JP4158914B2 - Material discrimination device and material discrimination method for sheet-like object to be measured - Google Patents

Material discrimination device and material discrimination method for sheet-like object to be measured Download PDF

Info

Publication number
JP4158914B2
JP4158914B2 JP2004081347A JP2004081347A JP4158914B2 JP 4158914 B2 JP4158914 B2 JP 4158914B2 JP 2004081347 A JP2004081347 A JP 2004081347A JP 2004081347 A JP2004081347 A JP 2004081347A JP 4158914 B2 JP4158914 B2 JP 4158914B2
Authority
JP
Japan
Prior art keywords
sheet
measured
waveguide
voltage
leakage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004081347A
Other languages
Japanese (ja)
Other versions
JP2005265725A (en
Inventor
則行 須藤
Original Assignee
独立行政法人 国立印刷局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 国立印刷局 filed Critical 独立行政法人 国立印刷局
Priority to JP2004081347A priority Critical patent/JP4158914B2/en
Publication of JP2005265725A publication Critical patent/JP2005265725A/en
Application granted granted Critical
Publication of JP4158914B2 publication Critical patent/JP4158914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inspection Of Paper Currency And Valuable Securities (AREA)

Description

本発明は、シート状被測定物の材料判別装置及び材料判別方法に関する。   The present invention relates to a material discrimination device and a material discrimination method for a sheet-like object to be measured.

従来より、印刷物や紙葉類を識別する方法として、識別用静電容量センサを用いて測定する発明によると、紙葉類の通過経路に検出電極及び設置電極によってコンデンサ部を構成して、紙葉類の枚数チェック、紙葉類に埋設された安全スレッドの有無チェックが行えることが記載されている(例えば、特許文献1参照)。
特開平9−237362号公報
Conventionally, according to the invention of measuring using a capacitance sensor for identification as a method for identifying printed matter and paper sheets, a capacitor unit is configured by a detection electrode and an installation electrode in the passage path of the paper sheet, and the paper It is described that the number of leaves can be checked and the presence / absence check of a safety thread embedded in a paper sheet can be checked (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-237362

前記特許文献1によると、識別用静電容量センサを用いて測定すれば、安全スレッドやOVDの部分で大きな検知電圧が得られ、安全スレッド以外の印刷や用紙部分では小さな検知電圧が得られるとしている。しかしながら、その検知電圧波形は一元的な電圧の強弱レベルを示しているのみで、被測定物の材料を認識するまでには至っていないため、容易に入手可能なアルミ箔などを安全スレッドの代わりに貼り付けた偽造の紙葉類を完全に排除することが困難となっている。   According to the above-mentioned patent document 1, if measurement is performed using a capacitance sensor for identification, a large detection voltage can be obtained in the safety sled and OVD portions, and a small detection voltage can be obtained in printing and paper portions other than the safety sled. Yes. However, the detected voltage waveform shows only the level of voltage of the unitary voltage and has not reached the recognition of the material of the object to be measured. It is difficult to completely eliminate the counterfeit paper sheets that are pasted.

また、誘電体や導電体のそれぞれを1つのセンサで別々に測定するので、測定時間がかかり、また、コストの増加をまねいていた。 Moreover, since each of the dielectric and the conductor is separately measured by one sensor, it takes a long time to measure and increases the cost.

これに対して、本発明の装置は、共通の装置を用いて、誘電体や導電体、さらにそれらが複合された材料まで、一つの装置で判別が可能であるので、操作時間の短縮、コストの低減が図れる。 On the other hand, the apparatus of the present invention can determine a dielectric, a conductor, and even a composite material using a common apparatus with a single apparatus. Can be reduced.

また、複合材料は従来判別することができなかったが、本発明の装置によれば、シートを搬送することで、複合材料のものでも容易に識別できる。 Further, the composite material could not be discriminated conventionally, but according to the apparatus of the present invention, even the composite material can be easily identified by conveying the sheet.

本発明のシート状被測定物の材料判別方法は、導波管、照射手段、受信手段、照合・判別手段を備える装置を用いてシート状被測定物の材料の判別を行う方法であって、少なくとも1つの漏洩孔を有する前記導波管の前記漏洩孔上に、シート状被測定物のシート面を対向させて配置し、前記照射手段により、前記導波管の中に電磁波を照射し、前記受信手段により、照射された前記電磁波が、前記導波管内を伝搬して、前記漏洩孔から外部へ放出されて、前記シート状被測定物を透過し、これにより前記導波管の中の前記電磁波が変化し、この前記電磁波の変化を前記シート状被測定物の材料の固有の電磁波変化の情報として受信し、前記照合・判別手段により受信した前記電磁波情報と、判別基準となる材料固有の電磁波情報とを比較・照合して、前記電磁波変化が何れの材料の電磁波情報に対応するかを認識することで、前記シート状被測定物の材料の判別を行うことを特徴とするものである。 The material discrimination method of the sheet-like object to be measured according to the present invention is a method for discriminating the material of the sheet-like object to be measured using an apparatus including a waveguide, an irradiation unit, a receiving unit, and a collation / discrimination unit, On the leakage hole of the waveguide having at least one leakage hole, the sheet surface of the sheet-like object to be measured is disposed facing the electromagnetic wave into the waveguide by the irradiation means, The electromagnetic wave irradiated by the receiving means propagates in the waveguide, is emitted to the outside from the leakage hole, and passes through the sheet-like object to be measured. The electromagnetic wave changes, the electromagnetic wave change is received as information on the specific electromagnetic wave change of the material of the sheet-like object to be measured, and the electromagnetic wave information received by the collation / discrimination means and the material specific as a discrimination reference Compare and illuminate To, by recognizing whether the electromagnetic wave varies corresponding to the electromagnetic wave information of any of the material, is characterized in that discriminates the material of the sheet-like object to be measured.

本発明の別の態様のシート状被測定物の材料判別方法は、導波管、照射手段、受信手段、照合・判別手段、搬送手段を備える装置を用いてシート状被測定物の材料の判別を行う方法であって、前記照射手段により、前記導波管の中に電磁波を照射し、前記搬送手段によりシート状被測定物が、少なくとも1つの漏洩孔を有する前記導波管の前記漏洩孔上を通過するように搬送し、前記受信手段により、照射された前記電磁波が、前記導波管内を伝搬して、前記漏洩孔から外部へ放出されて、前記搬送されて前記漏洩孔上を通過する前記シート状被測定物を透過し、これにより前記導波管の中の前記電磁波が変化し、この前記電磁波の変化を前記シート状被測定物の材料の固有の電磁波変化の情報として受信し、前記照合・判別手段により受信した前記電磁波情報と、判別基準となる材料固有の電磁波情報とを比較・照合して、前記電磁波変化が何れの材料の電磁波情報に対応するかを認識することで、前記シート状被測定物の材料の判別を行うことを特徴とするものである。 According to another aspect of the present invention, there is provided a method for discriminating a material of a sheet-like object by using an apparatus including a waveguide, an irradiation unit, a receiving unit, a collation / discrimination unit, and a conveying unit. The electromagnetic wave is radiated into the waveguide by the irradiation means, and the leakage hole of the waveguide has a sheet-like object to be measured having at least one leakage hole by the conveying means. The electromagnetic wave radiated by the receiving means propagates in the waveguide, is emitted to the outside from the leak hole, is transported, and passes over the leak hole. The electromagnetic wave in the waveguide is changed, and the change in the electromagnetic wave is received as information on the specific electromagnetic wave change in the material of the sheet-like object to be measured. , Received by the collation / discrimination means By comparing and collating the electromagnetic wave information with the electromagnetic wave information specific to the material serving as a discrimination criterion, and recognizing which material the electromagnetic wave information corresponds to the electromagnetic wave information of the material, The material is discriminated.

前記照合・判別手段により、シート状被測定物が、少なくとも1つの漏洩孔を有する前記導波管の前記漏洩孔上に到着する前の第1の検知電圧に対し、前記シート状被測定物が前記漏洩孔上に移動した時の第2の検知電圧が、前記シート状被測定物が前記漏洩孔上を通過するに伴い、前記電圧が徐々に低下し、前記第1の検知電圧より低い場合は、誘電体材料と判別し、前記電圧が徐々に上がり、前記第1の検知電圧より高い場合には、導電体材料と判別し、前記シート状被測定物が通過していく過程において、電圧が徐々に低下し、前記第1の検知電圧より低くなり、前記シート状被測定物が完全に漏洩孔を覆った時に、電圧が前記第1の検知電圧より上昇していく場合には、誘電体材料と導電体材料とから構成されていることを判別し、前記シート状被測定物の材料を判別することを特徴とするシート状被測定物の材料判別方法である。   The sheet-like object to be measured is compared with the first detection voltage before the sheet-like object to be measured arrives on the leakage hole of the waveguide having at least one leakage hole. When the second detection voltage when moving onto the leakage hole is lower than the first detection voltage, as the sheet-like object passes over the leakage hole, the voltage gradually decreases. Is determined as a dielectric material, and when the voltage gradually increases and is higher than the first detection voltage, it is determined as a conductor material, and in the process in which the sheet-shaped object to be measured passes, When the voltage gradually increases and becomes lower than the first detection voltage, and when the sheet-like object to be measured completely covers the leakage hole, the voltage rises above the first detection voltage, It is determined that it is composed of body material and conductor material, A material determining method for a sheet-like object to be measured, characterized in that to determine the material of the serial sheet under test.

前記照合・判別手段により判別されたシート状被測定物の材料情報を記録し、更に備えた判別手段により、前記記録されたシート状被測定物の長さに渡る材料の電磁波情報と、判別基準となるシート状被測定物の長さに渡る材料の電磁波情報とを比較・照合して、前記シート状被測定物の判別を行うことを特徴とするシート状被測定物の材料判別方法である。 The material information of the sheet-like object to be measured determined by the collating / discriminating means is recorded, and the electromagnetic wave information of the material over the length of the recorded sheet-like object to be measured by the determining means, and the discrimination criterion A method for determining the material of a sheet-like object to be measured, comprising: comparing and collating with electromagnetic wave information of a material over the length of the sheet-like object to be measured, and determining the sheet-like object to be measured. .

電磁波としては、マイクロ波であることを特徴とするシート状被測定物の材料判別方法である。 The electromagnetic wave is a material discrimination method for a sheet-like object to be measured, which is a microwave.

漏洩孔の形状としては、幾何学形状であることを特徴とするシート状被測定物の材料判別方法である。 The shape of the leak hole is a material discrimination method for a sheet-like object to be measured, which is a geometric shape.

本発明のシート状被測定物の材料判別装置は、搬送部、計測部、及び、照合・判別部を備えるシート状被測定物の判別を行う材料判別装置であって、前記搬送部は、前記シート状被測定物を前記導波管に対し相対的に移動させて搬送する手段を備え、前記計測部は、少なくとも1つの漏洩孔を有する導波管と、前記導波管の中に電磁波を照射する手段と、照射された前記電磁波が、前記導波管内を伝搬して、前記漏洩孔から外部へ放出されて、前記搬送部により搬送されたシート状被測定物を透過し、これにより前記導波管の中の前記電磁波が変化し、この前記電磁波の変化を前記シート状被測定物の材料の固有の電磁波変化の情報として受信する手段と、を備え、前記照合・判別部は、シート状被測定物の材料毎の電磁波の変化を示す照合用データを用いて記録する手段と、前記計測部により前記シート状被測定物を測定したときに得られた電磁波変化の情報と前記記録手段に記録された前記照合用データとを比較・照合して、前記シート状被測定物の材料を判別する照合手段と、を備えることを特徴としている。 A material discrimination device for a sheet-like object to be measured according to the present invention is a material discrimination device that discriminates a sheet-like object to be measured, which includes a conveyance unit, a measurement unit, and a collation / discrimination unit, and the conveyance unit includes: Means comprising a means for moving a sheet-like object to be measured relative to the waveguide, and the measurement unit includes a waveguide having at least one leakage hole, and an electromagnetic wave in the waveguide. Irradiating means, and the irradiated electromagnetic wave propagates in the waveguide, is emitted to the outside from the leakage hole, and passes through the sheet-like object to be measured conveyed by the conveying unit, thereby The electromagnetic wave in the waveguide is changed, and the means for receiving the change of the electromagnetic wave as information on the specific electromagnetic wave change of the material of the sheet-like object to be measured is provided. Verification showing changes in electromagnetic wave for each material A means for recording using data, and a comparison / collation of information on electromagnetic wave changes obtained when measuring the sheet-like object to be measured by the measurement unit and the collation data recorded on the recording means And a collating means for discriminating the material of the sheet-like object to be measured.

本発明では、導波管の壁面に1個以上の電磁波漏洩孔を配置し、その導波管の中に電磁波を照射して各漏洩孔から電磁界を漏洩し、その漏洩孔に被測定物である基材または積層物を配置して測定することにより、シート状被測定物の材料を安定して判別することが可能である。   In the present invention, one or more electromagnetic wave leakage holes are arranged on the wall surface of the waveguide, electromagnetic waves are irradiated into the waveguide to leak an electromagnetic field from each leakage hole, and an object to be measured enters the leakage hole. It is possible to stably determine the material of the sheet-like object to be measured by arranging and measuring the base material or the laminate.

さらに、共通の装置を用いて誘電体や導電体、それらの複合材料を判別することが可能となるので、操作時間が短縮され、コストも低減される。 Furthermore, since it is possible to discriminate dielectrics, conductors, and composite materials thereof using a common device, operation time is reduced and costs are also reduced.

例えば、用紙、シート、印刷物、カード類などの所定の位置或いは全体に、異なる材料が重層されているような場合であっても、本発明の材料判別手段を用いてスキャンすることによって誘電率の大きい部分では誘電率による電磁波の変化、導電率の大きい部分では導電率による電磁波の変化、さらに、誘電率の大きい層と導電率の大きい層が重層されている部分ではそれらの両方による電磁波の変化が生じることから、シート状被測定物の材料を安定して判別することが可能である。 For example, even when different materials are layered on a predetermined position or the whole of paper, sheets, printed matter, cards, etc., the dielectric constant can be reduced by scanning using the material discriminating means of the present invention. Changes in electromagnetic waves due to dielectric constant in large areas, changes in electromagnetic waves due to electrical conductivity in areas where electrical conductivity is large, and changes in electromagnetic waves due to both in areas where layers with high dielectric constant and layers with high electrical conductivity are stacked Therefore, it is possible to stably determine the material of the sheet-like object to be measured.

本発明において、シート状被測定物とは、例えば、紙、プラスチック、ゴム、樹脂などの基材であり、これらの基材の所定の位置或いは全体に、印刷、塗布、蒸着、貼付、基材に抄き込む、又は、基材に挟み込む等の方法によって重層された積層物である。 In the present invention, the sheet-like object to be measured is, for example, a base material such as paper, plastic, rubber, or resin, and printing, coating, vapor deposition, sticking, or base material is performed on a predetermined position or the whole of these base materials. It is a laminate that has been layered by a method such as embedding into a substrate or sandwiching it between substrates.

次に、本発明の実施の形態について図面を用いて以下に説明する。
(原理の説明)
漏れ電磁界によってシート状被測定物の材料判別を行う原理に関して、図面を用いて説明する。本発明で述べる電磁波とは、電波法に規定する周波数3kHzをこえ、30THz以下のものをいう。例えば、周波数1GHz〜300GHzの範囲のマイクロ波が好ましい。
Next, embodiments of the present invention will be described below with reference to the drawings.
(Description of principle)
The principle of determining the material of the sheet-like object to be measured by the leakage electromagnetic field will be described with reference to the drawings. The electromagnetic wave described in the present invention means an electromagnetic wave exceeding the frequency 3 kHz specified in the Radio Law and not exceeding 30 THz. For example, a microwave having a frequency in the range of 1 GHz to 300 GHz is preferable.

図1に漏れ電磁界によってシート状被測定物の材料判別を行う装置の全体の構成を示す。計測部34は、導波管3と、導波管の中に電磁波を照射する照射手段31と、受信手段32と、導波管内を伝搬する電磁波を外部に放出するための導波管の壁面に配設された漏洩孔2と、によって構成し、シート状被測定物を測定するための主要なハードウェアとなっている。 FIG. 1 shows the overall configuration of an apparatus for determining the material of a sheet-like object to be measured by a leakage electromagnetic field. The measurement unit 34 includes a waveguide 3, an irradiation unit 31 that radiates electromagnetic waves into the waveguide, a reception unit 32, and a waveguide wall surface that emits electromagnetic waves propagating through the waveguide to the outside. The leakage hole 2 is disposed in the main body and is the main hardware for measuring the sheet-like object to be measured.

また、照合・判別部33は、各種の材料の電磁波変化の情報を記憶する材料情報記録部28と、得られた電磁波変化と材料情報記録部28に記録した各種材料の電磁波情報とを照合して、類似した材料を認識する照合部29と、によって構成し、シート状被測定物の材料を判別するための主要なソフトウェアとなっている。 The collating / discriminating unit 33 collates the material information recording unit 28 that stores information on electromagnetic wave changes of various materials, and the obtained electromagnetic wave changes and the electromagnetic wave information of various materials recorded in the material information recording unit 28. The collating unit 29 for recognizing a similar material is the main software for discriminating the material of the sheet-like object to be measured.

搬送部35は、測定するシート状被測定物を搬送するもので、操作者がシート状被測定物を移動させながら測定してもよいし、自動で搬送するようにしてもよい。 The conveyance unit 35 conveys a sheet-like object to be measured, and the operator may measure the sheet-like object to be measured while moving the sheet-like object to be measured, or may automatically convey the object.

次に本実施の形態の主要な原理に関して図2〜5を用いて説明する。
図2(a)は、導波管3の上側の壁面に、電磁波1を漏洩する漏洩孔2を配置して、電磁波発振源から電磁波1を導波管3の中に照射して、導波管内にTE10モードの電磁波分布を得た状態である。図2(b)は導波管内の磁界及び漏洩孔2から漏洩する磁界の磁界分布5を示し、図2(c)は導波管内の電界及び漏洩孔2から漏洩する電界の電界分布6を示している。図2(d)は漏洩孔2上に被測定物4を対向させて配置させた状態で、被測定物4を漏れ電磁界が透過するときに被測定物4の材料特性によって導波管内の磁界分布5及び電界分布6が変化することを原理としている。
Next, main principles of the present embodiment will be described with reference to FIGS.
In FIG. 2 (a), a leakage hole 2 for leaking electromagnetic waves 1 is arranged on the upper wall surface of the waveguide 3, and the electromagnetic waves 1 are irradiated into the waveguide 3 from an electromagnetic wave oscillation source. The TE10 mode electromagnetic wave distribution is obtained in the tube. 2 (b) shows the magnetic field distribution 5 of the magnetic field in the waveguide and the magnetic field leaking from the leakage hole 2, and FIG. 2 (c) shows the electric field distribution 6 of the electric field in the waveguide and the electric field leaking from the leakage hole 2. Show. FIG. 2 (d) shows a state in which the object to be measured 4 is placed on the leakage hole 2 so as to face each other, and when the leakage electromagnetic field is transmitted through the object to be measured 4, the material characteristics of the object to be measured 4 The principle is that the magnetic field distribution 5 and the electric field distribution 6 change.

この場合に、紙や樹脂のような誘電率の大きい部分が漏洩孔2にくると、導波管3の中を進行する電磁波と反対する電磁波の合成によってできる定在波の振幅や位相が変化し、また、金属蒸着膜や結晶膜のような導電率の高い部分が漏洩孔2にくると、前記導波管3の中が空洞共振状態になって電磁界の振幅や位相が変化する。つまり、測定によって得られた検知電圧波形は、誘電率による変化と導電率による変化の2つを合わせた波形形状を示すものなので、測定したときの波形から被測定材料が誘電体であるのか、導電体であるのか、或いは誘電体と導電体が重層しているのかを知ることができる。 In this case, when a portion having a large dielectric constant such as paper or resin comes to the leakage hole 2, the amplitude and phase of the standing wave generated by the synthesis of the electromagnetic wave opposite to the electromagnetic wave traveling in the waveguide 3 changes. In addition, when a highly conductive portion such as a metal vapor deposition film or a crystal film comes to the leak hole 2, the inside of the waveguide 3 becomes a cavity resonance state, and the amplitude and phase of the electromagnetic field change. In other words, the detected voltage waveform obtained by the measurement shows a waveform shape that combines the change due to the dielectric constant and the change due to the conductivity, so whether the measured material is a dielectric from the measured waveform, It is possible to know whether it is a conductor or whether a dielectric and a conductor are stacked.

なお、漏洩孔2の取り得る好ましい形状を図2(e)〜(h)に示したが、これに限らず幾何学形状であれば良い。(e)は円形孔、(f)は導波管幅方向の方が大きい長孔、(g)は矩形孔及び(h)は十文字形状の孔である。特に(h)の十文字形状の孔は、導波管軸方向の寸法と、幅方向の寸法とを所望の設計にとれば、漏洩させる電磁界を所望の量に微調整することができる。 In addition, although the preferable shape which the leak hole 2 can take was shown in FIG.2 (e)-(h), it should just be a geometric shape not only this. (e) is a circular hole, (f) is an elongated hole in the waveguide width direction, (g) is a rectangular hole, and (h) is a cross-shaped hole. In particular, the cross-shaped hole of (h) can finely adjust the leaked electromagnetic field to a desired amount if the dimensions in the waveguide axis direction and the width direction are designed as desired.

被測定物としては、図3(a)は、厚さ100μmのPETフィルム層7の被測定物4を示し、図3(b)は厚さ100μmのPETフィルム層7に、例えばアルミを用いた膜厚500Åの金属蒸着層8を施した被測定物4を示している。   FIG. 3A shows the object to be measured 4 of the PET film layer 7 having a thickness of 100 μm, and FIG. 3B shows the object to be measured, for example, using aluminum for the PET film layer 7 having a thickness of 100 μm. The DUT 4 to which the metal vapor deposition layer 8 having a thickness of 500 mm is applied is shown.

本実施の形態では、図2(a)の装置に対して、図3の被測定物4を対向して置いて、静止状態で測定する場合と、被測定物4を相対的に移動して測定する場合が取り得る。
被測定物4を相対的に移動して測定する場合を説明する。
図4は、図2(a)の装置に対して、図3の被測定物4を相対的に移動して測定している状態を示している。図4(a)は、被測定物4と漏洩孔2が重なる直前の状態を示し、このときの検知電圧を第1の電圧とする(このレベルを検知電圧のゼロ基準と考える)。図4(b)は、重なり度合いが進行している状態を示し、このときの検知電圧を第2の電圧とする。図4(c)は、完全に重なった状態を示し、このときの検知電圧を第3の電圧とする。
In the present embodiment, the measurement object 4 of FIG. 3 is placed opposite to the apparatus of FIG. 2A, and measurement is performed in a stationary state, and the measurement object 4 is moved relatively. Possible to measure.
A case where the measurement object 4 is relatively moved and measured will be described.
FIG. 4 shows a state where the device under test 4 of FIG. 3 is moved relative to the apparatus of FIG. FIG. 4A shows a state immediately before the DUT 4 and the leakage hole 2 overlap, and the detection voltage at this time is the first voltage (this level is considered as the zero reference of the detection voltage). FIG. 4B shows a state in which the degree of overlap is progressing, and the detection voltage at this time is the second voltage. FIG. 4C shows a state in which they are completely overlapped, and the detection voltage at this time is a third voltage.

図5(a)、(b)、(c)は、図4の順序によって各種の被測定物4を測定したときに、得られる検知電圧波形の3つの分類を示すものである。 FIGS. 5A, 5B, and 5C show three classifications of detected voltage waveforms obtained when various objects to be measured 4 are measured in the order shown in FIG.

図5(a)の波形形状において、被測定物4が漏洩孔2を通過するのに伴って、ゼロ基準である第1の電圧から第3の電圧まで下降している。このカーブの理由は、被測定物4がPETフィルム層7によって構成されているため、その誘電率に基づいて、検知電圧が下降したことに起因している。このように、被測定物4が誘電体の材料である場合は、第1の電圧>第3の電圧を示す。 In the waveform shape of FIG. 5A, as the DUT 4 passes through the leak hole 2, the voltage drops from the first voltage that is the zero reference to the third voltage. The reason for this curve is that, since the DUT 4 is composed of the PET film layer 7, the detection voltage is lowered based on the dielectric constant. Thus, when the DUT 4 is a dielectric material, the first voltage> the third voltage.

図5(b)の波形形状において、被測定物4が漏洩孔2を通過するのに伴って、ゼロ基準である第1の電圧から第2の電圧まで下降し、次いで、第2の電圧から第1の電圧を上回って第3の電圧まで上昇している。このカーブの理由は、被測定物4がPETフィルム層7と金属蒸着層8によって構成されているため、第2の電圧はPETの誘電率に基づいて下降し、また、第3の電圧は導電性の大きい金属層が漏洩孔を塞ぐことで導波管が閉じた状態となって、内部が空洞共振状態に近づいたため検知電圧が上昇したものである。このように、被測定物4が誘電体の材料と導電性の材料を複合した材料である場合は、第1の電圧>第2の電圧、且つ、第1の電圧<第3の電圧を示す。被測定物の構成が逆であっても同様のカーブとなる。 In the waveform shape of FIG. 5 (b), as the DUT 4 passes through the leakage hole 2, it drops from the first voltage, which is zero reference, to the second voltage, and then from the second voltage. It exceeds the first voltage and rises to the third voltage. The reason for this curve is that since the DUT 4 is composed of the PET film layer 7 and the metal vapor-deposited layer 8, the second voltage drops based on the dielectric constant of PET, and the third voltage is conductive. The high voltage metal layer closes the leak hole and the waveguide is closed, and the internal voltage approaches the cavity resonance state, and the detection voltage is increased. Thus, when the DUT 4 is a composite material of a dielectric material and a conductive material, the first voltage> the second voltage and the first voltage <the third voltage are shown. . Even if the configuration of the object to be measured is reversed, a similar curve is obtained.

図5(c)の波形形状において、被測定物4が漏洩孔2を通過するのに伴って、ゼロ基準である第1の電圧から第3の電圧まで上昇している。このカーブの理由は、被測定物4がアルミ箔8によって構成されているため、その導電率に基づいて、検知電圧が上昇したことに起因している。このように、被測定物4が導電性の材料である場合は、第1の電圧<第3の電圧を示す。 In the waveform shape of FIG. 5C, as the DUT 4 passes through the leakage hole 2, it rises from the first voltage that is the zero reference to the third voltage. The reason for this curve is that, since the DUT 4 is composed of the aluminum foil 8, the detection voltage has increased based on its conductivity. Thus, when the DUT 4 is a conductive material, the first voltage <the third voltage.

なお、図4及び図5によって被測定物4を相対的に移動して測定する場合を説明したが、搬送装置を用いて自動に移動させてもよいが、搬送装置を用いず、手によって移動させてもよい。 In addition, although the case where the object to be measured 4 is relatively moved and measured has been described with reference to FIGS. 4 and 5, the object to be measured 4 may be automatically moved using the transfer device, but may be moved by hand without using the transfer device. You may let them.

一方、被測定物4を対向して置いて、静止状態で測定する場合を説明する。
図6は、図2(a)の装置に対して、図3の被測定物4を静止状態で測定する状態を示している。図6(a)は、被測定物4が漏洩孔2の上にない状態を示し、このときの検知電圧を第1の電圧とする(このレベルを検知電圧のゼロ基準と考える)。図6(b)は、被測定物4をスキャンせずに、漏洩孔3の上から置いた状態で、このときの検知電圧を第2の電圧とする。
On the other hand, a case where the measurement object 4 is placed facing each other and measured in a stationary state will be described.
FIG. 6 shows a state in which the DUT 4 of FIG. 3 is measured in a stationary state with respect to the apparatus of FIG. FIG. 6A shows a state in which the DUT 4 is not on the leak hole 2, and the detection voltage at this time is the first voltage (this level is considered as the zero reference of the detection voltage). FIG. 6B shows a state in which the object to be measured 4 is placed on the leakage hole 3 without scanning, and the detection voltage at this time is the second voltage.

図7(a)、(b)、(c)は、図6の順序によって各種の被測定物4を測定したときに、得られる検知電圧の3つの分類である。先述のように、被測定物4を移動した場合は、図5に示したようなカーブを示したが、静止状態で測定する図6の場合は、図7に示すように、即座に第2の電圧が得られている。 7A, 7B, and 7C are three classifications of detected voltages obtained when various objects to be measured 4 are measured in the order shown in FIG. As described above, when the DUT 4 is moved, the curve as shown in FIG. 5 is shown. However, in the case of FIG. 6 in which the measurement is performed in a stationary state, as shown in FIG. The voltage is obtained.

図7(a)の場合は、被測定物4がPETフィルム層7によって構成されているため、その誘電率に基づいて第2の電圧はマイナスの電圧を示した。このように、被測定物4が誘電体の材料である場合は、第1の電圧>第2の電圧を示す。 In the case of FIG. 7A, since the DUT 4 is constituted by the PET film layer 7, the second voltage is a negative voltage based on the dielectric constant. As described above, when the DUT 4 is a dielectric material, the first voltage> the second voltage.

図7(b)の場合は、被測定物4がPETフィルム層7と金属蒸着層8によって構成されているものの、被測定物4を相対的に移動させずに漏洩孔3の上に置いて測定したため、第2の電圧はPETの誘電率によるマイナスの電圧は示さず、導電性の大きい金属層によるプラスの電圧のみを示した。このように、被測定物4が誘電体の材料と導電性の材料を複合した材料を搬送せずに測定を行うと、第1の電圧<第2の電圧を示す。 In the case of FIG. 7B, the DUT 4 is composed of the PET film layer 7 and the metal vapor deposition layer 8, but the DUT 4 is placed on the leakage hole 3 without moving relatively. As a result of the measurement, the second voltage did not show a negative voltage due to the dielectric constant of PET, but showed only a positive voltage due to a metal layer having high conductivity. As described above, when the measurement object 4 performs the measurement without conveying the composite material of the dielectric material and the conductive material, the first voltage <the second voltage is shown.

図7(c)の場合は、被測定物4がアルミ箔8によって構成されているため、その導電率に基づいて第2の電圧はプラスの電圧を示した。このように、被測定物4が誘電体の材料である場合は、第1の電圧<第2の電圧を示す。 In the case of FIG. 7C, since the DUT 4 is made of the aluminum foil 8, the second voltage is a positive voltage based on its conductivity. As described above, when the DUT 4 is a dielectric material, the first voltage <the second voltage is shown.

図8(a)は、漏洩孔2の寸法を、導波管軸方向に対して幅方向の寸法を大きくした状態を示し、図8(b)は導波管軸方向を2mmに固定して、幅方向を変化させて上質紙を測定したときの検知電圧値を示している。その結果、幅方向の寸法が大きいほど検知電圧は大きくなった。 FIG. 8A shows a state in which the dimension of the leakage hole 2 is increased in the width direction with respect to the waveguide axis direction, and FIG. 8B shows that the waveguide axis direction is fixed to 2 mm. The detected voltage value when the fine paper is measured while changing the width direction is shown. As a result, the detection voltage increased as the width dimension increased.

また、図8(c)は、漏洩孔2の寸法を、導波管軸方向2mm、幅方向を4.5mmとし、これを軸方向に導波管内を通る電磁波1の波長の1/2に相当する距離だけ離して2個配設させて上質紙を測定した結果、図8(a)に示す1個の場合と比較して約2倍の検知電圧が得られる。 Further, FIG. 8C shows that the dimension of the leakage hole 2 is 2 mm in the waveguide axial direction and 4.5 mm in the width direction, which is ½ of the wavelength of the electromagnetic wave 1 passing through the waveguide in the axial direction. As a result of measuring the quality paper by disposing two papers separated by a corresponding distance, a detection voltage approximately twice that of the single paper shown in FIG. 8A is obtained.

(装置の説明)
次に、装置に関して図面を用いて説明する。
図9は、漏れ電磁界による材料判別装置の取り得る3つの例である。図9(a)の例は、送信アンテナ9並びにガンダイオードなどの送信ダイオード10により構成されるマイクロ波送信部13と、受信アンテナ11並びにショットキーダイオードなどの受信ダイオード12により構成されるマイクロ波受信部14と、上壁面に漏洩孔2を設けた導波管3と、電磁波のパワーを吸収できる無反射終端器15とによって構成した装置である。
(Explanation of the device)
Next, the apparatus will be described with reference to the drawings.
FIG. 9 shows three examples of a material discriminating apparatus that uses a leakage electromagnetic field. The example of FIG. 9A is a microwave reception unit 13 including a transmission antenna 9 and a transmission diode 10 such as a Gunn diode, and a microwave reception unit 12 including a reception antenna 11 and a reception diode 12 such as a Schottky diode. This is an apparatus constituted by a section 14, a waveguide 3 having an upper wall surface provided with a leakage hole 2, and a non-reflection terminator 15 capable of absorbing the power of electromagnetic waves.

送信ダイオード10から送信アンテナ9を経てTE10モードの電磁波が導波管内に照射されると、一部の電磁界が漏洩孔2から外部に漏洩し、漏洩孔2の上に被測定物4を配置すると図2(d)に示すように電磁界が被測定物4を透過し、その材料特性によって導波管内の電磁波の振幅或いは位相が変化し、これを、受信アンテナ11を経て受信ダイオード12によって検知して、その変化量から被測定物の材料を判別するものである。 When a TE10 mode electromagnetic wave is irradiated from the transmitting diode 10 through the transmitting antenna 9 into the waveguide, a part of the electromagnetic field leaks to the outside from the leakage hole 2, and the DUT 4 is placed on the leakage hole 2. Then, as shown in FIG. 2 (d), the electromagnetic field passes through the DUT 4, and the amplitude or phase of the electromagnetic wave in the waveguide changes depending on the material characteristics. This is changed by the receiving diode 12 through the receiving antenna 11. It detects and discriminate | determines the material of a to-be-measured object from the variation | change_quantity.

装置の調整は、導波管内の電磁波が、漏洩孔2から最も漏洩できるように、マイクロ波送信部13に対して漏洩孔2及び無反射終端器15の位置を配設した。なお、無反射終端器15の位置は、導電率に基づく測定を可能にするために、漏洩孔2を導電体で塞いだときに、導波管内が空洞共振状態になるように調整を行う必要がある。 In adjusting the apparatus, the positions of the leakage hole 2 and the non-reflecting terminator 15 are arranged with respect to the microwave transmission unit 13 so that the electromagnetic wave in the waveguide can be most leaked from the leakage hole 2. The position of the non-reflecting terminator 15 needs to be adjusted so that when the leak hole 2 is closed with a conductor, the inside of the waveguide is in a cavity resonance state in order to enable measurement based on conductivity. There is.

図9(b)の例は、図9(a)に示した無反射終端器15を反射板16に置き換えたものである。装置の調整は、導波管内の電磁波1が漏洩孔2から最も漏洩できるように、マイクロ波送信部13に対して漏洩孔2及び反射板16の位置を配設したことのほかは、機能的には9(a)と同様である。 In the example of FIG. 9B, the non-reflection terminator 15 shown in FIG. The adjustment of the device is functional except that the position of the leak hole 2 and the reflector 16 is arranged with respect to the microwave transmitter 13 so that the electromagnetic wave 1 in the waveguide can be most leaked from the leak hole 2. Is the same as 9 (a).

図9(c)の例は、図9(b)が導波管3の片側にマイクロ波送信部13及びマイクロ波受信部14を設けたのに対して、漏洩孔2を挟んだ両側にマイクロ波送信部13並びにマイクロ波受信部14を設けた構成の装置である。装置の調整は、導波管内の電磁波1が、漏洩孔2から最も漏洩でき、かつ、漏洩孔2を導電体で塞いだときに、導波管内が空洞共振状態になるように、マイクロ波送信部13に対して漏洩孔2及びマイクロ波受信部14の位置を配設したことのほかは、機能的に図9(b)と同様である。 In the example of FIG. 9C, the microwave transmission unit 13 and the microwave reception unit 14 are provided on one side of the waveguide 3 in FIG. This is an apparatus having a configuration in which a wave transmitter 13 and a microwave receiver 14 are provided. The device is adjusted so that the electromagnetic wave 1 in the waveguide can be most leaked from the leak hole 2, and when the leak hole 2 is covered with a conductor, the inside of the waveguide is in a cavity resonance state. 9B is functionally the same as FIG. 9B except that the positions of the leakage hole 2 and the microwave receiving unit 14 are arranged with respect to the unit 13.

以下の実施例では、マイクロ波送信部13とマイクロ波受信部14を兼ね合わせた部品として、自動ドアやスピードセンサに用いられるマイクロ波モジュール19を利用した。このマイクロ波モジュール19は、EIA規格品の方形の導波管WR42型の中に送信用ダイオード10、送信アンテナ9、受信ダイオード12、受信アンテナ11を具備し、24.15GHzの電磁波をTE10モードで送信及び受信できるモジュールである。

In the following embodiments, a microwave module 19 used for an automatic door or a speed sensor is used as a component combining the microwave transmitter 13 and the microwave receiver 14. This microwave module 19 is provided with a transmitting diode 10, a transmitting antenna 9, a receiving diode 12, and a receiving antenna 11 in an EIA standard rectangular waveguide WR42 type, and 24.15 GHz electromagnetic wave in TE10 mode. It is a module that can transmit and receive.

また、他の構成の装置として、マイクロ波送信部13には送信用ダイオードの代わりにマグネトロンを用いた発振装置等を採用したり、マイクロ波受信部14には受信用ダイオードの代わりにマイクロ波プローブを採用したりするなど、高性能な導波管部品を用いて組み上げた精密な構成回路でも良い。 In addition, as a device having another configuration, an oscillation device using a magnetron instead of a transmission diode is adopted for the microwave transmission unit 13, or a microwave probe is used for the microwave reception unit 14 instead of a reception diode. For example, it may be a precise configuration circuit constructed using high-performance waveguide parts.

また、本発明を好ましく適用できる実施例を示すが、電磁波の周波数、電磁波のモード、漏洩孔(寸法、形状、数、位置など)等々に関して、これらの実施例によって本発明の実施形態が制限されるものではない。 Further, although embodiments to which the present invention can be preferably applied are shown, the embodiments of the present invention are limited by these embodiments with respect to the frequency of electromagnetic waves, the mode of electromagnetic waves, leakage holes (size, shape, number, position, etc.), etc. It is not something.

図10に本発明の実施例1の構成を示す。本発明のシート状被測定物の材料判別装置を搬送装置に搭載するなどして、印刷物、カード類を相対的に移動させて真偽を判別するものである。 FIG. 10 shows the configuration of the first embodiment of the present invention. The material discrimination device for a sheet-like object to be measured according to the present invention is mounted on a transport device, and the printed matter and cards are relatively moved to judge authenticity.

本実施例1によるシート状被測定物の材料判別装置は、マイクロ波モジュール19、導波管3、反射板16、照射手段31、受信手段32を含む計測部34と、材料情報記録部28、照合部29を含む照合・判別部33と、及び、結果表示部23とを備え、詳しくは、照射手段31は送信電源部17、マイクロ波送信部13を含み、受信手段32はマイクロ波受信部14、増幅部18、負極電圧調整部20、正極電圧調整部21を含んで構成している。 A material discrimination device for a sheet-like object to be measured according to the first embodiment includes a microwave module 19, a waveguide 3, a reflecting plate 16, an irradiation unit 31, a measurement unit 34 including a reception unit 32, a material information recording unit 28, A collation / discrimination unit 33 including a collation unit 29 and a result display unit 23 are provided. Specifically, the irradiation unit 31 includes a transmission power source unit 17 and a microwave transmission unit 13, and the reception unit 32 is a microwave reception unit. 14, an amplification unit 18, a negative voltage adjustment unit 20, and a positive voltage adjustment unit 21.

反射板16の位置は、漏洩孔を塞いだ状態でマイクロ波モジュール19を発振させたときに、導波管3の内部が空洞共振状態になる位置、すなわち導波管の左端から65mmに配設した。漏洩孔2は直径2mm長さ4.5mmの長穴にし、漏洩孔2から大きな電磁界を漏洩させることができる位置、すなわち導波管3の左端から29mmの位置に配設した。 The position of the reflector 16 is arranged at a position where the inside of the waveguide 3 becomes a cavity resonance state when the microwave module 19 is oscillated with the leakage hole closed, that is, 65 mm from the left end of the waveguide. did. The leakage hole 2 is a long hole having a diameter of 2 mm and a length of 4.5 mm, and is disposed at a position where a large electromagnetic field can be leaked from the leakage hole 2, that is, at a position 29 mm from the left end of the waveguide 3.

増幅部18は、マイクロ波モジュール19からの検知電圧を増幅するが、その場合に、検知電圧の振り幅が誘電体の場合に負極電圧、導電体の場合は正極電圧に出力できるように、負極電圧調整部20及び正極電圧調整部21を予め設定しておく。 The amplification unit 18 amplifies the detection voltage from the microwave module 19, and in that case, the negative voltage is output when the amplitude of the detection voltage is a dielectric, and the positive voltage is output when the detection voltage is a conductor. The voltage adjustment unit 20 and the positive electrode voltage adjustment unit 21 are set in advance.

材料情報記録部28には、用紙、PETフィルム、アルミ蒸着を測定したときに、各種の材料に固有である電磁波の情報をあらかじめ情報記録媒体(メモリ、ROM、RAM等)等に記憶しておく。各種材料に固有である電磁波の情報とは各材料を計測部によって計測したときの電磁波が変化する推測値をいい、例えば、各種の材料として、用紙を-0.02v、PETフイルムを-0.1v、アルミを用いた蒸着膜厚を(500Å)を+0.5vとした。 In the material information recording unit 28, when measuring paper, PET film, and aluminum vapor deposition, information on electromagnetic waves unique to various materials is stored in advance in an information recording medium (memory, ROM, RAM, etc.). . The electromagnetic wave information that is unique to each material refers to an estimated value that the electromagnetic wave changes when each material is measured by the measuring unit. For example, as various materials, -0.02v for paper, -0.1v for PET film, The deposited film thickness using aluminum was set to +0.5 V (500 mm).

照合部29は、増幅部18からの電磁波変化の電圧と、材料情報記録部28に記録された各種材料の電磁波情報とを、常時、比較照合して、移動するシート状被測定物の長さに渡る部分の材料を認識する。 The collating unit 29 constantly compares and collates the voltage of the electromagnetic wave change from the amplifying unit 18 and the electromagnetic wave information of various materials recorded in the material information recording unit 28, and the length of the moving sheet-like object to be measured. Recognize the material that spans the area.

真偽判別情報記録部30には、真正なシート状被測定物の長さに渡る材料の情報をあらかじめ情報記録媒体等に記憶しておく。 In the authenticity discrimination information recording unit 30, information on materials over the length of the authentic sheet-like object to be measured is stored in advance in an information recording medium or the like.

演算部22は、照合部29による、シート状被測定物の長さに渡る材料判別の結果と、真偽判別情報記録部30による真正なシート状被測定物の長さに渡る材料情報と、を比較して真偽判別を行なう。 The calculation unit 22 is a result of the material discrimination over the length of the sheet-like object to be measured by the collating unit 29, and the material information over the length of the authentic sheet-like object to be measured by the authenticity discrimination information recording unit 30; Are compared to perform true / false discrimination.

結果表示部23は、演算部22の結果が、例えば、真正の場合は5V、贋物の場合は0Vとして外部の機器等に出力する。 The result display unit 23 outputs the result of the calculation unit 22 to an external device or the like as 5 V if the result is authentic, and 0 V if the result is a freight, for example.

図11に本発明の実施例2の構成を示す。本発明のシート状被測定物の材料判別装置を真偽判別に用いた例である。被測定物として商品券24を試作して測定した実施例2を説明する図である。図11は、安全スレッド25(膜厚40μmのPETフィルム層7に、アルミを用いた蒸着膜厚500Åの金属蒸着層8を施し、幅3mmに断裁したもの)を用紙26に埋設した商品券24を被測定物として、図8に述べた装置の漏洩孔2の上を移動させて真偽の判別を行っている状態を示した図である。 FIG. 11 shows the configuration of the second embodiment of the present invention. It is the example which used the material discrimination | determination apparatus of the sheet-like to-be-measured object of this invention for authenticity discrimination | determination. It is a figure explaining Example 2 which measured and produced the gift certificate 24 as a to-be-measured object. FIG. 11 shows a gift certificate 24 in which a safety thread 25 (a PET film layer 7 having a film thickness of 40 μm is coated with a metal vapor deposition layer 8 having a vapor deposition film thickness of 500 mm using aluminum and cut into a width of 3 mm) is embedded in a paper 26. FIG. 9 is a diagram showing a state in which authenticity is determined by moving over the leakage hole 2 of the apparatus described in FIG.

図12は、真正券、複写による偽造券及び複写による偽造券にアルミ箔を貼付した偽造券の3種類を測定したときの検知電圧波形である。 FIG. 12 shows detected voltage waveforms when three types of authentic ticket, counterfeit ticket by copying, and counterfeit ticket in which aluminum foil is attached to the counterfeit ticket by copying are measured.

図12(a)は、真正券の波形を示すものである。安全スレッド25は基材と蒸着層が重層されているため、カーブのa及びcの部分はスレッド基材であるPETによって負極性のレベルを示し、bの部分はアルミ蒸着膜によって正極性のレベルを示す波形となる。 FIG. 12A shows the waveform of a genuine note. Since the safety thread 25 has a base material and a vapor deposition layer stacked, the portions a and c of the curve show a negative polarity level due to PET as the thread base material, and the portion b shows a positive polarity level due to the aluminum vapor deposition film. It becomes the waveform which shows.

図12(b)は、複写による偽造券の検知電圧波形を示すものである。安全スレッド25の蒸着層が存在しないために、用紙幅の範囲全体において、紙の誘電率に基づいて僅かに負極性に下がっていることの外、正極性のレベルが示されないことから真偽判別の結果は偽物となる。 FIG. 12B shows a detected voltage waveform of a counterfeit ticket by copying. Since there is no deposited layer of the safety thread 25, the whole paper width range is slightly negative based on the dielectric constant of the paper, and the positive level is not indicated, so it is true / false The result is a fake.

図12(c)は、複写による偽造券にアルミ箔を貼付した検知電圧波形を示すものである。カーブbにはアルミ箔による正極性のレベルが示されたが、安全スレッド25の基材であるPETが重層されていないことから負極性のレベルが示されないために真偽判別の結果は偽物となる。 FIG. 12 (c) shows a detected voltage waveform in which an aluminum foil is attached to a counterfeit ticket by copying. The curve b shows the level of positive polarity due to the aluminum foil, but since the PET that is the base material of the safety thread 25 is not overlaid, the level of negative polarity is not shown. Become.

図13に本発明の実施例3の構成を示す。本発明のシート状被測定物の材料判別装置を真偽判別に用いた例である。被測定物としてカードを測定した実施例3を説明する図である。市場で流通されている各種のカード27を被測定物として、図8に示す装置の漏洩孔2の上を移動させて検知電圧波形を測定している状態を示した図である。 FIG. 13 shows the configuration of the third embodiment of the present invention. It is the example which used the material discrimination | determination apparatus of the sheet-like to-be-measured object of this invention for authenticity discrimination | determination. It is a figure explaining Example 3 which measured the card | curd as a to-be-measured object. It is the figure which showed the state which is moving on the leak hole 2 of the apparatus shown in FIG. 8 and measuring the detection voltage waveform by making various cards 27 distribute | circulated in the market into a to-be-measured object.

図14は、市場で流通されている各種カードを測定した時に、どのような検知電圧波形が得られるかを分類したもので、一般に3種類の検知電圧波形に分類することが可能となる。本実施例では、3種類の検知電圧波形に分類される代表的なカードの例として、電話会社のテレホンカード(登録商標)、鉄道会社のイオカード及びハイウエイカードの3種類のカードを用いて測定したときに、どのような検知電圧波形が得られるかを示したものである。 FIG. 14 categorizes what detection voltage waveforms are obtained when various cards distributed in the market are measured, and can generally be classified into three types of detection voltage waveforms. In this example, the measurement was performed using three types of cards, ie, a telephone card (registered trademark) of a telephone company, an Io card of a railway company, and a highway card as examples of representative cards classified into three types of detected voltage waveforms. It shows what kind of detection voltage waveform is sometimes obtained.

図14(a)は、一般的に基材に磁性層、隠蔽層等が重層されているカードにみられる検知電圧波形であり、本例としては、電話会社のテレホンカード(登録商標)をあげることができる。カーブのa及びcの部分は主にカード基材等によって負極性のレベルが示され、bの部分は金属紛や高透磁率合金粉末等によって正極性のレベルを示した。 FIG. 14A shows a detection voltage waveform generally found in a card in which a magnetic layer, a concealing layer, etc. are laminated on a base material, and a telephone card (registered trademark) of a telephone company is given as an example of this. be able to. The a and c portions of the curve showed a negative polarity level mainly due to the card base material, and the b portion showed a positive polarity level due to metal powder, high magnetic permeability alloy powder and the like.

図14(b)は、金属紛や高透磁率合金粉末等が存在しないカードにみられる検知電圧波形であり、本例としては、イオカードをあげることができる。カーブのa及びcではカード基材などによる負極性のレベルを示したが、金属紛や高透磁率合金粉末等が存在しないために、bには正極性のレベルが示されなかった。 FIG. 14B shows a detected voltage waveform seen in a card in which no metal powder, high magnetic permeability alloy powder, or the like exists, and an iocard can be given as an example. Curves “a” and “c” showed a negative polarity level due to the card base material and the like, but since no metal powder, high magnetic permeability alloy powder, etc. existed, no positive polarity level was shown in b.

図14(c)は、図4(a)と構成は同様なカードであるが、カーブのa及びcの部分はカード基材等による負極性を示したが、そのレベルは図14(a)のテレホンカードと比較して微小であった。bの部分は金属紛や高透磁率合金粉末等によって正極性のレベルを示した。本例としては、ハイウエイカードをあげることができる。 FIG. 14 (c) is a card having the same configuration as FIG. 4 (a), but the portions a and c of the curve show negative polarity due to the card base material, etc., but the level is as shown in FIG. 14 (a). It was very small compared to the telephone card. The portion b showed a positive polarity level due to metal powder, high permeability alloy powder, or the like. A highway card can be given as an example.

次に、これらのカードを識別するための判別装置の一構成例を説明する。
図16に本発明の実施例3の一構成を示す。図10の構成と異なる点は、搬送装置を設けてカード類を相対的に移動させるようにした点と、真偽判別情報記録部30に、3種類の検知電圧波形に分類された各種カード、本実施例ではテレホンカード、イオカード及びハイウエイカードの長さに渡る検知電圧の情報をあらかじめ記憶させた点である。
Next, a configuration example of a discrimination device for identifying these cards will be described.
FIG. 16 shows one configuration of the third embodiment of the present invention. 10 differs from the configuration of FIG. 10 in that a card is provided to move the cards relative to each other, and in the authenticity determination information recording unit 30, various cards classified into three types of detected voltage waveforms, In this embodiment, the information of the detected voltage over the length of the telephone card, Io card and highway card is stored in advance.

本実施例3による判別装置は、マイクロ波モジュール19、導波管3、反射板16、照射手段31、受信手段32を含む計測部34と、材料情報記録部28、照合部29を含む照合・判別部33と、演算部22と、真偽判別情報記録部30と、結果表示部23と、及び、搬送部35とを備えている。詳しくは、照射手段31は送信電源部17、マイクロ波送信部13を含み、受信手段32はマイクロ波受信部14、増幅部18、負極電圧調整部20、正極電圧調整部21とを含んで構成している。 The discrimination apparatus according to the third embodiment includes a measurement unit 34 including a microwave module 19, a waveguide 3, a reflector 16, an irradiation unit 31, a reception unit 32, a material information recording unit 28, and a verification unit including a verification unit 29. The determination unit 33, the calculation unit 22, the authenticity determination information recording unit 30, the result display unit 23, and the transport unit 35 are provided. Specifically, the irradiation unit 31 includes a transmission power source unit 17 and a microwave transmission unit 13, and the reception unit 32 includes a microwave reception unit 14, an amplification unit 18, a negative voltage adjustment unit 20, and a positive voltage adjustment unit 21. is doing.

反射板16の位置は、漏洩孔2を塞いだ状態でマイクロ波モジュール19を発振させたときに、導波管3の内部が空洞共振状態になる位置、すなわち導波管3の左端から65mmに配設した。漏洩孔2は直径2mm長さ4.5mmの長穴にし、漏洩孔2から大きな電磁界を漏洩させることができる位置、すなわち導波管3の左端から29mmの位置に配設した。 The position of the reflector 16 is a position where the inside of the waveguide 3 becomes a cavity resonance state when the microwave module 19 is oscillated with the leakage hole 2 closed, that is, 65 mm from the left end of the waveguide 3. Arranged. The leakage hole 2 is a long hole having a diameter of 2 mm and a length of 4.5 mm, and is disposed at a position where a large electromagnetic field can be leaked from the leakage hole 2, that is, at a position 29 mm from the left end of the waveguide 3.

増幅部18は、マイクロ波モジュール19からの検知電圧を増幅するが、その場合に、検知電圧の振り幅が誘電体の場合に負極電圧、導電体の場合は正極電圧に出力できるように、負極電圧調整部20及び正極電圧調整部21を予め設定しておく。 The amplification unit 18 amplifies the detection voltage from the microwave module 19, and in that case, the negative voltage is output when the amplitude of the detection voltage is a dielectric, and the positive voltage is output when the detection voltage is a conductor. The voltage adjustment unit 20 and the positive electrode voltage adjustment unit 21 are set in advance.

材料情報記録部28には、用紙、PETフィルム、アルミ箔を測定したときに、各種材料に固有である電磁波の情報をあらかじめ情報記録媒体(メモリ、ROM、RAM等)等に記憶しておく。各種材料に固有である電磁波の情報とは各材料を計測部によって計測したときの電磁波が変化する推測値をいう。 In the material information recording unit 28, when measuring paper, PET film, and aluminum foil, information on electromagnetic waves unique to various materials is stored in advance in an information recording medium (memory, ROM, RAM, etc.). The electromagnetic wave information unique to various materials refers to an estimated value at which the electromagnetic waves change when each material is measured by the measurement unit.

真偽判別情報記録部30には、テレホンカード、イオカード、ハイウエイカードを長さにわたって測定したときに得られる、各カードに固有の電磁波の情報をあらかじめ情報記録媒体(メモリ、ROM、RAM等)等に記憶しておく。各カードに固有である電磁波の情報とは、長さにわたって計測部によって計測したときの電磁波が変化する推測値をいう。 In the authenticity determination information recording unit 30, information on electromagnetic waves unique to each card, which is obtained when measuring telephone cards, Io cards, and highway cards over a length, is recorded in advance on an information recording medium (memory, ROM, RAM, etc.), etc. Remember it. The electromagnetic wave information unique to each card refers to an estimated value at which the electromagnetic wave changes when measured by the measuring unit over the length.

図15に示す3種類の検知電圧波形に分類される各カードに固有の電磁波の情報を、真偽判別情報記録部30にあらかじめ記録しておく。
図15(a)は、一般的に基材に磁性層、隠蔽層等が重層されているカード、例えばテレホンカードを識別するための固有の電磁波の情報である。図14(a)の検知波形にもとづいて次のように判別の条件を決めた。
(1)aの電圧<0 (2)bの電圧>0 (3)cの電圧<0 (4)c<-0.8×b
つまり被測定物が、この条件を満たす場合にテレホンカードであることが判別できるものである。
Information on electromagnetic waves unique to each card classified into the three types of detection voltage waveforms shown in FIG. 15 is recorded in advance in the authenticity discrimination information recording unit 30.
FIG. 15 (a) shows information on unique electromagnetic waves for identifying a card, for example, a telephone card, in which a magnetic layer, a concealing layer, etc. are generally overlaid on a base material. Based on the detected waveform of FIG. 14A, the determination conditions were determined as follows.
(1) Voltage of a <0 (2) Voltage of b> 0 (3) Voltage of c <0 (4) c <-0.8 × b
That is, it can be determined that the object to be measured is a telephone card when this condition is satisfied.

同様に、図15(b)は、金属紛や高透磁率合金粉末等が存在しないカード、例えばイオカードを識別するための固有の電磁波の情報である。図14(b)の検知波形にもとづいて次のように判別の条件を決めた。
aの電圧<0 (2)bの電圧<0 (3)cの電圧<0
つまり被測定物が、この条件を満たす場合にイオカードであることが判別できるものである。
Similarly, FIG. 15 (b) shows information of a specific electromagnetic wave for identifying a card in which no metal powder, high magnetic permeability alloy powder or the like is present, for example, an Io card. Based on the detected waveform in FIG. 14B, the determination conditions were determined as follows.
a <0 (2) b <0 (3) c <0
That is, it can be determined that the device under test is an Io card when this condition is satisfied.

同様に、図15(c)は、ハイウェイカードを識別するための固有の電磁波の情報である。図14(c)の検知波形にもとづいて次のように判別の条件を決めた。
(1)aの電圧<0 (2)bの電圧>0 (3)cの電圧<0 (4)c>-0.8×b
つまり被測定物が、この条件を満たす場合にハイウェイカードであることを判別するものである。
Similarly, FIG. 15C shows specific electromagnetic wave information for identifying the highway card. Based on the detected waveform of FIG. 14 (c), the determination conditions were determined as follows.
(1) a voltage <0 (2) b voltage> 0 (3) c voltage <0 (4) c> -0.8 × b
That is, it is determined that the object to be measured is a highway card when this condition is satisfied.

照合部29は、増幅部18からの長さに渡る電磁波変化の電圧と、真偽判別情報記録部30に記録された各カードに固有の電磁波情報とを、比較照合して、カードの種類を認識する。 The verification unit 29 compares the voltage of the electromagnetic wave change over the length from the amplification unit 18 with the electromagnetic wave information unique to each card recorded in the authenticity discrimination information recording unit 30, and determines the type of the card. recognize.

結果表示部23は、照合部29の結果がテレホンカード、イオカード、ハイウエイカード、或いは該当なしとして、該当するランプを点灯するなどが取り得る。 The result display unit 23 can take the result of the collation unit 29 as a telephone card, Io card, highway card, or not applicable, and turn on the corresponding lamp.

以上のように、カードの厚さを通して、基材などによって誘電率が決定され、また、金属紛や高透磁率合金粉末等によって導電率が決定されるために、カードの種類を識別することが可能である。 As described above, since the dielectric constant is determined by the base material through the thickness of the card, and the conductivity is determined by metal powder, high magnetic permeability alloy powder, etc., the type of card can be identified. Is possible.

本実施の形態のシート状被測定物の材料判別装置の構成を示す図である。It is a figure which shows the structure of the material discrimination | determination apparatus of the sheet-like to-be-measured object of this Embodiment. 本実施の形態の原理を示す図である。It is a figure which shows the principle of this Embodiment. 本実施の形態の基本的な被測定物を示す図である。It is a figure which shows the fundamental to-be-measured object of this Embodiment. 漏洩孔と被測定物の移動して測定する相対的な位置を示す図である。It is a figure which shows the relative position which moves and measures a leak hole and a to-be-measured object. 本実施の形態の基本的な検知電圧波形を示す図である。It is a figure which shows the basic detection voltage waveform of this Embodiment. 本実施の形態の静止状態の相対的な位置を示す図である。It is a figure which shows the relative position of the stationary state of this Embodiment. 本実施の形態の被測定物の検知電圧を示す図である。It is a figure which shows the detection voltage of the to-be-measured object of this Embodiment. 本実施の形態の漏洩孔の寸法と数による違いを示す図である。It is a figure which shows the difference by the dimension and number of leak holes of this Embodiment. 本実施の形態の材料判別装置を示す図である。It is a figure which shows the material discrimination | determination apparatus of this Embodiment. 本実施例に係るシート状被測定物の材料判別装置を用いた実施例1を示す図である。It is a figure which shows Example 1 using the material discrimination | determination apparatus of the sheet-like to-be-measured object which concerns on a present Example. 本実施例に係るシート状被測定物の材料判別装置を用いた実施例2を示す図である。It is a figure which shows Example 2 using the material discrimination | determination apparatus of the sheet-like to-be-measured object which concerns on a present Example. 実施例2の商品券の検知電圧波形を示す図である。It is a figure which shows the detection voltage waveform of the gift certificate of Example 2. FIG. 本実施例に係るシート状被測定物の材料判別装置を用いた実施例3を示す図である。It is a figure which shows Example 3 using the material discrimination | determination apparatus of the sheet-like to-be-measured object which concerns on a present Example. 実施例3の各種カードの検知電圧波形を示す図である。It is a figure which shows the detection voltage waveform of the various cards of Example 3. 実施例3の各種カードの固有の電磁波情報を示す図である。It is a figure which shows the electromagnetic wave information intrinsic | native on the various cards of Example 3. FIG. 本実施例に係るシート状被測定物の材料判別装置を用いた実施例3を示す図である。It is a figure which shows Example 3 using the material discrimination | determination apparatus of the sheet-like to-be-measured object which concerns on a present Example.

符号の説明Explanation of symbols

1 電磁波
2 漏洩孔
3 導波管
4 被測定物
5 電界分布
6 磁界分布
7 PETフィルム層
8 金属蒸着層
9 送信アンテナ
10 送信ダイオード
11 受信アンテナ
12 受信ダイオード
13 マイクロ波送信部
14 マイクロ波受信部
15 無反射終端器
16 反射板
17 送信電源部
18 増幅部
19 マイクロ波モジュール
20 負極電圧調整部
21 正極電圧調整部
22 演算部
23 結果表示部
24 試作商品券
25 安全スレッド
26 用紙
27 カード
28 材料情報記録部
29 照合部
30 真偽判別情報記録部
31 照射手段
32 受信手段
33 照合・判別部
34 計測部
35 搬送部

DESCRIPTION OF SYMBOLS 1 Electromagnetic wave 2 Leakage hole 3 Waveguide 4 Measured object 5 Electric field distribution 6 Magnetic field distribution 7 PET film layer 8 Metal vapor deposition layer 9 Transmission antenna 10 Transmission diode 11 Reception antenna 12 Reception diode 13 Microwave transmission part 14 Microwave reception part 15 Nonreflective terminator 16 Reflector 17 Transmission power supply unit 18 Amplification unit 19 Microwave module 20 Negative voltage adjustment unit 21 Positive voltage adjustment unit 22 Calculation unit 23 Result display unit 24 Prototype gift certificate 25 Safety thread 26 Paper 27 Card 28 Material information recording Unit 29 Verification unit 30 Authenticity discrimination information recording unit 31 Irradiation unit 32 Reception unit 33 Verification / discrimination unit 34 Measurement unit 35 Transport unit

Claims (5)

少なくとも1つの漏洩孔と反射板を設けた導波管、電磁波を照射する照射手段、前記電磁波を受信する受信手段、照合・判別手段を備える装置を用いてシート状被測定物の材料の判別を行う方法であって、
前記導波管における前記反射板及び前記漏洩孔の位置は、前記漏洩孔上に前記シート状被測定物がない状態の受信電圧を基準値(±0)とし、前記漏洩孔を誘電体が塞いだ状態の受信電圧が基準値より低い値(マイナス)として受信し、前記漏洩孔を導電体が塞いだ状態の受信電圧が基準値より高い値(プラス)として受信される位置に調整し、
前記導波管の前記漏洩孔上に、シート状被測定物のシート面を対向させて配置し、
前記照射手段により、前記導波管の中に電磁波を照射し、
前記受信手段により、照射された前記電磁波が、前記導波管内で磁界及び電界分布を生じ、前記導波管内を伝搬して、前記漏洩孔から漏洩して磁界及び電界分布を生じて外部へ放出されて、前記シート状被測定物を漏れ電磁界が透過するときに、前記シート状被測定物の材料特性により前記導波管の中の前記磁界及び電界分布が変化し、前記シート状測定物が誘電体の場合は前記基準値より低い値として受信し、導電体の場合は前記基準値より高い値として受信することで、前記シート状被測定物の材料における固有の電磁波変化の情報として受信し、
前記照合・判別手段により前記受信手段で受信した前記電磁波変化の情報と、判別基準となる、あらかじめ入力された材料固有の電磁波情報とを比較・照合して、前記電磁波変化が何れの材料の電磁波情報に対応するかを認識することで、前記シート状被測定物の材料の判別を行うことを特徴とするシート状被測定物の材料判別方法。
Discrimination of the material of the sheet-like object to be measured using an apparatus including a waveguide provided with at least one leakage hole and a reflecting plate, irradiation means for irradiating electromagnetic waves, receiving means for receiving the electromagnetic waves , and collation / discrimination means A way to do,
The position of the reflection plate and the leakage hole in the waveguide is determined based on the reception voltage when the sheet-like object is not on the leakage hole as a reference value (± 0), and the leakage hole is covered with a dielectric. The received voltage in the state is received as a value lower than the reference value (minus), and the leakage voltage is adjusted to a position where the received voltage in the state where the conductor is blocked is received as a value higher than the reference value (plus),
On the leakage hole of the waveguide, the sheet surface of the sheet-like object to be measured is placed facing,
The irradiation means irradiates the waveguide with electromagnetic waves,
The electromagnetic wave irradiated by the receiving means generates a magnetic field and an electric field distribution in the waveguide, propagates in the waveguide, leaks from the leakage hole , generates a magnetic field and an electric field distribution, and is emitted to the outside. When the leakage electromagnetic field is transmitted through the sheet-like object to be measured, the magnetic field and electric field distribution in the waveguide change according to the material characteristics of the sheet-like object to be measured, and the sheet-like object to be measured Is received as a value lower than the reference value in the case of a dielectric, and received as a value higher than the reference value in the case of a conductor. And
The electromagnetic wave change information received by the receiving means by the collating / discriminating means is compared with the electromagnetic wave information specific to the material that is input in advance as a discrimination criterion, and the electromagnetic wave change of any material A material discrimination method for a sheet-like object to be measured, wherein the material of the sheet-like object is discriminated by recognizing whether the information corresponds to information.
少なくとも1つの漏洩孔と反射板を設けた導波管、電磁波を照射する照射手段、前記電磁波を受信する受信手段、照合・判別手段、搬送手段を備える装置を用いてシート状被測定物の材料の判別を行う方法であって、
前記導波管における前記反射板及び前記漏洩孔の位置は、前記漏洩孔上に前記シート状被測定物がない状態の受信電圧を基準値(±0)とし、前記漏洩孔を誘電体が塞いだ状態の受信電圧が基準値より低い値(マイナス)として受信し、前記漏洩孔を導電体が塞いだ状態の受信電圧が基準値より高い値(プラス)として受信される位置に調整し、
前記照射手段により、前記導波管の中に電磁波を照射し、
前記搬送手段によりシート状被測定物が、前記漏洩孔を有する前記導波管の前記漏洩孔上を通過するように搬送し、
前記受信手段により、照射された前記電磁波が、前記導波管内で磁界及び電界分布を生じ、前記導波管内を伝搬して、前記漏洩孔から漏洩して磁界及び電界分布を生じて外部へ放出されて、前記搬送されて前記漏洩孔上を通過する前記シート状被測定物を漏れ電磁界が透過するときに、前記シート状被測定物の材料特性により前記導波管の中の前記磁界及び電界分布が変化し、前記シート状測定物が誘電体の場合は前記基準値より低い値として受信し、導電体の場合は前記基準値より高い値として受信することで、前記シート状被測定物の材料における固有の電磁波変化の情報として受信し、
前記照合・判別手段により前記受信手段で受信した前記電磁波変化の情報と、判別基準となる、あらかじめ入力された材料固有の電磁波情報とを比較・照合して、前記電磁波変化が何れの材料の電磁波情報に対応するかを認識することで、前記シート状被測定物の材料の判別を行うことを特徴とするシート状被測定物の材料判別方法。
A material for a sheet-like object to be measured using an apparatus provided with a waveguide provided with at least one leakage hole and a reflecting plate, irradiation means for irradiating electromagnetic waves, receiving means for receiving the electromagnetic waves , verification / discrimination means, and conveying means A method for determining
The position of the reflection plate and the leakage hole in the waveguide is determined based on the reception voltage when the sheet-like object is not on the leakage hole as a reference value (± 0), and the leakage hole is covered with a dielectric. The received voltage in the state is received as a value lower than the reference value (minus), and the leakage voltage is adjusted to a position where the received voltage in the state where the conductor is blocked is received as a value higher than the reference value (plus),
The irradiation means irradiates the waveguide with electromagnetic waves,
Sheet measured object by said conveying means conveys to pass through the leakage holes above the waveguide having the leakage hole,
The electromagnetic wave irradiated by the receiving means generates a magnetic field and an electric field distribution in the waveguide, propagates in the waveguide, leaks from the leakage hole , generates a magnetic field and an electric field distribution, and is emitted to the outside. When a leakage electromagnetic field is transmitted through the sheet-like object to be transported and passed over the leakage hole, the magnetic field in the waveguide and the magnetic field in the waveguide due to material properties of the sheet-like object When the electric field distribution changes and the sheet-like object to be measured is a dielectric, it is received as a value lower than the reference value, and in the case of a conductor, the sheet-like object to be measured is received as a value higher than the reference value . Received as information on the inherent electromagnetic changes in materials
The electromagnetic wave change information received by the receiving means by the collating / discriminating means is compared with the electromagnetic wave information specific to the material that is input in advance as a discrimination criterion, and the electromagnetic wave change of any material A material discrimination method for a sheet-like object to be measured, wherein the material of the sheet-like object is discriminated by recognizing whether the information corresponds to information.
前記照合・判別手段により、シート状被測定物が、少なくとも1つの漏洩孔を有する前記導波管の前記漏洩孔上に到着する前の第1の検知電圧に対し、
前記シート状被測定物が前記漏洩孔上に移動した時の第2の検知電圧が、前記シート状被測定物が前記漏洩孔上を通過するに伴い、前記電圧が徐々に低下し、前記第1の検知電圧より低い場合は、誘電体材料と判別し、
前記電圧が徐々に上がり、前記第1の検知電圧より高い場合には、導電体材料と判別し、
前記シート状被測定物が通過していく過程において、電圧が徐々に低下し、前記第1の検知電圧より低くなり、前記シート状被測定物が完全に漏洩孔を覆った時に、電圧が前記第1の検知電圧より上昇していく場合には、誘電体材料と導電体材料とから構成されていることを特徴とする請求項2記載のシート状被測定物の材料判別方法。
With respect to the first detection voltage before the sheet-like object to be measured arrives on the leakage hole of the waveguide having at least one leakage hole by the verification / discrimination means,
The second detection voltage when the sheet-like object to be measured moves onto the leakage hole is gradually reduced as the sheet-like object to be measured passes over the leakage hole. If it is lower than the detection voltage of 1, it is determined as a dielectric material,
When the voltage gradually rises and is higher than the first detection voltage, it is determined as a conductor material,
In the process of passing the sheet-like object to be measured, the voltage gradually decreases, becomes lower than the first detection voltage, and when the sheet-like object to be measured completely covers the leakage hole, the voltage is 3. The method for discriminating a material of a sheet-like object to be measured according to claim 2, wherein the material is composed of a dielectric material and a conductor material when the voltage rises above the first detection voltage.
前記照合・判別手段により判別されたシート状被測定物の材料情報を記録し、更に備えた判別手段により、前記記録されたシート状被測定物の長さに渡る材料の電磁波情報と、判別基準となるシート状被測定物の長さに渡る材料の電磁波情報とを比較・照合して、前記シート状被測定物の判別を行うことを特徴とする請求項1又は2記載のシート状被測定物の材料判別方法。 The material information of the sheet-like object to be measured determined by the collating / discriminating means is recorded, and the electromagnetic wave information of the material over the length of the recorded sheet-like object to be measured by the determining means, and the discrimination criterion 3. The sheet-like object to be measured according to claim 1 or 2, wherein the sheet-like object to be measured is identified by comparing and collating with electromagnetic wave information of a material over the length of the sheet-like object to be measured. Material identification method. 搬送部、少なくとも1つの漏洩孔と反射板とを設けた導波管と照射する照射手段と受信手段とを有する計測部及び照合・判別部を備えるシート状被測定物の判別を行う材料判別装置であって、
前記搬送部は、前記シート状被測定物を前記導波管に対し相対的に移動させて搬送する手段を備え、
前記計測部は、前記シート状被測定物が前記漏洩孔を塞いでいる状態のときに前記導波管が空洞共振状態となり、前記漏洩孔上の前記シート状被測定物が誘電体の材料の場合には負極電圧(マイナス)として受信し、導電体の材料の場合には正極電圧(プラス)として受信されるように調整した前記反射板及び漏洩孔を設けたWR42型の方形導波管と、
前記導波管の中に24.15GHzの電磁波をTE10モードで照射する前記照射手段と、照射された前記電磁波が、前記導波管内で磁界及び電界分布を生じ、前記導波管内を伝搬して、前記漏洩孔から漏洩して磁界及び電界分布を生じて外部へ放出されて、前記搬送部により搬送されたシート状被測定物を漏れ電磁界が透過するときに前記シート状被測定物の材料特性により導波管の中の前記磁界及び電界分布が変化し、この前記磁界及び電界分布の変化を前記シート状被測定物の材料の固有の電磁波変化の情報として受信する手段とを備え、
前記照合・判別部は、シート状被測定物の材料毎の電磁波の変化を示す照合用データを用いて記録する手段と、
前記計測部により前記シート状被測定物を測定したときに得られた電磁波変化の情報と、あらかじめ各種材料に固有である電磁波の情報を記憶した照合用データとを比較・照合して、前記シート状被測定物の材料を判別する照合手段と、
を備えることを特徴とするシート状被測定物の材料判別装置。
Material discriminating apparatus for discriminating a sheet-like object to be measured, comprising a transport unit, a waveguide provided with at least one leakage hole and a reflector, an irradiation unit for irradiating and a receiving unit, and a collation / discrimination unit Because
The transport unit includes means for transporting the sheet-like object to be measured by moving it relative to the waveguide,
The measurement unit is configured such that when the sheet-like object to be measured closes the leakage hole, the waveguide enters a cavity resonance state, and the sheet-like object to be measured on the leakage hole is made of a dielectric material. WR42 type rectangular waveguide provided with the reflection plate and the leakage hole adjusted so as to be received as a negative voltage (minus) in the case, and as a positive voltage (plus) in the case of a conductor material; ,
The irradiation means for irradiating the waveguide with 24.15 GHz electromagnetic wave in TE10 mode, and the irradiated electromagnetic wave generates a magnetic field and an electric field distribution in the waveguide, and propagates in the waveguide. , is discharged to the outside occurs a magnetic field and electric field distribution leaking from the leak hole, when the electromagnetic field leaking the conveyed sheet measured object passes by the conveyance unit, the sheet-like object to be measured Means for receiving the change in the magnetic field and electric field distribution in the waveguide according to material characteristics, and receiving the change in the magnetic field and electric field distribution as information on the inherent electromagnetic wave change in the material of the sheet-like object to be measured;
The collation / discrimination unit records using collation data indicating a change in electromagnetic wave for each material of the sheet-like object to be measured;
The sheet is compared and collated with information on electromagnetic wave change obtained when measuring the sheet-like object to be measured by the measuring unit, and data for collation storing information on electromagnetic waves inherent to various materials in advance. Collating means for discriminating the material of the object to be measured;
A material discriminating device for a sheet-like object to be measured.
JP2004081347A 2004-03-19 2004-03-19 Material discrimination device and material discrimination method for sheet-like object to be measured Expired - Fee Related JP4158914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081347A JP4158914B2 (en) 2004-03-19 2004-03-19 Material discrimination device and material discrimination method for sheet-like object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081347A JP4158914B2 (en) 2004-03-19 2004-03-19 Material discrimination device and material discrimination method for sheet-like object to be measured

Publications (2)

Publication Number Publication Date
JP2005265725A JP2005265725A (en) 2005-09-29
JP4158914B2 true JP4158914B2 (en) 2008-10-01

Family

ID=35090428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081347A Expired - Fee Related JP4158914B2 (en) 2004-03-19 2004-03-19 Material discrimination device and material discrimination method for sheet-like object to be measured

Country Status (1)

Country Link
JP (1) JP4158914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844869B2 (en) 2006-02-03 2011-12-28 独立行政法人 国立印刷局 Information recording patch, printed sheet, and authenticity determination method thereof
JP7132959B2 (en) * 2020-02-03 2022-09-07 株式会社豊田中央研究所 Cavity Resonator for Foreign Object Inspection, Foreign Object Inspection Apparatus and Method

Also Published As

Publication number Publication date
JP2005265725A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7743523B2 (en) Arrangement for determining thicknesses and thickness variations
JP2004500606A (en) Safety paper and method and apparatus for checking the authenticity of documents recorded thereon
KR101151601B1 (en) Identification system
US8556299B2 (en) Information recording patch, printed sheet, and authenticity discrimination method therefor
US6913259B2 (en) Apparatus for detection of multiple documents in a document transport
JP2004500606A5 (en)
JPH0318232B2 (en)
US9792750B2 (en) Method and apparatus for checking a value document
US7262604B2 (en) Method of testing documents provided with optico-diffractively effective markings
JP4158914B2 (en) Material discrimination device and material discrimination method for sheet-like object to be measured
KR101758366B1 (en) Apparatus for discriminating paper money using rf
US5672859A (en) Reproduction apparatus with microwave detection
JP4352141B2 (en) Sheet orientation measuring method and orientation measuring apparatus
KR100290690B1 (en) Method and device for checking confidential documents
KR101056949B1 (en) Tape winding detection device using capacitive sensor and its operation method
JP4229279B2 (en) Sheet measuring instrument using leakage electromagnetic field
KR102561580B1 (en) Security document printing method and apparatus that can identify the authenticity of security paper
JP4844859B2 (en) Safety thread, authenticity determination device thereof, and authenticity determination method thereof
JP2006277443A (en) Genuineness discriminating medium
KR101780016B1 (en) Apparatus and method for discriminating paper money using rf
EP0948751B1 (en) Method for forming a radio frequency responsive target
JPS582687A (en) Detector for metal piece existing in sheet paper
JP2003220780A (en) Medium characteristic detection device
EP1034516A1 (en) Microwave method for checking the authenticity
JP2003109064A (en) Medium with resonator mixed, device for detecting medium characteristic and device for discriminating truth or falsehood of medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees