JP4156686B2 - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP4156686B2
JP4156686B2 JP14762797A JP14762797A JP4156686B2 JP 4156686 B2 JP4156686 B2 JP 4156686B2 JP 14762797 A JP14762797 A JP 14762797A JP 14762797 A JP14762797 A JP 14762797A JP 4156686 B2 JP4156686 B2 JP 4156686B2
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
shaft member
fluid
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14762797A
Other languages
Japanese (ja)
Other versions
JPH10339319A (en
Inventor
康雄 ▲高▼村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP14762797A priority Critical patent/JP4156686B2/en
Publication of JPH10339319A publication Critical patent/JPH10339319A/en
Application granted granted Critical
Publication of JP4156686B2 publication Critical patent/JP4156686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、流体の動圧を利用する動圧軸受を含んだ軸受装置に関する。
【0002】
【従来の技術】
従来、この種の軸受装置としては、図3に示すように、円錐形状の外周面51を有する先端部52を備えた軸部材53と、この軸部材53の外周面51に対向する円錐形状の内周面55を有する軸受部材56とを備え、上記軸部材53の外周面51にV字形状に屈曲した複数の動圧溝57,57…が周方向に一列に形成された動圧軸受59を有するものがある。この動圧軸受59は、軸部材53が矢印58の方向に回転することによって、動圧溝57が潤滑流体を動圧溝57の頂点57Aに向かって圧送して、動圧を発生する。この動圧でもって、軸部材53が軸受部材56に対して回転自在に支持される。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の軸受装置では、回転起動時に、動圧軸受59の軸部材53が円錐形状であるため、軸受部材56の内周面55にくさび状に入り込み易く、しかも起動時には、軸部材53の回転速度が遅いため、動圧が十分に発生しないので、回転起動時の摩擦トルクが大きくなり易く、起動が困難になり易いという問題がある。
【0004】
そこで、この発明の目的は、動圧軸受の起動がし易い軸受装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、軸部材とこの軸部材と対向する軸受部材とを備え、
上記軸部材と上記軸受部材は、それぞれ、軸受面を有し、
上記軸部材の軸受面と上記軸受部材の軸受面とは対向し、
上記軸受部材の軸受面は中心軸を含む面による上記軸受部材の断面において直線状であり、
上記軸部材の軸受面に動圧発生用の溝を形成した動圧軸受を有する軸受装置であって、
上記動圧発生用の溝は傾斜動圧発生溝であり、
上記傾斜動圧発生溝を形成した上記軸部材の軸受面は、
上記傾斜動圧発生溝と上記傾斜動圧発生溝に隣接する丘部とが周方向に交互に複数存在する動圧溝存在部と、
上記動圧溝存在部に対して上記傾斜動圧発生溝の傾斜延在方向に隣接すると共に周方向に延在していて動圧発生溝が存在しないと共に上記丘部からの延在面である動圧溝非存在部とを有し、
上記軸部材と上記軸受部材との間に流体を供給して、上記軸部材を軸受部材に対して静圧によって相対回転自在に支持する流体供給支持手段を備え、
上記流体供給支持手段は、
記動圧溝存在部に対向する上記軸受部材の軸受面の部分に形成されると共に上記流体を上記動圧溝存在部に供給する供給孔を有し、
上記軸部材と上記軸受部材との相対回転時に上記軸部材と上記軸受部材との間の間隙の軸方向両側が上記動圧溝非存在部に隣接して周状に開口することを特徴としている。
【0006】
この請求項1の発明は、流体供給支持手段が軸部材と軸受部材との間に流体を供給して静圧を発生させて、軸部材を軸受部材に対して相対回転自在に支持するから、動圧軸受の起動がし易くなる。
【0007】
また、請求項2の発明は、請求項1に記載の軸受装置において、
上記供給孔は、
記動圧溝存在部に対向する軸受面の軸方向の1箇所に形成されていることを特徴としている。
【0008】
また、請求項3の発明は、請求項1または2に記載の軸受装置において、上記供給孔は、周方向に等間隔を隔てて軸対称に複数個形成されていることを特徴としている。
【0009】
また、請求項の発明は、請求項1乃至のいずれか1つに記載の軸受装置において、上記軸部材の外周面と上記軸受部材の内周面とを円錐形状にしたことを特徴としている。
【0010】
この請求項の発明は、上記円錐形状の外周面と円錐形状の内周面との間に発生させた静圧でもって、軸部材を支持するから、軸受部材と軸部材とが円錐面状であっても、くさび状にそれらが係合して起動を妨げることはない。
【0011】
また、請求項の発明は、請求項1乃至のいずれか1つに記載の軸受装置において、
上記流体供給支持手段は、上記動圧軸受の起動時に上記軸部材と軸受部材との間に流体を供給することを特徴としている。
【0012】
この請求項の発明は、上記流体供給支持手段は、上記動圧軸受の起動時に上記軸部材と軸受部材との間に流体を供給して静圧を発生させて軸部材を軸受部材に対して相対回転自在に支持するから、動圧軸受の起動を容易にできる。そして、回転速度が高い定常回転時には、十分な動圧が発生するから、上記流体供給手段は流体の供給を停止する。したがって、エネルギ−が節約される。
【0013】
また、請求項の発明は、請求項1乃至のいずれか1つに記載の軸受装置において、上記流体供給支持手段は、上記動圧軸受の起動時および停止時において回転数が所定値以下であるときに、上記軸部材と軸受部材との間に流体を供給することを特徴としている。
【0014】
この請求項の発明は、動圧軸受の回転数が所定値以下で動圧による支持力が不足している起動時と停止時に、流体供給支持手段で軸部材と軸受部材との間に流体を供給して静圧を発生させて、動圧軸受の支持力不足を補って上記軸部材を軸受部材に対して相対回転自在に支持する。したがって、動圧軸受を容易かつ速やかに起動できる上に、停止時の支持力の低下を補って回転中の軸部材と軸受部材とが接触して損傷することを防げる。そして、回転速度が高い定常回転時には、十分な動圧が発生するから、上記流体供給手段は流体の供給を停止する。したがって、エネルギ−が節約される。
【0015】
また、請求項の発明は、請求項1乃至のいずれか1つに記載の軸受装置において、上記流体供給支持手段は、上記動圧軸受の回転数に応じて、流体供給量を変えることを特徴としている。
【0016】
この請求項の発明は、流体供給支持手段が、動圧軸受の回転数に応じて流体供給量を変えるから、回転数が低くて動圧支持力が小さなときに流体供給量を多くして静圧を大きくして支持力を補う一方、回転数が高くて動圧支持力が大きなときに流体供給量を少なくして支持力の変動を防げる。したがって、支持力を安定化できると同時に、流体消費量を削減できる。
【0017】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0018】
図1に、この発明の軸受装置の実施の形態を示す。この実施の形態の軸受装置は、軸部材1と軸受部材2とを備えている。軸部材1は軸3と先細円柱部5とからなる。この先細円柱部5は先細の略円錐状の外周面5aを有している。そして、この外周面5aには周方向に配列された複数の傾斜動圧発生溝9,9…が形成されている。
【0019】
一方、上記軸受部材2は、略円柱形状であり、軸方向に貫通した先細の貫通孔7と、軸部材1の先細円柱部5の外周面5aと所定の隙間を隔てて対向する略円錐状の内周面6を有している。この軸受部材2の内周面6と上記軸部材1の先細円柱部5とが動圧軸受4を構成している。また、この軸受部材2は、上記軸方向の貫通孔7に連通しており、径方向に貫通したガス供給孔8を軸方向の中央に有している。このガス供給孔8は、周方向に略等間隔を隔てて軸対称に複数個形成されており、ガス導入管12に接続されている。このガス導入管12には流量調整バルブ13が設けられており、このバルブ13の開度を調節することによって、ガス導入管12からガス供給孔8へのガスの供給量を調節することができる。
【0020】
さらに、この軸受装置は、軸3の回転数を検出する回転数センサ10が軸部材1の軸3に対向して配置されている。この回転数センサ10は、たとえば、軸3の回転に伴って変動する磁界を検出する磁気センサで構成すればよい。そして、この回転数センサ10はマイクロコンピュ−タ15に接続されており、マイクロコンピュ−タ15は回転数センサ10から回転数を表わす信号を受け、軸3の回転数に応じて、バルブ13の開度を調節する。
【0021】
上記構成の軸受装置によれば、軸受部材2に対して軸部材1が回転すると、軸部材1の外周面5aに形成された複数の傾斜動圧発生溝9が軸受部材2の略円錐形状の内周面6と軸部材1の略円錐形状の外周面5aとの間のガスに動圧を発生させて、軸受部材2に対して軸部材1を径方向および軸方向に支持する。
【0022】
同時に、上記回転数センサ10は軸部材1の軸3の回転数を検出して、回転数信号をマイクロコンピュ−タ15に送る。そして、マイクロコンピュ−タ15は上記回転数信号が表わす回転数に応じて、バルブ13の開度を調節する。
【0023】
このマイクロコンピュ−タ15によるバルブ13の開度の制御動作の一例を、図2(A)に示す。図2(A)には、起動時t=0から停止時t=Tまでの回転数Nの変化を実線で示し、バルブ開度の変化を破線で示している。図2(A)に示すバルブ開度制御動作の一例では、マイクロコンピュ−タ15は、回転数N=0の起動時t=0から回転数N=500rpmの期間でバルブ13を所定の開度だけ開け、回転数が500rpmを越えるとバルブ13を閉じる。そして、回転数がピ−クに達してから次に回転数が500rpmまで低下すると、マイクロコピュ−タ15は再びバルブ13を所定の開度だけ開け、回転数が0になる停止時t=Tまでバルブ13を所定の開度に保つ。
【0024】
このように、図2(A)の制御例では、起動時と停止時において、軸部材1の回転数Nが低くて発生動圧が小さなときに、バルブ13を開けて、ガス供給孔8から軸受部材2の内周面6と軸部材1の外周面5との間にガスを供給し静圧を発生させる。したがって、この静圧でもって動圧による支持力の不足を補って、軸受部材2に対して軸部材1を確実に相対回転自在に支持できる。したがって、回転起動時の摩擦トルクを小さく保つことができ、軸部材1が軸受部材2にくさび状にくい込むことを防いで、円滑に起動させることができる。また、停止直前における軸部材1と軸受部材2との接触,損傷を防止できる。また、回転数N=500rpmを越えているときには、バルブ13からのガス供給を止めて、ガス供給量を節約できる。また、ガス供給のためのエネルギ−も節約できる。
【0025】
次に、図2(B)に、マイクロコンピュ−タ15によるバルブ開度制御動作のもう1つの一例を示す。この動作例は、回転数N=0からN=500rpmまでの期間でバルブ13を開ける点で図2(A)の制御例と共通しているが、このバルブ13の開度を回転数Nに逆比例させる点が図2(A)の制御例と異なる。
【0026】
このように、回転数Nの増大に応じてバルブ開度を減少させる一方、回転数Nの減少に応じてバルブ開度を増大させるから、動圧に静圧を加算した支持力の変動をより一層抑えて、支持力の安定化を図れ、かつ、ガス消費量を削減できる。尚、上記実施の形態では、軸部材1の先細円柱部5の外周面5aに傾斜動圧発生溝9を形成した。また、上記実施の形態では軸部材1の外周面5aおよび軸受部材2の内周面6を円錐面にしたが、円筒面であってもよい。また、この発明の軸受装置の動圧軸受は、軸部材と軸受部材とがスラスト軸受を構成するものであってもよい。また、上記実施の形態では、動圧軸受4の回転起動時および回転停止時に静圧を発生させたが、起動時や停止時以外に回転数が低下して動圧が不足する期間に静圧を発生させて、支持力を安定させるようにしてもよい。
【0027】
【発明の効果】
以上より明らかなように、請求項1の発明は、動圧軸受を有する軸受装置であって、上記動圧発生用の溝は傾斜動圧発生溝であり、上記傾斜動圧発生溝を形成した上記軸受面は、上記傾斜動圧発生溝と上記傾斜動圧発生溝に隣接する丘部とが周方向に交互に複数存在する動圧溝存在部と、上記動圧溝存在部に対して上記傾斜動圧発生溝の傾斜延在方向に隣接すると共に周方向に延在していて動圧発生溝が存在しないと共に上記丘部からの延在面である動圧溝非存在部とを有し、上記軸部材と上記軸受部材との間に流体を供給して、上記軸部材を軸受部材に対して静圧によって相対回転自在に支持する流体供給支持手段を備え、上記流体供給支持手段は、上記動圧溝存在部に対向する上記軸受部材の軸受面の部分に形成されると共に上記流体を上記動圧溝存在部に供給する供給孔を有し、上記軸部材と上記軸受部材との相対回転時に上記軸部材と上記軸受部材との間の間隙の軸方向両側が上記動圧溝非存在部に隣接して周状に開口する。
【0028】
この請求項1の発明は、流体供給支持手段が軸部材と軸受部材との間に流体を供給して、軸部材を軸受部材に対して相対回転自在に支持するから、動圧軸受の起動がし易くなる。
【0029】
また、請求項の発明は、請求項1乃至のいずれか1つに記載の軸受装置において、円錐形状の外周面と円錐形状の内周面との間に発生させた静圧でもって、軸部材の外周面と軸受部材の内周面とが円錐形状であっても、くさび状にそれらが係合して起動を妨げることはない。
【0030】
また、請求項の発明は、流体供給支持手段は、動圧軸受の起動時に軸部材と軸受部材との間に流体を供給するから、動圧軸受の起動を容易にできる。そして、回転速度が高い定常回転時には流体の供給を停止して、エネルギ−を節約できる。
【0031】
また、請求項の発明は、流体供給支持手段は、動圧軸受の起動時および停止時において回転数が所定値以下であるときに、軸部材と軸受部材との間に流体を供給して軸部材を軸受部材に対して相対回転自在に支持する。したがって、請求項の発明は、動圧による支持力が不足している起動時と停止時に、流体供給支持手段で軸部材と軸受部材との間に流体を供給して静圧を発生させて、動圧軸受の支持力不足を補う。したがって、動圧軸受を容易かつ速やかに起動できる上に、停止時の支持力の低下を補って回転中の軸部材と軸受部材とが接触して損傷することを防げる。また、回転速度が高い定常回転時には流体の供給を停止して、エネルギ−を節約できる。
【0032】
また、請求項の発明では、流体供給支持手段は、動圧軸受の回転数に応じて流体供給量を変えるから、回転数が低くて動圧支持力が小さなときに流体供給量を多くして静圧で支持力を補う一方、回転数が高くて動圧支持力が大きなときに流体供給量を少なくして静圧を小さくして支持力の変動を抑える。したがって、支持力を安定化できると同時に、流体消費量を削減できる。
【図面の簡単な説明】
【図1】 この発明の軸受装置の実施の形態を示す図である。
【図2】 図2(A)は、上記実施の形態によるバルブ制御動作の一例を説明する図であり、図2(B)は、バルブ制御動作のもう1つの一例を説明する図である。
【図3】 従来の軸受装置を示す図である。
【符号の説明】
1…軸部材、2…軸受部材、3…軸、4…動圧軸受、5…先細円柱部、
5a…外周面、6…内周面、7…貫通孔、8…ガス供給孔、
9…動圧発生溝、10…回転数センサ、12…ガス導入管、
13…流量調整バルブ、15…マイクロコンピュ−タ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing device including a dynamic pressure bearing that uses the dynamic pressure of a fluid.
[0002]
[Prior art]
Conventionally, as shown in FIG. 3, this type of bearing device includes a shaft member 53 having a tip 52 having a conical outer peripheral surface 51, and a conical shape facing the outer peripheral surface 51 of the shaft member 53. A bearing member 56 having an inner peripheral surface 55, and a plurality of dynamic pressure grooves 57, 57... Bent in a V shape on the outer peripheral surface 51 of the shaft member 53 are formed in a row in the circumferential direction. Some have In the dynamic pressure bearing 59, when the shaft member 53 rotates in the direction of the arrow 58, the dynamic pressure groove 57 pumps the lubricating fluid toward the apex 57A of the dynamic pressure groove 57 to generate dynamic pressure. With this dynamic pressure, the shaft member 53 is rotatably supported with respect to the bearing member 56.
[0003]
[Problems to be solved by the invention]
However, in the conventional bearing device, since the shaft member 53 of the hydrodynamic bearing 59 has a conical shape at the time of starting rotation, the shaft member 53 easily enters the inner peripheral surface 55 of the bearing member 56 and at the time of startup. Since the rotation speed is slow, dynamic pressure is not sufficiently generated, so that there is a problem that the friction torque at the time of starting rotation tends to be large and the starting is likely to be difficult.
[0004]
Accordingly, an object of the present invention is to provide a bearing device in which a dynamic pressure bearing can be easily started.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 includes a shaft member and a bearing member facing the shaft member,
The shaft member and the bearing member each have a bearing surface,
The bearing surface of the shaft member and the bearing surface of the bearing member are opposed to each other,
The bearing surface of the bearing member is linear in a cross section of the bearing member by a surface including a central axis,
A bearing device having a dynamic pressure bearing in which a groove for generating dynamic pressure is formed on a bearing surface of the shaft member,
The groove for generating dynamic pressure is an inclined dynamic pressure generating groove,
A bearing surface of the shaft member in which the inclined dynamic pressure generating groove is formed,
A plurality of dynamic pressure groove existing portions in which the inclined dynamic pressure generating grooves and the hill portions adjacent to the inclined dynamic pressure generating grooves are alternately present in the circumferential direction;
Is extending surface from the lands with no respect to the dynamic pressure grooves presence section have circumferentially extending with adjacent inclined direction of extension of the inclined dynamic pressure generating grooves exist hydrodynamic groove A dynamic pressure groove nonexistent part,
Fluid supply support means for supplying fluid between the shaft member and the bearing member and supporting the shaft member relative to the bearing member so as to be relatively rotatable by static pressure;
The fluid supply support means includes
The fluid is formed in a bearing surface portion of the bearing member opposite the upper kidou grooves present unit has a supply hole for supplying to the dynamic pressure grooves present section,
The axially opposite sides of the gap between the shaft member and the bearing member open circumferentially adjacent to the non-existing portion of the dynamic pressure groove when the shaft member and the bearing member rotate relative to each other. .
[0006]
In the first aspect of the invention, the fluid supply support means supplies the fluid between the shaft member and the bearing member to generate a static pressure, and supports the shaft member relative to the bearing member so as to be rotatable relative to the bearing member. It becomes easy to start the hydrodynamic bearing.
[0007]
Moreover, invention of Claim 2 is a bearing apparatus of Claim 1,
The supply hole is
That it is formed in one place in the axial direction of the bearing surface facing the upper kidou grooves present section are characterized.
[0008]
Further, the invention of claim 3, the bearing apparatus according to claim 1 or 2, the supply hole is characterized in that at a equal intervals in the circumferential direction are formed in plural in the axial symmetry.
[0009]
Further, characterized in that the invention of claim 4, the bearing device according to any one of claims 1 to 3, in which the outer circumferential surface and the inner circumferential surface of the bearing member of the shaft member in a circular cone shape It is said.
[0010]
Invention of claim 4, with at static pressure is generated between the outer peripheral surface and the inner circumferential surface of the circular cone shape of the upper Kien cone shape, since supporting the shaft member, the bearing member and the shaft member Even if they are conical, they do not interfere with activation by engaging in a wedge shape.
[0011]
The invention of claim 5 is the bearing device according to any one of claims 1 to 3 ,
The fluid supply support means supplies fluid between the shaft member and the bearing member when the dynamic pressure bearing is started.
[0012]
According to the invention of claim 5, the fluid supply support means supplies a fluid between the shaft member and the bearing member when the dynamic pressure bearing is started to generate a static pressure so that the shaft member is supported with respect to the bearing member. Therefore, the dynamic pressure bearing can be easily started. At the time of steady rotation at a high rotation speed, sufficient dynamic pressure is generated, so that the fluid supply means stops supplying fluid. Thus, energy is saved.
[0013]
The invention according to claim 6 is the bearing device according to any one of claims 1 to 3 , wherein the fluid supply support means has a rotational speed of a predetermined value or less when the dynamic pressure bearing is started and stopped. In this case, fluid is supplied between the shaft member and the bearing member.
[0014]
According to the sixth aspect of the present invention, the fluid supply support means provides fluid between the shaft member and the bearing member when starting and stopping when the rotational speed of the hydrodynamic bearing is less than a predetermined value and the supporting force due to dynamic pressure is insufficient. To generate a static pressure to compensate for a lack of support force of the hydrodynamic bearing and to support the shaft member so as to be relatively rotatable with respect to the bearing member. Therefore, the dynamic pressure bearing can be started easily and promptly, and the reduction of the supporting force at the time of stopping can be compensated to prevent the rotating shaft member and the bearing member from contacting and being damaged. At the time of steady rotation at a high rotation speed, sufficient dynamic pressure is generated, so that the fluid supply means stops supplying fluid. Thus, energy is saved.
[0015]
According to a seventh aspect of the present invention, in the bearing device according to any one of the first to third aspects, the fluid supply support means changes a fluid supply amount in accordance with a rotational speed of the dynamic pressure bearing. It is characterized by.
[0016]
In the invention of claim 7 , since the fluid supply support means changes the fluid supply amount according to the rotational speed of the hydrodynamic bearing, the fluid supply amount is increased when the rotational speed is low and the dynamic pressure support force is small. While the static pressure is increased to supplement the support force, when the rotational speed is high and the dynamic pressure support force is large, the fluid supply amount is decreased to prevent fluctuations in the support force. Therefore, it is possible to stabilize the supporting force and reduce the fluid consumption.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0018]
FIG. 1 shows an embodiment of a bearing device according to the present invention. The bearing device of this embodiment includes a shaft member 1 and a bearing member 2. The shaft member 1 includes a shaft 3 and a tapered cylindrical portion 5. The tapered cylindrical portion 5 has a tapered substantially conical outer peripheral surface 5a. A plurality of inclined dynamic pressure generating grooves 9, 9... Arranged in the circumferential direction are formed on the outer peripheral surface 5a.
[0019]
On the other hand, the bearing member 2 has a substantially cylindrical shape, and has a substantially conical shape facing the tapered through hole 7 penetrating in the axial direction and the outer peripheral surface 5a of the tapered cylindrical portion 5 of the shaft member 1 with a predetermined gap therebetween. The inner peripheral surface 6 is provided. The inner peripheral surface 6 of the bearing member 2 and the tapered cylindrical portion 5 of the shaft member 1 constitute a hydrodynamic bearing 4. The bearing member 2 communicates with the axial through hole 7 and has a gas supply hole 8 penetrating in the radial direction at the center in the axial direction. A plurality of the gas supply holes 8 are formed axially symmetrically at substantially equal intervals in the circumferential direction, and are connected to the gas introduction pipe 12. The gas introduction pipe 12 is provided with a flow rate adjusting valve 13, and the amount of gas supplied from the gas introduction pipe 12 to the gas supply hole 8 can be adjusted by adjusting the opening of the valve 13. .
[0020]
Further, in this bearing device, a rotational speed sensor 10 that detects the rotational speed of the shaft 3 is arranged to face the shaft 3 of the shaft member 1. The rotational speed sensor 10 may be constituted by, for example, a magnetic sensor that detects a magnetic field that varies with the rotation of the shaft 3. The rotation speed sensor 10 is connected to a microcomputer 15, and the microcomputer 15 receives a signal indicating the rotation speed from the rotation speed sensor 10, and according to the rotation speed of the shaft 3, Adjust the opening.
[0021]
According to the bearing device having the above-described configuration, when the shaft member 1 rotates with respect to the bearing member 2, the plurality of inclined dynamic pressure generating grooves 9 formed on the outer peripheral surface 5 a of the shaft member 1 have the substantially conical shape of the bearing member 2. Dynamic pressure is generated in the gas between the inner peripheral surface 6 and the substantially conical outer peripheral surface 5 a of the shaft member 1 to support the shaft member 1 in the radial direction and the axial direction with respect to the bearing member 2.
[0022]
At the same time, the rotational speed sensor 10 detects the rotational speed of the shaft 3 of the shaft member 1 and sends a rotational speed signal to the microcomputer 15. The microcomputer 15 adjusts the opening degree of the valve 13 in accordance with the rotational speed represented by the rotational speed signal.
[0023]
An example of the control operation of the opening degree of the valve 13 by the microcomputer 15 is shown in FIG. In FIG. 2A, the change in the rotational speed N from the start time t = 0 to the stop time t = T is indicated by a solid line, and the change in the valve opening is indicated by a broken line. In the example of the valve opening degree control operation shown in FIG. 2A, the microcomputer 15 opens the valve 13 at a predetermined opening degree during the period from t = 0 when the rotation speed N = 0 to the rotation speed N = 500 rpm. Only when the rotation speed exceeds 500 rpm, the valve 13 is closed. When the rotational speed reaches the peak and then decreases to 500 rpm, the microcomputer 15 opens the valve 13 again by a predetermined opening degree until the rotational speed becomes zero until t = T. The valve 13 is kept at a predetermined opening.
[0024]
As described above, in the control example of FIG. 2A, when starting and stopping, when the rotational speed N of the shaft member 1 is low and the generated dynamic pressure is small, the valve 13 is opened and the gas supply hole 8 is opened. Gas is supplied between the inner peripheral surface 6 of the bearing member 2 and the outer peripheral surface 5 of the shaft member 1 to generate a static pressure. Therefore, the shaft member 1 can be reliably supported with respect to the bearing member 2 so as to be relatively rotatable while compensating for the lack of support force due to the dynamic pressure with the static pressure. Therefore, the friction torque at the time of starting rotation can be kept small, and the shaft member 1 can be prevented from being wedged into the bearing member 2 and can be started smoothly. Further, contact and damage between the shaft member 1 and the bearing member 2 immediately before stopping can be prevented. Further, when the rotational speed N exceeds 500 rpm, the gas supply from the valve 13 can be stopped to save the gas supply amount. In addition, energy for gas supply can be saved.
[0025]
Next, FIG. 2B shows another example of the valve opening degree control operation by the microcomputer 15. This operation example is common to the control example of FIG. 2A in that the valve 13 is opened in the period from the rotational speed N = 0 to N = 500 rpm, but the opening degree of the valve 13 is set to the rotational speed N. The point of inverse proportion is different from the control example of FIG.
[0026]
In this way, the valve opening is decreased according to the increase in the rotational speed N, while the valve opening is increased according to the decrease in the rotational speed N. This can further suppress the stabilization of the support force and reduce the gas consumption. In the above-described embodiment, the inclined dynamic pressure generating groove 9 is formed on the outer peripheral surface 5 a of the tapered cylindrical portion 5 of the shaft member 1 . Moreover, in the said embodiment, although the outer peripheral surface 5a of the shaft member 1 and the inner peripheral surface 6 of the bearing member 2 were made into the conical surface, a cylindrical surface may be sufficient. Further, in the dynamic pressure bearing of the bearing device of the present invention, the shaft member and the bearing member may constitute a thrust bearing. Further, in the above embodiment, the static pressure is generated at the time of starting and stopping the rotation of the dynamic pressure bearing 4, but the static pressure is reduced during a period when the rotational speed is decreased and the dynamic pressure is insufficient except at the time of starting and stopping. May be generated to stabilize the supporting force.
[0027]
【The invention's effect】
As is clear from the above, the invention of claim 1 is a bearing device having a dynamic pressure bearing, wherein the dynamic pressure generating groove is an inclined dynamic pressure generating groove, and the inclined dynamic pressure generating groove is formed. The bearing surface has a dynamic pressure groove existing portion in which a plurality of inclined dynamic pressure generating grooves and hill portions adjacent to the inclined dynamic pressure generating grooves are alternately present in the circumferential direction, and the dynamic pressure groove existing portion inclined not extend in the circumferential direction with adjacent inclined extending direction of the dynamic pressure generating grooves with no dynamic pressure generating groove and a dynamic pressure grooves absence portion is extending surface from the lands Fluid supply support means for supplying fluid between the shaft member and the bearing member and supporting the shaft member with respect to the bearing member so as to be relatively rotatable by static pressure, the fluid supply support means comprising: facing the upper kidou pressure groove exists portion the fluid is formed in a portion of the bearing surface of the bearing member It has kidou grooves supply holes for supplying the missing portion, the axial direction on both sides there non above dynamic pressure grooves of the gap between the shaft member and the bearing member during relative rotation between the shaft member and the bearing member it opens circumferentially adjacent section.
[0028]
In the first aspect of the present invention, the fluid supply support means supplies fluid between the shaft member and the bearing member to support the shaft member so as to be relatively rotatable with respect to the bearing member. It becomes easy to do.
[0029]
The invention of claim 4 is the bearing device according to any one of claims 1 to 3, in static pressure caused between the outer surface and the inner circumferential surface of the circular cone shape of a circular cone shape Therefore, even if the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member have a conical shape, they do not interfere with activation by being engaged in a wedge shape.
[0030]
In the invention of claim 5 , since the fluid supply support means supplies the fluid between the shaft member and the bearing member when the dynamic pressure bearing is started, the dynamic pressure bearing can be started easily. And at the time of steady rotation with a high rotational speed, supply of a fluid can be stopped and energy can be saved.
[0031]
The invention of claim 6, the fluid supply supporting means, when the number of rotation during starting and stopping of the dynamic pressure bearing is less than the predetermined value, by supplying a fluid between the shaft member and the bearing member The shaft member is supported so as to be rotatable relative to the bearing member. Accordingly, in the invention of claim 6 , the static pressure is generated by supplying the fluid between the shaft member and the bearing member by the fluid supply supporting means at the time of starting and stopping when the supporting force due to the dynamic pressure is insufficient. Make up for the lack of support of hydrodynamic bearings. Therefore, the dynamic pressure bearing can be started easily and promptly, and the reduction of the supporting force at the time of stopping can be compensated to prevent the rotating shaft member and the bearing member from contacting and being damaged. In addition, at the time of steady rotation at a high rotation speed, the supply of fluid can be stopped to save energy.
[0032]
In the invention of claim 7 , since the fluid supply support means changes the fluid supply amount according to the rotational speed of the hydrodynamic bearing, the fluid supply amount is increased when the rotational speed is low and the dynamic pressure support force is small. While the support force is supplemented by static pressure, when the rotational speed is high and the dynamic pressure support force is large, the fluid supply amount is reduced to reduce the static pressure and suppress fluctuations in the support force. Therefore, it is possible to stabilize the supporting force and reduce the fluid consumption.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a bearing device according to the present invention.
FIG. 2A is a diagram for explaining an example of the valve control operation according to the above embodiment, and FIG. 2B is a diagram for explaining another example of the valve control operation.
FIG. 3 is a view showing a conventional bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Shaft member, 2 ... Bearing member, 3 ... Shaft, 4 ... Dynamic pressure bearing, 5 ... Tapered cylindrical part,
5a ... outer peripheral surface, 6 ... inner peripheral surface, 7 ... through hole, 8 ... gas supply hole,
9 ... Dynamic pressure generating groove, 10 ... Rotational speed sensor, 12 ... Gas introduction pipe,
13 ... Flow control valve, 15 ... Microcomputer.

Claims (7)

軸部材とこの軸部材と対向する軸受部材とを備え、
上記軸部材と上記軸受部材は、それぞれ、軸受面を有し、
上記軸部材の軸受面と上記軸受部材の軸受面とは対向し、
上記軸受部材の軸受面は中心軸を含む面による上記軸受部材の断面において直線状であり、
上記軸部材の軸受面に動圧発生用の溝を形成した動圧軸受を有する軸受装置であって、
上記動圧発生用の溝は傾斜動圧発生溝であり、
上記傾斜動圧発生溝を形成した上記軸部材の軸受面は、
上記傾斜動圧発生溝と上記傾斜動圧発生溝に隣接する丘部とが周方向に交互に複数存在する動圧溝存在部と、
上記動圧溝存在部に対して上記傾斜動圧発生溝の傾斜延在方向に隣接すると共に周方向に延在していて動圧発生溝が存在しないと共に上記丘部からの延在面である動圧溝非存在部とを有し、
上記軸部材と上記軸受部材との間に流体を供給して、上記軸部材を軸受部材に対して静圧によって相対回転自在に支持する流体供給支持手段を備え、
上記流体供給支持手段は、
記動圧溝存在部に対向する上記軸受部材の軸受面の部分に形成されると共に上記流体を上記動圧溝存在部に供給する供給孔を有し、
上記軸部材と上記軸受部材との相対回転時に上記軸部材と上記軸受部材との間の間隙の軸方向両側が上記動圧溝非存在部に隣接して周状に開口することを特徴とする軸受装置。
A shaft member and a bearing member facing the shaft member;
The shaft member and the bearing member each have a bearing surface,
The bearing surface of the shaft member and the bearing surface of the bearing member are opposed to each other,
The bearing surface of the bearing member is linear in a cross section of the bearing member by a surface including a central axis,
A bearing device having a dynamic pressure bearing in which a groove for generating dynamic pressure is formed on a bearing surface of the shaft member,
The groove for generating dynamic pressure is an inclined dynamic pressure generating groove,
A bearing surface of the shaft member in which the inclined dynamic pressure generating groove is formed,
A plurality of dynamic pressure groove existing portions in which the inclined dynamic pressure generating grooves and the hill portions adjacent to the inclined dynamic pressure generating grooves are alternately present in the circumferential direction;
Is extending surface from the lands with no respect to the dynamic pressure grooves presence section have circumferentially extending with adjacent inclined direction of extension of the inclined dynamic pressure generating grooves exist hydrodynamic groove A dynamic pressure groove nonexistent part,
Fluid supply support means for supplying fluid between the shaft member and the bearing member and supporting the shaft member relative to the bearing member so as to be relatively rotatable by static pressure;
The fluid supply support means includes
The fluid is formed in a bearing surface portion of the bearing member opposite the upper kidou grooves present unit has a supply hole for supplying to the dynamic pressure grooves present section,
The axially opposite sides of the gap between the shaft member and the bearing member are opened circumferentially adjacent to the non-existing portion of the dynamic pressure groove when the shaft member and the bearing member are rotated relative to each other. Bearing device.
請求項1に記載の軸受装置において、
上記供給孔は、
記動圧溝存在部に対向する軸受面の軸方向の1箇所に形成されていることを特徴とする軸受装置。
The bearing device according to claim 1,
The supply hole is
Bearing apparatus characterized by being formed in one place in the axial direction of the bearing surface facing the upper kidou grooves present section.
請求項1または2に記載の軸受装置において、
上記供給孔は、
周方向に等間隔を隔てて軸対称に複数個形成されていることを特徴とする軸受装置。
The bearing device according to claim 1 or 2,
The supply hole is
Bearing apparatus characterized by being formed in plural axisymmetrically spaced equal intervals in the circumferential direction.
請求項1乃至のいずれか1つに記載の軸受装置において、
上記軸部材の外周面と上記軸受部材の内周面とを円錐形状にしたことを特徴とする軸受装置。
The bearing device according to any one of claims 1 to 3 ,
Bearing device being characterized in that the outer circumferential surface and the inner circumferential surface of the bearing member of the shaft member in a circular cone shape.
請求項1乃至のいずれか1つに記載の軸受装置において、
上記流体供給支持手段は、上記動圧軸受の起動時に上記軸部材と軸受部材との間に流体を供給することを特徴とする軸受装置。
The bearing device according to any one of claims 1 to 3 ,
The said fluid supply support means supplies a fluid between the said shaft member and a bearing member at the time of starting of the said dynamic pressure bearing, The bearing apparatus characterized by the above-mentioned.
請求項1乃至のいずれか1つに記載の軸受装置において、
上記流体供給支持手段は、上記動圧軸受の起動時および停止時において回転数が所定値以下であるときに、上記軸部材と軸受部材との間に流体を供給することを特徴とする軸受装置。
The bearing device according to any one of claims 1 to 3 ,
The fluid supply support means supplies fluid between the shaft member and the bearing member when the rotational speed is equal to or less than a predetermined value when the dynamic pressure bearing is started and stopped. .
請求項1乃至のいずれか1つに記載の軸受装置において、
上記流体供給支持手段は、上記動圧軸受の回転数に応じて、流体供給量を変えることを特徴とする軸受装置。
The bearing device according to any one of claims 1 to 3 ,
The bearing device according to claim 1, wherein the fluid supply support means changes a fluid supply amount in accordance with a rotational speed of the dynamic pressure bearing.
JP14762797A 1997-06-05 1997-06-05 Bearing device Expired - Fee Related JP4156686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14762797A JP4156686B2 (en) 1997-06-05 1997-06-05 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14762797A JP4156686B2 (en) 1997-06-05 1997-06-05 Bearing device

Publications (2)

Publication Number Publication Date
JPH10339319A JPH10339319A (en) 1998-12-22
JP4156686B2 true JP4156686B2 (en) 2008-09-24

Family

ID=15434610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14762797A Expired - Fee Related JP4156686B2 (en) 1997-06-05 1997-06-05 Bearing device

Country Status (1)

Country Link
JP (1) JP4156686B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245164B2 (en) * 2014-12-24 2017-12-13 マツダ株式会社 engine
CN111751220B (en) * 2020-06-22 2023-06-02 哈尔滨工业大学 Gas hydrostatic bearing performance calculation method considering fluid-solid coupling
CN112943792B (en) * 2021-04-02 2023-12-01 厦门理工学院 Conical dynamic and static pressure sliding bearing with controllable damping, rotating system and control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523059B2 (en) * 1973-06-19 1977-01-26
JPS5666521A (en) * 1979-11-01 1981-06-05 Sharp Corp Gas bearing
JPS5728919U (en) * 1980-07-25 1982-02-16
JPS57150624U (en) * 1981-03-19 1982-09-21
JPH04296217A (en) * 1991-03-27 1992-10-20 Teijin Seiki Co Ltd Rotary device
JPH04351318A (en) * 1991-05-30 1992-12-07 Mitsubishi Heavy Ind Ltd Gas supply control method and device for gas bearing

Also Published As

Publication number Publication date
JPH10339319A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US6158892A (en) Fluid film thrust bearing having integral compliant foils
JPH01316512A (en) Auxiliary bearing for magnetic bearing
JPH01220720A (en) Rolling bearing and manufacturing method therefor
US6190048B1 (en) Compliant foil fluid film radial bearing
JPH0585768B2 (en)
US5286117A (en) Bearing with asymmetrical flexible section
JP2001263292A (en) Vibration damping system and bearing centering device for magnetic bearing vacuum pump
JP2006183787A (en) Dynamic pressure fluid bearing device, and small motor provided with dynamic pressure fluid bearing device
JP4156686B2 (en) Bearing device
JP3652187B2 (en) Fluid bearing
JP6289845B2 (en) Tapered roller bearing
JP4047494B2 (en) Hydrodynamic bearing
JP2006138474A (en) Fluid dynamic pressure bearing device
JP2003184864A (en) Hydrodynamic bearing
US7125170B2 (en) Fluid dynamic bearing motor
JP3693749B2 (en) Thrust dynamic pressure bearing
JPH0893769A (en) Journal bearing device
JPS5916132B2 (en) Runner-shaft vibration reduction device
JPH0640978Y2 (en) Hydrodynamic bearing
JP2001107952A (en) Conical roller bearing
JP3593372B2 (en) Motor with hydrodynamic bearing means
JP3815929B2 (en) motor
JPH085369Y2 (en) Thrust hydrodynamic bearing
JP2006177504A (en) Direct drive motor
JP3016111B2 (en) Ultra high speed cylindrical roller bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070316

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees