JP4157913B2 - Axis rotor blade wind turbine - Google Patents

Axis rotor blade wind turbine Download PDF

Info

Publication number
JP4157913B2
JP4157913B2 JP2002383615A JP2002383615A JP4157913B2 JP 4157913 B2 JP4157913 B2 JP 4157913B2 JP 2002383615 A JP2002383615 A JP 2002383615A JP 2002383615 A JP2002383615 A JP 2002383615A JP 4157913 B2 JP4157913 B2 JP 4157913B2
Authority
JP
Japan
Prior art keywords
wind
guide frame
conduction path
shaft
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002383615A
Other languages
Japanese (ja)
Other versions
JP2004204830A (en
Inventor
正典 藤崎
Original Assignee
正典 藤崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正典 藤崎 filed Critical 正典 藤崎
Priority to JP2002383615A priority Critical patent/JP4157913B2/en
Publication of JP2004204830A publication Critical patent/JP2004204830A/en
Application granted granted Critical
Publication of JP4157913B2 publication Critical patent/JP4157913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

【0001】
【産業上の利用分野】
本発明は風力を利用した風車の改良に係るものであり、大型化と利用効率の向上を可能にして発電、または流体ポンプを稼働させ動力源として使用することを特徴とするものである。
【0002】
【従来の技術】
風車は環境負荷の少ない動力源であり化石燃料の代替エネルギーとして普及促進が要求されている。
【0003】
従来の風車には、主に垂直軸型、水平軸型の2タイプが既存していて、垂直軸風車のタイプにはサボニウス型、カップ型、フレイト型など回転軸の横方向に複数枚の鋼板等の羽根を固着して風力を受けて垂直軸と共に回転させている。
【0004】
羽根には鋼板のほか布、樹脂などを使って垂直軸には伝達機構を作用させて、発電機等の動力源として利用している。
【0005】
その他、垂直軸を中心とした左右いずれかの半径に風よけガードをつけて、回転翼の抵抗面への風力を遮断して受風面の回転翼を有効利用しようとする垂直軸風車がある、しかし垂直軸風車は小型で簡易なものが多く普及していない。
【0006】
他方、水平軸型は主にプロペラに風力を受けて、支柱頂部周囲を風向きと直角に回転するようになっていて、風力発電機を備えた環境技術として、プロペラ直径60メートル規模のものが普及している。
【0007】
【発明が解決しようとする課題】
垂直軸型風車は、垂直軸側面の中心に固着した複数枚の羽根に風力を受けて、羽根表面積の大きい方向に回転するようになるから、表面積の小さい方(羽根の裏面)は、風力に抗して風向きと逆方向に回転することになる、従って、大型化した場合にはこの関係が作用して、出力面で利点がなくなってしまい普及しない原因になっている。
【0008】
また、公知技術として、垂直軸を中心とした羽根表面積の小さい方(羽根の裏面)の半径に前述の風よけガードをつけて、半径の風力を遮るようにした風車も提案されている、これは風力に抗して風向きと逆方向に回転する負荷を軽減する方法として有効であるが、半径に受ける風力を逃してしまい垂直軸の回転を強力にする有効手段とはならないし、効率よい垂直軸型風車造りに課題が残っている。
【0009】
その他、垂直軸型風車の利点としては、風車設置面積が少なく大型風車の建造が可能なことで、例えば火力発電所の煙突同様に敷地は狭く上空には高くできること或は、設置面積の広い駐車場、海岸などに同じ型式の風車を横に倒した状態に使用することである、然るに前述の回転翼受風面積(羽根の表裏)の関係から垂直軸を中心とした、左右の羽根をいかに有効かつ、効率よく利用するかは技術解決の課題となっている。
【0010】
【課題を解決するための手段】
A 回転する縦軸1の側面又は基礎40に固定した縦軸1の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく空洞の導風枠5を縦軸1に対して水平方向の偏芯軸の半周に設け、導風枠5の重心下端の導風枠支脚5’を円周に回転可能に保持し湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、風導通路7狭窄部12の流速誘引を利用した二次風力11を風導通路7内部に吸引させ、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて風向きと反対方向に変換した放出口13より回転翼受風面3に放出させて縦軸1の全回転翼に風力を受けて回転するようになる。
【0011】
B 導風枠5後方縦軸1中心線14寄りの側面15に結合した方向舵16を、対側縦軸1より風下の導風枠5の対抗圧力に対峙して先端にかけて曲面17、18に伸ばし、縦軸1に回転可能に接合した導風枠軸受19を支点の導風枠5を風下に長い偏芯構造として導風枠軸受19を中心に回動する導風枠5と、方向舵16をつり合わせ双方に加わる風圧を均衡させ縦軸1を中心とした風向きに沿い風導通路7の風力取り入れ口6を常時風上に向け回転翼2を回転するようになる。
【0012】
C 風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23先端の引きバネ24により互いに閉止を保持し、バネ24力を上回る過圧風力でセーフティハッチ20を開き風導通路7内圧を放出すると同時に連繋したワイヤロープ22、23は変速ギヤ小25大26を介して縦軸1を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受けて回転させ縦軸1の出力を伝達ギヤにより発電機28又は流体ポンプを稼働させるようになる。
【0013】
D 平基盤29に固定した台座支軸30に可回動に装着した風車台座31の台座支軸30より風下の側面上方に方向舵32と、側面下方周囲に風車台座掛33を固定し、かつ下面外周近傍に平基盤を滑走する台座支脚34を設け側面の風車台座掛33を空走状のかぎ状に設けて転倒を防ぐとともに、回転する横軸36の側面又は固定した横軸の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく空洞の導風枠5を風車台座31表面両サイドの軸支脚35に支持された横軸36より上方半周に設けて湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、風導通路7狭窄部12の流速誘引を利用した二次風力11を風導通路7内部に吸引させ、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて風向きと反対方向に変換した放出口13より回転翼受風面3に放出させて横軸36の全回転翼に風力を受けて回転させ、風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23先端の引きバネ24により互いに閉止を保持し、バネ24を上回る過圧風力でセーフティハッチ20を開き風導通路7内圧を放出すると同時に連繋したワイヤロープ22、23は変速ギヤ小25大26を介して横軸36を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受け回転させ、台座支軸30を支点に風車台座31上の積載装置を方向舵32の風向き追従で回転させて、風力取り入れ口6を風上に向けるとともに横軸36回転翼風車自体の複数を積み重ねた頂部の支軸48をアーム49支柱38で補強し、それぞれの出力は1本のチェーン39の連繋作動で発電機28又は流体ポンプの動力源として使用するようになる。
【0014】
E 基礎40に立設した台座支軸30に可回動に装着した風車台座31の台座支軸30より風下の側面上方にかけて、方向舵32、32を固定し、風車台座31下面に台座支脚34を設け先端の車輪41をゲート架台42上面のレール43上を走行可能にして方向舵32、32の風向き追従とともに、風車台座31表面に立設した軸支脚35を挿通回転する横軸36の側面又は固定した横軸の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく空洞の導風枠5を横軸36回転翼上方半周に設けて湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて横軸36の全回転翼に風力を受けて回転させ、風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23は変速ギヤ小25大26を介して横軸36を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受け回転させ、横軸36回転翼に付帯する導風枠5セーフティハッチ20遮閉板21を包含した風車ユニットを横軸36に結合し、複数個の風車ユニット搭載の風車台座31の表面に設置した発電機28又はオイルポンプに出力を伝達するようになる。
【0015】
【作用】
上記本発明に係る軸沿回転翼風車の使用状態は次のようになる。
イ) 縦軸1に対して導風枠5は長方半円形の偏芯軸に形成されていて、前面寄りに導風枠軸受19を可回動に設けている、従って長方半円形の導風枠5は縦軸1より後方が長く、片側の回転翼受風面3より重くなり、下端に導風枠支脚5’をつけて支持し、縦軸1を中心に風向きに沿って周囲を回転するようになっていて、
【0016】
風導通路入口6より狭窄部12に入った風力は速度を上げて通過する、その際に側面の2次風力浸入口9から狭窄部12通過の母体となる風力10に吸引されて、合併した風力11は風導通路7奥の湾曲8に向かう、
【0017】
更に奥のカーブした先端を通過して風向きと反対方向の放出口13から吹き出し反転している回転翼受風面3に風圧を加えるようにして全ての回転翼2に風圧を受け回転させている。
【0018】
ロ) 風向きに対応する導風枠5の方向を調節する方向舵16を導風枠5後方軸芯14寄りの側面に結合15(図3参照)して、それぞれに加わる風圧を均衡させる方向舵16は対側の導風枠5方向への押圧力を受け易い曲面17、18状に設けて、導風枠5と方向舵16双方の押圧力をつり合わせて、共に縦軸1を中心とした風向きの変化に対応するようになっている。
【0019】
ハ) 風導通路7に入った風力が指定風圧を越えるとセーフティハッチ20のバネ24力に打ち勝って外に押し開き過圧風力を逃がすと同時に連繋しているワイヤロープ22、23は駆動ギヤ25、26を介して遮閉板21に連結したフック44と連動して縦軸1に取り付く遮閉板軸受27を支点に導風枠5対側の回転翼受風面3前面(風上側)に遮閉板21を移動させ過風圧力を遮る。
【0020】
同時に導風枠5と方向舵16との均衡がくずれて方向舵16の押圧力が勝り導風枠軸受19を中心の導風枠5側は後退回動する、しかし導風枠5本体は導風枠軸受19が偏芯で風下を長く取り付けているから方向舵16の先端の曲面17、18が縦軸1を大きく過ぎると逆作用が働き(対側風圧を受け)それ以上後退することはない。
【0021】
その際、遮閉板21は回転翼受風面3の前面に移動して過風圧力の直撃を受けることなく過風圧力を調節して損壊を免れるようになる、従ってセーフティハッチ20は強弱の風圧に対応して開閉をくりかえし指定風圧に戻った際にはセーフティハッチ20は閉じて遮閉板21は回転翼2前面から後退して閉止状態になる。
【0022】
ニ) 平面の基盤29に設置固定している台座支軸30上端を風車台座31中心の台座軸受45に挿冠して360°回転可能に乗せて、少なくとも外周近傍4ケ所にボール、車輪などの滑走できる台座支脚34を設けるとともに浮き上がり転倒防止の風車台座掛33を基盤29外周の裏面に空走状に掛けて、風車台座31に設置している付帯設備の安定を確保して水平方向の左右自在に回るようになる。
【0023】
方向舵32は風車台座31中心より風下寄りの側面の左右2面に堅固に固定され、ここで風が吹けば台座支軸30を支点に風向きに対応するようになる。
【0024】
他方、風車台座31上面の横軸支脚35、35には回転翼2を可回動に支持し、横軸支脚35の他所には導風枠5を固定して、風車台座31とともに動く、即ち方向舵32、32の向きに従って風導通路7入口6を風上に向けて、奥のカーブした先端から風向きと逆方向の風力を放出13させ、回転翼受風面3に吹きつけるようになる。
【0025】
また、過圧風力に対してはセーフティハッチ20とワイヤロープ22、23を繋ぐ変速ギヤ25、26を介した遮閉板21の連動により前記同様に風力調節を行い回転翼受風面3と、導風枠5の破損は免れる、従って方向舵32、32に風力を受けて風車台座31と一体となっている回転翼2と導風枠5は多様な風向きに対応可能となる。
【0026】
ホ) 基礎40に立設している台座支軸30に風車台座31の中心回転孔を着装して上部は浮き上がり防止のナット、又はピンで回転可能に固定される、水平方向に回転する風車台座31表面側部の台座支軸30より風下に方向舵32、32を堅固に取り付け、重なるように立設している軸支脚35に横軸36を挿通しこの横軸36より上方に設置した導風枠5、セーフティハッチ20、遮閉板21の一連の装置の風車ユニットを水平方向に複数体結合して、途中適宜、軸支脚35で支持して横軸36回転翼が横並びになっている。
【0027】
他方、風車台座31の裏面と、基礎40表面の隙間を車両通行可能な高さとし、往来できるゲート架台42上面にレール43を敷設して風車台座裏面に取り付けた台座支脚34の車輪41を乗せて走らせ方向舵32、32の作用を円滑にして前記導風枠5入口6を風上に向け風車ユニットの複合した出力を得るようにしている。
【0028】
【実施例】
軸沿回転翼風車の実用化には風力の利用効率を高めるほかに、設置面積の少ない大型化又は回転翼自体の大型化を重視する必要があって、縦軸1回転翼風車又は横軸36回転翼風車のユニットを積み重ねて(図1、図7参照)出力を増大させることができる。
【0029】
即ち基礎40上面の縦軸受47に接合した縦軸1(図5参照)に風車ユニットを積み重ねて支柱38上端の軸受48(図1参照)に保持接合して、途中数ケ所の軸受48、48を挿通した縦軸1の側面には複数枚の回転翼2を屈曲又は湾曲状の鋼板を同じ方向に溶接又は固定金具で固着される。
【0030】
また、前記縦軸回転翼1風車を横に倒した状態の横軸36回転翼風車においても、風車ユニットの積み重ねが可能で(図7参照)高い出力を得ることができる、その際の装置破損と弱風時の回転力を考慮した場合、縦軸1回転翼、横軸36回転翼共に回転翼2の風力に対する受風面3と抵抗面4を区分することなく、全ての回転翼2を受風面3として利用し強風対策には周囲の支柱38の補強が不可欠となる。
【0031】
次に実施例に基づく稼働状況を説明する、
a) 図1〜6は本発明に係る軸沿回転翼風車の第1のものの実施例を示すが、縦軸1に3体の風車ユニットを取り付けて(図1参照)支柱38支柱38間をまたぐアーム49中央の縦軸受48に縦軸1上端を可回動に接合して補強され、途中の各風車ユニット間隙の縦軸受48、48においても同じ補強をして、強風に耐える構造となっている、従って狭い敷地に地上高い縦軸1回転翼風車の建設を可能として、
【0032】
正面矢印方向からの風力は回転翼2の受風面3に回転を与えて後方に通りぬけて行く、他方縦軸1を中心に回動する導風枠5が、半周の偏芯でしかも風下に長い構造であるから導風枠5の重心は外側の風下となり、導風枠軸受19に加わる負荷が増大してしまう、この片荷に対して導風枠支脚5’を設けて、レール48上面を滑走させ水平方向の回転を円滑にしている。
【0033】
b) 図1〜6は本発明に係る軸沿回転翼風車の第2のものの実施例を示すが、縦軸1に導風枠軸受19を空転状に接合して(図5参照)導風枠5は縦軸1を挟んだ回転翼受風面3の対側に可回動に取り付けていて、縦軸1の風下に結合15している方向舵16曲面17、18に当たる風圧と、導風枠5の頭部に当たる風圧が、縦軸1を支点にして、風上に風導通路入口6を静止状態にさせるには、方向舵16の風下への長さと、曲面17、18の縦軸1の対側方向への伸び16’(図3参照)によって調節を図り双方を均衡させている。
【0034】
c) 図3、図5は本発明に係る軸沿回転翼風車の第3のものの実施例を示すが、気候の自然条件のなか風車の実動に際して、機器の安全性を考慮した導風枠5の外面に、セーフティハッチ20を蝶番を基に(図6参照)外に開くように取り付けて、内面のフック51に掛けたワイヤロープ22はガイドローラ22’に導かれて、変速ギヤ小25に連繋され変速ギヤ大26と遮閉板フック44を結ぶワイヤロープ23は、それぞれに連繋され変速されている。(図3参照)
【0035】
さらに、遮閉板バネ掛52と導風枠5内面側壁のバネ掛53には、遮閉板21と導風枠5を同時に動かす引きバネ24を架け、この状態のバネ24力は遮閉板21とセーフティハッチ20を閉じている、しかし風導通路7に過圧風力が入ると押し開け、内面のフック51に掛けたワイヤロープ22はセーフティハッチ20の開きの大小に応じて変速ギヤ小25に、予め巻きつけているワイヤロープ22をセーフティハッチ20寄りに引き寄せ回転させる。(図3参照)
【0036】
他方、遮閉板フック44に連繋したワイヤロープ23はギヤ大26に巻きつけられて遮閉板21を引き寄せ、回転翼受風面3の前面寄りに移動させ風圧力の大小で遮閉板21の移動の大小を生じて、回転翼受風面3に加わる風圧を調節している。(図3参照)
【0037】
従って風圧力が、設定の正常圧力に戻ると伸びているバネ24は自力で復元して連繋しているセーフティハッチ20と遮閉板21は閉じて正面からの風力を回転翼受風面3に受けるとともに風導通路7に入った風力は反対側から反転している回転翼受風面3に風力を受けて回るのである。
【0038】
d) 図7〜10は本発明に係る軸沿回転翼風車の第4のものの実施例を示すが、円の平らな表面の側面周囲に横へ突起50のある基盤29を、基礎上に堅固に固定し、当該風車の土台として中央に台座支軸30を垂直に固定している、また上部に風車台座31を水平方向の回転自在に乗せ、ぬけ止めのピン又はナットで固定される。(図9参照)
【0039】
台座支軸30に支持されて左右に回転可能な風車台座31には、裏面に台座支脚34を設けて基盤29表面を滑走するローラ又は車輪をつけて支えている、また中心を結ぶ十字線4ケ所の縁より下方向に台座掛33の先端を基盤29周囲の欠部に入り込んで、風車台座31と共に回転して傾きには基盤29の突起50に掛かるようになっている、さらに、台座支軸30より風下の両側面に方向舵32、32を固定して、風向き追従によって風車台座31ごと回転させる。
【0040】
その風車台座31表面に堅固に固定した軸支脚35、35には当該風車の横軸36を挿通して回転翼2が固着されていて、横軸36より下方向に回転翼受風面3を露出している、他方横軸36より上方向には導風枠5を軸支脚35に固定し雨水溜まりを排除し、積雪の回転翼2への影響を少なくしている、以下導風枠5の実施状況は前記第1、第3と同じであり説明を省略します。
【0041】
なお、横軸36回転翼風車を1つのユニットとして積み重ねて、支柱38の囲いの中で(図8参照)稼働するようにして、出力をチェーン39を伝達手段として1つにまとめて発電機又は流体ポンプを駆動し高い出力を得るようになっている、また出力の伝達手段の使途は設置場所の風土環境によってベルト、シャフト、ギヤ等選択余地がある。
【0042】
e) 図11〜12は本発明に係る軸沿回転翼風車の第5のものの実施例を示すが、鉄骨構造の長方形に組立てた風車台座31を回転可能に台座支軸30で支持し、風車台座31上側面に立設した軸支脚35に挿通している横軸回転翼36の風車ユニットを水平方向に連結して、同一軸36の回転力を高めている。
【0043】
風車台座31下面の外寄りには台座支脚34を取り付け車輪41を使って、基礎40の台座支軸30設置面に2.5メートル程度の高さのあるゲート架台42を上面に設けレール43の軌道上の車輪41によって、風車台座31側面に立設している方向舵32、32に従って風向きに対応している。
【0044】
上記、風車台座31の下面と、基礎40表面の空間は駐車場、倉庫などの使用が可能で敷地の有効利用ができるほか、基礎40表面を平坦にすることもなく、ゲート架台42の高低調節で横軸36回転翼風車の設置場所は広範なものになる。
【0045】
図13〜14は参考例であって、横軸固定設置型の公知技術を示すが、前記第4〜5のものとの相違点として、予め、風向きを想定して設置し、方向舵を装備しないもので、季節風、大陸風など地方の風通しに合わせて場所が選定される、しかし、本発明の導風枠5、セーフティハッチ20、遮閉板21の機能を備えれば大型化が現実のものとなる。
【0046】
即ち横軸36回転翼の軸支脚35、もしくはそれに替わる軸支柱(固定設置の場合)に導風枠5を固定するから、横方向には前記、風車ユニットをいくら接続しても際限はなく、1本の横軸36をフレキシブル継手を使い接続し、必要に応じて軸支脚35又は支柱で支持すれば、地形の変化にも対応可能で、例えば海岸だったりビル屋上など建設工事は容易にできる。尚、機械式に行うセーフティハッチ、遮閉板の連繋はワイヤロープでなく、電気信号及びモーター電磁機を使って行うことは可能であるが、本発明を明瞭にするため省略する、また、方向舵の代替手段として、方向センサーと電気信号を結ぶ風車の方向制御をモーターで行うことは可能であるが、本発明を明瞭にするため省略する。
【0047】
【発明の効果】
以上で明らかな如く、本発明に係る軸沿回転翼の、露出している受風面に対して、対側の抵抗面に空洞状の導風枠を設けて、風導通路の風力流入過程で、さらにプラスした風力を導き入れ、湾曲面に沿って逆向させた放出口から、反転翼に吹きつけ回転翼全てに風力を受け、いわゆるベンチュリー効果が発揮されている。
【0048】
即ち、従来の垂直軸風車は、受風面積の広い回転翼の方向へ回転していたために、裏面の反転翼側は、同じ風力に抗して回転するから、僅差の回転力でしかなかったし、いくら大型化しても同じ関係でしかなかった。
【0049】
これに対して、導風枠を常に風上に向ける方向舵によって、風力を風導通路に導き、過剰な風力に対しては、セーフティハッチを開き放出するとともに回転翼前面を遮閉板で塞いで、強風の直撃を免れるようにして不特定の風速に対処し、しかも軸沿回転翼の特長として外径が大きくなると、てこの応用そのままに出力は増加して、本発明はすでに回転翼の抵抗面の負荷はなくなっているから類例のない出力達成を可能にして、軸に伝達した発電機又は流体ポンプを稼働させている。
【0050】
そのほかに、水平方向に回転する風車台座の左右に軸支脚と、方向舵を立設して軸支脚には横軸回転翼を挿通して、軸より上方に導風枠を設置固定して横軸、即ち水平の回転軸に垂直方向に回転翼が回ることになる、また立設している方向舵は風車台座ごと風向き追従している、従ってこの風車ユニットを上方に積み重ねて、回転軸の動力を総括すれば狭い設地面に高い出力を得ることが可能になっている。
【0051】
また、風車ユニットを横並びに接続して回転させる風車台座下部と、基礎表面との空間を様々な用途に使用するスペースの提供が可能になっている、例えば空間を利用した施設を駐車場として使用する場合に、台座支脚の軌道敷を、人や車両の通行可能な高さのゲート架台上面に設けるようにして、台座支軸を中心に回転する円周範囲の空間が駐車場などの、風車出力以外の収益を生む施設の利用が可能となっている。
【0052】
さらに、軸沿回転翼の横軸固定設置型の公知技術に、本発明の導風枠と、セーフティハッチ、又は遮閉板を装着して大型回転翼を実現している、横軸の場合には軸支脚を途中に設けることで回転翼の拡大に限界はなく、前記風車ユニットを1本の軸に連続して取り付け、回転軸の出力を効果的に取り出せるようにしている。
【0053】
また横軸固定設置型は、海上、山頂、河川敷、砂漠、道路沿、工場など一定方向からの風向きに合わせて、風を待ち受けるもので、本発明では回転軸の途中にユニバーサルジョイントの接続で、直線状や平坦に設置することもなく、保守管理の容易な規模の数段程度にすれば利用価値はさらに高く、再生可能な自然エネルギーの効果的な利用を実現している。
【0054】
【図面の簡単な説明】
【図1】本発明に係る軸沿回転翼風車の上記第1〜3のものの実施例を示す3体の回転翼の取り付く正面図である。
【図2】図1で示す平面図である。
【図3】図1で示すA−A線の断面図である。
【図4】図3で示す立体斜視図である。
【図5】本発明に係る軸沿回転翼風車の上記第1〜3のものの実施例を示す単体の露出側面図である。
【図6】本発明に係る軸沿回転翼風車の上記第1〜3のものの実施例を示す単体の背面図である。
【図7】本発明に係る軸沿回転翼風車の上記第4のものの実施例を示す5体の回転翼の取り付く正面図である。
【図8】図7で示す平面図である。
【図9】本発明に係る軸沿回転翼風車の上記第4のものの実施例を示す単体の正面図である。
【図10】図9で示すB−B線の断面図である。
【図11】本発明に係る軸沿回転翼風車の上記第5のものの実施例を示す正面図である。
【図12】図11で示す平面図である。
【図13】本発明に係る軸沿回転翼風車の上記第5のものの実施例を示す設置固定型の参考例を示す正面図である。
【図14】図13で示す平面図である。
【0055】
【符号の説明】
1・・・・縦軸
2・・・・回転翼
3・・・・回転翼受風面
4・・・・回転翼抵抗面
5・・・・導風枠
6・・・・風力取り入れ口
7・・・・風導通路
8・・・・湾曲面
9・・・・二次風力取り入れ口
10・・・・誘引母体(一次)
11・・・・二次風力
12・・・・風導通路狭窄部
13・・・・風導通路放出口
14・・・・中心線
15・・・・側面結合部
16・・・・方向舵
16’・・・対側張り出し部
17・・・・方向舵湾曲面
18・・・・方向舵湾曲面
19・・・・導風枠軸受
20・・・・セーフティハッチ
20’・・・蝶番
21・・・・遮閉板
22・・・・ハッチワイヤロープ
22’・・・ガイドローラ
23・・・・遮閉板ワイヤロープ
24・・・・引きバネ
25・・・・変速ギヤ小
26・・・・変速ギヤ大
27・・・・遮閉板軸受
28・・・・発電機
29・・・・平基盤
30・・・・台座支軸
30’・・・台座支軸連結部
31・・・・風車台座
32・・・・横軸風車方向舵
33・・・・風車台座掛
34・・・・台座支脚
35・・・・軸支脚
36・・・・横軸
37・・・・レール
38・・・・支柱
39・・・・チェーン
40・・・・基礎
41・・・・車輪
42・・・・ゲート架台
43・・・・レール
44・・・・遮閉板フック
45・・・・台座軸受
46・・・・ゲート上面
47・・・・縦軸受
48・・・・縦軸中間軸受
49・・・・アーム
50・・・・基盤突起
51・・・・セーフティフック
52・・・・遮閉板バネ掛
53・・・・導風枠バネ掛
[0001]
[Industrial application fields]
The present invention relates to an improvement of a wind turbine using wind power, and is characterized in that it can be increased in size and improved in use efficiency to generate power or operate a fluid pump to be used as a power source.
[0002]
[Prior art]
A windmill is a power source with a small environmental load, and it is required to promote its use as an alternative energy to fossil fuels.
[0003]
Conventional wind turbines mainly have two types, vertical axis type and horizontal axis type, and vertical axis wind turbine types include Savonius type, cup type, freight type, etc. The blades are fixed to receive wind force and rotate with the vertical axis.
[0004]
In addition to steel plates, cloth and resin are used for the blades, and a transmission mechanism is applied to the vertical shaft, which is used as a power source for generators and the like.
[0005]
In addition, there is a vertical axis wind turbine that attaches a windbreak guard to either the left or right radius centered on the vertical axis to block the wind force on the resistance surface of the rotor blade and effectively use the rotor blade on the wind receiving surface. Yes, but many vertical axis wind turbines are small and simple.
[0006]
On the other hand, the horizontal axis type mainly receives wind power from the propeller and rotates around the top of the column at right angles to the wind direction. As an environmental technology equipped with a wind power generator, a propeller with a diameter of 60 meters is popular. is doing.
[0007]
[Problems to be solved by the invention]
The vertical axis wind turbine receives wind power from a plurality of blades fixed to the center of the vertical shaft side surface and rotates in the direction where the blade surface area is large. Therefore, when the size is increased, this relationship acts, causing no advantage in terms of output and causing it not to spread.
[0008]
In addition, as a known technique, a windmill in which the windbreak guard described above is attached to the radius of the smaller blade surface area (back surface of the blade) around the vertical axis to block the radial wind force has been proposed, This is effective as a method to reduce the load that rotates in the direction opposite to the wind direction against the wind force, but it does not become an effective means of escaping the wind force received in the radius and strengthening the rotation of the vertical axis, and it is efficient Issues remain in the construction of vertical axis windmills.
[0009]
The other advantage of the vertical axis wind turbine is that it has a small wind turbine installation area and can be used to build large wind turbines. For example, the site can be narrow and high like a chimney of a thermal power plant, or a large parking area can be installed. It is to use the same type of windmill on the side of the car park, coast, etc. However, how to use the left and right blades centered on the vertical axis because of the above-mentioned rotor blade wind area (front and back of the blades) Whether it is used effectively and efficiently is an issue of technical solutions.
[0010]
[Means for Solving the Problems]
A A hollow air guide frame surrounding a rotating blade 4 symmetrical with a wind receiving surface 3 of a rotating blade 2 fixed to the side surface of the rotating vertical axis 1 or the casing side surface rotating around the vertical axis 1 fixed to the foundation 40 5 is provided on the half circumference of the eccentric shaft in the horizontal direction with respect to the vertical axis 1, and the wind guide frame support leg 5 ′ at the lower end of the center of gravity of the wind guide frame 5 is rotatably held around the circumference, and the wind conduction path 7 having the curve 8 is formed The secondary wind power inlet 9 is formed on the side surface of the wind guide frame 5 leeward from the wind power inlet 6 and the secondary wind 11 utilizing the flow velocity attraction of the narrowed portion 12 of the wind conduction path 7 is introduced into the wind conduction path 7. The tip of the wind conduction path 7 curved with the wind power of the attracting mother body (primary) 10 is curved and discharged to the rotor blade wind receiving surface 3 from the discharge port 13 converted in the direction opposite to the wind direction. The rotor blades rotate by receiving wind power.
[0011]
B The rudder 16 coupled to the side surface 15 near the rear vertical axis 1 center line 14 of the wind guide frame 5 is extended to the curved surfaces 17 and 18 from the opposite vertical axis 1 toward the tip against the counter pressure of the wind guide frame 5 leeward. The wind guide frame bearing 19 that is rotatably joined to the longitudinal axis 1 has the wind guide frame 5 that is a fulcrum as a long eccentric structure on the leeward side, and the wind guide frame 5 that rotates around the wind guide frame bearing 19 and the rudder 16. The wind pressure applied to both sides of the balance is balanced, and the rotor blades 2 are always rotated along the wind direction about the vertical axis 1 with the wind intake 6 of the wind conduction path 7 facing upwind.
[0012]
C A safety hatch 20 provided in the wind conduction path 7 is attached so as to be openable and closable outward, and the wire ropes 22 and 23 that connect the shielding plate 21 are held closed by the pulling spring 24 at the tip, and the excess of the spring 24 force is exceeded. The wire ropes 22, 23 connected simultaneously with the pressure wind force to open the safety hatch 20 to release the internal pressure of the wind conduction path 7 are connected to the blocking plate bearing 27 having the vertical axis 1 as a fulcrum through the transmission gear small 25 large 26. The closing plate 21 is moved to the front surface of the rotor blade receiving surface 3 to suppress the wind pressure applied during excessively strong winds, and at the time of normal wind pressure, the safety hatch 20 is closed by the spring 24 force so that all the rotor blades 2 receive wind force and rotate. The generator 28 or the fluid pump is operated by the transmission gear for the output of the shaft 1.
[0013]
D A rudder 32 is fixed to the upper side of the leeward side of the pedestal support shaft 30 of the windmill pedestal 31 fixed to the pedestal support shaft 30 fixed to the flat base 29, and a windmill base seat 33 is fixed to the lower side of the side surface, and A pedestal pedestal 34 that slides on a flat base is provided near the outer periphery, and a side windmill pedestal hook 33 is provided in a free-running hook shape to prevent tipping and rotate around the side of the rotating horizontal shaft 36 or around a fixed horizontal shaft. A hollow air guide frame 5 surrounding the rotor blade 4 symmetrical to the wind receiving surface 3 of the rotor blade 2 fixed to the side surface of the casing is positioned above the horizontal shaft 36 supported by the shaft support legs 35 on both sides of the surface of the windmill base 31. A wind conduction path 7 having a curve 8 is formed on a half circumference and a secondary wind intake 9 is opened on the side of the wind guide frame 5 leeward from the wind intake 6 to use the flow velocity attraction of the narrowed portion 12 of the wind conduction path 7. Sucked secondary wind power 11 into the wind conduction path 7 Then, the tip of the wind conduction path 7 curved with the wind force of the attracting mother body (primary) 10 is curved and discharged to the rotor blade receiving surface 3 from the discharge port 13 which is converted in the direction opposite to the wind direction, and the horizontal axis 36 is fully rotated. The wing is rotated by receiving wind force, and a safety hatch 20 provided in the wind conduction path 7 is attached so as to be openable and closable outward, and the wire ropes 22 and 23 that connect to the shielding plate 21 are held closed by a pull spring 24 at the tip. Then, the safety hatch 20 is opened by the overpressure wind force exceeding the spring 24 and the internal pressure of the wind conduction path 7 is released. At the same time, the wire ropes 22 and 23 connected to each other are shielded with the horizontal shaft 36 as a fulcrum through a small gear 25 and a large gear 26. The shielding plate 21 joined to the plate bearing 27 is moved to the front surface of the rotor blade receiving surface 3 to suppress the wind pressure applied during excessively strong winds, and at the normal wind pressure, the safety hatch 20 is closed by the spring 24 force. The rotating blade 2 receives and rotates the wind force, rotates the loading device on the windmill pedestal 31 with the pedestal support shaft 30 as a fulcrum by following the wind direction of the rudder 32, directs the wind intake 6 to the windward, and rotates the horizontal shaft 36 rotating blades The support shaft 48 at the top where a plurality of wind turbines are stacked is reinforced by the arm 49 support 38, and the output of each is used as a power source for the generator 28 or the fluid pump by the linked operation of one chain 39.
[0014]
E The rudder 32, 32 is fixed from the pedestal support shaft 30 of the windmill pedestal 31 mounted on the pedestal support shaft 30 standing on the foundation 40 to the upper side of the leeward side, and the pedestal support legs 34 are attached to the lower surface of the windmill pedestal 31. The front end wheel 41 can run on the rail 43 on the upper surface of the gate mount 42 and the direction of the rudder 32, 32 is followed, and the side or fixed side of the horizontal shaft 36 is inserted and rotated through the shaft support leg 35 standing on the surface of the windmill base 31. A hollow air guide frame 5 surrounding the rotor blade 4 symmetrically with the wind receiving surface 3 of the rotor blade 2 fixed to the side surface of the casing rotating around the horizontal axis is provided on the upper half circumference of the rotor shaft 36 on the horizontal axis and curved 8 The secondary wind intake 9 is opened on the side of the wind guide frame 5 leeward from the wind intake 6 and the tip of the wind conduction path 7 curved with the wind of the attracting mother body (primary) 10 is formed. Curve the horizontal axis 36. All the rotor blades 36 receive wind force and rotate to attach the safety hatch 20 provided in the wind conduction path 7 so that it can be opened and closed outward, and the wire ropes 22 and 23 that connect the shielding plate 21 have a small transmission gear size of 25 large. The shield plate 21 joined to the shield plate bearing 27 with the horizontal axis 36 as a fulcrum is moved to the front surface of the rotor blade receiving surface 3 to suppress the wind pressure applied during excessive wind and the safety hatch 20 during normal wind pressure. The wind turbine unit including the wind guide frame 5 safety hatch 20 shielding plate 21 attached to the rotary shaft 36 is coupled to the horizontal shaft 36 by closing the spring 24 with the force of the spring 24 to receive and rotate the wind power on all the rotary blades 2. The output is transmitted to the generator 28 or the oil pump installed on the surface of the wind turbine base 31 equipped with a plurality of wind turbine units.
[0015]
[Action]
The usage state of the axially rotating blade wind turbine according to the present invention is as follows.
B) The air guide frame 5 is formed in a rectangular semicircular eccentric shaft with respect to the longitudinal axis 1, and the air guide frame bearing 19 is provided in a rotatable manner near the front surface. The wind guide frame 5 is longer than the vertical axis 1 and is heavier than the rotor blade wind receiving surface 3 on one side, and is supported by attaching a wind guide frame support leg 5 ′ at the lower end, and is surrounded by the wind direction around the vertical axis 1. Is supposed to rotate
[0016]
The wind force that has entered the constriction 12 from the wind passage entrance 6 passes at an increased speed. At that time, the wind force is sucked by the wind force 10 that is the parent body of the constriction 12 through the secondary wind inlet 9 on the side surface and merged. The wind force 11 is directed toward the curve 8 at the back of the wind conduction path 7.
[0017]
Further, all the rotor blades 2 are rotated by receiving wind pressure so as to apply wind pressure to the rotor blade receiving surface 3 that passes through the deep curved tip and blows out from the discharge port 13 opposite to the wind direction. .
[0018]
B) A rudder 16 that adjusts the direction of the wind guide frame 5 corresponding to the wind direction is coupled 15 (see FIG. 3) to the side surface near the rear axis 14 of the wind guide frame 5 to balance the wind pressure applied to each of the rudder 16 Provided in curved surfaces 17 and 18 that are easily subjected to a pressing force in the direction of the airflow guide frame 5 on the opposite side, and the pressing force of both the airflow guide frame 5 and the rudder 16 are balanced, both of which are in the direction of the wind around the vertical axis 1 Responds to change.
[0019]
C) When the wind force entering the wind conduction path 7 exceeds the specified wind pressure, the spring 24 force of the safety hatch 20 is overcome and the spring rope 24 is pushed outward to release the overpressure wind force. , 26 on the front surface (windward side) of the rotor blade receiving surface 3 opposite to the wind guide frame 5 with a shielding plate bearing 27 attached to the vertical axis 1 in conjunction with the hook 44 connected to the shielding plate 21 via The shielding plate 21 is moved to block the overwind pressure.
[0020]
At the same time, the balance between the wind guide frame 5 and the rudder 16 is lost, the pushing force of the rudder 16 wins, and the wind guide frame 5 around the wind guide frame bearing 19 rotates backward, but the main body of the wind guide frame 5 is the wind guide frame. Since the bearing 19 is eccentric and has a long leeward installation, if the curved surfaces 17 and 18 at the tip of the rudder 16 are too large on the vertical axis 1, a reverse action is exerted (receives the opposite wind pressure) and the retreat does not go any further.
[0021]
At that time, the shielding plate 21 moves to the front surface of the rotor blade wind receiving surface 3 so as to avoid the damage by adjusting the overwind pressure without being directly hit by the overwind pressure. Therefore, the safety hatch 20 is weak and strong. When the opening / closing is repeated in response to the wind pressure and the specified wind pressure is restored, the safety hatch 20 is closed and the shielding plate 21 is retracted from the front surface of the rotor blade 2 to be closed.
[0022]
D) The upper end of the pedestal support shaft 30 installed and fixed on the flat base 29 is inserted into the pedestal bearing 45 at the center of the windmill pedestal 31 so as to be able to rotate 360 °, and at least four places near the outer periphery such as balls and wheels A pedestal pedestal 34 that can be slid and provided with a windmill pedestal hook 33 that lifts up and prevents falling is hung on the back surface of the outer periphery of the base 29 to ensure the stability of ancillary equipment installed on the windmill pedestal 31 in the horizontal direction. You can turn freely.
[0023]
The rudder 32 is firmly fixed to the left and right surfaces of the side closer to the lee side than the center of the windmill pedestal 31. When the wind blows here, the rudder 32 corresponds to the wind direction with the pedestal support shaft 30 as a fulcrum.
[0024]
On the other hand, the rotor blades 2 and 35 are rotatably supported on the horizontal shaft support legs 35, 35 on the top surface of the windmill base 31, and the wind guide frame 5 is fixed to other parts of the horizontal shaft support legs 35 to move together with the windmill base 31, that is, In accordance with the direction of the rudder 32, 32, the wind conduction path 7 inlet 6 is directed to the windward, and the wind force in the direction opposite to the wind direction is discharged 13 from the curved tip of the back so as to blow on the rotor blade receiving surface 3.
[0025]
For overpressure wind force, wind power adjustment is performed in the same manner as described above by interlocking of the shielding plate 21 via the transmission gears 25, 26 connecting the safety hatch 20 and the wire ropes 22, 23, and the rotor blade wind receiving surface 3; Damage to the wind guide frame 5 is avoided, so that the rotor blades 2 and the wind guide frame 5 that are integrated with the wind turbine base 31 by receiving wind power at the rudder 32, 32 can cope with various wind directions.
[0026]
E) A wind turbine pedestal rotating in a horizontal direction, which is mounted on a pedestal support shaft 30 standing on a foundation 40 with a central rotation hole of a wind turbine pedestal 31 and is rotatably fixed with nuts or pins that prevent the wind turbine from rising. 31 Rudder 32, 32 is firmly attached leeward from the pedestal support shaft 30 on the surface side, and a horizontal shaft 36 is inserted into a shaft support leg 35 standing upright so as to overlap with the wind guide installed above the horizontal shaft 36. A plurality of wind turbine units of a series of devices including the frame 5, the safety hatch 20, and the shielding plate 21 are joined in the horizontal direction, and supported by the shaft support legs 35 as needed, and the horizontal shaft 36 rotor blades are arranged side by side.
[0027]
On the other hand, the clearance between the rear surface of the windmill base 31 and the surface of the foundation 40 is set to a height that allows the vehicle to pass. The action of the running direction rudder 32, 32 is smoothed so that the wind guide frame 5 inlet 6 is directed to the windward and a combined output of the wind turbine unit is obtained.
[0028]
【Example】
In addition to improving the efficiency of wind power utilization, it is necessary to place importance on increasing the size of the installation area or the size of the rotor blade itself in order to put the rotor blade wind turbine along the axis into practical use. The output can be increased by stacking units of the rotor blade wind turbine (see FIGS. 1 and 7).
[0029]
That is, the wind turbine unit is stacked on the vertical axis 1 (see FIG. 5) joined to the vertical bearing 47 on the upper surface of the foundation 40 and held and joined to the bearing 48 (see FIG. 1) at the upper end of the support column 38. A plurality of rotor blades 2 are bent or curved steel plates are fixed in the same direction by welding or fixing metal fittings on the side surface of the vertical axis 1 through which is inserted.
[0030]
Further, in the horizontal axis 36 rotary blade wind turbine in which the vertical axis rotary blade 1 wind turbine is tilted sideways, the wind turbine units can be stacked (see FIG. 7), and a high output can be obtained. In consideration of the rotational force at the time of weak wind, all the rotor blades 2 are arranged without separating the wind receiving surface 3 and the resistance surface 4 against the wind force of the rotor blades 2 on both the vertical axis 1 rotary blade and the horizontal axis 36 rotary blade. Reinforcing the surrounding struts 38 is indispensable for countermeasures against strong winds that are used as the wind receiving surface 3.
[0031]
Next, the operation status based on the embodiment will be described.
1) FIG. 1 to FIG. 6 show an embodiment of a first example of an axially rotating blade wind turbine according to the present invention, and three wind turbine units are attached to the vertical axis 1 (see FIG. 1). The vertical bearing 48 at the center of the striking arm 49 is reinforced by joining the upper end of the vertical axis 1 in a rotatable manner, and the vertical bearings 48 and 48 in the middle of each wind turbine unit are also reinforced to withstand strong winds. Therefore, it is possible to build a vertical rotor with a vertical axis on a narrow site.
[0032]
The wind force from the direction of the front arrow rotates the wind receiving surface 3 of the rotor blade 2 and passes rearward. On the other hand, the wind guide frame 5 that rotates about the vertical axis 1 is half-circular eccentric and downwind. Since the center of gravity of the air guide frame 5 is leeward on the outside, the load applied to the air guide frame bearing 19 is increased. The top surface is slid to facilitate horizontal rotation.
[0033]
b) FIGS. 1 to 6 show a second embodiment of an axially rotating blade wind turbine according to the present invention. The wind guide frame bearing 19 is joined to the vertical axis 1 in an idle state (see FIG. 5). The frame 5 is pivotally attached to the opposite side of the rotor blade wind receiving surface 3 with the vertical axis 1 interposed therebetween, and wind pressure hitting the rudder 16 curved surfaces 17 and 18 coupled to the lee of the vertical axis 1 and the wind guide In order for the wind pressure applied to the head of the frame 5 to make the wind conduction path entrance 6 stationary on the windward with the vertical axis 1 as a fulcrum, the length of the rudder 16 to the leeward and the vertical axis 1 of the curved surfaces 17 and 18 Is adjusted and balanced by the extension 16 '(see FIG. 3) in the opposite direction.
[0034]
c) FIG. 3 and FIG. 5 show an embodiment of a third example of an axially rotating blade wind turbine according to the present invention. In the actual operation of the wind turbine in a natural climate condition, a wind guide frame considering the safety of the equipment. A safety hatch 20 is attached to the outer surface of 5 so as to open to the outside based on a hinge (see FIG. 6), and the wire rope 22 hung on the hook 51 on the inner surface is guided to the guide roller 22 ', and the small transmission gear 25 The wire ropes 23 connected to each other and connecting the large transmission gear 26 and the shielding plate hooks 44 are connected to each other and shifted. (See Figure 3)
[0035]
Further, a pulling spring 24 for moving the shielding plate 21 and the air guide frame 5 at the same time is placed on the shielding plate spring hook 52 and the spring hook 53 on the inner side wall of the air guide frame 5. 21 and the safety hatch 20 are closed, but when overpressured wind enters the wind conduction path 7, the wire rope 22 hung on the hook 51 on the inner surface is small in accordance with the size of the opening of the safety hatch 20. Then, the wire rope 22 wound in advance is pulled toward the safety hatch 20 and rotated. (See Figure 3)
[0036]
On the other hand, the wire rope 23 connected to the shielding plate hook 44 is wound around the large gear 26 to draw the shielding plate 21 and move it closer to the front surface of the rotor blade receiving surface 3 so that the shielding plate 21 can be moved depending on the magnitude of the wind pressure. The wind pressure applied to the rotor blade receiving surface 3 is adjusted. (See Figure 3)
[0037]
Accordingly, when the wind pressure returns to the set normal pressure, the extending spring 24 is restored by its own force, and the safety hatch 20 and the shielding plate 21 that are connected to each other are closed, and the wind force from the front is applied to the rotor blade wind receiving surface 3. The wind force that is received and enters the wind conduction path 7 receives the wind force and rotates around the rotor blade receiving surface 3 that is reversed from the opposite side.
[0038]
d) FIGS. 7 to 10 show a fourth embodiment of an axis-rotating blade wind turbine according to the invention, in which a base 29 with projections 50 laterally around the sides of a flat surface of a circle is firmly mounted on the base. The pedestal support shaft 30 is vertically fixed at the center as the base of the windmill, and the windmill pedestal 31 is mounted on the upper portion so as to be rotatable in the horizontal direction, and is fixed by a pin or nut for preventing the windmill. (See Figure 9)
[0039]
A windmill pedestal 31 supported by the pedestal support shaft 30 and capable of rotating to the left and right is provided with a pedestal support leg 34 on the back surface and supported by a roller or wheel that slides on the surface of the base 29, and a cross wire 4 connecting the centers. The tip of the pedestal hanger 33 enters the notch around the base 29 downward from the edge of the base, and rotates with the windmill base 31 so that it tilts on the protrusion 50 of the base 29. Further, the pedestal support The rudder 32, 32 is fixed to both sides of the leeward from the shaft 30, and the windmill base 31 is rotated by following the wind direction.
[0040]
The rotor blade 2 is fixed to the shaft support legs 35, 35 firmly fixed to the surface of the wind turbine base 31 through the horizontal shaft 36 of the wind turbine, and the rotor blade wind receiving surface 3 is disposed below the horizontal shaft 36. The air guide frame 5 is fixed to the shaft support leg 35 in the upward direction from the other horizontal shaft 36 so as to eliminate rainwater pools and reduce the influence of snow on the rotor blades 2. The implementation status of is the same as the first and third, and the explanation is omitted.
[0041]
The horizontal axis 36 rotor blade wind turbines are stacked as one unit and operated in the enclosure of the support column 38 (see FIG. 8), and the output is combined into one generator with the chain 39 as a transmission means. The fluid pump is driven to obtain a high output, and the use of the output transmission means has a choice of belts, shafts, gears, etc. depending on the climate environment of the installation site.
[0042]
e) FIGS. 11 to 12 show a fifth embodiment of the axially-rotating blade wind turbine according to the present invention. A wind turbine pedestal 31 assembled into a rectangular steel structure is supported by a pedestal support shaft 30 in a rotatable manner. The wind turbine unit of the horizontal shaft rotary blade 36 inserted through the shaft support leg 35 standing on the upper side surface of the base 31 is connected in the horizontal direction to increase the rotational force of the same shaft 36.
[0043]
A pedestal pedestal 34 is attached to the outside of the lower surface of the windmill pedestal 31, and a wheel pedestal 34 is installed on the pedestal support shaft 30 installation surface of the foundation 40 on the upper surface by using wheels 41. The wheel 41 on the track corresponds to the wind direction according to the rudder 32, 32 standing on the side surface of the windmill base 31.
[0044]
The lower surface of the windmill base 31 and the space on the surface of the foundation 40 can be used for parking lots, warehouses, etc., and can effectively use the site, and the height of the gate gantry 42 can be adjusted without making the surface of the foundation 40 flat. Thus, the installation location of the horizontal axis 36 rotor blade wind turbine will be wide.
[0045]
FIGS. 13 to 14 are reference examples and show a known technique of a horizontal axis fixed installation type. However, as a difference from the fourth to fifth examples, it is installed in advance assuming the wind direction and is not equipped with a rudder. However, the location is selected according to the local ventilation such as seasonal winds and continental winds. However, if the function of the air guide frame 5, the safety hatch 20, and the shielding plate 21 of the present invention is provided, the enlargement is a reality. It becomes.
[0046]
That is, since the wind guide frame 5 is fixed to the shaft support leg 35 of the horizontal shaft 36 rotor blade or the shaft post (in the case of fixed installation) instead of it, no matter how much the wind turbine unit is connected in the horizontal direction, there is no limit. If one horizontal shaft 36 is connected using a flexible joint and supported by a shaft support leg 35 or a support as necessary, it is possible to cope with changes in the terrain. . It should be noted that the mechanical safety hatch and the shield plate can be connected using an electric signal and a motor electromagnetic machine instead of a wire rope, but are omitted for the sake of clarity. As an alternative, it is possible to control the direction of the wind turbine connecting the direction sensor and the electric signal with a motor, but this is omitted for the sake of clarity.
[0047]
【The invention's effect】
As is apparent from the above, the wind-inflow process of the wind conduction path by providing a hollow wind guide frame on the resistance surface on the opposite side of the exposed wind receiving surface of the axially rotating blade according to the present invention. In addition, a positive wind force is introduced, and the rotating blades are blown against the reversing blades from the discharge port that is reversed along the curved surface, and the so-called venturi effect is exhibited.
[0048]
In other words, since the conventional vertical axis wind turbine was rotated in the direction of the rotor blade having a large wind receiving area, the reverse blade side on the back surface was rotated against the same wind force, so there was only a slight rotational force. No matter how large it was, it was only the same relationship.
[0049]
On the other hand, wind power is guided to the wind conduction path by the rudder that always directs the wind guide frame to the windward, and for excessive wind power, the safety hatch is opened and released, and the front surface of the rotor blade is closed with a shielding plate. If the outer diameter is increased as a feature of the rotor along the axis, the output increases as it is, and the present invention has already improved the resistance of the rotor. Since the load on the surface is gone, an unprecedented output can be achieved and the generator or fluid pump transmitted to the shaft is in operation.
[0050]
In addition, shaft support legs and rudder are installed on the left and right of the wind turbine base that rotates in the horizontal direction, the horizontal support blades are inserted into the shaft support legs, and the wind guide frame is installed and fixed above the shaft. In other words, the rotor blades rotate in the vertical direction with respect to the horizontal rotating shaft, and the standing rudder follows the wind direction with the wind turbine base, so the wind turbine units are stacked up to power the rotating shaft. In summary, it is possible to obtain a high output on a narrow floor.
[0051]
In addition, it is possible to provide space that uses the space between the lower part of the windmill pedestal that connects and rotates the windmill unit side by side and the surface of the foundation for various purposes. For example, a facility using the space is used as a parking lot. When the pedestal support leg track is installed on the upper surface of the gate pedestal that is high enough for humans and vehicles to pass, the space around the pedestal support shaft rotates around the space around the windmill, such as a parking lot. Facilities that generate revenue other than output can be used.
[0052]
Furthermore, in the case of a horizontal axis, a large rotary blade is realized by mounting the wind guide frame of the present invention and a safety hatch or a shielding plate on the well-known technology of the horizontal axis fixed installation type of the axis-side rotary blade. By providing a shaft support leg in the middle, there is no limit to the expansion of the rotating blades, and the wind turbine unit is continuously attached to one shaft so that the output of the rotating shaft can be taken out effectively.
[0053]
In addition, the horizontal axis fixed installation type waits for the wind according to the wind direction from a certain direction such as at sea, mountaintop, riverbed, desert, roadside, factory, etc.In the present invention, by connecting a universal joint in the middle of the rotating shaft, The utility value is even higher if it is set to several stages on a scale that is easy to maintain and manage without being installed in a straight line or flat, and effective use of renewable natural energy is realized.
[0054]
[Brief description of the drawings]
FIG. 1 is a front view of three rotor blades according to an embodiment of the first to third rotor blades according to the present invention.
FIG. 2 is a plan view shown in FIG.
FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
4 is a three-dimensional perspective view shown in FIG. 3. FIG.
FIG. 5 is a single exposed side view showing the first to third embodiments of the axis-rotating blade wind turbine according to the present invention.
FIG. 6 is a rear view of a single body showing the first to third embodiments of the axial-rotor blade wind turbine according to the present invention.
FIG. 7 is a front view of five rotor blades according to an embodiment of the above-described fourth example of the axial wind turbine blade according to the present invention.
FIG. 8 is a plan view shown in FIG.
FIG. 9 is a front view of a single body showing an embodiment of the above-described fourth example of an axially rotating blade wind turbine according to the present invention.
10 is a cross-sectional view taken along line BB shown in FIG.
FIG. 11 is a front view showing an embodiment of the fifth example of the axial wind turbine blade according to the present invention.
12 is a plan view shown in FIG.
FIG. 13 is a front view showing a reference example of a fixed installation type showing an embodiment of the fifth example of the axially rotating blade wind turbine according to the present invention.
14 is a plan view shown in FIG.
[0055]
[Explanation of symbols]
1 ・ ・ ・ ・ Vertical axis
2 ... Rotating blade
3 ··· Rotor wind receiving surface
4 ... Rotating blade resistance surface
5 .... Baffle frame
6 ... Wind intake
7 ... Wind conduction path
8. Curved surface
9 ... Secondary wind intake
10 · · · attracting mother (primary)
11 ... Secondary wind power
12 ... Wind conduction path constriction
13 .. Wind conduction path outlet
14. Center line
15... Side coupling part
16 .... Rudder
16 '... An opposite overhang part
17 .... Rudder curved surface
18 .... Rudder curved surface
19... Air guide frame bearing
20 ... Safety hatch
20 '... hinge
21 .. Shielding plate
22. Hatch wire rope
22 '... guide roller
23 ... Shielding wire rope
24 .... Retraction spring
25... Small transmission gear
26 ··· Large gears
27..Shielding plate bearing
28 .... Generator
29 ... Flat base
30 ... Pedestal support shaft
30 '... Pedestal support connecting part
31 ... Windmill pedestal
32 ... Horizontal axis wind turbine rudder
33 ··· Windmill base
34 ... Pedestal support
35 ・ ・ ・ ・ Shaft support legs
36 ··· Horizontal axis
37 ... Rail
38 ...
39 ... Chain
40 ・ ・ ・ ・ Basics
41... Wheel
42 ... Gate mount
43 ... Rail
44 .... Shielding plate hook
45 .. Pedestal bearing
46... Upper surface of gate
47 ··· Vertical bearing
48 ・ ・ ・ ・ Vertical intermediate bearing
49... Arm
50 .. Base protrusion
51 ・ ・ ・ ・ Safety hook
52...
53...

Claims (5)

回転する縦軸1の側面又は基礎40に固定した縦軸1の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく風洞の導風枠5を縦軸1に対して水平方向の偏芯軸の半周に設け、導風枠5の重心下端の導風枠支脚5’を円周に回転可能に保持し湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、風導通路7狭窄部12の流速誘引を利用した二次風力11を風導通路7内部に吸引させ、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて風向きと反対方向に変換した放出口13より回転翼受風面3に放出させて縦軸1の全回転翼に風力を受けて回転させるようにした軸沿回転翼風車。An air guide frame 5 of a wind tunnel surrounding the rotating blade 4 symmetrical with the wind receiving surface 3 of the rotating blade 2 fixed to the side surface of the rotating vertical axis 1 or the casing side surface rotating around the vertical axis 1 fixed to the foundation 40. Is provided on the half circumference of the eccentric shaft in the horizontal direction with respect to the vertical axis 1, and the air guide frame support leg 5 ′ at the lower end of the center of gravity of the air guide frame 5 is rotatably held around the circumference to form the wind conduction path 7 of the curve 8. At the same time, a secondary wind inlet 9 is opened on the side of the wind guide frame 5 leeward from the wind inlet 6, and the secondary wind 11 utilizing the flow velocity attraction of the narrowed portion 12 of the wind conduction path 7 is sucked into the wind conduction path 7. Then, the tip of the wind conduction path 7 curved with the wind power of the attracting mother body (primary) 10 is curved and discharged to the rotor blade wind receiving surface 3 from the discharge port 13 converted in the direction opposite to the wind direction, and the full rotation of the vertical axis 1 An axially rotating blade wind turbine that uses wind power to rotate its blades. 導風枠5後方縦軸1中心線14寄りの側面15に結合した方向舵16を、対側縦軸1より風下の導風枠5の対抗圧力に対峙して先端にかけて曲面17、18に伸ばし、縦軸1に回転可能に接合した導風枠軸受19を支点の導風枠5を風下に長い偏芯構造として導風枠軸受19を中心に回動する導風枠5と、方向舵16をつり合わせ双方に加わる風圧を均衡させ縦軸1を中心とした風向きに沿い風導通路7の風力取り入れ口6を常時風上に向け回転翼2を回転させるようにした軸沿回転翼風車。A rudder 16 coupled to a side surface 15 near the center line 14 of the rear vertical axis 1 of the wind guide frame 5 is extended to curved surfaces 17 and 18 from the opposite vertical axis 1 to the front end against the counter pressure of the wind guide frame 5 leeward, A wind guide frame bearing 19 that is rotatably joined to the vertical axis 1 is used as a fulcrum and the wind guide frame 5 is pivoted around the wind guide frame bearing 19 and the rudder 16 is suspended. An axially rotating blade wind turbine in which the wind pressure applied to both sides is balanced and the rotor blades 2 are always rotated along the wind direction around the longitudinal axis 1 with the wind inlet 6 of the wind conduction path 7 facing upwind. 風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23先端の引きバネ24により互いに閉止を保持し、バネ24力を上回る過圧風力でセーフティハッチ20を開き風導通路7内圧を放出すると同時に連繋したワイヤロープ22、23は変速ギヤ小25大26を介して縦軸1を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受けて回転させ縦軸1の出力を伝達ギヤにより発電機28又は流体ポンプを稼働させるようにした軸沿回転翼風車。A safety hatch 20 provided in the wind conduction path 7 is attached so as to be openable and closable in the outward direction, and the wire ropes 22 and 23 that connect the shielding plate 21 are held closed by the pulling spring 24 at the tip, and the overpressure exceeding the force of the spring 24 The wire ropes 22, 23 connected at the same time as the safety hatch 20 is opened by wind force to release the internal pressure of the wind conduction path 7 are connected to the blocking plate bearing 27 with the vertical axis 1 as a fulcrum through the transmission gear small 25 large 26. The plate 21 is moved to the front surface of the rotor blade receiving surface 3 to suppress the wind pressure applied during excessive wind, and at the normal wind pressure, the safety hatch 20 is closed by the spring 24 force and all the rotor blades 2 receive the wind force and rotate to rotate the vertical axis. An axially rotating blade wind turbine in which the generator 28 or the fluid pump is operated by the transmission gear with the output of 1. 平基盤29に固定した台座支軸30に可回動に装着した風車台座31の台座支軸30より風下の側面上方に方向舵32と、側面下方周囲に風車台座掛33を固定し、かつ下面外周近傍に平基盤を滑走する台座支脚34を設け側面の風車台座掛33を空走状のかぎ状に設けて転倒を防ぐとともに、回転する横軸36の側面又は固定した横軸の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく風洞の導風枠5を風車台座31表面両サイドの軸支脚35に支持された横軸36より上方半周に設けて湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、風導通路7狭窄部12の流速誘引を利用した二次風力11を風導通路7内部に吸引させ、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて風向きと反対方向に変換した放出口13より回転翼受風面3に放出させて横軸36の全回転翼に風力を受けて回転させ、風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23先端の引きバネ24により互いに閉止を保持し、バネ24を上回る過圧風力でセーフティハッチ20を開き風導通路7内圧を放出すると同時に連繋したワイヤロープ22、23は変速ギヤ小25大26を介して横軸36を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受け回転させ、台座支軸30を支点に風車台座31上の積載装置を方向舵32の風向き追従で回転させて、風力取り入れ口6を風上に向けるとともに横軸36回転翼風車自体の複数を積み重ねた頂部の支軸48をアーム49、支柱38で補強し、それぞれの出力は1本のチェーン39の連繋作動で発電機28又は流体ポンプの動力源として使用するようにした軸沿回転翼風車。A rudder 32 is fixed to the upper side of the leeward side of the pedestal support shaft 30 of the windmill pedestal 31 rotatably attached to the pedestal support shaft 30 fixed to the flat base 29, and the windmill base seat 33 is fixed to the lower periphery of the side surface and the outer periphery of the lower surface A pedestal support leg 34 that slides on a flat base is provided in the vicinity, and a side windmill pedestal hook 33 is provided in a free-running hook shape to prevent overturning and rotate around the side surface of the rotating horizontal shaft 36 or the fixed horizontal shaft. A wind guide frame 5 surrounding the rotor blade 4 symmetrical to the wind receiving surface 3 of the rotor blade 2 fixed to the side of the casing is halfway above the horizontal shaft 36 supported by the shaft support legs 35 on both sides of the windmill base 31 surface. And a secondary wind inlet 9 is opened on the side of the wind guide frame 5 leeward from the wind inlet 6 to make use of the flow velocity attraction of the narrow portion 12 of the wind conduction path 7. The secondary wind 11 is sucked into the wind conduction path 7 Then, the tip of the wind conduction path 7 curved with the wind power of the attracting mother body (primary) 10 is curved and discharged to the rotor blade receiving surface 3 through the discharge port 13 converted in the direction opposite to the wind direction, and all the rotor blades of the horizontal axis 36 The safety hatch 20 provided in the wind conduction path 7 is attached to the wind conducting path 7 so that it can be opened and closed outward, and the wire ropes 22 and 23 that connect to the shielding plate 21 are held closed by the pulling spring 24 at the tip. The safety rope 20 is opened by the overpressured wind force exceeding the spring 24, and the internal pressure of the wind conduction path 7 is released. At the same time, the wire ropes 22 and 23 connected to each other are shielded with the horizontal shaft 36 as a fulcrum via a small gear 25 and a large gear 26. The shielding plate 21 joined to the bearing 27 is moved to the front surface of the wind receiving surface 3 of the rotor blade to suppress the wind pressure applied during excessive wind and at the same time the safety hatch 20 is closed by the spring 24 force during normal wind pressure. The blade 2 is rotated by receiving wind force, and the loading device on the windmill base 31 is rotated by following the wind direction of the rudder 32 with the pedestal support shaft 30 as a fulcrum, so that the wind intake 6 is directed to the wind and the horizontal shaft 36 rotor blade. The top support shaft 48, in which a plurality of wind turbines themselves are stacked, is reinforced by an arm 49 and a support column 38, and the output of each is used as a power source for the generator 28 or the fluid pump by the linked operation of one chain 39. Axis rotary wind turbine. 基礎40に立設した台座支軸30に可回動に装着した風車台座31の台座支軸30より風下の側面上方にかけて、方向舵32、32を固定し、風車台座31下面に台座支脚34を設け先端の車輪41をゲート架台42上面のレール43上を走行可能にして方向舵32、32の風向き追従とともに、風車台座31表面に立設した軸支脚35を挿通回転する横軸36の側面又は固定した横軸の周囲を回転するケーシング側面に固着した回転翼2の受風面3との対称回転翼4にそれをとりまく風洞の導風枠5を横軸36回転翼上方半周に設けて湾曲8の風導通路7を形成するとともに風力取り入れ口6より風下の導風枠5側面に二次風力取り入れ口9を開口し、誘引母体(一次)10の風力とともに湾曲8した風導通路7先端をカーブさせて横軸36の全回転翼に風力を受けて回転させ、風導通路7に設けたセーフティハッチ20を外方向に開閉可能に取り付け、遮閉板21とを結ぶワイヤロープ22、23は変速ギヤ小25大26を介して横軸36を支点とする遮閉板軸受27に接合した遮閉板21を回転翼受風面3前面に移動させて過強風時に加わる風圧を抑制すると共に平常風圧時にはセーフティハッチ20をバネ24力により閉じて全ての回転翼2に風力を受け回転させ、横軸36回転翼に付帯する導風枠5セーフティハッチ20遮閉板21を包含した風車ユニットを横軸36に結合し、複数個の風車ユニット搭載の風車台座31の表面に設置した発電機28又はオイルポンプに出力を伝達するようにした軸沿回転翼風車。The rudder 32, 32 is fixed from the pedestal support shaft 30 of the windmill pedestal 31 mounted on the pedestal support shaft 30 standing on the foundation 40 to the upper side of the leeward side, and the pedestal support legs 34 are provided on the lower surface of the windmill pedestal 31. The front wheel 41 can run on the rail 43 on the top surface of the gate mount 42, and the direction of the rudder 32, 32 is followed, and the side surface of the horizontal shaft 36 that is inserted and rotated through the shaft support leg 35 standing on the surface of the windmill base 31 is fixed. A wind guide frame 5 surrounding the rotor blade 4 symmetric with the wind receiving surface 3 of the rotor blade 2 fixed to the side surface of the casing rotating around the horizontal axis is provided on the upper half circumference of the rotor shaft 36 on the horizontal axis 36 to form a curve 8. The wind conduction path 7 is formed and a secondary wind intake 9 is opened on the side of the wind guide frame 5 leeward from the wind intake 6 and the tip of the wind conduction path 7 curved with the wind force of the attracting mother body (primary) 10 is curved. Let the horizontal axis 3 All the rotor blades are rotated by receiving wind force, and a safety hatch 20 provided in the wind conduction path 7 is attached so as to be openable and closable outwardly, and wire ropes 22 and 23 connecting the shielding plate 21 are a small transmission gear 25 large 26 The shield plate 21 joined to the shield plate bearing 27 with the horizontal axis 36 as a fulcrum is moved to the front surface of the rotor blade receiving surface 3 to suppress the wind pressure applied during excessively strong winds and the safety hatch 20 during normal wind pressure. A wind turbine unit including a wind guide frame 5 safety hatch 20 shielding plate 21 attached to the rotary shaft 36 and coupled to the horizontal shaft 36 is closed by a spring 24 force to receive and rotate all the rotary blades 2 by receiving wind force. An axially rotating blade wind turbine configured to transmit output to a generator 28 or an oil pump installed on the surface of a wind turbine base 31 equipped with a plurality of wind turbine units.
JP2002383615A 2002-12-24 2002-12-24 Axis rotor blade wind turbine Expired - Fee Related JP4157913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383615A JP4157913B2 (en) 2002-12-24 2002-12-24 Axis rotor blade wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383615A JP4157913B2 (en) 2002-12-24 2002-12-24 Axis rotor blade wind turbine

Publications (2)

Publication Number Publication Date
JP2004204830A JP2004204830A (en) 2004-07-22
JP4157913B2 true JP4157913B2 (en) 2008-10-01

Family

ID=32818283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383615A Expired - Fee Related JP4157913B2 (en) 2002-12-24 2002-12-24 Axis rotor blade wind turbine

Country Status (1)

Country Link
JP (1) JP4157913B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677631B2 (en) * 2005-03-25 2011-04-27 国立大学法人東北大学 Wind load reducing device and wind power generation system
KR100714789B1 (en) 2005-04-07 2007-05-09 유형주 Turbo motor for driving wind power
KR100938669B1 (en) * 2008-12-23 2010-01-25 최말희 Eccentric type wind turbine
DE102012014627A1 (en) 2012-07-17 2014-02-06 Christiane Bareiß Segovia Conical rotor for energy generation for charging batteries in transport with electric and hybrid drive, has round base plate, which has top profile with three alternate shafts and three troughs, where base plate is opened at its center
JP6233866B1 (en) * 2017-04-04 2017-11-22 義英 土橋 Drag type open / close generator
JP6246413B1 (en) * 2017-09-13 2017-12-13 義英 土橋 Drag type open / close generator
JP7360147B2 (en) * 2019-08-15 2023-10-12 正裕 岩永 Vertical axis wind turbine and variable windshield mechanism

Also Published As

Publication number Publication date
JP2004204830A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
CN101943127B (en) Wind collecting vertical type wind power generating system
US7172386B2 (en) Wind and solar power plant with variable high speed rotor trains
US8562298B2 (en) Vertical-axis wind turbine
US7679209B2 (en) Wind powered electricity generating system
US20070098542A1 (en) Rotational power system
US20090110554A1 (en) Wind Turbine for Generating Electricity
AU2007243683A1 (en) Louvered horizontal wind turbine
WO2016023351A1 (en) All-directional flow-guide shaftless wind-driven generator
US20120183407A1 (en) Vertical-axis wind turbine
US8063502B1 (en) Shrouded wind turbine with dual coaxial airflow passageways
US8137052B1 (en) Wind turbine generator
WO2011129859A2 (en) Wind turbine utilizing wind directing slats
US8979494B1 (en) Vertical axis hinged sail wind energy machine
JP4157913B2 (en) Axis rotor blade wind turbine
US6960062B2 (en) Frost-resistant windmill for use in urban environment
CN207761879U (en) A kind of double duct vertical axis aerogenerators
JP2012107612A (en) Wind tunnel body, vertical axis wind turbine, structure, wind power generator, hydraulic device, and building
US20120104759A1 (en) Multi Directional Augmenter and Diffuser
WO2022149563A1 (en) Wind power generator installable on moving body
JP2004285968A (en) Wind mill
CN111456903A (en) Potential energy conversion type wind self-searching horizontal roller type wind driven generator
KR101125952B1 (en) Wind turbine
JP3491012B2 (en) Wind power generator
JPH0735765U (en) Rotating device using wind power
KR101230231B1 (en) Apparatus for wind power generation with vertical axis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees