工法。Purification of contaminated geology by organochlorine compounds, which is characterized by taking and injecting methane-dissolved natural water existing in lakes and gas fields where methane gas is generated into contaminated geology by organochlorine compounds Construction method. 地面にピットを掘削形成し、該ピットにメタン溶存天然水を注水することを特徴とする、請求項1に記載の有機塩素化合物による汚染地質の浄化工法。The method for purifying contaminated geology with an organic chlorine compound according to claim 1, wherein pits are excavated and formed on the ground, and methane-dissolved natural water is poured into the pits. ピットの掘削深度を透水層に達するように設定することを特徴とする、請求項2に記載の有機塩素化合物による汚染地質の浄化工法。  The method for purifying contaminated geology with organochlorine compounds according to claim 2, wherein the digging depth of the pit is set so as to reach the permeable layer. 有機塩素化合物により汚染された地質を、メタンガスを発生している湖沼水やガス田地帯に内在しているメタン溶存天然水中に投入することを特徴とする、有機塩素化合物による汚染地質の浄化工法。A method for purifying contaminated geology with organochlorine compounds, characterized in that the geology contaminated with organochlorine compounds is introduced into lake water producing methane gas or methane-dissolved natural water in gas fields .
JP36437198A 1998-12-22 1998-12-22 Purification method for contaminated geology with organochlorine compounds Expired - Lifetime JP4161014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36437198A JP4161014B2 (en) 1998-12-22 1998-12-22 Purification method for contaminated geology with organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36437198A JP4161014B2 (en) 1998-12-22 1998-12-22 Purification method for contaminated geology with organochlorine compounds

Publications (2)

Publication Number Publication Date
JP2000185274A JP2000185274A (en) 2000-07-04
JP4161014B2 true JP4161014B2 (en) 2008-10-08

Family

ID=18481650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36437198A Expired - Lifetime JP4161014B2 (en) 1998-12-22 1998-12-22 Purification method for contaminated geology with organochlorine compounds

Country Status (1)

Country Link
JP (1) JP4161014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501659B2 (en) * 2004-12-01 2010-07-14 パナソニック株式会社 Nutrient source injection method

Also Published As

Publication number Publication date
JP2000185274A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
Pauwels et al. Field tracer test for denitrification in a pyrite-bearing schist aquifer
Walker et al. Nitrogen transformations during subsurface disposal of septic tank effluent in sands: II. Ground water quality
Oberdorfer et al. Waste‐water injection: Geochemical and biogeochemical clogging processes
Simpkins et al. Hydrogeology and redox geochemistry of CH4 in a late Wisconsinan till and loess sequence in central Iowa
Spalding et al. Effects of sludge disposal on groundwater nitrate concentrations
GB2238533A (en) Cleaning halogenated contaminants from groundwater
Shen et al. Temporal variations in groundwater nitrogen under intensive groundwater/surface-water interaction
Guan et al. Assessment of the use of a zero-valent iron permeable reactive barrier for nitrate removal from groundwater in the alluvial plain of the Dagu River, China
Aharoni et al. Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone-groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis
Otten In situ soil remediation
Parkin et al. Contemporary groundwater methane production from Pleistocene carbon
Henkel et al. Hydrochemical and isotopegeochemical evaluation of density stratification in mine water bodies of the Ruhr coalfield
JP4161014B2 (en) Purification method for contaminated geology with organochlorine compounds
Shepelev et al. Ecological engineering as a mean to reduce the anthropogenic impact of production on biota
Gooddy et al. Field and modelling studies to assess the risk to UK groundwater from earth‐based stores for livestock manure
Mrklas et al. Principal component analyses of groundwater chemistry data during enhanced bioremediation
Drake et al. Investigation of sulphide production in core-drilled boreholes in Äspö Hard Rock Laboratory
Arildskov et al. Fate of the herbicides 2, 4, 5‐T, atrazine, and DNOC in a shallow, anaerobic aquifer investigated by in situ passive diffusive emitters and laboratory batch experiments
Kao et al. Enhanced aerobic bioremediation of a gasoline-contaminated aquifer by oxygen-releasing barriers
Mazariegos et al. Tracing artificially recharged groundwater using water and carbon isotopes
Aulenbach et al. Monitoring for land application of wastewater
Lawrence et al. Contamination of Chalk Groundwater by Chlorinated Solvents: A Case Study of Deep Penetration by Non‐Aqueous Phase Liquids
London Application of Hydrogeology to the Selection of Refuse Disposal Sites a
Vroblesky Remediation of petroleum hydrocarbon-contaminated ground water in the vicinity of a jet-fuel tank farm, Hanahan, South Carolina
Klingler et al. Control of contaminated groundwater during tunneling: five case histories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term