JP4154879B2 - Hydrophilization method and submersion method of rotating flat membrane - Google Patents

Hydrophilization method and submersion method of rotating flat membrane Download PDF

Info

Publication number
JP4154879B2
JP4154879B2 JP2001294026A JP2001294026A JP4154879B2 JP 4154879 B2 JP4154879 B2 JP 4154879B2 JP 2001294026 A JP2001294026 A JP 2001294026A JP 2001294026 A JP2001294026 A JP 2001294026A JP 4154879 B2 JP4154879 B2 JP 4154879B2
Authority
JP
Japan
Prior art keywords
flat membrane
rotating flat
rotating
membrane
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001294026A
Other languages
Japanese (ja)
Other versions
JP2003093846A (en
Inventor
慎一 吉川
真人 大西
雅幸 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001294026A priority Critical patent/JP4154879B2/en
Publication of JP2003093846A publication Critical patent/JP2003093846A/en
Application granted granted Critical
Publication of JP4154879B2 publication Critical patent/JP4154879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転平膜の親水化方法及び浸水方法に係り、特に用水、排水の濾過処理を行うための回転平膜分離装置における回転平膜の親水化方法及び浸水方法に関する。
【0002】
【従来の技術】
近年、多くの膜分離装置が濾過処理の固液分離装置として実用化されている。膜分離装置には、中空糸型、スパイラル型、平膜型等の様々なモジュール形状があり、用途により使い分けられている。回転平膜モジュールは、ディスクに回転平膜を被覆した回転平膜ディスクを回転軸に装着し、回転平膜ディスクを回転しながら濾過を行う。この回転平膜モジュールは、回転平膜の表面に汚れ層が付着するのを防止するための膜面流速を回転により得るため、他の膜モジュールが膜面流速を被処理液の循環流速により得るのとは異なり、低動力での運転が可能である。
【0003】
ところで、使用前の回転平膜ディスクは、保管方法の簡便性を得るため、回転平膜の表面に、高分子の変質を防止するためのグリセリンを塗布する処理をし、乾燥状態で保管している。使用時の回転平膜ディスクは、乾燥状態で保管されている回転平膜を親水化処理することで湿潤状態にした後、濾過処理に供している。
【0004】
グリセリンが塗布された回転平膜を親水化処理する手順は、回転軸に装着される回転平膜ディスクを、低回転(外周速0.5 m/ s程度)で回転しながら、親水化剤(例えばエタノール溶液)を噴霧するためのノズルを各回転平膜ディスクの間に挿入する。この状態で、ノズルから親水化剤を回転平膜の表面に噴霧することにより、回転平膜に塗布されたグリセリンを除去する。親水化処理が行われると、回転平膜の表面が白から半透明へ変化し、これは目視により確認できる。
【0005】
【発明が解決しようとする課題】
しかしながら、回転平膜ディスク同士の間隔が狭いために、回転軸近傍の回転平膜の親水化ができているかを確認ができないのが実情であるが、親水化ができていない膜面部分は水が透過しないので、濾過に寄与する有効面積が減少してしまう。従って、安全をみて、親水化に必要な実際の量よりも過剰な量の親水化剤を噴霧しており、親水化剤の無駄になるだけでなく、発生する廃液量も増大すると共に、親水化処理に要する時間も長くなるという欠点がある。
【0006】
また、回転平膜を交換した後、或いは膜分離槽を空にして回転平膜を取り外して、点検後に再び回転平膜を取り付け、回転平膜分離装置の運転を開始するとき、又は何らかの原因で処理水配管側からエアが入った後に、エア中にあった回転平膜ディスクを再び浸水する際に、回転平膜の内側(ディスク側)にエアが溜る。親水化した回転平膜は水は透過するが、エアは透過しないため、回転平膜の内側に溜まったエアは、膜表面から抜けることはない。また、濾過のための吸引は回転平膜の中心部の回転軸を介して行っているため、回転軸部分より上側にたまったエアは吸引できないので、除去することは非常に困難である。この結果、溜まったエアにより水中で回転平膜が膨らみ、回転平膜が回転した際に隣接する回転平膜同士が擦れて破損するという問題があった。この場合、回転平膜を回転させずに吸引し続ければエアは徐々に抜けるが、回転平膜を回転させないと、その間に回転平膜は閉塞してしまうという問題があった。
【0007】
本発明はこのような事情に鑑みてなされたもので、短時間で回転平膜全体を確実に親水化処理できると共に親水化処理時の親水化剤の使用量を低減でき、また回転平膜の浸水時に回転平膜の内側にエアがたまらないようにできるので、回転平膜の破損や閉塞を防止できる回転平膜の親水化方法及び浸水方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するために請求項1に係る発明は、ディスクに回転平膜が被覆された円板状の複数の回転平膜ディスクを所定間隔で並設した中空の回転軸を、膜分離槽に回転自在に配設し、前記膜分離槽内に供給される被処理原水を前記回転平膜ディスクで濾過し、その濾過液を前記回転平膜ディスク内から回転軸の内部に導いて装置外に排出する回転平膜分離装置における回転平膜の親水化方法において、前記回転平膜に親水化剤を噴霧して該回転平膜を親水化する親水化処理時に、前記回転平膜ディスク内を減圧状態にすることを特徴とする。
【0009】
本発明によれば、回転平膜の親水処理時に回転平膜ディスク内を減圧状態にして親水化剤を噴霧するようにしたので、親水化剤を回転平膜内に誘引する誘引力が発生する。これにより、噴霧された親水化剤は膜面を流れることなく直ちに膜面の細孔内に侵入する。この場合、回転軸近傍の回転平膜部分でも誘引力が発生するので、回転平膜全体に親水化剤が確実に行き渡り、膜面に塗布されたグリセリン等の塗布剤を除去する。これにより、短時間で回転平膜全体を確実に親水化処理できると共に親水化処理時の親水化剤の使用量を低減できる。
【0010】
請求項2に係る発明は、前記目的を達成するために、ディスクに回転平膜が被覆された円板状の複数の回転平膜ディスクを所定間隔で並設した中空の回転軸を、膜分離槽に回転自在に配設し、前記膜分離槽内に供給される被処理原水を前記回転平膜ディスクで濾過し、その濾過液を前記回転平膜ディスク内から回転軸の内部に導いて装置外に排出する回転平膜分離装置における回転平膜の浸水方法において、前記回転平膜ディスクを前記被処理原水に浸水する前に前記回転平膜ディスク内を減圧状態にすることを特徴とする。
【0011】
本発明によれば、回転平膜ディスクを前記被処理原水に浸水する前に該回転平膜ディスク内を減圧状態にするようにしたので、回転平膜の内側(ディスク側)に溜まったエアを抜くことができる。この場合、回転平膜はエアを透過しないので、溜まったエアを一度抜けば再び回転平膜の内側にエアは溜まることはない。従って、この状態で回転平膜を被処理原水に浸水させれば、回転平膜がエアで膨らむことがない。これにより、回転平膜の破損や閉塞を防止できる。
【0012】
【発明の実施の形態】
以下添付図面に従って本発明に係る回転平膜の親水化方法及び浸水方法の好ましい実施の形態について詳説する。
【0013】
図1は、本発明に係る回転平膜の親水化方法及び浸水方法を適用する回転平膜分離装置の一部を切り欠いた斜視図であり、図2は全体構成図である。
【0014】
これらの図に示すように、本発明に係る回転平膜分離装置10は、主として、左右に平行な2本の中空の回転軸14、14が膜分離槽12内に回転自在に並設され、それぞれの回転軸14に円板状を有する複数の回転平膜ディスク16、16…が支持されて構成される。
【0015】
回転平膜ディスク16は、通水性を有するディスク13に、精密濾過膜あるいは限外濾過膜等の回転平膜15が被覆させて構成され、回転平膜15で濾過された濾過水はディスク13内に流入した後、ディスク13と回転軸14とを連通する孔(図示せず)を介して中空な回転軸14内に導かれる。回転平膜15の材質としては、ポリスチレン系、ポリプロピレン系、ポリエチレン系、ポリオレフィン系等の高分子樹脂膜を用いることができる。回転平膜ディスク16の直径は、例えば750mm、カラー(図示せず)の直径は200mm程度である。また、並設された2本の回転軸14に支持された回転平膜ディスク16同士は、隣り合う回転平膜ディスク16同士の一部分がオーバラップするようになっており、同方向に回転される。この同方向の回転により、回転平膜ディスク16同士のオーバラップした部分では、回転方向が反対向きになり、乱流が発生する。この場合、回転数も回転平膜ディスク16の径の大きさに応じて変えることが好ましい。
【0016】
回転軸14は、両端が膜分離槽12外に延設され、膜分離槽12とは軸封手段18により水密性が確保される。そして、回転軸14の一方がモータ20、20にそれぞれ接続されて回転軸14と回転平膜ディスク16とが一体的に回転されると共に、他方が濾過液配管22にそれぞれ接続される。
【0017】
濾過液配管22は、2本の回転軸14にそれぞれ接続された枝管24、24と、枝管24が合流した幹管26で構成され、幹管26が三方弁27を介して一方がエア配管25、他方が濾過水配管31に接続される。そして、濾過水配管31には吸引ポンプ28が配設けられると共に、エア配管25には真空ポンプ29が配設される。回転軸14と枝管24との接続は、回転軸14の回転を阻害しないための連結装置30、30を介して連結される。
【0018】
また、回転平膜ディスク16同士の間、及び回転平膜ディスク16と膜分離槽12の壁面との間には、親水化剤を噴霧するノズル36が配設され、ノズル36は供給管34を介して親水化剤供給装置32に接続される。
【0019】
次に、上記の如く構成された回転平膜分離装置10の回転平膜15を濾過運転に供するにあたって、回転平膜15の親水化処理を行ってから被処理原水に浸水させる親水化処理方法及び浸水方法について説明する。
【0020】
先ず、膜分離槽12に被処理原水を流入させない状態で、回転平膜ディスク16を10rpm程度の低回転数で回転させると共に、三方弁27をエア配管25側にして真空ポンプ29を作動させる。これにより、回転平膜ディスク16内が減圧状態になるので、この状態でノズル36から親水化剤、例えば30%エタノール溶液を回転平膜15に噴霧する。この減圧により親水化剤を回転平膜15内に誘引する誘引力が発生するので、噴霧された親水化剤は回転平膜15の膜面を流れることなく直ちに膜面の細孔内に侵入する。この場合、回転軸14近傍の回転平膜15部分でも誘引力が発生するので、回転平膜15全体に親水化剤が確実に行き渡り、回転平膜15に塗布されたグリセリン等の塗布剤を除去する。親水化処理が終わったら、真空ポンプ29を停止する。その後、回転平膜ディスク16を水洗いし、回転平膜15内に残留した親水化剤を水に溶解して除去する。これにより、短時間で回転平膜15全体を確実に親水化処理できると共に親水化処理時の親水化剤の使用量を低減できる。
【0021】
次に、回転平膜15の親水化処理が終わったら、再び真空ポンプ29を作動させて回転平膜ディスク16内を減圧状態にしたまま、原水配管38から被処理原水を膜分離槽12内に流入させる。これにより、回転平膜15の内側(ディスク側)に溜まったエアを抜いた状態で回転平膜ディスク16が被処理原水に水没して浸水することになるので、浸水時に回転平膜15がエアで膨らむことはない。この真空ポンプ29による吸引を一度行えば、回転平膜15はエアを透過しないので、溜まったエアを簡単に除去でき、しかも一度除去すれば回転平膜15の内側にエアが再び溜まることはない。従って、回転平膜ディスク16を被処理原水に浸水させて濾過運転を行う際に、回転平膜15がエアにより膨らまないので、回転平膜ディスク16の回転により回転平膜15同士が接触することがなく、回転平膜15の破損を防止できる。また、従来のように回転平膜15の内側に溜まったエアを抜くために、濾過運転の開始時に回転平膜ディスク16を回転を停止しておく必要もないので、濾過運転開始時に回転平膜15が閉塞してしまうこともない。
【0022】
上記した回転平膜15の浸水方法において、回転平膜15の一部又は全部浸水した状態で真空ポンプ29を作動しても、水が透過してしまうだけでディスク13内が減圧されないので、溜まったエアが残留したままとなる。従って、回転平膜15の一部たりとも浸水しない状態で真空ポンプ29を作動させることが重要である。
【0023】
回転平膜15の親水化処理及び被処理原水への浸水が終わったら、三方弁27を吸引ポンプ28側に切り換えて濾過運転を開始する。濾過運転は、モータ20で回転平膜ディスク16を回転しながら吸引ポンプ28を作動することにより行なわれる。即ち、吸引ポンプ28の作動により、濾過液配管22、回転軸14を介して回転平膜ディスク16内が減圧状態になり、膜分離槽12中の被処理液が回転平膜ディスク16内に吸引濾過され、被処理液中の付着物が除去されると共に、回転平膜ディスク16の表面にはケーキ層(図示せず)が形成される。回転平膜ディスク16を通過した濾過水は、回転軸14、濾過液配管22を通って回転平膜分離装置10外に引き抜かれる。
【0024】
尚、本実施の形態では、回転平膜分離装置10の使用前に、回転平膜ディスク16を親水化処理する例を説明したが、回転平膜分離装置10の使用中のトラブルにより、回転平膜ディスク16の表面が乾燥し、水を透過できない場合に、回転平膜ディスク16に高濃度のエタノール溶液を噴霧する場合にも本発明の親水化処理方法を適用できる。更に、本実施の形態では、回転平膜ディスク16の親水化処理の例を説明したが、本発明は、これに限らず、他の形式の膜モジュールを用いるようにしてもよく、膜の内部を減圧状態に保持することで、親水化処理に供する親水化剤の使用量を低減でき、かつ親水化時間を短縮することができる。
【0025】
【発明の効果】
以上説明したように本発明に係る回転平膜の親水化方法及び浸水方法によれば、短時間で回転平膜全体を確実に親水化処理できると共に親水化処理時の親水化剤の使用量を低減でき、また回転平膜の浸水時に回転平膜の内側にエアがたまらないようにできるので、回転平膜の破損や閉塞を防止できる。
【図面の簡単な説明】
【図1】本発明に係る回転平膜の親水化方法及び浸水方法が適用された回転平膜分離装置の一部を切り欠いた斜視図
【図2】本発明を適用する回転平膜分離装置の全体構成図
【符号の説明】
10…回転平膜分離装置、12…膜分離槽、13…ディスク、14…回転軸、15…回転平膜、16…回転平膜ディスク、18…軸封手段、20…モータ、22…濾過液配管、24…枝管、25…エア配管、26…幹管、27…三方弁、28…吸引ポンプ、29…真空ポンプ、30…連結装置、31…濾過水配管、32…親水化剤供給装置、34…供給管、36…ノズル、38…原水配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of hydrophilizing a rotating flat membrane and a water immersion method, and more particularly to a method of hydrophilizing a rotating flat membrane and a water immersion method in a rotating flat membrane separator for filtering water and waste water.
[0002]
[Prior art]
In recent years, many membrane separators have been put into practical use as solid-liquid separators for filtration. There are various module shapes such as a hollow fiber type, a spiral type, and a flat membrane type in the membrane separation apparatus, and they are properly used depending on the application. In the rotating flat membrane module, a rotating flat membrane disc having a rotating flat membrane coated on the disc is mounted on a rotating shaft, and filtration is performed while rotating the rotating flat membrane disc. Since this rotating flat membrane module obtains the membrane surface flow rate by rotation to prevent the dirt layer from adhering to the surface of the rotating flat membrane, the other membrane module obtains the membrane surface flow rate by the circulation flow rate of the liquid to be treated. Unlike, it can be operated with low power.
[0003]
By the way, in order to obtain a simple storage method, the rotating flat membrane disk before use is treated by applying glycerin on the surface of the rotating flat membrane to prevent alteration of the polymer and stored in a dry state. Yes. The rotating flat membrane disk at the time of use is subjected to a filtration treatment after the rotating flat membrane stored in a dry state is wetted by hydrophilization.
[0004]
The procedure for hydrophilizing the rotating flat membrane coated with glycerin is that the rotating flat membrane disc mounted on the rotating shaft is rotated at a low rotation (peripheral speed of about 0.5 m / s) while a hydrophilizing agent (for example, ethanol). A nozzle for spraying the solution) is inserted between each rotating flat membrane disk. In this state, the glycerin applied to the rotating flat membrane is removed by spraying the hydrophilizing agent from the nozzle onto the surface of the rotating flat membrane. When the hydrophilization treatment is performed, the surface of the rotating flat membrane changes from white to translucent, and this can be confirmed visually.
[0005]
[Problems to be solved by the invention]
However, since the distance between the rotating flat membrane disks is narrow, it is actually impossible to confirm whether the rotating flat membrane near the rotating shaft has been hydrophilicized. Does not permeate, reducing the effective area contributing to filtration. Therefore, for the sake of safety, an excess amount of the hydrophilizing agent is sprayed more than the actual amount required for hydrophilization, not only the hydrophilizing agent is wasted, but also the amount of waste liquid generated is increased and the hydrophilicity is increased. There is a disadvantage that the time required for the conversion process becomes longer.
[0006]
Also, after exchanging the rotating flat membrane, or evacuating the membrane separation tank, removing the rotating flat membrane, reattaching the rotating flat membrane after inspection, and starting the operation of the rotating flat membrane separator, or for some reason After the air enters from the treated water piping side, when the rotating flat membrane disk in the air is submerged again, the air accumulates inside the rotating flat membrane (disk side). The hydrophilized rotating flat membrane permeates water but does not permeate air, so that air accumulated inside the rotating flat membrane does not escape from the membrane surface. Further, since the suction for filtration is performed through the rotation shaft at the center of the rotating flat membrane, the air accumulated above the rotation shaft portion cannot be sucked and is very difficult to remove. As a result, there has been a problem that the rotating flat membrane swells in water due to the accumulated air, and the rotating flat membranes adjacent to each other are rubbed and damaged when the rotating flat membrane rotates. In this case, if the suction is continued without rotating the rotating flat membrane, the air gradually escapes. However, if the rotating flat membrane is not rotated, the rotating flat membrane is blocked during that time.
[0007]
The present invention has been made in view of such circumstances. The entire rotating flat membrane can be reliably hydrophilized in a short time and the amount of the hydrophilizing agent used during the hydrophilizing treatment can be reduced. An object of the present invention is to provide a hydrophilic method and a water immersion method for a rotating flat membrane that can prevent the rotating flat membrane from being damaged or clogged because air can be prevented from accumulating inside the rotating flat membrane during water immersion.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is directed to a membrane separation tank having a hollow rotating shaft in which a plurality of disk-shaped rotating flat membrane disks each having a rotating flat membrane coated thereon are arranged at predetermined intervals. The raw water to be treated supplied to the membrane separation tank is filtered by the rotating flat membrane disk, and the filtrate is guided from the rotating flat membrane disk to the inside of the rotating shaft. In the method of hydrophilizing the rotating flat membrane in the rotating flat membrane separator for discharging to the inside of the rotating flat membrane disk during the hydrophilization process of spraying a hydrophilizing agent to the rotating flat membrane to hydrophilize the rotating flat membrane. It is characterized by a reduced pressure state.
[0009]
According to the present invention, since the hydrophilizing agent is sprayed with the inside of the rotating flat membrane disk in a reduced pressure state during the hydrophilic treatment of the rotating flat membrane, an attractive force for attracting the hydrophilizing agent into the rotating flat membrane is generated. . As a result, the sprayed hydrophilizing agent immediately enters the pores of the membrane surface without flowing through the membrane surface. In this case, an attractive force is also generated in the rotating flat membrane portion near the rotating shaft, so that the hydrophilizing agent spreads reliably over the entire rotating flat membrane, and the coating agent such as glycerin applied to the membrane surface is removed. As a result, the entire rotating flat membrane can be reliably hydrophilized in a short time and the amount of hydrophilizing agent used during the hydrophilization can be reduced.
[0010]
According to a second aspect of the present invention, in order to achieve the above object, a hollow rotating shaft in which a plurality of disc-shaped rotating flat membrane disks each having a rotating flat membrane coated on a disk are arranged in parallel at a predetermined interval, An apparatus that is rotatably disposed in a tank, filters raw water to be treated supplied into the membrane separation tank through the rotating flat membrane disk, and guides the filtrate from the rotating flat membrane disk to the inside of the rotating shaft. In the method of submerging the rotating flat membrane in the rotating flat membrane separator for discharging to the outside, the rotating flat membrane disc is decompressed before the rotating flat membrane disc is immersed in the raw water to be treated.
[0011]
According to the present invention, since the rotating flat membrane disk is depressurized before the rotating flat membrane disk is immersed in the raw water to be treated, air accumulated inside the rotating flat membrane (disk side) Can be removed. In this case, since the rotating flat membrane does not transmit air, once the accumulated air passes through, the air does not collect again inside the rotating flat membrane. Accordingly, if the rotating flat membrane is immersed in the raw water to be treated in this state, the rotating flat membrane does not swell with air. Thereby, breakage and blockage of the rotating flat membrane can be prevented.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a hydrophilization method and a water immersion method according to the present invention will be described in detail with reference to the accompanying drawings.
[0013]
FIG. 1 is a perspective view in which a part of a rotating flat membrane separation apparatus to which the hydrophilizing method and water immersion method according to the present invention are applied is cut out, and FIG. 2 is an overall configuration diagram.
[0014]
As shown in these drawings, the rotary flat membrane separation apparatus 10 according to the present invention is mainly provided with two hollow rotary shafts 14 and 14 parallel to the left and right in the membrane separation tank 12 so as to be freely rotatable, A plurality of rotating flat membrane disks 16, 16... Having a disk shape are supported on each rotating shaft 14.
[0015]
The rotating flat membrane disk 16 is configured by coating a water-permeable disc 13 with a rotating flat membrane 15 such as a microfiltration membrane or an ultrafiltration membrane, and the filtered water filtered by the rotating flat membrane 15 is contained in the disc 13. Then, it is guided into the hollow rotary shaft 14 through a hole (not shown) that communicates the disk 13 and the rotary shaft 14. As the material of the rotating flat film 15, a polymer resin film such as polystyrene, polypropylene, polyethylene, and polyolefin can be used. The diameter of the rotating flat membrane disk 16 is, for example, 750 mm, and the diameter of a collar (not shown) is about 200 mm. Further, the rotating flat membrane disks 16 supported by the two rotating shafts 14 arranged side by side are configured such that a part of the adjacent rotating flat membrane disks 16 overlap and rotate in the same direction. . Due to the rotation in the same direction, the rotating direction is opposite in the overlapping portion of the rotating flat membrane disks 16 and turbulence is generated. In this case, it is preferable to change the number of rotations according to the size of the diameter of the rotating flat membrane disk 16.
[0016]
Both ends of the rotating shaft 14 extend outside the membrane separation tank 12, and water-tightness is ensured by the shaft sealing means 18 from the membrane separation tank 12. One of the rotating shafts 14 is connected to the motors 20 and 20, respectively, so that the rotating shaft 14 and the rotating flat membrane disk 16 are integrally rotated, and the other is connected to the filtrate pipe 22.
[0017]
The filtrate pipe 22 is composed of branch pipes 24 and 24 connected to the two rotating shafts 14 respectively, and a trunk pipe 26 where the branch pipes 24 merge. One of the trunk pipes 26 is air via a three-way valve 27. The pipe 25 and the other are connected to the filtrate water pipe 31. A suction pump 28 is provided in the filtrate pipe 31 and a vacuum pump 29 is provided in the air pipe 25. The connection between the rotating shaft 14 and the branch pipe 24 is connected via connecting devices 30 and 30 for preventing the rotation of the rotating shaft 14.
[0018]
A nozzle 36 for spraying a hydrophilizing agent is disposed between the rotating flat membrane disks 16 and between the rotating flat membrane disks 16 and the wall of the membrane separation tank 12. To the hydrophilizing agent supply device 32.
[0019]
Next, when the rotary flat membrane 15 of the rotary flat membrane separator 10 configured as described above is subjected to a filtration operation, a hydrophilization treatment method in which the rotary flat membrane 15 is hydrophilized and then immersed in the raw water to be treated; The flooding method will be described.
[0020]
First, in a state where raw water to be treated does not flow into the membrane separation tank 12, the rotary flat membrane disk 16 is rotated at a low rotational speed of about 10 rpm, and the vacuum pump 29 is operated with the three-way valve 27 on the air pipe 25 side. As a result, the inside of the rotating flat membrane disk 16 is in a reduced pressure state, and in this state, a hydrophilizing agent such as a 30% ethanol solution is sprayed onto the rotating flat membrane 15 from the nozzle 36. Since the attracting force for attracting the hydrophilizing agent into the rotating flat membrane 15 is generated by this decompression, the sprayed hydrophilizing agent immediately enters the pores of the membrane surface without flowing through the membrane surface of the rotating flat membrane 15. . In this case, an attracting force is also generated in the rotating flat film 15 near the rotating shaft 14, so that the hydrophilizing agent spreads over the entire rotating flat film 15 and removes the coating agent such as glycerin applied to the rotating flat film 15. To do. When the hydrophilic treatment is finished, the vacuum pump 29 is stopped. Thereafter, the rotating flat membrane disk 16 is washed with water, and the hydrophilizing agent remaining in the rotating flat membrane 15 is dissolved in water and removed. Thereby, the whole rotation flat film 15 can be reliably hydrophilized in a short time, and the amount of the hydrophilizing agent used during the hydrophilization treatment can be reduced.
[0021]
Next, when the hydrophilic treatment of the rotary flat membrane 15 is completed, the raw water to be treated is fed into the membrane separation tank 12 from the raw water pipe 38 while the vacuum pump 29 is operated again and the rotary flat membrane disk 16 is kept in a reduced pressure state. Let it flow. As a result, the rotary flat membrane disk 16 is submerged in the raw water to be treated in a state in which the air accumulated inside the rotary flat membrane 15 (disk side) is removed. Will not swell. Once the suction by the vacuum pump 29 is performed, the rotating flat membrane 15 does not transmit air, so the accumulated air can be easily removed, and once removed, the air will not accumulate again inside the rotating flat membrane 15. . Therefore, when the rotating flat membrane disk 16 is immersed in the raw water to be treated and the filtration operation is performed, the rotating flat membrane 15 does not swell due to air, so that the rotating flat membranes 15 come into contact with each other by the rotation of the rotating flat membrane disk 16. The rotation flat membrane 15 can be prevented from being damaged. Further, since it is not necessary to stop the rotation of the rotating flat membrane disk 16 at the start of the filtering operation in order to remove the air accumulated inside the rotating flat membrane 15 as in the prior art, the rotating flat membrane at the start of the filtering operation is not necessary. 15 is not blocked.
[0022]
In the above-described method for immersing the rotating flat film 15, even if the vacuum pump 29 is operated in a state where part or all of the rotating flat film 15 is submerged, the inside of the disk 13 is not depressurized and the pressure is not reduced. Air remains. Therefore, it is important to operate the vacuum pump 29 in a state where no part of the rotating flat membrane 15 is submerged.
[0023]
When the hydrophilization treatment of the rotating flat membrane 15 and the inundation into the raw water to be treated are finished, the three-way valve 27 is switched to the suction pump 28 side and the filtration operation is started. The filtration operation is performed by operating the suction pump 28 while rotating the rotating flat membrane disk 16 by the motor 20. That is, by operating the suction pump 28, the inside of the rotating flat membrane disk 16 is decompressed via the filtrate pipe 22 and the rotating shaft 14, and the liquid to be treated in the membrane separation tank 12 is sucked into the rotating flat membrane disk 16. Filtration is performed to remove deposits in the liquid to be treated, and a cake layer (not shown) is formed on the surface of the rotating flat membrane disk 16. The filtered water that has passed through the rotary flat membrane disk 16 is drawn out of the rotary flat membrane separator 10 through the rotary shaft 14 and the filtrate pipe 22.
[0024]
In the present embodiment, an example in which the rotating flat membrane disk 16 is hydrophilized before the rotating flat membrane separator 10 is used has been described. The hydrophilic treatment method of the present invention can also be applied when spraying a high-concentration ethanol solution onto the rotating flat membrane disk 16 when the surface of the membrane disk 16 is dry and cannot pass water. Furthermore, in the present embodiment, the example of the hydrophilic treatment of the rotating flat membrane disk 16 has been described. However, the present invention is not limited to this, and other types of membrane modules may be used. By maintaining in a reduced pressure state, the amount of the hydrophilizing agent used for the hydrophilization treatment can be reduced, and the hydrophilization time can be shortened.
[0025]
【The invention's effect】
As described above, according to the hydrophilizing method and the water immersion method of the rotating flat membrane according to the present invention, the entire rotating flat membrane can be reliably hydrophilized in a short time and the amount of the hydrophilizing agent used during the hydrophilizing treatment can be reduced. In addition, air can be prevented from accumulating inside the rotating flat membrane when the rotating flat membrane is submerged, so that the rotating flat membrane can be prevented from being damaged or blocked.
[Brief description of the drawings]
FIG. 1 is a perspective view in which a part of a rotating flat membrane separator to which a hydrophilizing method and a water immersion method according to the present invention are applied is cut away. FIG. 2 is a rotating flat membrane separator to which the present invention is applied. Overall configuration diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Rotating flat membrane separator, 12 ... Membrane separation tank, 13 ... Disc, 14 ... Rotating shaft, 15 ... Rotating flat membrane, 16 ... Rotating flat membrane disc, 18 ... Shaft sealing means, 20 ... Motor, 22 ... Filtrate Pipe, 24 ... Branch pipe, 25 ... Air pipe, 26 ... Trunk pipe, 27 ... Three-way valve, 28 ... Suction pump, 29 ... Vacuum pump, 30 ... Connecting device, 31 ... Filtrated water pipe, 32 ... Hydrophilizing agent supply device 34 ... Supply pipe 36 ... Nozzle 38 ... Raw water piping

Claims (2)

ディスクに回転平膜が被覆された円板状の複数の回転平膜ディスクを所定間隔で並設した中空の回転軸を、膜分離槽に回転自在に配設し、前記膜分離槽内に供給される被処理原水を前記回転平膜ディスクで濾過し、その濾過液を前記回転平膜ディスク内から回転軸の内部に導いて装置外に排出する回転平膜分離装置における回転平膜の親水化方法において、
前記回転平膜に親水化剤を噴霧して該回転平膜を親水化する親水化処理時に、前記回転平膜ディスク内を減圧状態にすることを特徴とする回転平膜の親水化方法。
A hollow rotating shaft in which a plurality of disc-shaped rotating flat membrane disks each having a rotating flat membrane coated on a disk are arranged in parallel at a predetermined interval is rotatably disposed in the membrane separation tank and supplied into the membrane separation tank. Of the rotary flat membrane in the rotary flat membrane separator for filtering the raw water to be treated with the rotary flat membrane disc and guiding the filtrate from the rotary flat membrane disc to the inside of the rotary shaft and discharging it outside the device. In the method
A method of hydrophilizing a rotating flat membrane, wherein the rotating flat membrane disk is depressurized during a hydrophilization treatment in which a hydrophilizing agent is sprayed onto the rotating flat membrane to make the rotating flat membrane hydrophilic.
ディスクに回転平膜が被覆された円板状の複数の回転平膜ディスクを所定間隔で並設した中空の回転軸を、膜分離槽に回転自在に配設し、前記膜分離槽内に供給される被処理原水を前記回転平膜ディスクで濾過し、その濾過液を前記回転平膜ディスク内から回転軸の内部に導いて装置外に排出する回転平膜分離装置における回転平膜の浸水方法において、
前記回転平膜ディスクを前記被処理原水に浸水する前に前記回転平膜ディスク内を減圧状態にすることを特徴とする回転平膜の浸水方法。
A hollow rotating shaft in which a plurality of disc-shaped rotating flat membrane disks each having a rotating flat membrane coated on a disk are arranged in parallel at a predetermined interval is rotatably disposed in the membrane separation tank and supplied into the membrane separation tank. Of the rotary flat membrane in the rotary flat membrane separator for filtering the raw water to be treated with the rotary flat membrane disc and guiding the filtrate from the rotary flat membrane disc to the inside of the rotary shaft and discharging it outside the device In
A method for immersing a rotating flat membrane, wherein the rotating flat membrane disc is depressurized before the rotating flat membrane disc is immersed in the raw water to be treated.
JP2001294026A 2001-09-26 2001-09-26 Hydrophilization method and submersion method of rotating flat membrane Expired - Fee Related JP4154879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294026A JP4154879B2 (en) 2001-09-26 2001-09-26 Hydrophilization method and submersion method of rotating flat membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294026A JP4154879B2 (en) 2001-09-26 2001-09-26 Hydrophilization method and submersion method of rotating flat membrane

Publications (2)

Publication Number Publication Date
JP2003093846A JP2003093846A (en) 2003-04-02
JP4154879B2 true JP4154879B2 (en) 2008-09-24

Family

ID=19115696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294026A Expired - Fee Related JP4154879B2 (en) 2001-09-26 2001-09-26 Hydrophilization method and submersion method of rotating flat membrane

Country Status (1)

Country Link
JP (1) JP4154879B2 (en)

Also Published As

Publication number Publication date
JP2003093846A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
CN202179933U (en) Composite porous hollow fiber membrane, membrane component and membrane filtration apparatus
CN100522328C (en) Integrated permeate channel membrane
US8070947B2 (en) Permselective membrane module and method for manufacturing the same
WO2002070115A1 (en) Method for producing hollow yarn film
WO2005051460A1 (en) Polysulfone-based hollow-fiber membrane with selective permeability
JP2015167914A (en) dry composite separation membrane and dry composite separation membrane element
JP2015180495A (en) Composite separation membrane, and composite separation membrane element
JP4154879B2 (en) Hydrophilization method and submersion method of rotating flat membrane
JP4437527B2 (en) Membrane filtration module
JP2017213500A (en) Composite separation membrane and composite separation membrane element
JP3681219B2 (en) Polysulfone porous separation membrane
JP3554296B2 (en) Filtration device using filtration separation membrane cartridge
JP3999367B2 (en) Manufacturing method of sheet-like separation membrane
JPH10225626A (en) Spiral membrane element
CN110944736A (en) Method of cleaning a membrane including drying the membrane
JPH09262443A (en) Separation method by membrane and hollow fiber membrane module used for the same
JP3641950B2 (en) Rotating flat membrane device
JP2002028456A (en) Treatment system using spiral membrane module and operating method therefor
WO2014208603A1 (en) Composite separation membrane and separation membrane element
JP4583558B2 (en) Method of operating spiral membrane element and spiral membrane module
JP2005329334A (en) Water treatment method and water treatment apparatus
JP4321927B2 (en) Processing system provided with spiral membrane element and operation method thereof
KR102694481B1 (en) High purity industrial water manufacturing system and method using it
JPH03106423A (en) After-treatment method for micro-porous film and spacer sheet for after-treatment
EP4159302A1 (en) Composite filter membranes providing increased flowability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees