JP4159655B2 - Rubber-modified styrenic resin composition - Google Patents

Rubber-modified styrenic resin composition Download PDF

Info

Publication number
JP4159655B2
JP4159655B2 JP14894498A JP14894498A JP4159655B2 JP 4159655 B2 JP4159655 B2 JP 4159655B2 JP 14894498 A JP14894498 A JP 14894498A JP 14894498 A JP14894498 A JP 14894498A JP 4159655 B2 JP4159655 B2 JP 4159655B2
Authority
JP
Japan
Prior art keywords
rubber
particle size
flame retardant
styrenic resin
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14894498A
Other languages
Japanese (ja)
Other versions
JPH11343373A (en
Inventor
淳一 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14894498A priority Critical patent/JP4159655B2/en
Publication of JPH11343373A publication Critical patent/JPH11343373A/en
Application granted granted Critical
Publication of JP4159655B2 publication Critical patent/JP4159655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃性と剛性のバランスに優れたゴム変性スチレン系樹脂組成物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
耐衝撃性ポリスチレン(HIPS)に代表される耐衝撃性スチレン系樹脂は、成形性に優れるとともに、剛性、電気特性にも優れることから、家電製品、OA機器部品を始めとする多岐の産業分野に使用されている。かかる産業分野では、使用される樹脂材料に対し、安全上の問題から難燃性の付与が進んできている。
【0003】
樹脂の難燃化にあたっては、従来から難燃性を付与する難燃剤及び難燃相乗剤が配合されている。しかし、一般的に難燃剤処方では、十分な難燃性を得ようとすれば耐衝撃性の低下が大きく、耐衝撃性スチレン系樹脂が本来備えていた高い衝撃性を低下させるという問題がある。
【0004】
難燃剤の添加による耐衝撃性の低下を改良する方法としては、ゴム状重合体の含有量を増やす方法、ゲル含有量を増やす方法等が知られており、その他にも、スチレン−ブタジエン共重合体系衝撃改良剤を配合することにより耐衝撃性を改良する方法が知られている。しかし、これらの耐衝撃性改良法を適用すると、耐熱性、流動性及び成形性の低下のほか、成形物外観の劣化等の問題が発生するほか、剛性が低下し、弾性率も低くなる。
【0005】
これらの従来技術のほかにも、耐衝撃性ポリスチレンの性質を改善するための提案が数多くなされている。特公平1−41177号公報には、容積平均粒子径0.5〜1.5μmの小粒子及び4〜10μmの大粒子を含む耐衝撃性ポリスチレンの製法が開示されているが、耐衝撃性が低いという問題がある。特開平4−65451号公報には、平均粒子径0.6〜0.8μmの小粒子及び1.2〜3.5μmの大粒子を含む耐衝撃性ポリスチレンが開示されているが、難燃剤添加時の強度保持が困難であるという問題がある。特開平3−119013号公報には、容積平均粒子径0.2〜0.6μmの小粒子及び2.5〜5μmの大粒子を含む耐衝撃性ポリスチレンが開示されているが、難燃剤添加時の強度保持が困難であるという問題がある。特開平5−32848号公報には、0.6μm未満の小粒子と0.8〜4.0μmの大粒子からなる耐衝撃性ポリスチレンが開示されているが、難燃剤添加時の強度保持が困難であるという問題がある。
【0006】
本発明は、耐衝撃性及び剛性をバランスよく具備しており、特に難燃剤を配合した場合にも耐衝撃性の低下が小さな成形品を得ることができるゴム変性スチレン系樹脂組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、スチレン系樹脂がマトリックスを形成し、その中にゴム状重合体粒子が分散するゴム変性スチレン系樹脂を含有するゴム変性スチレン系樹脂組成物において、
前記ゴム変性スチレン系樹脂におけるスチレン系樹脂の含有量が80〜90重量%で、ゴム状重合体の含有量が10〜20重量%であり、ゴム状重合体が、容積平均粒子径が0.6〜1.2μmの小粒子群と、容積平均粒子径が2.6〜5.0μmの大粒子径群とを含み、ゴム状重合体の総量に対して大粒子径群の含有量が30〜90重量%であることを特徴とするゴム変性スチレン系樹脂組成物を提供する。
【0008】
なお、本発明でいう容積平均粒子径とは、オスミウム酸染色したゴム変性スチレン系樹脂成形品の超薄切片を用い、その透過型電子顕微鏡写真を撮影し、ゴム状重合体粒子1000個の円換算粒子径を測定して、次式を用いて算出した値である。
容積平均粒子径=(Σnii 4)/(Σnii 3
[式中、niは円換算粒子径Di(μm)を有するゴム状重合体粒子の個数を示す。]
【0009】
【発明の実施の形態】
本発明で用いるゴム変性スチレン系樹脂は、芳香族ビニル系重合体よりなるマトリックス中に、ゴム状重合体粒子が分散してなる重合体をいう。
【0010】
マトリックスを構成する重合体は、1種以上の芳香族ビニル系単量体又は芳香族ビニル系単量体及びこれと共重合可能な1種以上のビニル基含有単量体を重合して得ることができる。芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、2,4−ジメチルスチレン等を挙げることができ、ビニル基含有単量体としては、アクリル酸、メタクリル酸又はそれらのエステル、アクリロニトリル等の不飽和ニトリル等を挙げることができる。
【0011】
分散粒子を構成するゴム状重合体としては、ポリブタジエン、ポリ(スチレン−ブタジエン)等のジエン系ゴム及びこれを(部分)水素添加したもの、イソプレンゴム、クロロプレンゴム、アクリル系ゴム等を挙げることができる。
【0012】
ゴム変性スチレン系樹脂を得る方法としては、ゴム状重合体存在下で、前記ビニル系単量体を、一般的な塊状重合、塊状懸濁重合、溶液重合、乳化重合等によりグラフト重合する方法を挙げることができる。
【0013】
ゴム変性スチレン系樹脂におけるスチレン系樹脂の含有量は80〜90重量%、好ましくは83〜89重量%であり、ゴム状重合体の含有量は10〜20重量%、好ましくは11〜17重量%である。ゴム状重合体の含有量が10重量%以上であると、例えば難燃化した際、充分な耐衝撃性を付与することができ、20重量%以下であると、樹脂溶融時の流動性を適度に保ち、難燃剤等の分散性を高めることができ、組成物の成形性も高めることができる。
【0014】
ゴム変性スチレン系樹脂におけるゴム状重合体中には、所定粒子径範囲の小粒子径群と大粒子径群とが主として含有されている。ここでいう「所定粒子径範囲の小粒子径群と大粒子径群とが主として含有されている」とは、例えば、横軸に粒子径をとり、縦軸に含有量をとって粒子径分布をプロットした場合、下記のとおり、容積平均粒子径が0.6〜1.2μmの小粒子径群と容積平均粒子径が2.6〜5.0μmの大粒子径群の二つの顕著なピークをなし、その他の粒子径群が格別なピークを示さない(即ち、換言すれば、本発明の目的を損なわない範囲内の他の粒子径群のゴム状重合体の存在は排除されない。)ことを意味するものである。
【0015】
小粒子径群は、容積平均粒子径が0.6〜1.2μmであり、好ましくは0.7〜1.0μmである。容積平均粒子径が0.6μm以上であると、難燃化の際、耐衝撃性の発現を損なうことがなく、1.2μm以下であると、弾性率を向上させ、特にスチレン−ブタジエン共重合体系衝撃改良剤を添加した際の弾性率と耐衝撃性とのバランスの付与に有用となる。
【0016】
大粒子径群は、容積平均粒子径が2.6〜5.0μmであり、好ましくは2.6〜4.0μmである。2.6μm以上であると、難燃化時の耐衝撃性を向上させることができ、5.0μm以下であると、弾性率を向上させ、溶融時の流動性を向上させて、難燃剤等の分散性や組成物の成形性を高めることができる。
【0017】
ゴム重合体の総量に対して、大粒子径群の含有量は30〜90重量%であり、好ましくは40〜70重量%である。この含有量が前記範囲内であると、難燃化時において耐衝撃性を付与することができ、さらに弾性率を向上させ、スチレン−ブタジエン共重合体系衝撃改良剤を添加した際の衝撃改善効果も高めることができる。
【0018】
また、ゴム状重合体中における小粒子径群と大粒子径群の含有比(重量比)は、原料換算で、好ましくは70:30〜10:90であり、特に好ましくは60:40〜30:70である。小粒子径群と大粒子径群の含有比が前記範囲内であると、難燃化時において耐衝撃性を付与することができ、さらに弾性率を向上させ、スチレン−ブタジエン共重合体系衝撃改良剤を添加した際の衝撃改善効果も高めることができる。
【0019】
ゴム状重合体中における小粒子径群と大粒子径群の合計含有量は、本発明の目的を達成できる範囲であれば特に限定されるものではないが、50重量%以上であることが好ましい。
【0020】
ゴム変性スチレン系樹脂において、上記のような小粒子径群と大粒子径群を含むものを製造する方法としては特に限定されるものではないが、例えば、下記の2段階の方法を適用して得ることができる。
まず、ゴム変性スチレン系樹脂の製造時における重合時の温度、重合時の攪拌条件、開始剤量等の条件、ゴム状重合体の粘度、ゴム状重合体の分子量分布を制御する等の一般的方法を適用して、粒子径を所望範囲に制御する。
次に、別々に重合した樹脂(即ち、異なる粒子径範囲のゴム状重合体粒子を含む樹脂)を混合押出し、樹脂化する方法又は別々に重合した樹脂を混合する方法を適用して、目的とするゴム変性スチレン系樹脂を得る。なお、別々に重合した重合液(即ち、異なる粒子径範囲のゴム状重合体粒子を含む重合液)を重合中に混合する方法又は特殊なゴム状重合体を使用するか組み合わせて重合する方法を適用することもできる。
【0021】
本発明のゴム変性スチレン系樹脂組成物には、さらにハロゲン系難燃剤及び難燃相乗剤を配合することができる。
【0022】
ハロゲン系難燃剤としては、ヘキサブロモベンゼン、デカブロモベンゼン、ペンタブロモトルエン、テトラブロモジフェニルエーテル、デカブロモジフェニルエーテル、ヘキサブロモシクロデカン、テトラブロモ無水フタル酸、テトラブロモビスフェノールA等の芳香族ブロム化合物、パークロロシクロデカン等のハロゲン化脂環式化合物等から選ばれる1種以上を挙げることができる。
【0023】
ハロゲン系難燃相乗剤としては、三酸化アンチモン、四酸化アンチモン、アンチモン酸ソーダ、金属アンチモン、三塩化アンチモン等から選ばれる1種以上を挙げることができる。
【0024】
ハロゲン系難燃剤及びハロゲン系難燃相乗剤の配合量は、ゴム変性スチレン系樹脂に対して好ましくは合計で5〜50重量部である。
【0025】
本発明のゴム変性スチレン系樹脂組成物には、さらに非ハロゲン系難燃剤及び難燃相乗剤を配合することができる。
【0026】
非ハロゲン系難燃剤としては、フェニル基含有化合物、リン含有化合物、ホウ素含有化合物等から選ばれる1種類以上を挙げることができる。フェニル基含有化合物としては、ポリフェニレンエーテル樹脂類、ノボラック樹脂類等を挙げることができ、リン含有化合物としては、ポリリン酸アンモニウム等の無機リン酸塩、赤リン、リン酸エステル等の有機リン化合物、リン酸メラミン、ピロリン酸メラミン等の塩を挙げることができ、ホウ素含有化合物としては、ホウ酸、ホウ酸亜鉛等を挙げることができる。
【0027】
非ハロゲン系難燃相乗剤としては、リン系難燃剤にはメラミン等のトリアジン環化合物を使用することができるほか、酸化アルミニウム等の金属酸化物、水酸化アルミニウム等の水和金属化合物、ポリオルガノシロキサン等のシリコーン樹脂類を挙げることができる。
【0028】
非ハロゲン系難燃剤及び非ハロゲン系難燃相乗剤の配合量は、ゴム変性スチレン系樹脂に対して好ましくは合計で20〜150重量部である。
【0029】
本発明のゴム変性スチレン系樹脂組成物には、さらにスチレン−ブタジエン共重合体系衝撃改良剤を配合することができる。スチレン−ブタジエン共重合体系衝撃改良剤としては、一般的に市販されているスチレン−ブタジエン共重合体で、スチレン部とブタジエン部がジブロック、マルチブロックとなっているもの、ランダムに共重合しているもの又はこれらの共重合体においてブタジエン部の一部もしくは全部が水素添加されているものを挙げることができる。
【0030】
スチレン−ブタジエン共重合体系衝撃改良剤の配合量は特には限定されないが、ゴム変性スチレン系樹脂に対して好ましくは0.1〜20重量部である。
【0031】
本発明のゴム変性スチレン系樹脂組成物には、本発明の効果を損なわない範囲で、通常の添加剤、滑剤、安定剤、着色剤、帯電防止剤、酸化防止剤、紫外線吸収剤、充填剤等を配合することができる。
【0032】
【実施例】
次に、本発明を実施例及び比較例に基づき具体的に説明するが、本発明はこれらの実施例及び比較例により何ら限定されるものではない。なお、以下の例における「%」及び「部」は、すべて「重量%」及び「重量部」を表す。本発明の実施例、比較例における測定項目は、次の方法にて評価した。
【0033】
(1)アイゾット衝撃強度(kg・cm/cm2
アイゾット衝撃強度はJIS K7110に準拠して測定した。
(2)デュポン衝撃強度(kg・cm)
デュポン衝撃強度はJIS K7211に準拠して測定した。
(3)曲げ弾性率(kg/cm2
曲げ弾性率はJIS K7203に準拠して測定した。
(4)難燃性
難燃性の評価はアメリカ合衆国のUL−94規格に準拠して測定した。
【0034】
製造例1
完全攪拌混合槽型反応器にスチレンモノマー80.0部、Hi−cisポリブタジエンゴム(宇部興産(株)ウベポールZ022)10.0部、エチルベンゼン10.0部を仕込み、40℃で8時間攪拌して溶解した。攪拌しながら130℃まで昇温し反応を開始した。温度130℃、攪拌40rpmで2時間重合し、モノマーの重合率が約30%となった後、温度140℃、攪拌20rpmで2時間、温度150℃、攪拌10rpmで1時間と順次昇温して反応を行い、モノマー重合率80%の時点で、脱揮機能付押出機を用い、230℃で未反応モノマー、エチルベンゼンを取り除いた。溶融ストランドは冷却切断して、ペレット状のゴム変性スチレン系樹脂を得た。得られたゴム変性スチレン系樹脂をHIPS−1とする。このゴム変性スチレン系樹脂について物性を測定した結果を表1に示す。
【0035】
製造例2
スチレンモノマー80.0部、Hi−cisポリブタジエンゴム(宇部興産(株)ウベポール34HL)10.0部、エチルベンゼン10.0部を製造例1と同じ反応器に仕込み、40℃で8時間攪拌して溶解した。攪拌しながら130℃まで昇温し反応を開始した。温度130℃、攪拌80rpmで2時間重合し、モノマーの重合率が約30%となった後、温度140℃、攪拌20rpmで2時間、温度150℃、攪拌10rpmで1時間と順次昇温して反応を行い、モノマー重合率81%の時点で、製造例1と同様の処理を行いゴム変性スチレン系樹脂を得た。得られたゴム変性スチレン系樹脂をHIPS−2とする。このゴム変性スチレン系樹脂について物性を測定した結果を表1に示す。
【0036】
製造例3
スチレンモノマー80.0部、Hi−cisポリブタジエンゴム(宇部興産(株)ウベポールZ022)10.0部、エチルベンゼン10.0部を製造例1と同じ反応器に仕込み、40℃で8時間攪拌して溶解した。攪拌しながら130℃まで昇温し反応を開始した。温度130℃、攪拌20rpmで2時間重合し、モノマーの重合率が約30%となった後、温度140℃、攪拌20rpmで2時間、温度150℃、攪拌10rpmで1時間と順次昇温して反応を行い、モノマー重合率80%の時点で、製造例1と同様の処理を行いゴム変性スチレン系樹脂を得た。得られたゴム変性スチレン系樹脂をHIPS−3とする。このゴム変性スチレン系樹脂について物性を測定した結果を表1に示す。
【0037】
製造例4
スチレンモノマー80.0部、Hi−cisポリブタジエンゴム(宇部興産(株)ウベポール13HB)10.0部、エチルベンゼン10.0部を製造例1と同じ反応器に仕込み、40℃で8時間攪拌して溶解した。攪拌しながら130℃まで昇温し反応を開始した。温度130℃、攪拌20rpmで2時間重合し、モノマーの重合率が約30%となった後、温度140℃、攪拌20rpmで2時間、温度150℃、攪拌10rpmで1時間と順次昇温して反応を行い、モノマー重合率78%の時点で、製造例1と同様の処理を行いゴム変性スチレン系樹脂を得た。得られたゴム変性スチレン系樹脂をHIPS−4とする。このゴム変性スチレン系樹脂について物性を測定した結果を表1に示す。
【0038】
【表1】

Figure 0004159655
【0039】
実施例1
HIPS−1:50部、HIPS−2:50部、難燃剤としてエチレンビステトラブロモフタルイミド(アルベマール SAYTEX BT−93):17部、難燃相乗剤等として三酸化アンチモン(広東三国有限公司):5部、ステアリン酸亜鉛:0.5部を配合し、2軸押出機(東芝機械(株)IS100E−3A)にて220℃で混練を行って、組成物を得た。物性を測定した結果を表2に示す。
【0040】
実施例2
HIPS−3:40部、HIPS−4:60部に実施例1の難燃剤及び難燃相乗剤等を混練を行って、組成物を得た。物性を測定した結果を表2に示す。
【0041】
実施例3
HIPS−3:43部、HIPS−2:43部、市販GPPS(ダイセル化学工業(株)ダイセルスチロール20):10部、スチレン−ブタジエン共重合体(日本合成ゴム(株)TR2000):4部に実施例1の難燃剤及び難燃相乗剤等を混練を行って、組成物を得た。物性を測定した結果を表2に示す。
【0042】
実施例4
HIPS−3:34部、HIPS−4:52部、市販GPPS(ダイセル化学工業(株)ダイセルスチロール20):10部、スチレン−ブタジエン共重合体(日本合成ゴム(株)TR2000):4部に実施例1の難燃剤及び難燃相乗剤等を混練を行って、組成物を得た。物性を測定した結果を表2に示す。
【0043】
比較例1
HIPS−1:100重量部に実施例1の難燃剤及び難燃相乗剤等を混練し、組成物を得た。物性を測定した結果を表2に示す。
【0044】
比較例2
HIPS−2:100重量部に実施例1の難燃剤及び難燃相乗剤等を混練し、組成物を得た。物性を測定した結果を表2に示す。
【0045】
比較例3
HIPS−1:86部、市販GPPS(ダイセル化学工業(株)ダイセルスチロール20):10部、スチレン−ブタジエン共重合体(日本合成ゴム(株)TR2000):4部に実施例1の難燃剤及び難燃相乗剤等を混練し、組成物を得た。物性を測定した結果を表2に示す。
【0046】
比較例4
HIPS−2:86部、市販GPPS(ダイセル化学工業(株)ダイセルスチロール20):10部、スチレン−ブタジエン共重合体(日本合成ゴム(株)TR2000):4部に実施例1の難燃剤及び難燃相乗剤等を混練し、組成物を得た。物性を測定した結果を表2に示す。
【0047】
【表2】
Figure 0004159655
【0048】
実施例1、3では、アイゾット衝撃強度と曲げ弾性率がバランスよく具備され、充分な値となっている。また、実施例2、4でもアイゾット衝撃強度と曲げ弾性率がバランスよく具備され、充分な値となっており、スチレン−ブタジエン共重合体系衝撃改良剤の添加により、デュポン衝撃強度も充分な値が得られた。
比較例1(大粒子径群のみを含んでいる)では、アイゾット衝撃強度は充分であるが、曲げ弾性率が低く剛性が不足している。比較例2(小粒子径群のみを含んでいる)では、剛性は高いが、衝撃強度が充分な値となっていない。また、スチレン−ブタジエン共重合体系衝撃改良剤を使用した比較例3(大粒子径群のみを含んでいる)、比較例4(小粒子径群のみを含んでいる)でも同様の傾向となっている。
【0049】
【発明の効果】
本発明のゴム変性スチレン系樹脂は、ゴム状重合体として異なる粒子径範囲の小粒子径群と大粒子径群を含んでいるため、耐衝撃性と剛性をバランスよく具備しており、両性質は難燃剤を配合した場合にも低下することがない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber-modified styrenic resin composition having an excellent balance between impact resistance and rigidity.
[0002]
[Prior art and problems to be solved by the invention]
Impact-resistant styrenic resin represented by impact-resistant polystyrene (HIPS) is excellent in moldability, rigidity, and electrical characteristics, so it can be used in various industrial fields including home appliances and OA equipment parts. in use. In such industrial fields, imparting flame retardancy to resin materials to be used has progressed due to safety issues.
[0003]
In making a resin flame retardant, a flame retardant and a flame retardant synergist imparting flame retardant have been conventionally blended. However, in general, the flame retardant formulation has a problem that the impact resistance is greatly reduced if sufficient flame retardancy is obtained, and the high impact resistance originally provided by the impact resistant styrenic resin is lowered. .
[0004]
As a method for improving the reduction in impact resistance due to the addition of a flame retardant, a method for increasing the content of a rubbery polymer, a method for increasing the gel content, and the like are known. In addition, styrene-butadiene copolymer Methods for improving impact resistance by blending system impact modifiers are known. However, when these impact resistance improvement methods are applied, problems such as deterioration of heat resistance, fluidity and moldability, deterioration of the appearance of the molded product, etc. occur, rigidity is lowered, and elastic modulus is lowered.
[0005]
In addition to these prior arts, many proposals have been made to improve the properties of high impact polystyrene. Japanese Examined Patent Publication No. 1-4177 discloses a process for producing impact-resistant polystyrene containing small particles having a volume average particle diameter of 0.5 to 1.5 μm and large particles having a size of 4 to 10 μm. There is a problem that it is low. Japanese Patent Application Laid-Open No. 4-65451 discloses impact-resistant polystyrene containing small particles having an average particle size of 0.6 to 0.8 μm and large particles of 1.2 to 3.5 μm. There is a problem that it is difficult to maintain strength at the time. Japanese Patent Laid-Open No. 3-119913 discloses impact-resistant polystyrene containing small particles having a volume average particle diameter of 0.2 to 0.6 μm and large particles of 2.5 to 5 μm. There is a problem that it is difficult to maintain the strength. Japanese Patent Application Laid-Open No. 5-32848 discloses impact-resistant polystyrene composed of small particles of less than 0.6 μm and large particles of 0.8 to 4.0 μm, but it is difficult to maintain strength when a flame retardant is added. There is a problem that.
[0006]
The present invention provides a rubber-modified styrenic resin composition that has a good balance between impact resistance and rigidity, and can obtain a molded product with a small decrease in impact resistance even when a flame retardant is blended. For the purpose.
[0007]
[Means for Solving the Problems]
The present invention provides a rubber-modified styrene resin composition containing a rubber-modified styrene resin in which a styrene-based resin forms a matrix and in which rubber-like polymer particles are dispersed.
The rubber-modified styrenic resin has a styrene resin content of 80 to 90% by weight, a rubbery polymer content of 10 to 20% by weight, and the rubbery polymer has a volume average particle size of 0.1. A small particle group having a particle diameter of 6 to 1.2 μm and a large particle diameter group having a volume average particle diameter of 2.6 to 5.0 μm, and the content of the large particle diameter group is 30 with respect to the total amount of the rubber-like polymer. Provided is a rubber-modified styrenic resin composition characterized by being -90% by weight.
[0008]
The volume average particle diameter referred to in the present invention is an ultrathin section of a rubber-modified styrenic resin molded article dyed with osmium acid, and a transmission electron micrograph thereof is taken to obtain a circle of 1000 rubber-like polymer particles. It is a value calculated by measuring the converted particle diameter and using the following equation.
Volume average particle diameter = (Σn i D i 4 ) / ( Σ n i D i 3 )
[Wherein n i represents the number of rubber-like polymer particles having a circular equivalent particle diameter D i (μm). ]
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The rubber-modified styrene resin used in the present invention refers to a polymer in which rubbery polymer particles are dispersed in a matrix made of an aromatic vinyl polymer.
[0010]
The polymer constituting the matrix is obtained by polymerizing one or more aromatic vinyl monomers or aromatic vinyl monomers and one or more vinyl group-containing monomers copolymerizable therewith. Can do. Examples of aromatic vinyl monomers include styrene, α-methyl styrene, 2,4-dimethyl styrene, etc., and examples of vinyl group-containing monomers include acrylic acid, methacrylic acid or esters thereof, and acrylonitrile. And unsaturated nitriles.
[0011]
Examples of the rubbery polymer constituting the dispersed particles include diene rubbers such as polybutadiene and poly (styrene-butadiene) and those obtained by hydrogenating (partially) hydrogen, isoprene rubber, chloroprene rubber and acrylic rubber. it can.
[0012]
As a method for obtaining a rubber-modified styrenic resin, there is a method in which the vinyl monomer is graft-polymerized by general bulk polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization or the like in the presence of a rubbery polymer. Can be mentioned.
[0013]
The content of the styrenic resin in the rubber-modified styrenic resin is 80 to 90% by weight, preferably 83 to 89% by weight, and the content of the rubbery polymer is 10 to 20% by weight, preferably 11 to 17% by weight. It is. When the content of the rubber-like polymer is 10% by weight or more, for example, when it becomes flame retardant, sufficient impact resistance can be imparted, and when it is 20% by weight or less, the fluidity at the time of resin melting can be obtained. It can maintain moderately, can improve dispersibility, such as a flame retardant, and can also improve the moldability of a composition.
[0014]
The rubber-like polymer in the rubber-modified styrenic resin mainly contains a small particle size group and a large particle size group within a predetermined particle size range. Here, “the small particle size group and the large particle size group in the predetermined particle size range are mainly contained” means, for example, the particle size distribution with the horizontal axis representing the particle size and the vertical axis representing the content As shown below, two prominent peaks of a small particle size group with a volume average particle size of 0.6 to 1.2 μm and a large particle size group with a volume average particle size of 2.6 to 5.0 μm are as follows: The other particle size groups do not show a particular peak (that is, the presence of rubbery polymers of other particle size groups within the range not impairing the object of the present invention is not excluded). Means.
[0015]
The small particle size group has a volume average particle size of 0.6 to 1.2 μm, preferably 0.7 to 1.0 μm. When the volume average particle diameter is 0.6 μm or more, it does not impair the development of impact resistance during flame retardancy, and when it is 1.2 μm or less, the elastic modulus is improved, especially styrene-butadiene copolymer. This is useful for imparting a balance between elastic modulus and impact resistance when a system impact modifier is added.
[0016]
The large particle size group has a volume average particle size of 2.6 to 5.0 μm, preferably 2.6 to 4.0 μm. When it is 2.6 μm or more, it is possible to improve the impact resistance at the time of flame retardancy, and when it is 5.0 μm or less, the elastic modulus is improved and the fluidity at the time of melting is improved. The dispersibility of the composition and the moldability of the composition can be improved.
[0017]
The content of the large particle size group is 30 to 90% by weight, preferably 40 to 70% by weight, based on the total amount of the rubber polymer. When this content is within the above range, impact resistance can be imparted at the time of flame retardancy, further improving the elastic modulus, and impact improvement effect when adding a styrene-butadiene copolymer system impact modifier. Can also be increased.
[0018]
The content ratio (weight ratio) of the small particle size group and the large particle size group in the rubber-like polymer is preferably 70:30 to 10:90, and particularly preferably 60:40 to 30 in terms of raw materials. : 70. When the content ratio of the small particle size group and the large particle size group is within the above range, impact resistance can be imparted at the time of flame retardancy, and further, the elastic modulus is improved and the impact of styrene-butadiene copolymer system is improved. The impact improving effect when an agent is added can also be enhanced.
[0019]
The total content of the small particle size group and the large particle size group in the rubber-like polymer is not particularly limited as long as the object of the present invention can be achieved, but is preferably 50% by weight or more. .
[0020]
The rubber-modified styrenic resin is not particularly limited as a method for producing the rubber-modified styrene resin including the small particle size group and the large particle size group as described above. For example, the following two-step method is applied. Obtainable.
First, general control of temperature during polymerization, conditions for stirring during polymerization, amount of initiator, viscosity of rubbery polymer, molecular weight distribution of rubbery polymer, etc. during production of rubber-modified styrenic resin Apply the method to control the particle size to the desired range.
Next, a separately polymerized resin (that is, a resin containing rubber-like polymer particles having different particle diameter ranges) is mixed and extruded to apply a resin or a separately polymerized resin. A rubber-modified styrenic resin is obtained. In addition, a method of mixing separately polymerized polymerization solutions (that is, polymerization solutions containing rubbery polymer particles having different particle diameter ranges) during polymerization or a method of using a special rubbery polymer or combining them for polymerization. It can also be applied.
[0021]
The rubber-modified styrenic resin composition of the present invention can further contain a halogen-based flame retardant and a flame retardant synergist.
[0022]
Halogen flame retardants include aromatic bromine compounds such as hexabromobenzene, decabromobenzene, pentabromotoluene, tetrabromodiphenyl ether, decabromodiphenyl ether, hexabromocyclodecane, tetrabromophthalic anhydride, tetrabromobisphenol A, perchloro 1 or more types chosen from halogenated alicyclic compounds, such as cyclodecane, etc. can be mentioned.
[0023]
Examples of the halogen-based flame retardant synergist include one or more selected from antimony trioxide, antimony tetraoxide, sodium antimonate, metal antimony, antimony trichloride, and the like.
[0024]
The blending amount of the halogen-based flame retardant and the halogen-based flame retardant synergist is preferably 5 to 50 parts by weight with respect to the rubber-modified styrene resin.
[0025]
The rubber-modified styrenic resin composition of the present invention may further contain a non-halogen flame retardant and a flame retardant synergist.
[0026]
Examples of the non-halogen flame retardant include one or more selected from phenyl group-containing compounds, phosphorus-containing compounds, boron-containing compounds and the like. Examples of the phenyl group-containing compound include polyphenylene ether resins and novolak resins. Examples of the phosphorus-containing compound include inorganic phosphates such as ammonium polyphosphate, organic phosphorus compounds such as red phosphorus and phosphate esters, Examples of the salt include melamine phosphate and melamine pyrophosphate. Examples of the boron-containing compound include boric acid and zinc borate.
[0027]
As non-halogen flame retardant synergists, triazine ring compounds such as melamine can be used for phosphorus flame retardants, metal oxides such as aluminum oxide, hydrated metal compounds such as aluminum hydroxide, polyorgano Mention may be made of silicone resins such as siloxane.
[0028]
The blending amount of the non-halogen flame retardant and the non-halogen flame retardant synergist is preferably 20 to 150 parts by weight in total with respect to the rubber-modified styrene resin.
[0029]
The rubber-modified styrenic resin composition of the present invention may further contain a styrene-butadiene copolymer impact modifier. Styrene-butadiene copolymer-based impact modifier is a commercially available styrene-butadiene copolymer that is diblock or multiblock in styrene and butadiene, or randomly copolymerized. Or a copolymer in which a part or all of the butadiene part is hydrogenated.
[0030]
The blending amount of the styrene-butadiene copolymer impact modifier is not particularly limited, but is preferably 0.1 to 20 parts by weight with respect to the rubber-modified styrene resin.
[0031]
The rubber-modified styrenic resin composition of the present invention includes ordinary additives, lubricants, stabilizers, colorants, antistatic agents, antioxidants, ultraviolet absorbers, and fillers as long as the effects of the present invention are not impaired. Etc. can be blended.
[0032]
【Example】
Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited at all by these Examples and comparative examples. In the following examples, “%” and “part” all represent “% by weight” and “part by weight”. The measurement items in the examples and comparative examples of the present invention were evaluated by the following methods.
[0033]
(1) Izod impact strength (kg · cm / cm 2 )
Izod impact strength was measured according to JIS K7110.
(2) DuPont impact strength (kg · cm)
The DuPont impact strength was measured according to JIS K7211.
(3) Flexural modulus (kg / cm 2 )
The flexural modulus was measured according to JIS K7203.
(4) Flame retardancy The flame retardancy was measured according to the UL-94 standard of the United States.
[0034]
Production Example 1
A fully stirred and mixed tank reactor was charged with 80.0 parts of styrene monomer, 10.0 parts of Hi-cis polybutadiene rubber (Ubepol Z022) and 10.0 parts of ethylbenzene, and stirred at 40 ° C. for 8 hours. Dissolved. While stirring, the temperature was raised to 130 ° C. to initiate the reaction. Polymerization was carried out for 2 hours at a temperature of 130 ° C. and stirring at 40 rpm, and after the polymerization rate of the monomer reached about 30%, the temperature was raised in order of 140 ° C., stirring at 20 rpm for 2 hours, temperature 150 ° C., stirring at 10 rpm for 1 hour. The reaction was performed, and when the monomer polymerization rate was 80%, an unreacted monomer and ethylbenzene were removed at 230 ° C. using an extruder with a devolatilizing function. The molten strand was cooled and cut to obtain a rubber-modified styrenic resin in the form of pellets. The obtained rubber-modified styrene resin is referred to as HIPS-1. Table 1 shows the results of measuring physical properties of this rubber-modified styrene resin.
[0035]
Production Example 2
80.0 parts of styrene monomer, 10.0 parts of Hi-cis polybutadiene rubber (Ube Industries, Ltd. Ubepol 34HL) and 10.0 parts of ethylbenzene were charged into the same reactor as in Production Example 1, and stirred at 40 ° C. for 8 hours. Dissolved. While stirring, the temperature was raised to 130 ° C. to initiate the reaction. After polymerization for 2 hours at a temperature of 130 ° C. and stirring at 80 rpm, the polymerization rate of the monomer was about 30%, and then the temperature was raised in order of 140 ° C., stirring at 20 rpm for 2 hours, temperature 150 ° C., stirring at 10 rpm for 1 hour. The reaction was performed, and when the monomer polymerization rate was 81%, the same treatment as in Production Example 1 was performed to obtain a rubber-modified styrene resin. The obtained rubber-modified styrene resin is referred to as HIPS-2. Table 1 shows the results of measuring physical properties of this rubber-modified styrene resin.
[0036]
Production Example 3
80.0 parts of styrene monomer, 10.0 parts of Hi-cis polybutadiene rubber (Ubepol Corporation Ubepol Z022) and 10.0 parts of ethylbenzene were charged into the same reactor as in Production Example 1, and stirred at 40 ° C. for 8 hours. Dissolved. While stirring, the temperature was raised to 130 ° C. to initiate the reaction. After polymerization for 2 hours at a temperature of 130 ° C. and stirring at 20 rpm, the polymerization rate of the monomer reached about 30%, and then the temperature was raised in order of 140 ° C., stirring at 20 rpm for 2 hours, temperature 150 ° C., stirring at 10 rpm for 1 hour. The reaction was performed, and when the monomer polymerization rate was 80%, the same treatment as in Production Example 1 was performed to obtain a rubber-modified styrene resin. The obtained rubber-modified styrene resin is referred to as HIPS-3. Table 1 shows the results of measuring physical properties of this rubber-modified styrene resin.
[0037]
Production Example 4
80.0 parts of styrene monomer, 10.0 parts of Hi-cis polybutadiene rubber (Ubepol Corporation Ubepol 13HB) and 10.0 parts of ethylbenzene were charged into the same reactor as in Production Example 1, and stirred at 40 ° C. for 8 hours. Dissolved. While stirring, the temperature was raised to 130 ° C. to initiate the reaction. After polymerization for 2 hours at a temperature of 130 ° C. and stirring at 20 rpm, the polymerization rate of the monomer reached about 30%, and then the temperature was raised in order of 140 ° C., stirring at 20 rpm for 2 hours, temperature 150 ° C., stirring at 10 rpm for 1 hour. The reaction was performed, and when the monomer polymerization rate was 78%, the same treatment as in Production Example 1 was performed to obtain a rubber-modified styrene resin. The obtained rubber-modified styrene resin is referred to as HIPS-4. Table 1 shows the results of measuring physical properties of this rubber-modified styrene resin.
[0038]
[Table 1]
Figure 0004159655
[0039]
Example 1
HIPS-1: 50 parts, HIPS-2: 50 parts, ethylene bistetrabromophthalimide (Albemarle SAYTEX BT-93): 17 parts as a flame retardant, antimony trioxide (Guangdong Mikuni Co., Ltd.): 5 Part, zinc stearate: 0.5 part was blended and kneaded at 220 ° C. with a twin-screw extruder (Toshiba Machine Co., Ltd. IS100E-3A) to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0040]
Example 2
The composition was obtained by kneading the flame retardant and flame retardant synergist of Example 1 into 40 parts of HIPS-3 and 60 parts of HIPS-4. The results of measuring the physical properties are shown in Table 2.
[0041]
Example 3
HIPS-3: 43 parts, HIPS-2: 43 parts, commercially available GPPS (Daicel Chemical Industries, Ltd. Daicel polystyrene 20): 10 parts, styrene-butadiene copolymer (Japan Synthetic Rubber Co., Ltd. TR2000): 4 parts The flame retardant and flame retardant synergist of Example 1 were kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0042]
Example 4
HIPS-3: 34 parts, HIPS-4: 52 parts, commercially available GPPS (Daicel Chemical Industries, Ltd. Daicel polystyrene 20): 10 parts, styrene-butadiene copolymer (Japan Synthetic Rubber Co., Ltd. TR2000): 4 parts The flame retardant and flame retardant synergist of Example 1 were kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0043]
Comparative Example 1
HIPS-1: 100 parts by weight of the flame retardant and flame retardant synergist of Example 1 were kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0044]
Comparative Example 2
HIPS-2: 100 parts by weight of the flame retardant and flame retardant synergist of Example 1 were kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0045]
Comparative Example 3
HIPS-1: 86 parts, commercially available GPPS (Daicel Chemical Industries, Ltd., Daicel polystyrene 20): 10 parts, styrene-butadiene copolymer (Nippon Synthetic Rubber Co., Ltd. TR2000): 4 parts with the flame retardant of Example 1 and A flame retardant synergist or the like was kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0046]
Comparative Example 4
HIPS-2: 86 parts, commercially available GPPS (Daicel Chemical Industries, Ltd. Daicel polystyrene 20): 10 parts, styrene-butadiene copolymer (Nippon Synthetic Rubber Co., Ltd. TR2000): 4 parts with the flame retardant of Example 1 and A flame retardant synergist or the like was kneaded to obtain a composition. The results of measuring the physical properties are shown in Table 2.
[0047]
[Table 2]
Figure 0004159655
[0048]
In Examples 1 and 3, the Izod impact strength and the flexural modulus are well-balanced and have sufficient values. In Examples 2 and 4, the Izod impact strength and the flexural modulus are well balanced and have a sufficient value. By adding the styrene-butadiene copolymer impact modifier, the Dupont impact strength has a sufficient value. Obtained.
In Comparative Example 1 (including only a large particle size group), the Izod impact strength is sufficient, but the flexural modulus is low and the rigidity is insufficient. In Comparative Example 2 (including only a small particle size group), the rigidity is high, but the impact strength is not a sufficient value. Further, the same tendency is observed in Comparative Example 3 (including only the large particle size group) and Comparative Example 4 (including only the small particle size group) using the styrene-butadiene copolymer impact modifier. Yes.
[0049]
【The invention's effect】
The rubber-modified styrenic resin of the present invention includes a small particle size group and a large particle size group in different particle size ranges as a rubbery polymer, and thus has a good balance between impact resistance and rigidity. Does not decrease even when a flame retardant is added.

Claims (5)

スチレン系樹脂がマトリックスを形成し、その中にゴム状重合体粒子が分散するゴム変性スチレン系樹脂を含有するゴム変性スチレン系樹脂組成物において、
前記ゴム変性スチレン系樹脂におけるスチレン系樹脂の含有量が80〜90重量%で、ゴム状重合体の含有量が10〜20重量%であり、ゴム状重合体が、容積平均粒子径が0.6〜1.2μmの小粒子群と、容積平均粒子径が2.6〜5.0μmの大粒子径群とを含み、ゴム状重合体の総量に対して大粒子径群の含有量が43〜90重量%であることを特徴とするゴム変性スチレン系樹脂組成物。
In the rubber-modified styrenic resin composition containing the rubber-modified styrenic resin in which the styrenic resin forms a matrix and in which the rubber-like polymer particles are dispersed,
The rubber-modified styrenic resin has a styrene resin content of 80 to 90% by weight, a rubbery polymer content of 10 to 20% by weight, and the rubbery polymer has a volume average particle size of 0.1. A small particle group having a particle size of 6 to 1.2 μm and a large particle size group having a volume average particle size of 2.6 to 5.0 μm, and the content of the large particle size group is 43 with respect to the total amount of the rubbery polymer. A rubber-modified styrenic resin composition characterized by being -90% by weight.
ゴム状重合体中における小粒子径群と大粒子径群との含有比(重量比)が、原料換算で57:43〜10:90である請求項1記載のゴム変性スチレン系樹脂組成物。The rubber-modified styrenic resin composition according to claim 1, wherein the content ratio (weight ratio) of the small particle size group and the large particle size group in the rubber-like polymer is 57:43 to 10:90 in terms of raw materials. さらにハロゲン系難燃剤及び難燃相乗剤を含有する請求項1又は2記載のゴム変性スチレン系樹脂組成物。  The rubber-modified styrene resin composition according to claim 1 or 2, further comprising a halogen flame retardant and a flame retardant synergist. さらに非ハロゲン系難燃剤及び難燃相乗剤を含有する請求項1又は2記載のゴム変性スチレン系樹脂組成物。  The rubber-modified styrene resin composition according to claim 1 or 2, further comprising a non-halogen flame retardant and a flame retardant synergist. さらにスチレン−ブタジエン共重合体系衝撃改良剤を含有する請求項1又は2記載のゴム変性スチレン系樹脂組成物。  The rubber-modified styrene resin composition according to claim 1 or 2, further comprising a styrene-butadiene copolymer impact modifier.
JP14894498A 1998-05-29 1998-05-29 Rubber-modified styrenic resin composition Expired - Lifetime JP4159655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14894498A JP4159655B2 (en) 1998-05-29 1998-05-29 Rubber-modified styrenic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14894498A JP4159655B2 (en) 1998-05-29 1998-05-29 Rubber-modified styrenic resin composition

Publications (2)

Publication Number Publication Date
JPH11343373A JPH11343373A (en) 1999-12-14
JP4159655B2 true JP4159655B2 (en) 2008-10-01

Family

ID=15464158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14894498A Expired - Lifetime JP4159655B2 (en) 1998-05-29 1998-05-29 Rubber-modified styrenic resin composition

Country Status (1)

Country Link
JP (1) JP4159655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031191A (en) 2004-10-07 2006-04-12 주식회사 엘지화학 Flame retardant styrene-based resin composition with high impact property
JP2016204399A (en) * 2015-04-15 2016-12-08 東洋スチレン株式会社 Tracking-resistant resin composition and injection-molded article comprising the same

Also Published As

Publication number Publication date
JPH11343373A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
CN1969008B (en) Flame retardant styrene-based resin composition with high impact property
JP2603029B2 (en) Low volatility flame retardant heat and impact resistant resin composition
JP4159655B2 (en) Rubber-modified styrenic resin composition
JP3114897B2 (en) Flame-retardant resin composition with excellent appearance
KR100422936B1 (en) Fireproof styrene resin composition having superior anti-stress impact and rigidity and fireproof styrene resin comprising of the same
JPH11116748A (en) Preparation of self-extinguishing styrene-based resin composition
JP2004277676A (en) Flame retardant and rubber-modified styrene-based resin composition
JPH0665416A (en) Good flowable, heat resistant and impact resistant composition having excellent flame retardancy
JPH05255598A (en) Flame-retardant high-impact resin composition
JP3243046B2 (en) High rigidity flame-retardant resin composition with excellent surface impact strength
JP3437657B2 (en) Flame retardant styrenic resin composition
JP2612396B2 (en) Method for manufacturing resin molded body
JP3647189B2 (en) Resin composition
JP3245474B2 (en) Flame retardant resin composition with excellent surface impact strength and rigidity
JPS6172044A (en) Heat-resistant and impact-resistant resin composition having excellent flame retardance
JPH0873684A (en) Flame-retardant resin composition
JPH09188791A (en) Flame-retardant styrene resin composition
JPH09255842A (en) Flame-retardant thermoplastic resin composition
EP4284874A1 (en) High impact strength thermoplastic compositions
JPH07179615A (en) Production of polyphenylene ether resin composition
JPH0689202B2 (en) Flame-retardant styrene resin composition
JP6267925B2 (en) Resin composition and molded body comprising the same
JPH0539396A (en) Flame-retardant styrene resin composition
JPH07216162A (en) Flame-retardant styrene-based resin composition
JPH05247355A (en) Heat-resistant resin composition with excellent fluidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term