JP4160706B2 - Subscriber circuit power supply system - Google Patents

Subscriber circuit power supply system Download PDF

Info

Publication number
JP4160706B2
JP4160706B2 JP29625899A JP29625899A JP4160706B2 JP 4160706 B2 JP4160706 B2 JP 4160706B2 JP 29625899 A JP29625899 A JP 29625899A JP 29625899 A JP29625899 A JP 29625899A JP 4160706 B2 JP4160706 B2 JP 4160706B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
current
converter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29625899A
Other languages
Japanese (ja)
Other versions
JP2001119732A (en
Inventor
慎也 太田
薫 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Communication Technologies Ltd
Hitachi Solutions Technology Ltd
Original Assignee
Hitachi ULSI Systems Co Ltd
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Systems Co Ltd, Hitachi Communication Technologies Ltd filed Critical Hitachi ULSI Systems Co Ltd
Priority to JP29625899A priority Critical patent/JP4160706B2/en
Publication of JP2001119732A publication Critical patent/JP2001119732A/en
Application granted granted Critical
Publication of JP4160706B2 publication Critical patent/JP4160706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Supply Of Signal Current (AREA)
  • Interface Circuits In Exchanges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は加入者回路給電方式に関し、アナログ端末方式とディジタル端末方式の両方式の給電が可能なDC−DCコンバータによる加入者回路給電方式に関する。
【0002】
【従来の技術】
電話機など加入者端末の給電方式には、アナログ端末方式とディジタル端末方式が存在する。従来、アナログ端末方式給電とディジタル端末方式給電は必要とされる給電特性が大きく異なるため別々の回路を用いて実現していた。次にそれぞれの給電方式について説明する。
【0003】
アナログ端末方式での給電回路のブロック図を図2に示す。電源1はDC−DCコンバータ9に接続され、給電回路2に電源を供給する。給電回路2には出力トランジスタ3(3a,3b)が接続されており、出力は加入者線路に流れる電流と加入者線間の電圧を検出する電流・電圧検出回路7に接続する。
【0004】
前記電流・電圧変換回路7の出力は前記DC−DCコンバータ9を制御する給電制御コントローラ6に入力する。給電回路2の出力は加入者線路抵抗12(12a,12b)、加入者端末11に接続する。加入者線路抵抗12の値をRLとする。
【0005】
前記給電回路2には前記DC−DCコンバータ9の出力電圧Voutと加入者線路負荷の電圧降下(加入者線路に流れる電流ILと加入者線路抵抗12の値RLの積)の差の電圧降下(Vout−IL・RL)が発生する。
【0006】
しかし、前記給電回路2は電子回路で構成されており、必ずしも大きな電圧降下が必要ではなく、前記出力トランジスタ3が飽和しない程度の最小の電圧降下(VCEM)を供給すれば良い(Vout=RL・IL+VCEM)。
【0007】
前記電流・電圧検出回路7で検出結果を給電制御コントローラ6に入力しDC−DCコンバータの出力を制御する。これらの制御動作は特開昭57―124962号公報に示されており、詳細説明は省略する。
【0008】
次に給電特性を図3に示す。アナログ端末方式給電での加入者回路に流れる電流ILは次式で表される。
【0009】
IL=VBB/(RL+Rin)
ここで、VBBは電源電圧、RLは加入者線路抵抗、Rinは給電回路の内部抵抗であり、一般的にVBB=−48V、RL=0〜1720Ω、Rin=440Ωである。
【0010】
ディジタル端末方式での給電回路のブロック図を図4に示す。電源1はDC−DCコンバータ9に接続され、DC−DCコンバータ9の出力に接続された電流検出回路13は検出出力を給電制御コントローラ6に入力する。前記給電制御コントローラ6は加入者端末11に流れる電流値が定電流値(例えば39mA)となるようDC−DCコンバータを制御する。給電特性を図5に示す。
【0011】
【発明が解決しようとする課題】
図3及び図5に示すようにアナログ端末方式では定抵抗給電特性、ディジタル端末方式では定電流給電特性が要求されるため、給電特性は大きく異なる。アナログ端末方式・ディジタル端末方式の両方式の給電を実現するためにそれぞれに独立の回路を設けては、実装面積の小型化、経済性の面からも不利である。
【0012】
本発明の目的は、実装面積の小型化、経済化を実現したアナログ端末方式とディジタル端末方式の両方式を実現できる加入者回路給電方式を提供することにある。
【0013】
【課題を解決するための手段】
上記目的は、アナログ端末方式給電とディジタル端末方式給電とでDC−DCコンバータを共有し、アナログ端末方式給電の場合には給電回路を介して加入者端末に給電し、ディジタル端末方式給電方式の場合には給電回路をバイパスして、給電するように切替え制御し、各給電にあった給電特性を持たせることにより達成される。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0015】
まず、図1に本発明による加入者回路給電方式の一例でのブロック構成を示す。図示のように、電源1はDC−DCコンバータ9に接続され、DC−DCコンバータ9の出力は電流・電圧検出回路7に接続する。前記電流・電圧検出回路7の検出出力は給電制御コントローラ6に入力し、アナログ/ディジタル切替え制御信号5によってアナログ端末方式かディジタル端末方式の給電を行うかを決定し、所望の給電特性となるようにDC−DCコンバータ9を制御する。前記電流・電圧検出回路7は、ディジタル端末方式給電の場合は直接加入者線路へ、アナログ端末方式給電の場合は給電回路2を経由して加入者線路へ接続するように切り替えるスイッチ4(4a,4b)に接続する。前記給電回路2は出力トランジスタ3(3a,3b)に接続されており、前記出力トランジスタ3(3a,3b)には該VCE(コレクタ−エミッタ間電圧)の検出回路8(8a,8b)を備えており、検出結果は前記給電制御コントローラ6へ入力する。
【0016】
図6に給電制御コントローラ6のブロック図を示す。給電制御コントローラ6は、DC−DCコンバータ9の出力に接続された電流・電圧検出回路7の電流検出の結果を電圧変換する電流/電圧変換部15の出力と、前記電流・電圧検出回路7の電圧検出部の出力を比較し、大きい値を選択し出力する最大値選択回路16と、前記電流・電圧検出回路7の電圧検出部の出力と図1における給電回路2の出力トランジスタ3a,3bのVCEを検出するVCE検出回路8の出力を比較し、小さい値を選択し出力する最小値選択回路17と、前記アナログ/ディジタル制御信号5によりディジタル端末方式給電の場合は最大値選択回路16の出力を、アナログ端末方式給電の場合は最小値比較回路17の出力を受け、所要特性にするため基準電圧Vrefを備えた誤差増幅器18から構成し、給電制御コントローラ6の出力はDC−DCコンバータ9へ入力する。
【0017】
DC−DCコンバータ9の実施例の一例を図7に示す。DC−DCコンバータ9は、前記給電制御コントローラ6の出力をパルス幅変調して出力するPWM発生回路19と、前記PWM発生回路19の出力を受けスイッチングを行うトランジスタ21と、前記トランジスタ21の一方はスイッチングトランス22の一次巻線に接続され、前記スイッチングトランスの二次巻線出力は整流用のダイオード23とコンデンサ24に接続され、コイル25とコンデンサ26で構成されたフィルタを介して出力される。
【0018】
次に図1、図6、図7を用いてディジタル端末方式、アナログ端末方式における給電のしくみの説明を行う。
【0019】
まず、ディジタル方式給電について説明する。図1においてアナログ/ディジタル切替制御信号5がディジタル端末方式とする信号を送出すると切替スイッチ4(4a,4b)をD側に切替える。ディジタル端末方式の場合、電流・電圧検出回路7の電流検出部は加入者線に流れる電流、電圧検出部は加入者線間に発生する電圧を検出することになる。電流・電圧検出回路7の電流検出部で検出した電流は図6で示す電流/電圧変換部15で電圧変換する。検出値をVidとする。前記電流・電圧検出回路7の電圧検出部で検出した検出値をVvdとする。図5で示す給電特性の角の特性(IL=39mA、VL=60V)のときVid=Vvdとなるように調整する。定電流領域(IL=39mA)つまり0<VL<60Vでは、Vvd<Vidとなるため最大値選択回路16はVidを選択する。Vidは誤差増幅器18に入力されVrefとの誤差をDC−DCコンバータ9へ出力する。ここでVid<Vrefのとき、つまり電流値が所望の値(例えば39mA)よりも小さい場合、前記誤差増幅器18からの出力を受け図7に示すPWM発生回路19は、トランジスタ21のオン時間を長くするようにしてDC−DCコンバータ9の出力を大きくし、Vid>Vrefのときは、逆にトランジスタ21のオン時間を短くするようにしてDC−DCコンバータ9の出力を小さくすることで定電流特性を実現する。また、定電圧領域(VL=60V)つまり0<IL<39mAでは、Vvd>Vidとなるため図6に示す最大値選択回路16はVvdを選択する。DC−DCコンバータ9は先に述べたVidを選択した時と同じ方法で定電圧特性を実現する。
【0020】
次に、アナログ端末方式給電について説明する。まず、図1においてアナログ/ディジタル切替制御信号5がアナログ端末方式とする信号を送出すると切替スイッチ4a,4bをA側に切替える。アナログ端末方式の場合、DC−DCコンバータ9の出力は給電回路2に接続される。また、接地スイッチによりVBBまたはアースに接地することで非フローティング回路として使用する。前記給電回路2の出力トランジスタ3a,3bのVCEの検出を行うVCE検出回路8a,8bの検出結果VCEと、前記電流・電圧検出回路7の電圧検出部の出力Vvdを図6に示す最小値選択回路17に入力し、小さい値を誤差増幅器18に入力する。VCE<Vvdの場合、言い換えると加入者回線側の負荷抵抗が大きい場合にはVCEの値が選択され、トランジスタが動作するために最小限必要なVCE値(VCEMとする)をVrefとして誤差増幅器18へ入力する。前記誤差増幅器18の出力はDC−DCコンバータ9へ入力されVCE=VCEMとなるように制御する。(DC−DCコンバータ9の動作はディジタル端末方式と同様である。)VCE>Vvdの場合、言い換えると加入者回線側の負荷抵抗が小さい場合には、DC−DCコンバータからの出力電圧が低くなり、給電回路2が動作しない場合がある。この場合、前記電流・電圧検出回路7の電圧検出部の出力が最小値選択回路17で選択することで、給電回路2の動作に必要な電圧をDC−DCコンバータ9の出力より発生するように制御することもできる加入者回路給電制御方式である。
【0021】
【発明の効果】
以上のように、本発明による加入者回路給電方式では従来アナログ端末方式とディジタル端末方式の給電をそれぞれ別の回路で実現していたものを、一つのDC−DCコンバータを使用することで実現でき、低消費電力かつ実装面積においても経済的な加入者回路給電方式を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示すブロック図。
【図2】従来アナログ端末方式の給電回路ブロック図。
【図3】従来アナログ端末方式の給電特性。
【図4】従来ディジタル端末方式の給電回路ブロック図。
【図5】従来ディジタル端末方式の給電特性。
【図6】給電制御コントローラのブロック図。
【図7】DC−DCコンバータの実施例を示す回路図。
【符号の説明】
1:電源
3:出力トランジスタ
4:アナログ/ディジタル切替スイッチ
10:従来アナログ端末方式の給電ブロック
11:加入者端末
12:加入者線路抵抗
14:従来ディジタル端末方式の給電ブロック
21:トランジスタ
22:スイッチングトランス
23:ダイオード
24:コンデンサ
25:コイル
26:コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a subscriber circuit power supply system, and more particularly to a subscriber circuit power supply system using a DC-DC converter capable of both analog terminal system and digital terminal system power supply.
[0002]
[Prior art]
There are an analog terminal system and a digital terminal system as power supply systems for subscriber terminals such as telephones. Conventionally, the analog terminal system power supply and the digital terminal system power supply are realized by using different circuits because required power supply characteristics are greatly different. Next, each power feeding method will be described.
[0003]
A block diagram of a power feeding circuit in an analog terminal system is shown in FIG. The power source 1 is connected to the DC-DC converter 9 and supplies power to the power feeding circuit 2. An output transistor 3 (3a, 3b) is connected to the power feeding circuit 2, and an output is connected to a current / voltage detection circuit 7 for detecting a current flowing through the subscriber line and a voltage between the subscriber lines.
[0004]
The output of the current / voltage conversion circuit 7 is input to a power supply controller 6 that controls the DC-DC converter 9. The output of the feeder circuit 2 is connected to a subscriber line resistor 12 (12a, 12b) and a subscriber terminal 11. The value of the subscriber line resistance 12 is RL.
[0005]
The power supply circuit 2 has a voltage drop (the difference between the output voltage Vout of the DC-DC converter 9 and the voltage drop of the subscriber line load (the product of the current IL flowing through the subscriber line and the value RL of the subscriber line resistance 12)). Vout-IL · RL) occurs.
[0006]
However, the power feeding circuit 2 is composed of an electronic circuit, and does not necessarily require a large voltage drop. It is sufficient to supply a minimum voltage drop (VCEM) that does not saturate the output transistor 3 (Vout = RL · IL + VCEM).
[0007]
The current / voltage detection circuit 7 inputs the detection result to the power supply controller 6 to control the output of the DC-DC converter. These control operations are shown in Japanese Patent Application Laid-Open No. 57-124962 and will not be described in detail.
[0008]
Next, the power feeding characteristics are shown in FIG. The current IL flowing through the subscriber circuit in the analog terminal system power supply is expressed by the following equation.
[0009]
IL = VBB / (RL + Rin)
Here, VBB is a power supply voltage, RL is a subscriber line resistance, and Rin is an internal resistance of the power feeding circuit. Generally, VBB = −48V, RL = 0 to 1720Ω, and Rin = 440Ω.
[0010]
FIG. 4 shows a block diagram of a power supply circuit in the digital terminal system. The power source 1 is connected to the DC-DC converter 9, and the current detection circuit 13 connected to the output of the DC-DC converter 9 inputs the detection output to the power supply controller 6. The power supply controller 6 controls the DC-DC converter so that the current value flowing through the subscriber terminal 11 becomes a constant current value (for example, 39 mA). The power supply characteristics are shown in FIG.
[0011]
[Problems to be solved by the invention]
As shown in FIGS. 3 and 5, the analog terminal system requires constant resistance power supply characteristics, and the digital terminal system requires constant current power supply characteristics. Providing independent circuits for both the analog terminal system and digital terminal system power supply is disadvantageous from the viewpoint of miniaturization of mounting area and economy.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide a subscriber circuit power feeding system capable of realizing both an analog terminal system and a digital terminal system that achieve a reduction in mounting area and economy.
[0013]
[Means for Solving the Problems]
The purpose is to share the DC-DC converter between the analog terminal system power supply and the digital terminal system power supply. In the case of the analog terminal system power supply, the power is supplied to the subscriber terminal via the power supply circuit. This is achieved by bypassing the power supply circuit, switching control to supply power, and providing power supply characteristics suitable for each power supply.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0015]
First, FIG. 1 shows a block configuration of an example of a subscriber circuit power feeding system according to the present invention. As shown in the figure, the power source 1 is connected to a DC-DC converter 9, and the output of the DC-DC converter 9 is connected to a current / voltage detection circuit 7. The detection output of the current / voltage detection circuit 7 is input to a power supply controller 6 and an analog / digital switching control signal 5 is used to determine whether to supply power in an analog terminal system or a digital terminal system so that desired power supply characteristics can be obtained. The DC-DC converter 9 is controlled. The current / voltage detection circuit 7 is connected to a switch 4 (4a, 4a, 4a, 4b, 4c, 4c, 4c) so as to be connected directly to the subscriber line in the case of digital terminal type power supply and to the subscriber line via the power supply circuit 2 in the case of analog terminal type power supply. Connect to 4b). The power supply circuit 2 is connected to an output transistor 3 (3a, 3b), and the output transistor 3 (3a, 3b) includes a detection circuit 8 (8a, 8b) for the VCE (collector-emitter voltage). The detection result is input to the power supply controller 6.
[0016]
FIG. 6 shows a block diagram of the power supply controller 6. The power supply controller 6 includes an output of a current / voltage conversion unit 15 that converts a current detection result of the current / voltage detection circuit 7 connected to an output of the DC-DC converter 9, and the current / voltage detection circuit 7. The maximum value selection circuit 16 that compares the output of the voltage detection unit and selects and outputs a large value, the output of the voltage detection unit of the current / voltage detection circuit 7, and the output transistors 3a and 3b of the power supply circuit 2 in FIG. The output of the VCE detection circuit 8 that detects the VCE is compared, the minimum value selection circuit 17 that selects and outputs a small value, and the output of the maximum value selection circuit 16 when the analog / digital control signal 5 supplies the digital terminal system. In the case of analog terminal system power supply, the power supply is configured from an error amplifier 18 having a reference voltage Vref to receive the output of the minimum value comparison circuit 17 and to obtain a required characteristic. The output of the controller 6 is input to the DC-DC converter 9.
[0017]
An example of an embodiment of the DC-DC converter 9 is shown in FIG. The DC-DC converter 9 includes a PWM generation circuit 19 that performs pulse width modulation on the output of the power supply controller 6, a transistor 21 that performs switching by receiving the output of the PWM generation circuit 19, and one of the transistors 21 is The secondary winding output of the switching transformer 22 is connected to a rectifying diode 23 and a capacitor 24 and output through a filter composed of a coil 25 and a capacitor 26.
[0018]
Next, the power supply mechanism in the digital terminal system and the analog terminal system will be described with reference to FIGS.
[0019]
First, digital power supply will be described. In FIG. 1, when the analog / digital switching control signal 5 sends a signal for the digital terminal system, the selector switch 4 (4a, 4b) is switched to the D side. In the case of the digital terminal system, the current detection unit of the current / voltage detection circuit 7 detects the current flowing in the subscriber line, and the voltage detection unit detects the voltage generated between the subscriber lines. The current detected by the current detection unit of the current / voltage detection circuit 7 is converted into a voltage by the current / voltage conversion unit 15 shown in FIG. Let the detected value be Vid. A detection value detected by the voltage detection unit of the current / voltage detection circuit 7 is defined as Vvd. Adjustment is made so that Vid = Vvd when the corner characteristic of the power feeding characteristic shown in FIG. 5 (IL = 39 mA, VL = 60 V). In the constant current region (IL = 39 mA), that is, 0 <VL <60V, Vvd <Vid, so the maximum value selection circuit 16 selects Vid. Vid is input to the error amplifier 18, and an error from Vref is output to the DC-DC converter 9. Here, when Vid <Vref, that is, when the current value is smaller than a desired value (for example, 39 mA), the PWM generator circuit 19 shown in FIG. 7 receiving the output from the error amplifier 18 increases the on-time of the transistor 21. Thus, when the output of the DC-DC converter 9 is increased, and when Vid> Vref, the on-time of the transistor 21 is shortened to decrease the output of the DC-DC converter 9, thereby making the constant current characteristic. Is realized. Further, in the constant voltage region (VL = 60 V), that is, 0 <IL <39 mA, Vvd> Vid, so the maximum value selection circuit 16 shown in FIG. 6 selects Vvd. The DC-DC converter 9 realizes constant voltage characteristics in the same manner as when Vid described above is selected.
[0020]
Next, analog terminal system power supply will be described. First, in FIG. 1, when the analog / digital switching control signal 5 sends out a signal for the analog terminal system, the selector switches 4a and 4b are switched to the A side. In the case of an analog terminal system, the output of the DC-DC converter 9 is connected to the power feeding circuit 2. Further, it is used as a non-floating circuit by being grounded to VBB or ground by a ground switch. The detection result VCE of the VCE detection circuits 8a and 8b for detecting the VCE of the output transistors 3a and 3b of the power supply circuit 2 and the output Vvd of the voltage detection unit of the current / voltage detection circuit 7 are selected as the minimum value shown in FIG. The value is input to the circuit 17 and a small value is input to the error amplifier 18. In the case of VCE <Vvd, in other words, when the load resistance on the subscriber line side is large, the value of VCE is selected, and the error amplifier 18 is set to Vref which is the minimum VCE value (VCEM) necessary for the transistor to operate. Enter. The output of the error amplifier 18 is input to the DC-DC converter 9 and controlled so that VCE = VCEM. (The operation of the DC-DC converter 9 is the same as that of the digital terminal system.) When VCE> Vvd, in other words, when the load resistance on the subscriber line side is small, the output voltage from the DC-DC converter becomes low. The power feeding circuit 2 may not operate. In this case, the output of the voltage detection unit of the current / voltage detection circuit 7 is selected by the minimum value selection circuit 17 so that a voltage necessary for the operation of the power feeding circuit 2 is generated from the output of the DC-DC converter 9. It is a subscriber circuit power supply control system that can also be controlled.
[0021]
【The invention's effect】
As described above, in the subscriber circuit power supply system according to the present invention, the conventional analog terminal system and digital terminal system power supply can be realized by using a single DC-DC converter instead of using separate circuits. In addition, it is possible to provide a subscriber circuit power supply system that is low in power consumption and economical in terms of mounting area.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram of a conventional analog terminal type power supply circuit.
FIG. 3 shows power supply characteristics of a conventional analog terminal system.
FIG. 4 is a block diagram of a conventional digital terminal type power supply circuit.
FIG. 5 shows power supply characteristics of a conventional digital terminal system.
FIG. 6 is a block diagram of a power supply controller.
FIG. 7 is a circuit diagram showing an embodiment of a DC-DC converter.
[Explanation of symbols]
1: Power supply 3: Output transistor 4: Analog / digital switch 10: Conventional analog terminal type power supply block 11: Subscriber terminal 12: Subscriber line resistance 14: Conventional digital terminal type power supply block 21: Transistor 22: Switching transformer 23: Diode 24: Capacitor 25: Coil 26: Capacitor

Claims (3)

電話機などの加入者端末に電源を供給する加入者回路給電方式において、電源に接続されたDC−DCコンバータと、該DC−DCコンバータの出力側に接続され、出力電流・電圧を検出する電流・電圧検出回路と、前記加入者端末に給電する給電回路と、前記DC−DCコンバータと前記電流・電圧検出回路に接続され、該コンバータの給電特性を制御する給電制御コントローラと、前記電流・電圧検出回路の出力と前記給電回路との間に設けられ、該電流・電圧検出回路の出力を該給電回路に導くアナログ端末給電方式側と該給電回路をバイパスして前記加入者端末に導くデイジタル端末給電方式側とを切り替えるスイッチ部と、前記スイッチ部と前記給電制御コントローラに接続され、前記加入者への給電をアナログ端末給電方式側かデイジタル端末給電方式側かの一方に制御する制御部とを備え、前記スイッチ部をアナログ端末給電方式側に切り替えた場合、定抵抗給電の特性となるように、またデイジタル端末給電方式側に切り替えた場合、定電流給電の特性となるように前記DC−DCコンバータを前記給電制御コントローラでもって制御するように構成したことを特徴とした加入者回路給電方式。In a subscriber circuit power supply system for supplying power to a subscriber terminal such as a telephone, a DC-DC converter connected to the power supply and a current / voltage for detecting output current / voltage connected to the output side of the DC-DC converter. A voltage detection circuit; a power supply circuit for supplying power to the subscriber terminal; a power supply controller connected to the DC-DC converter and the current / voltage detection circuit to control power supply characteristics of the converter; and the current / voltage detection An analog terminal power feeding method side provided between the circuit output and the power feeding circuit and guiding the output of the current / voltage detection circuit to the power feeding circuit, and a digital terminal power feeding bypassing the power feeding circuit to the subscriber terminal A switch unit that switches between the system side, the switch unit and the power supply controller connected to the analog terminal power system side And a control unit for controlling one of the digital terminal power supply method side, and when the switch unit is switched to the analog terminal power supply method side, it is switched to the digital terminal power supply method side so as to have a constant resistance power supply characteristic. In this case, the subscriber circuit power supply system is characterized in that the DC-DC converter is controlled by the power supply controller so as to have constant current power supply characteristics. 前記給電回路の出力側に出力トランジスタを設け、前記アナログ端末方式給電の場合、前記給電回路の出力トランジスタのコレクタ−エミッタ間電圧を検出し、該検出電圧にて前記給電制御コントローラを介して前記DC−DCコンバータを制御し、給電に必要な前記コレクターエミッタ間電圧を与えるような電源電圧を前記給電回路に供給する請求項1記載の加入者回路給電方式。An output transistor is provided on the output side of the power supply circuit, and in the case of the analog terminal type power supply, a voltage between a collector and an emitter of the output transistor of the power supply circuit is detected, and the DC is passed through the power supply controller with the detected voltage. The subscriber circuit power supply system according to claim 1, wherein a power supply voltage is supplied to the power supply circuit so as to control the DC converter and to supply the collector-emitter voltage necessary for power supply. 前記ディジタル端末方式給電の場合加入者線に流れる電流を前記電流・電圧検出回路で検出し、該検出出力にて前記給電制御コントローラを介して前記DC−DCコンバータを制御し、前記定電流給電特性を実現する請求項1の加入者回路給電方式。In the case of the digital terminal system power supply, a current flowing through a subscriber line is detected by the current / voltage detection circuit, and the DC-DC converter is controlled by the detection output via the power supply controller. The subscriber circuit power feeding method according to claim 1, wherein:
JP29625899A 1999-10-19 1999-10-19 Subscriber circuit power supply system Expired - Fee Related JP4160706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29625899A JP4160706B2 (en) 1999-10-19 1999-10-19 Subscriber circuit power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29625899A JP4160706B2 (en) 1999-10-19 1999-10-19 Subscriber circuit power supply system

Publications (2)

Publication Number Publication Date
JP2001119732A JP2001119732A (en) 2001-04-27
JP4160706B2 true JP4160706B2 (en) 2008-10-08

Family

ID=17831252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29625899A Expired - Fee Related JP4160706B2 (en) 1999-10-19 1999-10-19 Subscriber circuit power supply system

Country Status (1)

Country Link
JP (1) JP4160706B2 (en)

Also Published As

Publication number Publication date
JP2001119732A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
US5886508A (en) Multiple output voltages from a cascaded buck converter topology
EP0712547B1 (en) Power supply with improved efficiency, transmitter comprising such a power supply
US8559203B2 (en) Power source apparatus with harmonic suppression
US5506493A (en) Switching regulator and amplifier system
JPS638666B2 (en)
JP2571942Y2 (en) Boost converter
US10084376B2 (en) Circuit with multiple output power converter
JPH05111259A (en) Power supply circuit
US8269461B2 (en) Hybrid battery charger and control circuit and method thereof
US6184667B1 (en) DC/DC converter
JPH0695715B2 (en) DC voltage supply circuit
CA1083668A (en) Compensated base drive circuit to regulate saturated transistor current gain
US20010019492A1 (en) Efficient, dual-source, wide-input range, isolated DC-DC converter with effective current limit
US6307357B1 (en) Direct current step-up circuit for use with battery powered equipment
JP4160706B2 (en) Subscriber circuit power supply system
JP3860224B2 (en) Power converter, integrated circuit and telecommunication device
US6310953B1 (en) Subscriber circuit
US5805439A (en) DC-to-DC auto switch circuit
US6275013B1 (en) Switching power supply employing an internal resistance in series with a zener diode to stabilize a DC output
JP2851845B2 (en) Power supply for video equipment
US6304470B1 (en) Power supply device
US6614131B2 (en) Power supply with magnetic reset of saturable amplifier
JP3146633B2 (en) Signal separation circuit
JPH11220881A (en) Switching-mode power supply for electric apparatus
JP2002159181A (en) Switching power supply and electronic apparatus comprising it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees