JP4156646B2 - NMR probe for multiple resonance - Google Patents

NMR probe for multiple resonance Download PDF

Info

Publication number
JP4156646B2
JP4156646B2 JP2006302493A JP2006302493A JP4156646B2 JP 4156646 B2 JP4156646 B2 JP 4156646B2 JP 2006302493 A JP2006302493 A JP 2006302493A JP 2006302493 A JP2006302493 A JP 2006302493A JP 4156646 B2 JP4156646 B2 JP 4156646B2
Authority
JP
Japan
Prior art keywords
frequency
coil
resonance
nucleus
nuclei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006302493A
Other languages
Japanese (ja)
Other versions
JP2007033462A (en
Inventor
池田博
岡田輝政
末松浩人
山腰良晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2006302493A priority Critical patent/JP4156646B2/en
Publication of JP2007033462A publication Critical patent/JP2007033462A/en
Application granted granted Critical
Publication of JP4156646B2 publication Critical patent/JP4156646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、NMR装置に用いられる多重共鳴用NMRプローブに関し、特に、同時に共存同調できる高周波が少なくとも3周波数以上であって、そのうちの少なくとも2つの周波数が広帯域の同調範囲を持つような多重共鳴用NMRプローブに関する。   The present invention relates to a multi-resonance NMR probe used in an NMR apparatus, and in particular, for multi-resonance in which at least three high-frequency frequencies that can be co-tuned simultaneously have at least three frequencies, and at least two of them have a wide tuning range. It relates to an NMR probe.

NMRの観測対象となる核種は実にさまざまである。また、核種に応じて、その共鳴周波数も実にさまざまである。具体的には、図1に示すような核種がNMRの主な観測対象になっている。図中、左側の化学記号は観測核の種類、右側の数値は、18テスラ(T)の静磁場中に置かれた場合の観測核の共鳴周波数を表わし、単位はメガヘルツ(MHz)である。   There are a wide variety of nuclides that can be observed by NMR. Depending on the nuclide, the resonance frequency varies greatly. Specifically, nuclides as shown in FIG. 1 are the main observation targets of NMR. In the figure, the chemical symbol on the left represents the type of observation nucleus, and the numerical value on the right represents the resonance frequency of the observation nucleus when placed in a static magnetic field of 18 Tesla (T), in units of megahertz (MHz).

NMR装置は、その重要な構成要素の1つとして、NMRプローブを備えている。NMRプローブは、サンプルコイルと、このサンプルコイルと組み合わされる同調回路とを備え、静磁場内に配置された試料に高周波パルスを照射すると共に、この照射により試料から発生するNMR信号を検出する目的に用いられる。 このような役割を持ったNMRプローブの1つとして、比較的高い周波数である照射系高周波、比較的低い周波数である観測系高周波、および静磁場のドリフトを補償するために用いられるNMRロック系高周波を、サンプルコイルに対して同時に設定可能な、多重同調回路を備えた多重共鳴用NMRプローブが開発されている。   The NMR apparatus includes an NMR probe as one of its important components. The NMR probe includes a sample coil and a tuning circuit combined with the sample coil, and irradiates a sample placed in a static magnetic field with a high frequency pulse and detects an NMR signal generated from the sample by this irradiation. Used. As one of the NMR probes having such a role, an irradiation system high frequency that is a relatively high frequency, an observation system high frequency that is a relatively low frequency, and an NMR lock high frequency that is used to compensate for a drift of a static magnetic field. Have been developed for multiple resonance NMR probes with multiple tuning circuits.

図2は、従来の多重共鳴用NMRプローブの実例を示すものである。このうち、図2(a)は、同時に共存同調できる高周波が3周波数(f、f、f)である多重共鳴用NMRプローブの例で、そのうちの1周波数(f)が1〜3オクターブ程度の広帯域同調、残りの2周波数(f、f)が単同調となっているものである。具体的には、fが、31P核〜15N核の共鳴周波数に同調可能な観測系高周波、fが、H核の共鳴周波数に同調可能な照射系高周波、fが、D核の共鳴周波数に同調可能なNMRロック系高周波に対応している。 FIG. 2 shows an example of a conventional multiple resonance NMR probe. Among these, FIG. 2A is an example of an NMR probe for multi-resonance having three frequencies (f 1 , f 2 , f 3 ) that can be simultaneously tuned, and one of the frequencies (f 1 ) is 1 to Broadband tuning of about 3 octaves and the remaining two frequencies (f 2 , f 3 ) are single-tuned. Specifically, f 1 is an observation system high frequency that can be tuned to the resonance frequency of 31 P nuclei to 15 N nuclei, f 2 is an irradiation system high frequency that can be tuned to the resonance frequency of 1 H nuclei, and f 3 is 2 It corresponds to an NMR lock type high frequency that can be tuned to the resonance frequency of the D nucleus.

また、図2(b)は、同時に共存同調できる高周波が4周波数(f、f、f、f)である多重共鳴用NMRプローブの例で、4周波数のすべてが単同調となっているものである。具体的には、fが、13C核の共鳴周波数に同調可能な第1の観測系高周波、fが、H核の共鳴周波数に同調可能な照射系高周波、fが、15N核の共鳴周波数に同調可能な第2の観測系高周波、fが、D核の共鳴周波数に同調可能なNMRロック系高周波に対応している。尚、この高周波の組み合わせは、必ずしも絶対的なものではなく、f/f/f/fの組み合わせの別の例として、例えば、f13C核の共鳴周波数、f19F核の共鳴周波数、fH核の共鳴周波数、fD核の共鳴周波数を、それぞれ割り当てても良い。 FIG. 2B shows an example of a multiple resonance NMR probe having four frequencies (f 1 , f 2 , f 3 , f 4 ) that can be simultaneously tuned simultaneously, and all four frequencies are single-tuned. It is what. Specifically, f 1 is a first observation system high frequency that can be tuned to the resonance frequency of 13 C nuclei, f 2 is an irradiation system high frequency that can be tuned to the resonance frequency of 1 H nuclei, and f 3 is 15 N the second observation system frequency can be tuned to the resonant frequency of the nuclei, f 4, it corresponds to a tunable NMR rock frequency to the resonant frequency of the 2 D nucleus. The combination of the high-frequency is not necessarily absolute, as another example of a combination of f 1 / f 2 / f 3 / f 4, for example, the resonant frequency of the f 1 13 C nuclei, the f 2 19 F nuclear resonance frequency, the resonance frequency of the 1 H nuclei to f 3, the resonant frequency of 2 D nucleus f 4, may be assigned respectively.

特開平07−120419号公報Japanese Patent Laid-Open No. 07-120419

ところで、従来、NMRの測定対象とされてきた試料としては、
(1)13C核、H核、15N核を含み、重水素(D)核溶媒で溶液化された試料。
(2)79Br核、13C核、H核を含み、重水素(D)核溶媒で溶液化された試料。
(3)15N核、H核、31P核、(13C核)を含み、重水素(D)核溶媒で溶液化された試料。
などがあった。これらの例から明らかなように、31P核〜15N核(15N核〜103Rh核などの場合もある)やH核など異核種を測定対象とした測定試料は、既知/未知を問わず、数多く存在している。
By the way, as a sample that has been conventionally measured by NMR,
(1) A sample containing 13 C nuclei, 1 H nuclei, and 15 N nuclei and made into a solution in a deuterium ( 2 D) nuclear solvent.
(2) A sample containing 79 Br nuclei, 13 C nuclei, and 1 H nuclei and made into a solution in a deuterium ( 2 D) nuclear solvent.
(3) A sample containing 15 N nuclei, 1 H nuclei, 31 P nuclei, and ( 13 C nuclei) and made into a solution in a deuterium ( 2 D) nuclear solvent.
There was. As is clear from these examples, measurement samples for measuring heterogeneous species such as 31 P nucleus to 15 N nucleus (sometimes 15 N nucleus to 103 Rh nucleus) and 1 H nucleus are known / unknown. Regardless, there are many.

このような試料を測定したい場合、従来の技術では、1台のNMRプローブですべての核の観測をカバーすることは不可能であり、面倒ではあっても、所定の核の共鳴周波数に同調可能な複数のNMRプローブを用意して、その都度、NMRプローブをNMRマグネットに装着し、分解能を上げ、測定条件を整えて測定することを繰り返し行なっていた。そして、そのための時間と労力が馬鹿にならない上に、NMRプローブは、プローブごとに分解能や照射効率や検出効率が異なるため、得られたデータに対し、プローブの違いに起因する要素を考慮して、データの補正を行なわねばならないという問題があった。   If you want to measure such a sample, it is impossible to cover all the nuclei observations with a single NMR probe with the conventional technology, and even if it is troublesome, you can tune to the resonance frequency of a given nucleus. A plurality of NMR probes were prepared, and each time, the NMR probe was attached to the NMR magnet, the resolution was increased, and the measurement conditions were adjusted and measurement was repeated. In addition, the time and effort required to do so are not stupid, and the NMR probe has different resolution, irradiation efficiency, and detection efficiency for each probe. There was a problem that the data had to be corrected.

本発明の目的は、上述した点に鑑み、1台のNMRプローブで複数種類の核を同時に観測できる多重共鳴用NMRプローブを提供し、上述したような不都合を解消することにある。   In view of the above points, an object of the present invention is to provide a multiple resonance NMR probe capable of simultaneously observing a plurality of types of nuclei with a single NMR probe, and to solve the above-described disadvantages.

この目的を達成するため、本発明にかかる多重共鳴用NMRプローブは、
静磁場中にセットされた試料に複数の異なる周波数の高周波を照射し、この照射高周波に対応して試料から放出される複数の核磁気共鳴信号を検出する多重共鳴用NMRプローブにおいて、
該多重共鳴用NMRプローブは2つのサンプルコイルを備え、第1のコイルに発生する高周波磁場軸と第2のコイルに発生する高周波磁場軸が異なる方向になるように設定されていて、
前記第1のコイルは19F核または1H核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させ、前記第2のコイルは2D核の共鳴周波数に相当する狭帯域と199Hg核〜31P核の共鳴周波数に相当する広帯域、または2D核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させることを特徴としている。
In order to achieve this object, the NMR probe for multiple resonance according to the present invention comprises:
In a multi-resonance NMR probe that irradiates a sample set in a static magnetic field with a plurality of high frequencies of different frequencies and detects a plurality of nuclear magnetic resonance signals emitted from the sample in response to the irradiation high frequency,
The NMR probe for multiple resonance includes two sample coils, and is set so that the high-frequency magnetic field axis generated in the first coil and the high-frequency magnetic field axis generated in the second coil are in different directions,
The first coil double-tunes a narrow band corresponding to the resonance frequency of 19 F nucleus or 1 H nucleus and a broadband corresponding to the resonance frequency of 15 N nucleus to 31 P nucleus, and the second coil is 2 D corresponding to the narrow band and 15 resonance frequency of N nuclei ~ 31 P nuclei corresponding to the resonant frequency of the wideband or 2 D nucleus and corresponds to the resonant frequency of the narrowband and 199 Hg nuclei ~ 31 P nuclei corresponding to the resonant frequency of the nuclei It is characterized by the double tuning of a wide band.

また、前記第1のコイルは内側コイル、前記第2のコイルは外側コイルであることを特徴としている。   Further, the first coil is an inner coil, and the second coil is an outer coil.

本発明にかかる多重共鳴用NMRプローブによれば、
静磁場中にセットされた試料に複数の異なる周波数の高周波を照射し、この照射高周波に対応して試料から放出される複数の核磁気共鳴信号を検出する多重共鳴用NMRプローブにおいて、
該多重共鳴用NMRプローブは2つのサンプルコイルを備え、第1のコイルに発生する高周波磁場軸と第2のコイルに発生する高周波磁場軸が異なる方向になるように設定されていて、
前記第1のコイルは19F核または1H核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させ、前記第2のコイルは2D核の共鳴周波数に相当する狭帯域と199Hg核〜31P核の共鳴周波数に相当する広帯域、または2D核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させることを特徴としているので、
1台のNMRプローブで複数種類の核を同時に観測できる多重共鳴用NMRプローブを提供することができる。
According to the NMR probe for multiple resonance according to the present invention,
In a multi-resonance NMR probe that irradiates a sample set in a static magnetic field with a plurality of high frequencies of different frequencies and detects a plurality of nuclear magnetic resonance signals emitted from the sample in response to the irradiation high frequency,
The NMR probe for multiple resonance includes two sample coils, and is set so that the high-frequency magnetic field axis generated in the first coil and the high-frequency magnetic field axis generated in the second coil are in different directions,
The first coil double-tunes a narrow band corresponding to the resonance frequency of 19 F nucleus or 1 H nucleus and a broadband corresponding to the resonance frequency of 15 N nucleus to 31 P nucleus, and the second coil is 2 D corresponding to the narrow band and 15 resonance frequency of N nuclei ~ 31 P nuclei corresponding to the resonant frequency of the wideband or 2 D nucleus and corresponds to the resonant frequency of the narrowband and 199 Hg nuclei ~ 31 P nuclei corresponding to the resonant frequency of the nuclei Because it is characterized by double tuning the wideband to
A multi-resonance NMR probe capable of simultaneously observing a plurality of types of nuclei with one NMR probe can be provided.

以下、図面を参照して、本発明の実施の形態を説明する。図3は、本発明にかかる多重共鳴用NMRプローブの一実施例を示したものである。図3に示すように、本発明にかかる多重共鳴用NMRプローブは、同時に共存同調できる高周波が4周波数(f、f、f、f)であり、そのうちの1周波数(f)が1〜3オクターブ程度の広帯域同調、1周波数(f)が1〜2オクターブ程度の広帯域同調、残りの2周波数(f、f)がそれぞれ単同調となっているものである。具体的には、fが、31P核〜15N核の共鳴周波数に同調可能な第1の観測系高周波、fが、31P核〜199Hg核の共鳴周波数に同調可能な第2の観測系高周波、fが、H核または19F核の共鳴周波数に同調可能な照射系高周波、fが、D核の共鳴周波数に同調可能なNMRロック系高周波に対応している。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows an embodiment of the NMR probe for multiple resonance according to the present invention. As shown in FIG. 3, the multi-resonance NMR probe according to the present invention has four frequencies (f 1 , f 2 , f 3 , f 4 ) that can be simultaneously tuned, and one of the frequencies (f 1 ). There wideband tuning of about 1 to 3 octaves, 1 frequency (f 2) 1 to 2 octaves about wideband tuning, but the remaining 2 frequency (f 3, f 4) is a single-tuned respectively. Specifically, f 1 is a first observation system high frequency that can be tuned to the resonance frequency of 31 P nucleus to 15 N nucleus, and f 2 is a second frequency that can be tuned to the resonance frequency of 31 P nucleus to 199 Hg nucleus. F 3 corresponds to an irradiation system high frequency that can be tuned to the resonance frequency of 1 H nucleus or 19 F nucleus, and f 4 corresponds to an NMR lock type high frequency that can be tuned to the resonance frequency of 2 D nucleus. .

このような構成において、本実施例では、周波数の近接したfとfとが相互に干渉し合わないようにするために、細心の工夫を講じている。図4は、本発明にかかる多重共鳴用NMRプローブのサンプルコイル部分の形状を示したものである。図4から明らかなように、サンプルコイル部分は、同心円状に配置された大小2つのサドル型コイルL、Lから成り、それぞれのコイルが発生する高周波磁界の向きが、異なる方向を向くように構成されている。 In such a configuration, in the present embodiment, meticulous measures are taken in order to prevent f 1 and f 2 having close frequencies from interfering with each other. FIG. 4 shows the shape of the sample coil portion of the multiple resonance NMR probe according to the present invention. As is clear from FIG. 4, the sample coil portion is composed of two saddle-type coils L A and L B arranged concentrically, so that the directions of the high-frequency magnetic fields generated by the respective coils are in different directions. It is configured.

この大小2つのサドル型コイルL、Lが発生する高周波磁界の向きと、2つのコイル間のアイソレーションの関係を示したものが図5である。図5(a)は、大小2つのサドル型コイルL、Lが発生する高周波磁界の向きを示す模式図、図5(b)は、大小2つのサドル型コイルL、Lが発生する高周波磁界の磁場軸が成す角度θと2つのコイル間のアイソレーションIとの関係を示す図である。図5(b)から明らかなように、大小2つのサドル型コイルL、Lが発生する高周波磁界の磁場軸が成す角度θを変化させると、2つのコイル間のアイソレーションの値Iは角度θに依存して変化し、θがほぼ90°に近い所定の角度θにおいて、アイソレーションの値Iが極小値を取る。 FIG. 5 shows the relationship between the direction of the high-frequency magnetic field generated by the two large and small saddle coils L A and L B and the isolation between the two coils. FIG. 5A is a schematic diagram showing the direction of the high-frequency magnetic field generated by the two large and small saddle-type coils L A and L B , and FIG. 5B shows the generation of the two large and small saddle-type coils L A and L B. It is a figure which shows the relationship between the angle (theta) which the magnetic field axis of the high frequency magnetic field to make, and the isolation I between two coils. FIG 5 (b) As is apparent from the two large and small saddle coil L A, when L B is changing the angle θ formed by the magnetic field axis of the high-frequency magnetic field generated, the value I of isolation between the two coils The value I of the isolation takes a minimum value at a predetermined angle θ 0 that varies depending on the angle θ and θ is approximately 90 °.

このとき、サドル型コイルLの直径を6.4mmφ、サドル型コイルLの直径を10.5mmφ、2つのコイルL、Lのコイル長を等しいと仮定すると、2つのコイル間のクロストークをなくすことのできる実用的なアイソレーションの値は、約10dB、より好ましくは、約20dBであった。そこで、この20dBを実用的な水準を示すアイソレーションIと定めて、Iを満たすような角度θを調べたところ、θは、θ±10°程度、より好ましくは、θ±3°程度の値であることが分かった。最適角θの値は、ネットワーク・アナライザー、あるいは所定の治具を用いて、正確に決定することができるので、このようにして決定された角度θに2つのコイルの高周波磁界の方位角が合致するように、大小2つのサドル型コイルL、Lを配置させた。 At this time, 6.4Mmfai the diameter of the saddle type coil L A, 10.5mmφ the diameter of the saddle type coil L B, two coils L A, assuming equal the coil length L B, between the two coils cross A practical isolation value that can eliminate the talk was about 10 dB, and more preferably about 20 dB. Therefore, this 20dB stipulates that isolation I 0 indicating a practical level, were examined angle theta which satisfies I 0, theta is, θ 0 ± 10 °, more preferably about, theta 0 ± 3 It was found to be about °. Since the value of the optimum angle θ 0 can be accurately determined using a network analyzer or a predetermined jig, the azimuth angle of the high-frequency magnetic field of the two coils is determined at the angle θ 0 thus determined. The two large and small saddle-type coils L A and L B are arranged so as to match.

また、サドル型コイルL(内側コイル)のインダクタンスの値を約60nH、サドル型コイルL(外側コイル)のインダクタンスの値を約150nHと定め、両コイルのインダクタンスの値をわざとアンバランスに設定することで、2つの周波数f、fがクロストークしにくいように構成した。尚、両コイル間の結合インダクタンスκは、図6に示すタンク回路中のκと等価である。この結合インダクタンスκは、
κ = β√(L×L
で表わされる。結合度βは、コイルLの高周波磁界軸とコイルLの高周波磁界軸とが成す角度θと、コイルL・コイルL間の距離の値とによって決まる装置定数である。コイルLの高周波磁界軸とコイルLの高周波磁界軸とが成す角度をθ±3°に設定すると共に、コイルLとコイルLの直径をそれぞれ6.4mmと10.5mmに設定して、コイルL・コイルL間距離を2.05mmとすることにより、結合度βの値を約0.1程度にまで低減させることができた。その結果、結合インダクタンスκの値は約9.5nHとなって、κ≪L、κ≪Lの条件を実現することができた。結合インダクタンスκの値が、コイルのインダクタンスL、Lの値よりもはるかに小さいので、コイルLに高周波fを注入したとき、およびコイルLに高周波fを注入したときに、コイルLとコイルLの結合点に誘起される高周波電流の値は非常に小さく、fとfが近接した周波数を取った場合でも、両コイル間で相互に干渉することの少ない共振系を実現することができた。
Further, the inductance value of the saddle type coil L A (inner coil) is set to about 60 nH, the inductance value of the saddle type coil L B (outer coil) is set to about 150 nH, and the inductance values of both coils are intentionally set to be unbalanced. By doing so, the two frequencies f 1 and f 2 are configured to be difficult to crosstalk. The coupling inductance κ between the two coils is equivalent to κ in the tank circuit shown in FIG. This coupling inductance κ is
κ = β√ (L A × L B)
It is represented by The degree of coupling beta, is a device constant determined and the angle θ formed by the high frequency magnetic field axis of the high-frequency magnetic field axis and the coil L B of the coil L A, by the value of the distance between the coils L A · coil L B. The angle formed with the high-frequency magnetic field axis of the high-frequency magnetic field axis and the coil L B of the coil L A and sets the θ 0 ± 3 °, set to 6.4mm and 10.5mm in diameter of the coil L A and the coil L B, respectively to, by the distance between the coils L a · coil L B and 2.05 mm, it was possible to reduce the value of the connection degree β up to about 0.1. As a result, the value of the coupling inductance κ is is about 9.5NH, could be realized Kappa«L A, the Kappa«L B conditions. The value of the coupling inductance κ is, the inductance L A of the coil, so much smaller than the value of L B, when a high-frequency f 1 to the coil L A, and when a high-frequency f 2 in the coil L B, the value of the high frequency current induced in the point of attachment of the coil L a and the coil L B is very small, even when taking the frequency f 1 and f 2 are close, less resonant of interfering with each other between the two coils The system could be realized.

尚、上記の例では、内側コイルと外側コイルのインダクタンスの比の値を、ほぼ1:2.5となるように定めたが、この比の値は、1:3、あるいは1:4程度であっても良い。逆に1:1、あるいは1:2程度でも干渉の少ない共振系を得ることが可能であるが、その場合には、それぞれの帯域に、ゴーストと呼ばれるスプリアス成分が出ることがあって、好ましくない。   In the above example, the value of the inductance ratio between the inner coil and the outer coil is determined to be approximately 1: 2.5. However, the value of this ratio is approximately 1: 3 or 1: 4. There may be. Conversely, it is possible to obtain a resonance system with little interference even at about 1: 1 or 1: 2, but in that case, spurious components called ghosts may appear in each band, which is not preferable. .

また、上記の例では、コイルLとコイルLの直径をそれぞれ6.4mmと10.5mmに設定して、コイルL・コイルL間距離を2.05mmとすることにより、結合度βの値を約0.1程度にまで低減させたが、2つのコイル間距離を2.05mmよりももっと引き離せば、外側コイルが測定試料から遠ざかることによってNMR装置の感度が犠牲になるものの、結合度βの値を約0.1よりも小さくすることができ、クロストークを更に低減させることが可能である。これは、結合度βが、誘導の要素のみならず、コイル間に発生する結合容量の要素をも含んでいることを意味する。すなわち、コイル間距離を、コイル間角度やコイル形状などと共に適宜に定めてやれば、結合度βを0.1以下に設定することが可能であることを意味するものである。 Further, in the above example, by setting the diameter of the coil L A and the coil L B respectively 6.4mm and 10.5 mm, the coil L A · coil L B distance by a 2.05 mm, the degree of coupling Although the value of β was reduced to about 0.1, if the distance between the two coils was more than 2.05 mm, the sensitivity of the NMR apparatus was sacrificed by moving the outer coil away from the measurement sample. The value of the coupling degree β can be made smaller than about 0.1, and the crosstalk can be further reduced. This means that the degree of coupling β includes not only the inductive element but also the element of the coupling capacitance generated between the coils. That is, if the inter-coil distance is appropriately determined together with the inter-coil angle, the coil shape, etc., it means that the coupling degree β can be set to 0.1 or less.

図7は、本発明にかかる多重共鳴用NMRプローブの一実施例として、分離回路の部分を含めた回路構成を示したものである。入力端子Aからは、H核、または19F核の共鳴周波数に相当する周波数を持った高周波f(照射系)が、また、入力端子Bからは、15N核〜31P核の共鳴周波数に相当する周波数を持った高周波f(第1の観測系)が、それぞれコイルLに向けて注入される。入力端子Aから注入された高周波fは、ハイパス・フィルターHPFを通ってコイルLに供給され、コイルL、エレメント2、同調バリコン4、整合バリコン3、およびエレメント1により構成された共振周波数fのLC共振器で共振する。また、入力端子Bから注入された高周波fは、バンド・リジェクト・フィルターBRF1を通ってコイルLに供給され、コイルL、エレメント1、脱着素子ST1、同調バリコン2、整合バリコン1、およびエレメント2により構成された共振周波数fのLC共振器で共振する。 FIG. 7 shows a circuit configuration including a separation circuit as an embodiment of the NMR probe for multiple resonance according to the present invention. From the input terminal A, a high frequency f 3 (irradiation system) having a frequency corresponding to the resonance frequency of 1 H nucleus or 19 F nucleus, and from the input terminal B, resonance of 15 N nucleus to 31 P nucleus. frequency f 1 with a frequency corresponding to the frequency (first observation system), is injected toward the coil L a, respectively. Frequency f 3 which is injected from the input terminal A is supplied to the coil L A through a high-pass filter HPF, a coil L A, element 2, tuning variable capacitor 4, matching variable capacitor 3, and the resonant frequency constituted by the element 1 It resonates the LC resonator f 3. The high frequency f 1, which is injected from the input terminal B is supplied to the coil L A through band reject filter BRF1, coil L A, element 1, the desorption device ST1, tuning variable capacitor 2, matching variable capacitor 1, and Resonance is caused by the LC resonator having the resonance frequency f 1 constituted by the element 2.

また、入力端子Cからは、199Hg核〜31P核の共鳴周波数に相当する周波数を持った高周波f(第2の観測系)が、また、入力端子Dからは、D核の共鳴周波数に相当する周波数(NMRロック周波数)を持った高周波f(ロック系)が、それぞれコイルLに向けて注入される。入力端子Cから注入された高周波fは、直接コイルLに供給され、コイルL、エレメント3、脱着素子ST2、同調バリコン6、整合バリコン5、およびエレメント4により構成された共振周波数fのLC共振器で共振する。また、入力端子Dから注入された高周波fは、バンドパス・フィルターBPF1を通ってコイルLに供給され、コイルL、エレメント4、同調コンデンサ8、整合コンデンサ7、およびエレメント3により構成された共振周波数fのLC共振器で共振する。 Further, from the input terminal C, a high frequency f 2 (second observation system) having a frequency corresponding to the resonance frequency of 199 Hg nucleus to 31 P nucleus, and from the input terminal D, resonance of 2 D nucleus frequency f 4 having a frequency (NMR lock frequency) corresponding to the frequency (rock) is injected toward the coil L B, respectively. Frequency f 2 which is injected from the input terminal C is supplied directly to the coil L B, the coil L B, the element 3, the desorption device ST2, tuning variable capacitor 6, matching variable capacitor 5, and the resonance frequency f 2 which is constituted by the element 4 Resonate with the LC resonator. The high frequency f 4 which is injected from the input terminal D is supplied to the coil L B through the band-pass filter BPF1, the coil L B, the element 4, the tuning capacitor 8, is constituted by the matching capacitor 7, and the element 3 and it resonates the LC resonator of the resonance frequency f 4.

尚、図7の例では、f199Hg核〜31P核の共鳴周波数に相当する周波数を持った高周波としたが、これは、15N核〜Li核の共鳴周波数に相当する周波数を持った高周波としても良い。また、図7の例では、内側コイルLにfとf、外側コイルLにfとfを割り当てたが、これは、測定の感度と用途とに合わせて、その組み合わせを別の組み合わせに変更することもできる。 In the example of FIG. 7, f 2 is a high frequency having a frequency corresponding to the resonance frequency of 199 Hg nucleus to 31 P nucleus, but this is a frequency corresponding to the resonance frequency of 15 N nucleus to 6 Li nucleus. It is good also as a high frequency with. In the example of FIG. 7, f 1 and f 3 in the inner coil L A, has been assigned a f 2 and f 4 to the outer coil L B, which, in accordance with the sensitivity and applications of measuring, combinations thereof It can also be changed to another combination.

このような構成において、ハイパス・フィルターHPFには、H核の共鳴周波数よりも低い周波数の高周波の透過を阻止するような特性を持ったエレメントを、また、バンド・リジェクト・フィルターBRF1には、H核の共鳴周波数に近い帯域の高周波の透過を阻止するような特性を持ったエレメントを、また、バンドパス・フィルターBPF1には、D核の共鳴周波数に近い帯域の高周波のみを透過させるような特性を持ったエレメントを、それぞれ採用した。これらのエレメントの具体例は、図8にまとめて示した。 In such a configuration, the high-pass filter HPF has an element having a characteristic that blocks transmission of a high frequency having a frequency lower than the resonance frequency of the 1 H nucleus, and the band reject filter BRF1 has the element having such characteristics as to prevent the band of high frequency transmission is close to the resonant frequency of the 1 H nucleus and also to a band-pass filter BPF1 transmits only the band of high frequency close to the resonance frequency of the 2 D nuclear Each element has the same characteristics. Specific examples of these elements are collectively shown in FIG.

また、脱着素子ST1、ST2には、図9(a)に示すような3種類のエレメントの組み合わせの中から1つを選んで使用するようにした。また、エレメント1には、図9(b)に示すような2種類のリアクタンス・エレメントの組み合わせの中から1つを選んで使用した。このとき、エレメント1の回路動作としては、fに対しては容量性動作、fに対しては接地動作するように、コンデンサやコイルの定数を決定した。また、エレメント2には、図9(c)に示すような2種類のリアクタンス・エレメントの組み合わせの中から1つを選んで使用した。このとき、エレメント2の回路動作としては、fに対しては適度なインピーダンス、fに対しては高インピーダンスないしはヘリカル共振器となるように、コンデンサやコイルの定数を決定した。また、エレメント3には、図9(d)に示すようなリアクタンス・エレメントを使用した。このとき、エレメント3の回路動作としては、fに対しては高インピーダンス、fに対しては接地動作するように、コンデンサやコイルの定数を決定した。また、エレメント4には、図9(e)に示すようなリアクタンス・エレメントを使用した。このとき、エレメント4の回路動作としては、fに対しては接地動作、fに対しては容量性動作するように、コンデンサの定数を決定した。 Further, one of the combinations of three types of elements as shown in FIG. 9A is selected and used for the detachable elements ST1 and ST2. For element 1, one selected from the combination of two types of reactance elements as shown in FIG. 9B was used. At this time, as the circuit operation of the element 1, the constants of the capacitor and the coil were determined so that the capacitive operation was performed for f 1 and the ground operation was performed for f 3 . For element 2, one selected from the combination of two types of reactance elements as shown in FIG. 9C was used. At this time, as the circuit operation of the element 2, the constants of the capacitor and the coil were determined so that an appropriate impedance for f 1 and a high impedance or a helical resonator for f 3 were obtained. For the element 3, a reactance element as shown in FIG. In this case, the circuit operation of the element 3, the high impedance to f 2, so that the ground work for f 4, to determine the constants of the capacitor and the coil. Further, as the element 4, a reactance element as shown in FIG. In this case, the circuit operation of the element 4, the ground work for f 2, to operate the capacitive for f 4, to determine the constants of the capacitor.

尚、上記の例では、同時に共存同調できる高周波が4周波数であって、そのうちの2つの周波数が広帯域の同調範囲を持つように構成された多重共鳴用NMRプローブについて述べたが、本発明は、上記の例に限定されるものではない。例えば、H核のデカップルを行なわないでNMRを測定する場合に用いられる、照射系高周波fのチャンネルが設けられていない3周波数タイプの多重共鳴用NMRプローブや、外部ロックにより稼働し、ロック系高周波fのチャンネルが設けられていない3周波数タイプの多重共鳴用NMRプローブや、スペクトル線幅の広い固体試料の測定に用いられ、ロック機構がもともと存在しないような3周波数タイプの多重共鳴用NMRプローブなど、同時に共存同調できる高周波が3周波数であって、そのうちの2つの周波数が広帯域の同調範囲を持つような多重共鳴用NMRプローブもまた、本発明の範疇に入ることは言うまでもない。 In the above-described example, the multi-resonance NMR probe has been described in which the high frequency capable of coexisting simultaneously is four frequencies, and two of them have a wide tuning range. It is not limited to the above example. For example, 1 without performing decoupling of H nuclei used in measuring NMR, channels 3 NMR probe and for multiple resonance frequencies types not provided irradiation system frequency f 3, it runs the external locking, locking 3 frequency type multi-resonance NMR probe that is not provided with a system high-frequency f 4 channel, or a 3 frequency type multi-resonance type that is used for measurement of a solid sample with a wide spectral line width and does not have a lock mechanism originally. Needless to say, an NMR probe for multi-resonance, such as an NMR probe, that has three high-frequency frequencies that can be simultaneously tuned and two of which have a wide tuning range, falls within the scope of the present invention.

また、近年、99Ru、183W、103Rhなどを含む有機金属化合物のNMR測定が活発に行なわれつつあるが、これらの核種の共鳴周波数は極めて低い。これらの核種に対しては、コイルのターン数を増やして、LC共振回路を構成するインダクタンスの値を上げてやることにより、対応が可能である。 In recent years, 99 Ru, 183 W, although 103 NMR measurement of the organometallic compound and the like Rh are being actively made, the resonant frequencies of these nuclides are very low. These nuclides can be dealt with by increasing the number of turns of the coil and increasing the value of the inductance constituting the LC resonance circuit.

以上述べたごとく、本発明の多重共鳴用NMRプローブによれば、1〜3オクターブ程度の広帯域同調が可能なチャンネルを2つ備えたので、3核、4核にまたがる異種核相関を、1台のプローブで測定することが可能になった。   As described above, according to the multi-resonance NMR probe of the present invention, since there are two channels capable of broadband tuning of about 1 to 3 octaves, one heteronuclear correlation across three nuclei and four nuclei can be obtained. It became possible to measure with this probe.

また、2つのコイル間のアイソレーションの条件が確定したので、共振周波数の違いが数%しかないような極めて近接する2つの核種(例えば、13Cと27Al、11Bと119Sn、Liと31Pなど)に対しても、同時に高周波を照射することが可能になった。 In addition, since the conditions for isolation between the two coils have been established, two very close nuclides (for example, 13 C and 27 Al, 11 B and 119 Sn, 7 Li, which have a resonance frequency difference of only a few percent). even for the like 31 P), it made it possible to simultaneously irradiate a high frequency.

NMRで測定される核種とその共鳴周波数の一例を示す図である。It is a figure which shows an example of the nuclide measured by NMR, and its resonant frequency. 従来の多重共鳴用NMRプローブを示す図である。It is a figure which shows the conventional NMR probe for multiple resonance. 本発明にかかる多重共鳴用NMRプローブの一実施例を示す図である。It is a figure which shows one Example of the NMR probe for multiple resonances concerning this invention. 本発明にかかる多重共鳴用NMRプローブのサンプルコイル部分の一実施例を示す図である。It is a figure which shows one Example of the sample coil part of the NMR probe for multiple resonances concerning this invention. サンプルコイルの向きとアイソテーションとの関係を示す図である。It is a figure which shows the relationship between direction of a sample coil, and isolation. サンプルコイル間の結合インダクタンスを示す図である。It is a figure which shows the coupling inductance between sample coils. 本発明にかかる多重共鳴用NMRプローブの回路構成の一実施例を示す図である。It is a figure which shows one Example of the circuit structure of the NMR probe for multiple resonances concerning this invention. 本発明にかかる多重共鳴用NMRプローブに用いられる回路エレメントの一実施例を示す図である。It is a figure which shows one Example of the circuit element used for the NMR probe for multiple resonances concerning this invention. 本発明にかかる多重共鳴用NMRプローブに用いられる回路エレメントの一実施例を示す図である。It is a figure which shows one Example of the circuit element used for the NMR probe for multiple resonances concerning this invention.

符号の説明Explanation of symbols

1:整合バリコン、2:同調バリコン、3:整合バリコン、4:同調バリコン、5:整合バリコン、6:同調バリコン、7:整合コンデンサ、8:同調コンデンサ、A:入力端子、B:入力端子、C:入力端子、D:入力端子、L:サンプルコイル(内側コイル)、L:サンプルコイル(外側コイル)、ST1:脱着素子、ST2:脱着素子、HPF:ハイパス・フィルター、BRF1:バンド・リジェクト・フィルター、BPF1:バンドパス・フィルター 1: matching variable capacitor, 2: tuning variable capacitor, 3: matching variable capacitor, 4: tuning variable capacitor, 5: matching variable capacitor, 6: tuning variable capacitor, 7: matching capacitor, 8: tuning capacitor, A: input terminal, B: input terminal, C: Input terminal, D: Input terminal, L A : Sample coil (inner coil), L B : Sample coil (outer coil), ST1: Desorption element, ST2: Desorption element, HPF: High-pass filter, BRF1: Band Reject filter, BPF1: Band pass filter

Claims (2)

静磁場中にセットされた試料に複数の異なる周波数の高周波を照射し、この照射高周波に対応して試料から放出される複数の核磁気共鳴信号を検出する多重共鳴用NMRプローブにおいて、
該多重共鳴用NMRプローブは2つのサンプルコイルを備え、第1のコイルに発生する高周波磁場軸と第2のコイルに発生する高周波磁場軸が異なる方向になるように設定されていて、
前記第1のコイルは19F核または1H核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させ、前記第2のコイルは2D核の共鳴周波数に相当する狭帯域と199Hg核〜31P核の共鳴周波数に相当する広帯域、または2D核の共鳴周波数に相当する狭帯域と15N核〜31P核の共鳴周波数に相当する広帯域を二重同調させることを特徴とする多重共鳴用NMRプローブ。
In a multi-resonance NMR probe that irradiates a sample set in a static magnetic field with a plurality of high frequencies of different frequencies and detects a plurality of nuclear magnetic resonance signals emitted from the sample in response to the irradiation high frequency,
The NMR probe for multiple resonance includes two sample coils, and is set so that the high-frequency magnetic field axis generated in the first coil and the high-frequency magnetic field axis generated in the second coil are in different directions,
The first coil double-tunes a narrow band corresponding to the resonance frequency of 19 F nucleus or 1 H nucleus and a broadband corresponding to the resonance frequency of 15 N nucleus to 31 P nucleus, and the second coil is 2 D corresponding to the narrow band and 15 resonance frequency of N nuclei ~ 31 P nuclei corresponding to the resonant frequency of the wideband or 2 D nucleus and corresponds to the resonant frequency of the narrowband and 199 Hg nuclei ~ 31 P nuclei corresponding to the resonant frequency of the nuclei A multi-resonance NMR probe characterized by double-tuning a wide band.
前記第1のコイルは内側コイル、前記第2のコイルは外側コイルであることを特徴とする請求項1記載の多重共鳴用NMRプローブ。 2. The NMR probe for multiple resonance according to claim 1, wherein the first coil is an inner coil, and the second coil is an outer coil.
JP2006302493A 2006-11-08 2006-11-08 NMR probe for multiple resonance Expired - Fee Related JP4156646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302493A JP4156646B2 (en) 2006-11-08 2006-11-08 NMR probe for multiple resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302493A JP4156646B2 (en) 2006-11-08 2006-11-08 NMR probe for multiple resonance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001312843A Division JP3914735B2 (en) 2001-10-10 2001-10-10 NMR probe for multiple resonance

Publications (2)

Publication Number Publication Date
JP2007033462A JP2007033462A (en) 2007-02-08
JP4156646B2 true JP4156646B2 (en) 2008-09-24

Family

ID=37792868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302493A Expired - Fee Related JP4156646B2 (en) 2006-11-08 2006-11-08 NMR probe for multiple resonance

Country Status (1)

Country Link
JP (1) JP4156646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002745B2 (en) * 2007-05-29 2012-08-15 株式会社 Jeol Resonance NMR probe
BR112013020496A2 (en) * 2011-02-15 2016-10-18 Koninkl Philips Nv method, apparatus and instructions for storing storage media

Also Published As

Publication number Publication date
JP2007033462A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US7132829B2 (en) NMR RF coils with improved low-frequency efficiency
US7397246B2 (en) Electrically symmetric NMR coils with a plurality of windings connected in series
JP4155988B2 (en) Birdcage coil and NMR system
US7064549B1 (en) NMR RF coils with split movable capacitance bands
JPH06502491A (en) High frequency volume resonator for nuclear magnetic resonance
US5424645A (en) Doubly broadband triple resonance or quad resonance NMR probe circuit
WO2005050239A1 (en) Rf coil system for super high field (shf) mri
US7106063B1 (en) Axially constrained RF probe coil
WO1992002835A1 (en) A multiple radio frequency volume resonator for nuclear magnetic resonance
US7714579B2 (en) NMR probe
JP2904858B2 (en) Nuclear magnetic resonance tomography system
US8766636B2 (en) MRI short coils
JP3914735B2 (en) NMR probe for multiple resonance
US9035655B2 (en) Doubly tuned RF resonator
US5861748A (en) Multi-tuned single coil transmission line probe for nuclear magnetic resonance spectrometer
US5162739A (en) Balanced multi-tuned high-power broadband coil for nmr
JP4156646B2 (en) NMR probe for multiple resonance
US6175237B1 (en) Center-fed paralleled coils for MRI
US5572128A (en) Double resonance antenna arrangement for a nuclear magnetic resonance apparatus
EP3655790B1 (en) Tunable nmr coil and probe head containing the nmr coil
JP5549977B2 (en) NMR probe and NMR apparatus
JP5315556B2 (en) NMR detector
CA2244847C (en) Center-fed paralleled coils for mri
Zheng Development of Low-Field Pulsed NMR Instrument Probe
Brizi et al. Design of a 7 T Spiral Resonator-Based Filter for MRI Planar Array Coupling Reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4156646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees