JP4154748B2 - Method for manufacturing cell for solid oxide fuel cell - Google Patents

Method for manufacturing cell for solid oxide fuel cell Download PDF

Info

Publication number
JP4154748B2
JP4154748B2 JP10800298A JP10800298A JP4154748B2 JP 4154748 B2 JP4154748 B2 JP 4154748B2 JP 10800298 A JP10800298 A JP 10800298A JP 10800298 A JP10800298 A JP 10800298A JP 4154748 B2 JP4154748 B2 JP 4154748B2
Authority
JP
Japan
Prior art keywords
slurry
electrolyte
air electrode
electrolyte slurry
cylindrical air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10800298A
Other languages
Japanese (ja)
Other versions
JPH11307113A (en
Inventor
日出夫 道畑
敦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP10800298A priority Critical patent/JP4154748B2/en
Publication of JPH11307113A publication Critical patent/JPH11307113A/en
Application granted granted Critical
Publication of JP4154748B2 publication Critical patent/JP4154748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池用セルの製造方法に係り、特に焼成法により成膜する電解質膜にクラックを発生することが少なく燃料電池の製造歩留りおよび信頼性を大幅に高めることができ、かつ製造工数をも大幅に削減できる固体電解質型燃料電池用セルの製造方法に関する。
【0002】
【従来の技術】
水素などの燃料と空気中の酸素などの酸化剤を電気化学的に反応させて、その反応エネルギーを電気として直接取り出す直流発電装置として各種の燃料電池が開発実用化されている。この燃料電池は通常、電解質層を挟んで一対の多孔質電極(燃料極、空気極)を配置するとともに、一方の電極(燃料極)の背面に水素、メタンガス,石炭ガス化ガスなどの燃料ガスを接触させ、また他方の電極(空気極)の背面に空気や酸素などの酸化剤ガスを接触させ、このときに発生する電気化学的反応を利用して、上記電極間から電気エネルギーを取り出すようにしたものである。このように構成された燃料電池においては、前記燃料ガスと酸化剤ガスが供給されている限り、高い変換効率で電気エネルギーを取り出すことができる。
【0003】
上記燃料電池は使用する電解質の種類や作動温度によって、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)および高温固体電解質燃料電池(SOFC)などが実用化されているが、特に電解質として安定化ジルコニア(ZrO)などの固体の金属酸化物を用いた固体酸化物燃料電池(SOFC:Solid Oxide Fuel Cell)は、電池形状の制約が少ないことから、発電用燃料電池や電池セルとして広く普及しつつある現状である。
【0004】
従来の固体電解質型燃料電池の構成要素である電池セルは、例えば以下のような工程を経て製造されていた。すなわち、電池セル本体(例えば円筒状空気極)表面にスラリーを塗布する工程と、乾燥・焼成する工程とを繰り返す湿式法や化学的蒸着法(CVD法)によって形成されていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記CVD法によって電解質膜を形成する場合には製造コストが上昇するとともに、成膜条件を厳格に制御するには煩雑な操作および高度な技量が必要になるなど、いずれにしても安価な電池セルを製造することは困難であった。
【0006】
一方、湿式法により電解質スラリーを塗布した後に焼成する方法では、電解質,空気極,燃料極の各表面に薄膜を形成しようとすると、焼成時にクラックが発生し易く、また薄膜の剥離が生じ易く、さらには成膜が均一に形成されず厚さにばらつきを生じ易い難点があり、いずれにしても高特性を有する電池セルを高い製造歩留りで製造することが困難になるという問題点があった。
【0007】
上記問題点に対応するため、例えば成膜工程の初期段階に焼成前の電解質シートを電極支持管に張り付けた後に焼結し、その後、電解質シートの表面に電解質スラリーによる成膜を重ねて施すようにした焼結型固体電解質型燃料電池の製造方法も試行されている。
【0008】
上記製造方法によれば、電解質シートの厚さ分の電解質膜は均一に形成される上に、電解質シートの焼成時に発生したクラックに、後から重ねて施す電解質スラリーが入り込みクラック部分を塞ぐため、緻密でばらつきの少ない電解質膜が形成できる効果が得られると記載されている。
【0009】
しかしながら、上記従来法では、別途に電解質シートを調製する工程や電解質スラリーを何度も繰り返して塗布して焼成する工程が必要であり、また電解質シート表面に電解質粒子を吸引して付着させるための吸引ポンプなどが必須となり、製造設備が大掛りとなり、いずれにしても低コストで電池セルを製造することは困難となる問題点があった。
【0010】
また、従来の湿式法による電池セルの製造方法において、粘性の高い電解質スラリーを塗布して焼成する場合には、焼成時における電池セル本体(例えば円筒状空気極)と電解質スラリーとの収縮差が大きくなり、膜内に応力歪みを生じ易く、焼成後には、膜内に微細な割れや剥離が生じ易い問題点があった。
【0011】
そのため、濃度が薄く粘度が低い電解質スラリーを塗布し焼成する操作を繰り返して所定厚さの電解質膜を製造することを余儀なくされていた。すなわち、1回に塗布するスラリー量を低減して熱収縮の影響を極力低減するとともに、割れを発生した箇所にさらにスラリーを塗布して乾燥焼成を繰り返すことにより、所定厚さの電解質膜等を形成した。
【0012】
しかしながら、上記従来の製造方法によれば、スラリーの塗布、乾燥、焼成工程を10数回にも繰り返して実施する必要があるため、電池セルの製造工数が膨大になり、燃料電池の製造コストが大幅に増加してしまう問題点があった。
【0013】
本発明は上記問題点を解決するためになされたものであり、焼成法により成膜する電解質膜にクラックを発生することが少なく、燃料電池の製造歩留りおよび信頼性を大幅に高めることができ、また製造工数をも大幅に低減できる固体電解質型燃料電池用セルの製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本願発明者は、特に湿式法で電解質膜を形成する際にクラックの発生を効果的に防止できる方法条件について種々検討を行った。その結果、特に電解質スラリーを塗布した円筒状空気極を、電解質スラリーと平衡状態にある雰囲気中において所定時間保持し、しかる後に乾燥・焼成したときに、クラックの発生が少ない電解質膜を一体に形成した電池セルが初めて効率的に得られるという知見を得た。本発明は上記知見に基づいて完成されたものである。
【0015】
すなわち、本発明に係る固体電解質型燃料電池用セルの製造方法は、電解質膜を挟んで一対の多孔質電極である燃料極と空気極とを配置するとともに、一方の燃料極の背面に燃料ガスを接触させ、また他方の空気極の背面に酸化剤ガスを接触させ、このときに発生する電気化学的反応を利用して、上記電極間から電気エネルギーを取り出すように構成された固体電解質型燃料電池用セルの製造方法において、底部に電解質スラリーを貯留した密閉容器中の空間部に、電解質スラリーを塗布する円筒状空気極を収容し、この円筒状空気極を電解質スラリー中に浸漬して引き上げることにより円筒状空気極表面に電解質スラリーを塗布する工程と、上記電解質スラリーを塗布した円筒状空気極を、塗布した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において所定時間保持する工程と、上記電解質スラリーを塗布した円筒状空気極を乾燥後、焼成して所定厚さの電解質膜を形成する工程とを備え、上記電解質スラリーの塗布工程および円筒状空気極の保持工程における密閉容器内の雰囲気圧力を一定に維持することを特徴とする。
【0016】
また、前記密閉容器の底部に貯留された電解質スラリーの粘度が2000〜3000cPであることが好ましい。さらに、前記円筒状空気極表面に形成する電解質膜の厚さを10〜50μmの範囲に設定することが好ましい。また電解質スラリーを塗布した円筒状空気極を、塗布した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において10分以上保持することが好ましい
【0017】
ここで、本発明方法で使用される電解質スラリーとしては、特に限定されるものでなく、酸化ニッケル、ジルコニア(ZrO)またはそれらの混合粉など成膜を構成する原料粉を、結合剤(バインダー),可塑剤,分散剤とともに溶媒中に均一分散混合したものが使用される。上記原料粉は水分を低減するために、105℃で24時間程度、乾燥したものを使用する。
【0018】
上記溶媒としては、特に限定されるものではなく、例えばイソプロピルアルコール,エタノール,アセトンまたはこれらの混合溶液が使用できる。また、結合剤(バインダー)は塗布したスラリーの成形形状を保持するために添加されるものであり、例えば、カルボキシメチルセルロース,ポリビニルエーテル,ポリビニルブチラール樹脂,エチルセルロース,アセチルセルロースなどが使用でき、スラリー原料粉100gに対して2〜10g程度添加される。また可塑剤として、例えばジエチルフタレート(DEP),ジブチルフタレート(DBP),フタル酸ジ−n−ブチル,ジオクチルフタレート(DOP)などが使用でき、スラリー原料粉100g当り、10〜40ml添加される。さらに、分散剤としては、例えばジエチルアミン,トリエチルアミン,OP−83RATなどが使用でき、スラリー原料粉100g当り2〜10mlの割合で添加される。
【0019】
上記のように、乾燥した原料粉を、結合剤,可塑剤,分散剤とともに溶媒中に添加し、十分に混合した後に脱泡し、電解質スラリーを調製する。この電解質スラリーの粘度は2000〜3000cPの範囲に調整することが好ましい。電解質スラリーの粘度が2000cP未満と低い場合には、1回のスラリー塗布工程におけるスラリーの膜厚が過少になり、所定厚さの電解質膜を成膜するためには、複数回のスラリー塗布工程が必要になり、製造工数が増加してしまう。一方、スラリーの粘度が3000cPを超えると、スラリーの塗布厚さが過大になり、焼成時に割れが発生し易くなる。
【0020】
円筒状空気極の構成材,形状,厚さについても特に限定されるものではなく、例えばLaSrMnO,LaMnOなど熱収縮しない材料で円筒状に形成したものを使用できる。
【0021】
本願発明に係る固体電解質型燃料電池用セルの製造方法においては、まず上記のように調製した円筒状空気極を電解質スラリー中に浸漬して円筒状空気極表面に電解液スラリーを塗布する工程を有する。ここで円筒状空気極の電解質スラリーへの浸漬速度は、周囲の気泡の巻込みを防止するために20〜40mm/minの範囲で実施し、浸漬時間は3〜6分程度とする。また浸漬後における円筒状空気極の取出し速度は3〜6mm/minの範囲にするとよい。
【0022】
なお、最終的に形成される電解質膜の厚さに対応するスラリー塗布厚さは、上記スラリーの粘度および円筒状空気極の取出し速度によって調整される。
【0023】
次に電解質スラリーを塗布した円筒状空気極は、電解質スラリーと平衡状態にある雰囲気中において所定時間保持される。すなわち、電解質スラリー中の揮発成分、特に溶媒と平衡状態にある雰囲気中に円筒状空気極を保持することにより、電解質スラリーの塗布膜の最外表面から溶媒が急激に揮散することが防止され、塗膜の内外表面における溶媒の蒸発速度の差が大きくならず、塗膜の内外における歪みを発生することが少なくなるものと考えられる。すなわち、焼成前の段階においてスラリー塗膜の内部の歪みが低減されるため、後工程の乾燥・焼成時においても、塗膜の歪みが拡大することがなく、割れの発生が少ない電解質膜が高い歩留りで形成されるという効果が得られるものと考えられる。
【0024】
上記電解質スラリーと平衡状態にある雰囲気中、すなわち塗付した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中で、円筒状空気極を保持する時間は、塗布した電解液スラリーの塗膜表面において光沢が消失するまでの時間で十分であり、少なくとも10分間以上保持することが望ましい。しかしながら、電池用セルの製造効率を勘案すると10〜20分程度が好ましい。
【0025】
上記のように内部歪みを低減したスラリー塗膜を有する円筒状空気極は、温度80〜100℃程度の温度範囲で乾燥した後に大気中などにおいて温度1100〜1600℃の範囲で2〜5時間焼成されることにより、10〜50μm程度の所定厚さを有する電解質膜を一体に形成した電池用セルが製造される。
【0026】
なお、焼成前の段階においてスラリー塗膜の内部歪みが低減されているため、焼成時において100℃/Hr程度の高い昇降温速度を作用させた場合においても、塗膜に割れが発生せず、優れた耐久性を有する電解質膜を効率的に製造することができる。
【0027】
上記構成の固体電解質型燃料電池用セルの製造方法によれば、電解質スラリーと平衡状態にある雰囲気中、すなわち塗付した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中に、スラリー塗膜を形成した円筒状空気極を保持しているため、スラリー塗膜の外表面から溶媒が急激に揮散することが効果的に防止でき、塗膜の内外における歪みの発生が防止できる。そのため、乾燥・焼成工程においても塗膜の歪みが拡大することなく、割れの発生が少ない電解質膜を高い歩留りで製造することができる。
【0028】
また、焼成前の段階において、スラリー塗膜の内部歪みが低減されているため、焼成処理において高い昇降温速度を作用させた場合においても、塗膜に割れが発生せず、優れた耐久性を有する電解質膜を効率的に製造することができる。
【0029】
さらに、高粘度の電解質スラリーを塗布した場合においても、焼成時に割れや剥離を発生することが少ないため、所定厚さの電解質膜を1回のスラリー塗布操作および1回の焼成操作によって形成することが可能であり、従来の10数回に及ぶ塗布・焼成操作を繰り返していた従来方法と比較して、電池用セルの製造工数を大幅に低減でき、燃料電池の低コスト化に大きな効果を発揮することができる。
【0030】
【発明の実施の形態】
次に本発明の実施形態について、添付図面を参照して具体的に説明する。図1は本発明に係る固体電解質型燃料電池用セルの製造方法を実施するための製造装置の一例を示す断面図である。
【0031】
図1に示す製造装置は、YSZスラリーなどの電解質スラリー1を貯留したスラリー貯槽2と、スラリー貯槽2の外側に配置されたシール容器3と、このシール容器3内に貯留された液体パラフィンなどのシール用媒体4と、スラリー貯槽2の上部空間を外気から遮断する外気遮断槽5と、外気遮断槽5の内部空間に存在する雰囲気ガスを収容・排出して内部空間のガス圧を調整するガス圧力調整槽6と、外気遮断槽5の頂部から内部に突出するように配設されたテフロン(登録商標)製のセル支持棒7と、このセル支持棒7の下端に吊設された円筒形の電池用セル本体(円筒状空気極)8とから構成されている。
【0032】
セル支持棒7を配設した外気遮断槽5は、スラリー貯槽2方向に上下動自在に配置されており、この上下動に際しても外気遮断槽5内の雰囲気はシール用媒体4によって外気から遮断されて密閉容器を形成しており、また外気遮断槽5が上下動しても内部の雰囲気は、ビニール袋などで構成されたガス圧力調整槽6に収容されるか、または排出されることにより、内部の雰囲気圧力は常に一定値に維持される。
【0033】
(実施例1〜5)
LaMnOから成り、外径14mmの燃料電池用セル本体(円筒状空気極)を多数用意した。一方、電解質膜を形成するためのイットリア安定化ジルコニウム(YSZ:5%Y−ZrO)原料粉を用意し、温度105℃で24時間加熱処理して乾燥した。
【0034】
次に乾燥したジルコニア原料粉50gに対して、結合剤としてのカルボキシメチルセルロースを5g、可塑剤としてのジエチルフタレートを10ml、分散剤としてのジエチルアミンを2ml添加し、さらに溶媒としてのイソプロピルアルコールの配合量を調整して配合し、十分に混合後、脱泡することにより、最終的に表1に示すスラリー粘度を有する実施例1〜5用の5種類の電解質スラリーを調製した。
【0035】
次に、各電解質スラリーを、図1に示すように、スラリー貯槽2内に充填する一方、円筒状空気極8の上端部をセル支持棒7の下端部にシールテープにより固定することにより、電解質スラリー1の上部空間に吊持した。そして電解質スラリー1の上部空間、すなわち外気遮断槽5内の雰囲気が電解質スラリー1と平衡状態になり、一定になった段階でガス圧力調整槽6を接続した。
【0036】
次に、図2に示すように円筒状空気極8を吊持した外気遮断槽5を表1に示す挿入速度で降下させて円筒状空気極8を電解質スラリー1中に浸漬するディッピング処理を実施した。このとき、外気遮断槽5内の雰囲気の一部は、ガス圧力調整槽6に排出されることにより、電解質スラリーの上部空間の雰囲気圧力は一定に保持される。表1に示す浸漬時間を経過後に、表1に示す取出し速度で外気遮断槽5を上昇させ、円筒状空気極8を引き上げた。このとき、ガス圧力調整槽6に収容されていた雰囲気ガスが外気遮断槽5の内部に戻ることにより、雰囲気ガス圧力は一定に保持される。
【0037】
次に図3に示すように所定厚さのスラリー塗膜9を形成した円筒状空気極8を、電解質スラリー1と平衡状態にある雰囲気中、すなわち塗付した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において表1に示す時間(10分間)だけ保持した。すなわち、円筒状空気極8表面に形成したYSZスラリー塗膜の光沢が消失するまで放置した後に、ガス圧力調整槽6の出口を開放してスラリー塗膜を徐々に乾燥した。
【0038】
次に、乾燥したスラリー塗膜を有する円筒状空気極8を外気遮断槽5から取り出して、焼成処理を行った。焼成処理は窒素ガス雰囲気中で昇温速度100℃/Hrで加熱して1300℃の焼成温度で5時間保持した後に、100℃/Hrの降温速度で冷却することにより、それぞれ表1に示す厚さを有する電解質膜を一体に形成した実施例1〜5に係る燃料電池用セルを調製した。
【0039】
(比較例1〜5)
一方、実施例1〜5において外気遮断槽を有しない装置を使用し、円筒状空気極を電解質スラリーから引き上げ、大気と接触した状態で保持して乾燥した点以外は実施例1〜5と同様な条件で浸漬処理、焼成処理を実施することにより、それぞれ比較例1〜5に係る燃料電池用セルを調製した。しかしながら、各比較例に係る燃料電池用セルの電解質膜には、ほぼ100%の割合で割れや剥離が発生し、実用化は困難であることが確認できた。
【0040】
一方、得られた各実施例に係る燃料電池用セルの電解質膜を観察し、割れや剥離などの不良発生割合を測定して下記表1に示す結果を得た。
【0041】
【表1】

Figure 0004154748
【0042】
上記表1に示す結果から明らかなように、電解質スラリーを塗布した段階で、電解質スラリーと平衡状態にある雰囲気中で緩速に乾燥した後に焼成して形成した各実施例に係る電池用セルにおいては、電解質スラリーの粘度の大小、またはスラリー塗膜厚の大小に関係なく、焼成後において割れや剥離などの不良の発生率が極めて少なく、高品質の電池用セルが高い歩留りで量産できた。
【0043】
上記割れや剥離などの不良発生率を大幅に低減できる機構は必ずしも明確ではないが、スラリー塗膜形成段階で電解質スラリーと平衡状態にある雰囲気中、すなわち塗付した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において所定時間保持することにより、スラリー塗膜の外表面から溶媒が急激に揮散することが防止でき、塗膜の内外における歪みの発生がなくなり、焼成工程においてもその歪みが拡大することがないため、割れや剥離が効果的に防止できるためと考えられる。
【0044】
一方、スラリー塗膜を大気中で保持した比較例1〜5の場合には、塗膜の最外表面から溶媒が急激に揮散して塗膜の内外部において溶媒の蒸発速度に差を生じて内部歪みが発生し、その内部歪みが焼成時に拡大されるため、割れや剥離が急増する結果、良質の電解膜が形成できないものと考えられる。
【0045】
また、本実施例によれば電解質スラリーの濃度(粘度)が大きく、またはスラリー塗膜の厚さが厚い場合においても、スラリーの塗布回数および焼成回数が1回で済み、電池用セルの製造工数を大幅に削減でき、燃料電池の低コスト化に優れた効果を発揮できた。
【0046】
さらに各実施例に係る燃料電池用セルを使用して燃料電池を組み立て、そのI−V特性を測定したところ、いずれも図4に示すような良好なI−V特性が得られた。すなわち、電解質膜に割れや剥離がないため、燃料ガスの短絡などが一切なく、各電流値において十分な電位差が得られ、特性が良好な燃料電池が得られることが判明した。
【0047】
なお、各実施例に係る電池用セルに対して、室温から動作温度(1000℃)まで加熱した後に室温まで冷却するヒートサイクルを少なくとも10回作用させた場合においても、電解質膜に割れや剥離は発生せず、優れた耐久性を有することが確認されている。
【0048】
また本実施例においては電解質スラリーの調製時に特定の溶媒、分散剤や可塑剤を使用しており、またスラリーについてもYSZスラリーを使用して電解質膜を形成する例で示しているが、他の溶媒、分散剤や可塑剤、または他のセラミックススラリーを使用した場合においても、同様に、割れや剥離がないセラミックス薄膜を効率的に製造できることが確認されている。さらに薄膜を形成する本体の材質,形状,および厚さに対する制約もないため、本実施例方法は、電解質膜を形成する場合のみならず、多層構造の燃料極を形成する場合にも同様に適用することが可能である。
【0049】
【発明の効果】
以上説明の通り本発明に係る固体電解質型燃料電池用セルの製造方法によれば、電解質スラリーと平衡状態にある雰囲気中、すなわち塗付した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中に、スラリー塗膜を形成した円筒状空気極を保持しているため、スラリー塗膜の外表面から溶媒が急激に揮散することが効果的に防止でき、塗膜の内外における歪みの発生が防止できる。そのため、乾燥・焼成工程においても塗膜の歪みが拡大することなく、割れの発生が少ない電解質膜を高い歩留りで製造することができる。
【0050】
また、焼成前の段階において、スラリー塗膜の内部歪みが低減されているため、焼成処理において高い昇降温速度を作用させた場合においても、塗膜に割れが発生せず、優れた耐久性を有する電解質膜を効率的に製造することができる。
【0051】
さらに、高粘度の電解質スラリーを塗布した場合においても、焼成時に割れや剥離を発生することが少ないため、所定厚さの電解質膜を1回のスラリー塗布操作および1回の焼成操作によって形成することが可能であり、従来の10数回に及ぶ塗布・焼成操作を繰り返していた従来方法と比較して、電池用セルの製造工数を大幅に低減でき、燃料電池の低コスト化に大きな効果を発揮することができる。
【図面の簡単な説明】
【図1】 本発明に係る固体電解質型燃料電池用セルの製造方法を実施するための製造装置の構成例を示す断面図。
【図2】 図1に示す装置を使用して浸漬処理を実施する状態を示す断面図。
【図3】 図1に示す装置を使用して電池用セルを保持した状態を示す断面図。
【図4】 実施例で作成した燃料電池用セルを使用した電池のI−V特性を示すグラフ。
【符号の説明】
1 電解質スラリー
2 スラリー貯槽
3 シール容器
4 シール用媒体(液体パラフィン)
5 外気遮断槽
6 ガス圧力調整槽
7 セル支持棒
円筒状空気極(円筒形電池用セル本体)
9 スラリー塗膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a cell for a solid oxide fuel cell, and in particular, the manufacturing yield and reliability of a fuel cell can be greatly increased with less occurrence of cracks in an electrolyte membrane formed by a firing method, and The present invention relates to a method for manufacturing a cell for a solid oxide fuel cell that can greatly reduce the number of manufacturing steps.
[0002]
[Prior art]
Various fuel cells have been developed and put into practical use as direct current power generators that allow a fuel such as hydrogen and an oxidant such as oxygen in the air to react electrochemically and directly extract the reaction energy as electricity. In this fuel cell, a pair of porous electrodes (fuel electrode, air electrode) are usually arranged with an electrolyte layer interposed therebetween, and a fuel gas such as hydrogen, methane gas, or coal gasification gas is disposed on the back surface of one electrode (fuel electrode). In addition, an oxidant gas such as air or oxygen is brought into contact with the back surface of the other electrode (air electrode), and electric energy is taken out between the electrodes by utilizing an electrochemical reaction generated at this time. It is a thing. In the fuel cell configured as described above, as long as the fuel gas and the oxidant gas are supplied, electric energy can be extracted with high conversion efficiency.
[0003]
Depending on the type of electrolyte used and the operating temperature, the fuel cell has been put into practical use, such as a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a high temperature solid electrolyte fuel cell (SOFC). In particular, a solid oxide fuel cell (SOFC) using a solid metal oxide such as stabilized zirconia (ZrO 2 ) as an electrolyte has few restrictions on the shape of the battery. It is the present condition which is spreading widely as a cell.
[0004]
A battery cell which is a constituent element of a conventional solid oxide fuel cell has been manufactured through the following processes, for example. That is, it has been formed by a wet method or a chemical vapor deposition method (CVD method) in which a step of applying a slurry to the surface of a battery cell body (for example, a cylindrical air electrode) and a step of drying and baking are repeated.
[0005]
[Problems to be solved by the invention]
However, in the case of forming an electrolyte membrane by the above CVD method, the manufacturing cost increases, and complicated operation and high skill are required to strictly control the film formation conditions. It has been difficult to produce battery cells.
[0006]
On the other hand, in the method of firing after applying the electrolyte slurry by a wet method, if a thin film is formed on each surface of the electrolyte, the air electrode, and the fuel electrode, cracks are likely to occur during firing, and the thin film is likely to peel off. Furthermore, there is a problem that the film is not uniformly formed and the thickness is likely to vary, and in any case, it is difficult to manufacture battery cells having high characteristics at a high manufacturing yield.
[0007]
In order to cope with the above problems, for example, an electrolyte sheet before firing is attached to the electrode support tube in the initial stage of the film forming process and then sintered, and thereafter, the film formation with the electrolyte slurry is performed repeatedly on the surface of the electrolyte sheet. A method for manufacturing a sintered solid oxide fuel cell is also being tried.
[0008]
According to the above manufacturing method, the electrolyte membrane for the thickness of the electrolyte sheet is uniformly formed, and the electrolyte slurry applied afterwards enters the cracks generated during the firing of the electrolyte sheet, so that the crack portion is blocked, It is described that an effect of forming a dense electrolyte film with little variation can be obtained.
[0009]
However, the above-described conventional method requires a step of separately preparing an electrolyte sheet and a step of repeatedly applying and baking the electrolyte slurry, and for attracting and adhering electrolyte particles to the surface of the electrolyte sheet. A suction pump or the like is indispensable, and manufacturing equipment becomes large. In any case, it is difficult to manufacture battery cells at low cost.
[0010]
In addition, in the conventional battery cell manufacturing method using a wet method, when a highly viscous electrolyte slurry is applied and fired, there is a difference in shrinkage between the battery cell body (for example, a cylindrical air electrode) and the electrolyte slurry during firing. There is a problem that stress strain is easily generated in the film, and fine cracks and peeling are easily generated in the film after firing.
[0011]
Therefore, it has been forced to manufacture an electrolyte membrane having a predetermined thickness by repeatedly applying and baking an electrolyte slurry having a low concentration and low viscosity. That is, the amount of slurry applied at one time is reduced to reduce the effect of thermal shrinkage as much as possible, and the slurry is further applied to the cracked portion and dried and fired repeatedly to obtain an electrolyte membrane having a predetermined thickness. Formed.
[0012]
However, according to the above-described conventional manufacturing method, it is necessary to repeat the slurry application, drying, and firing processes as many as 10 times, so that the number of battery cell manufacturing steps becomes enormous, and the manufacturing cost of the fuel cell increases. There was a problem that it increased significantly.
[0013]
The present invention has been made to solve the above-described problems, it is less likely to cause cracks in the electrolyte membrane formed by the firing method, and can greatly increase the production yield and reliability of the fuel cell, Moreover, it aims at providing the manufacturing method of the cell for solid oxide fuel cells which can also reduce manufacturing man-hours significantly.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor has conducted various studies on method conditions that can effectively prevent the occurrence of cracks, particularly when an electrolyte membrane is formed by a wet method. As a result, a cylindrical air electrode coated with electrolyte slurry is held for a specified time in an atmosphere in equilibrium with the electrolyte slurry for a predetermined period of time, and then dried and fired to integrally form an electrolyte membrane with less cracking. The knowledge that the battery cell obtained efficiently was obtained for the first time was acquired. The present invention has been completed based on the above findings.
[0015]
That is, in the method for manufacturing a solid oxide fuel cell according to the present invention, a fuel electrode and an air electrode, which are a pair of porous electrodes, are arranged with an electrolyte membrane interposed therebetween, and a fuel gas is disposed on the back surface of one fuel electrode. And an oxidant gas in contact with the back surface of the other air electrode, and utilizing the electrochemical reaction generated at this time, a solid oxide fuel configured to take out electrical energy from between the electrodes the method of manufacturing a battery cell, in the space in the closed container which stores the electrolyte slurry in the bottom, and houses a cylindrical air electrode for applying an electrolyte slurry, pulled up by immersing the cylindrical cathode to the electrolyte slurry equal a step of applying an electrolyte slurry into the cylindrical air electrode surface, a cylindrical air electrode coated with the electrolyte slurry, and the vapor pressure of the solvent of the applied electrolyte slurry by A step of holding a predetermined time in an atmosphere having a pressure after drying a cylindrical air electrode coated with the electrolyte slurry and baking and forming the electrolyte film having a predetermined thickness, the electrolyte slurry application step And the atmospheric pressure in the airtight container in the holding process of the cylindrical air electrode is maintained constant.
[0016]
Moreover, it is preferable that the viscosity of the electrolyte slurry stored at the bottom of the sealed container is 2000 to 3000 cP. Furthermore, the thickness of the electrolyte membrane formed on the cylindrical air electrode surface is preferably set in the range of 10 to 50 μm. Moreover, it is preferable to hold | maintain the cylindrical air electrode which apply | coated electrolyte slurry in the atmosphere which has a vapor pressure equal to the vapor pressure of the solvent of the apply | coated electrolyte slurry for 10 minutes or more .
[0017]
Here, the electrolyte slurry used in the method of the present invention is not particularly limited, and a raw material powder forming a film such as nickel oxide, zirconia (ZrO 2 ) or a mixed powder thereof is used as a binder (binder). ), A plasticizer and a dispersing agent and a homogeneously dispersed mixture in a solvent are used. The raw material powder is dried at 105 ° C. for about 24 hours in order to reduce moisture.
[0018]
The solvent is not particularly limited, and for example, isopropyl alcohol, ethanol, acetone, or a mixed solution thereof can be used. A binder (binder) is added to maintain the shape of the applied slurry. For example, carboxymethyl cellulose, polyvinyl ether, polyvinyl butyral resin, ethyl cellulose, acetyl cellulose, etc. can be used. About 2 to 10 g is added to 100 g. As the plasticizer, for example, diethyl phthalate (DEP), dibutyl phthalate (DBP), di-n-butyl phthalate, dioctyl phthalate (DOP) or the like can be used, and 10 to 40 ml is added per 100 g of slurry raw material powder. Furthermore, as a dispersing agent, for example, diethylamine, triethylamine, OP-83RAT, etc. can be used, and it is added at a rate of 2 to 10 ml per 100 g of slurry raw material powder.
[0019]
As described above, the dried raw material powder is added to a solvent together with a binder, a plasticizer, and a dispersant, and after sufficient mixing, defoamed to prepare an electrolyte slurry. It is preferable to adjust the viscosity of the electrolyte slurry to a range of 2000 to 3000 cP. When the viscosity of the electrolyte slurry is as low as less than 2000 cP, the film thickness of the slurry in one slurry application process becomes too small. In order to form an electrolyte film having a predetermined thickness, a plurality of slurry application processes are required. This is necessary and the number of manufacturing steps increases. On the other hand, if the viscosity of the slurry exceeds 3000 cP, the coating thickness of the slurry becomes excessive, and cracks are likely to occur during firing.
[0020]
Construction material of the cylindrical air electrode, the shape is not subject to particular limitation on the thickness, for example LaSrMnO 3, you can use the one formed in a cylindrical shape with a material which does not heat shrinkable, such as LaMnO 3.
[0021]
In the method for manufacturing a solid oxide fuel cell according to the present invention, first, the step of applying the electrolyte slurry to the surface of the cylindrical air electrode by immersing the cylindrical air electrode prepared as described above in the electrolyte slurry. Have. Here, the immersion speed of the cylindrical air electrode in the electrolyte slurry is set in the range of 20 to 40 mm / min in order to prevent the surrounding bubbles from being involved, and the immersion time is set to about 3 to 6 minutes. Moreover, the taking-out speed of the cylindrical air electrode after the immersion is preferably in the range of 3 to 6 mm / min.
[0022]
In addition, the slurry application thickness corresponding to the thickness of the electrolyte membrane finally formed is adjusted by the viscosity of the slurry and the take-out speed of the cylindrical air electrode .
[0023]
Next, the cylindrical air electrode to which the electrolyte slurry is applied is held for a predetermined time in an atmosphere in equilibrium with the electrolyte slurry. That is, by holding the cylindrical air electrode in an atmosphere in equilibrium with the volatile components in the electrolyte slurry, particularly the solvent, it is possible to prevent the solvent from rapidly evaporating from the outermost surface of the coating film of the electrolyte slurry, It is considered that the difference in the evaporation rate of the solvent between the inner and outer surfaces of the coating film does not increase, and the occurrence of distortion inside and outside the coating film is reduced. That is, since the internal distortion of the slurry coating film is reduced before firing, the distortion of the coating film does not expand even during the drying and firing of the post process, and the electrolyte membrane with less cracking is high. It is thought that the effect of being formed by the yield can be obtained.
[0024]
In the atmosphere in equilibrium with the electrolyte slurry, that is, in the atmosphere having a vapor pressure equal to the vapor pressure of the solvent of the applied electrolyte slurry, the time for holding the cylindrical air electrode is the coating film of the applied electrolyte slurry. The time until the gloss disappears on the surface is sufficient, and it is desirable to keep it for at least 10 minutes. However, considering the production efficiency of the battery cell, about 10 to 20 minutes is preferable.
[0025]
The cylindrical air electrode having the slurry coating film with reduced internal strain as described above is dried in the temperature range of about 80 to 100 ° C. and then baked in the temperature range of 1100 to 1600 ° C. for 2 to 5 hours. Thus, a battery cell in which an electrolyte membrane having a predetermined thickness of about 10 to 50 μm is integrally formed is manufactured.
[0026]
In addition, since the internal strain of the slurry coating film is reduced in the stage before firing, even when a high heating / cooling rate of about 100 ° C./Hr is applied during firing, cracks do not occur in the coating film, An electrolyte membrane having excellent durability can be efficiently produced.
[0027]
According to the method for manufacturing a cell for a solid oxide fuel cell having the above-described structure, slurry application is performed in an atmosphere in equilibrium with the electrolyte slurry, that is, in an atmosphere having a vapor pressure equal to the vapor pressure of the solvent of the applied electrolyte slurry. Since the cylindrical air electrode on which the film is formed is held, it is possible to effectively prevent the solvent from rapidly evaporating from the outer surface of the slurry coating film, and to prevent the occurrence of distortion inside and outside the coating film. Therefore, an electrolyte membrane with less cracking can be produced with a high yield without increasing the distortion of the coating film even in the drying / firing process.
[0028]
In addition, since the internal strain of the slurry coating is reduced in the stage before firing, even when a high heating / cooling rate is applied during firing, the coating does not crack and has excellent durability. It is possible to efficiently produce an electrolyte membrane having the same.
[0029]
Furthermore, even when a high-viscosity electrolyte slurry is applied, cracks and peeling are less likely to occur during firing, so an electrolyte film having a predetermined thickness is formed by one slurry application operation and one firing operation. Compared to the conventional method where the coating and baking operations are repeated 10 times or more, the number of manufacturing steps for battery cells can be greatly reduced, and the effect of reducing the cost of the fuel cell is significant. can do.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of a manufacturing apparatus for carrying out the method for manufacturing a solid oxide fuel cell according to the present invention.
[0031]
The manufacturing apparatus shown in FIG. 1 includes a slurry storage tank 2 storing an electrolyte slurry 1 such as a YSZ slurry, a seal container 3 disposed outside the slurry storage tank 2, and liquid paraffin stored in the seal container 3 Gas for adjusting the gas pressure in the internal space by containing and discharging the sealing medium 4, the outside air blocking tank 5 that blocks the upper space of the slurry storage tank 2 from the outside air, and the atmospheric gas existing in the inside space of the outside air blocking tank 5 A pressure adjusting tank 6, a cell support bar 7 made of Teflon (registered trademark) disposed so as to protrude from the top of the outside air blocking tank 5, and a cylindrical shape suspended from the lower end of the cell support bar 7 Battery cell main body ( cylindrical air electrode) 8.
[0032]
The outside air blocking tank 5 provided with the cell support rod 7 is arranged so as to be movable up and down in the direction of the slurry storage tank 2, and the atmosphere in the outside air blocking tank 5 is blocked from the outside air by the sealing medium 4 during this up and down movement. Even if the outside air blocking tank 5 moves up and down, the internal atmosphere is accommodated in or discharged from the gas pressure adjusting tank 6 composed of a plastic bag, The internal atmospheric pressure is always maintained at a constant value.
[0033]
(Examples 1-5)
A large number of fuel cell main bodies ( cylindrical air electrodes) made of LaMnO 3 and having an outer diameter of 14 mm were prepared. On the other hand, yttria-stabilized zirconium (YSZ: 5% Y 2 O 3 —ZrO 2 ) raw material powder for forming an electrolyte membrane was prepared, heat-treated at 105 ° C. for 24 hours, and dried.
[0034]
Next, to 50 g of the dried zirconia raw material powder, 5 g of carboxymethyl cellulose as a binder, 10 ml of diethyl phthalate as a plasticizer, and 2 ml of diethylamine as a dispersant are added, and the blending amount of isopropyl alcohol as a solvent is further increased. Five types of electrolyte slurries for Examples 1 to 5 having the slurry viscosities shown in Table 1 were finally prepared by adjusting and blending, thoroughly mixing and defoaming.
[0035]
Next, as shown in FIG. 1, each electrolyte slurry is filled in the slurry storage tank 2, while the upper end portion of the cylindrical air electrode 8 is fixed to the lower end portion of the cell support rod 7 with a sealing tape, thereby providing an electrolyte. The slurry 1 was suspended in the upper space. Then, the gas pressure adjusting tank 6 was connected when the upper space of the electrolyte slurry 1, that is, the atmosphere in the outside air blocking tank 5 was in an equilibrium state with the electrolyte slurry 1 and became constant.
[0036]
Next, as shown in FIG. 2, a dipping process is performed in which the outside air blocking tank 5 holding the cylindrical air electrode 8 is lowered at the insertion speed shown in Table 1 and the cylindrical air electrode 8 is immersed in the electrolyte slurry 1. did. At this time, a part of the atmosphere in the outside air blocking tank 5 is discharged to the gas pressure adjusting tank 6 so that the atmospheric pressure in the upper space of the electrolyte slurry is kept constant. After elapse of the immersion time shown in Table 1, the outside air blocking tank 5 was raised at the take-out speed shown in Table 1, and the cylindrical air electrode 8 was pulled up. At this time, the atmospheric gas stored in the gas pressure adjusting tank 6 returns to the inside of the outside air blocking tank 5 so that the atmospheric gas pressure is kept constant.
[0037]
Next, as shown in FIG. 3, the cylindrical air electrode 8 on which the slurry coating film 9 having a predetermined thickness is formed is equal to the vapor pressure of the solvent of the applied electrolyte slurry in an atmosphere in equilibrium with the electrolyte slurry 1. It was kept in an atmosphere having a vapor pressure for the time shown in Table 1 (10 minutes). That is, after leaving the gloss of the YSZ slurry coating formed on the surface of the cylindrical air electrode 8 to disappear, the outlet of the gas pressure adjusting tank 6 was opened to gradually dry the slurry coating.
[0038]
Next, the cylindrical air electrode 8 having a dried slurry coating film was taken out from the outside air blocking tank 5 and subjected to a firing treatment. The firing treatment was performed in a nitrogen gas atmosphere at a heating rate of 100 ° C./Hr, held at a firing temperature of 1300 ° C. for 5 hours, and then cooled at a cooling rate of 100 ° C./Hr to obtain the thicknesses shown in Table 1, respectively. Fuel cell cells according to Examples 1 to 5 in which an electrolyte membrane having a thickness was integrally formed were prepared.
[0039]
(Comparative Examples 1-5)
On the other hand, in Examples 1-5, the apparatus which does not have an outside air blocking tank was used, and the cylindrical air electrode was pulled up from the electrolyte slurry, and was held and dried in contact with the atmosphere. By carrying out an immersion treatment and a firing treatment under various conditions, fuel cell cells according to Comparative Examples 1 to 5 were prepared. However, it was confirmed that the electrolyte membrane of the fuel cell according to each comparative example was cracked or peeled at a rate of almost 100%, and it was difficult to put it to practical use.
[0040]
On the other hand, the electrolyte membrane of the cell for fuel cells according to each of the obtained examples was observed and the rate of occurrence of defects such as cracking and peeling was measured to obtain the results shown in Table 1 below.
[0041]
[Table 1]
Figure 0004154748
[0042]
As apparent from the results shown in Table 1 above, in the battery cell according to each of the examples formed by baking after slowly drying in an atmosphere in equilibrium with the electrolyte slurry at the stage of applying the electrolyte slurry. Regardless of the viscosity of the electrolyte slurry or the thickness of the slurry coating film, the occurrence rate of defects such as cracking and peeling after firing was extremely small, and high-quality battery cells could be mass-produced with a high yield.
[0043]
The mechanism that can greatly reduce the incidence of defects such as cracks and peeling is not necessarily clear, but in an atmosphere that is in equilibrium with the electrolyte slurry in the slurry coating formation stage, that is, the vapor pressure of the solvent of the applied electrolyte slurry By holding for a predetermined time in an atmosphere having an equal vapor pressure, the solvent can be prevented from abruptly evaporating from the outer surface of the slurry coating film, and the occurrence of distortion inside and outside the coating film is eliminated, and the distortion is also caused in the firing process. This is probably because cracking and peeling can be effectively prevented.
[0044]
On the other hand, in the case of Comparative Examples 1 to 5 in which the slurry coating film was held in the air, the solvent abruptly evaporated from the outermost surface of the coating film, resulting in a difference in the evaporation rate of the solvent inside and outside the coating film. Since internal strain is generated and the internal strain is enlarged at the time of firing, it is considered that a high-quality electrolytic film cannot be formed as a result of rapid increase in cracking and peeling.
[0045]
Further, according to this example, even when the concentration (viscosity) of the electrolyte slurry is large or the thickness of the slurry coating is thick, the number of times of applying and firing the slurry is only one, and the number of manufacturing steps of the battery cell is increased. Can be drastically reduced, and an excellent effect on cost reduction of the fuel cell can be exhibited.
[0046]
Furthermore, when the fuel cell was assembled using the fuel cell according to each example and the IV characteristics thereof were measured, good IV characteristics as shown in FIG. 4 were obtained. That is, it has been found that since the electrolyte membrane is not cracked or peeled off, there is no short circuit of the fuel gas, a sufficient potential difference is obtained at each current value, and a fuel cell with good characteristics can be obtained.
[0047]
Even when the battery cell according to each example was subjected to at least 10 heat cycles of heating from room temperature to operating temperature (1000 ° C.) and then cooling to room temperature, the electrolyte membrane was not cracked or peeled off. It does not occur and has been confirmed to have excellent durability.
[0048]
Further, in this example, a specific solvent, a dispersing agent and a plasticizer are used at the time of preparing the electrolyte slurry, and an example is shown in which an electrolyte membrane is formed using a YSZ slurry. Similarly, it has been confirmed that even when a solvent, a dispersant, a plasticizer, or other ceramic slurry is used, it is possible to efficiently produce a ceramic thin film without cracking or peeling. Furthermore, since there are no restrictions on the material, shape, and thickness of the main body that forms the thin film, the method of this embodiment is applied not only to the formation of an electrolyte membrane but also to the formation of a fuel electrode having a multilayer structure. Is possible.
[0049]
【The invention's effect】
As described above, according to the method for manufacturing a cell for a solid oxide fuel cell according to the present invention, in an atmosphere in equilibrium with the electrolyte slurry, that is, an atmosphere having a vapor pressure equal to the vapor pressure of the solvent of the applied electrolyte slurry. Since the cylindrical air electrode on which the slurry coating film is formed is held inside, the solvent can be effectively prevented from abruptly evaporating from the outer surface of the slurry coating film, and distortion can be generated inside and outside the coating film. Can be prevented. Therefore, an electrolyte membrane with less cracking can be produced with a high yield without increasing the distortion of the coating film even in the drying / firing process.
[0050]
In addition, since the internal strain of the slurry coating is reduced in the stage before firing, even when a high heating / cooling rate is applied during firing, the coating does not crack and has excellent durability. It is possible to efficiently produce an electrolyte membrane having the same.
[0051]
Furthermore, even when a high-viscosity electrolyte slurry is applied, cracks and peeling are less likely to occur during firing, so an electrolyte film having a predetermined thickness is formed by one slurry application operation and one firing operation. Compared to the conventional method where the coating and baking operations are repeated 10 times or more, the number of manufacturing steps for battery cells can be greatly reduced, and the effect of reducing the cost of the fuel cell is significant. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration example of a production apparatus for carrying out a method for producing a solid oxide fuel cell according to the present invention.
FIG. 2 is a cross-sectional view showing a state in which an immersion process is performed using the apparatus shown in FIG.
3 is a cross-sectional view showing a state in which a battery cell is held using the apparatus shown in FIG.
FIG. 4 is a graph showing IV characteristics of a battery using a fuel cell produced in an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyte slurry 2 Slurry storage tank 3 Seal container 4 Sealing medium (liquid paraffin)
5 Outside air blocking tank 6 Gas pressure adjusting tank 7 Cell support rod 8 Cylindrical air electrode ( cylindrical battery cell body)
9 Slurry coating

Claims (4)

電解質膜を挟んで一対の多孔質電極である燃料極と空気極とを配置するとともに、一方の燃料極の背面に燃料ガスを接触させ、また他方の空気極の背面に酸化剤ガスを接触させ、このときに発生する電気化学的反応を利用して、上記電極間から電気エネルギーを取り出すように構成された固体電解質型燃料電池用セルの製造方法において、
底部に電解質スラリーを貯留した密閉容器中の空間部に、電解質スラリーを塗布する円筒状空気極を収容し、この円筒状空気極を電解質スラリー中に浸漬して引き上げることにより円筒状空気極表面に電解質スラリーを塗布する工程と、
上記電解質スラリーを塗布した円筒状空気極を、塗布した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において所定時間保持する工程と、
上記電解質スラリーを塗布した円筒状空気極を乾燥後、焼成して所定厚さの電解質膜を形成する工程とを備え、上記電解質スラリーの塗布工程および円筒状空気極の保持工程における密閉容器内の雰囲気圧力を一定に維持することを特徴とする固体電解質型燃料電池用セルの製造方法。
A fuel electrode and an air electrode, which are a pair of porous electrodes, are arranged with an electrolyte membrane in between, a fuel gas is brought into contact with the back surface of one fuel electrode, and an oxidant gas is brought into contact with the back surface of the other air electrode. In the method for producing a cell for a solid oxide fuel cell configured to take out electrical energy from between the electrodes using an electrochemical reaction generated at this time,
A cylindrical air electrode on which electrolyte slurry is applied is accommodated in a space in an airtight container in which electrolyte slurry is stored at the bottom, and the cylindrical air electrode is immersed in the electrolyte slurry and pulled up to form a cylindrical air electrode surface. Applying an electrolyte slurry; and
Holding the cylindrical air electrode coated with the electrolyte slurry in an atmosphere having a vapor pressure equal to the vapor pressure of the solvent of the coated electrolyte slurry for a predetermined time;
And drying the cylindrical air electrode coated with the electrolyte slurry to form an electrolyte membrane having a predetermined thickness, and in the sealed container in the electrolyte slurry coating step and the cylindrical air electrode holding step. A method for producing a cell for a solid oxide fuel cell, wherein the atmospheric pressure is maintained constant.
前記密閉容器の底部に貯留された電解質スラリーの粘度が2000〜3000cPであることを特徴とする請求項1記載の固体電解質型燃料電池用セルの製造方法。  The method for producing a cell for a solid oxide fuel cell according to claim 1, wherein the viscosity of the electrolyte slurry stored in the bottom of the sealed container is 2000 to 3000 cP. 前記円筒状空気極表面に形成する電解質膜の厚さを10〜50μmの範囲に設定したことを特徴とする請求項1記載の固体電解質型燃料電池用セルの製造方法。2. The method for producing a solid oxide fuel cell according to claim 1, wherein the thickness of the electrolyte membrane formed on the surface of the cylindrical air electrode is set in a range of 10 to 50 [mu] m. 前記電解質スラリーを塗布した円筒状空気極を、塗布した電解質スラリーの溶媒の蒸気圧と等しい蒸気圧を有する雰囲気中において10分以上保持することを特徴とする請求項1記載の固体電解質型燃料電池用セルの製造方法。2. The solid oxide fuel cell according to claim 1, wherein the cylindrical air electrode coated with the electrolyte slurry is held in an atmosphere having a vapor pressure equal to the vapor pressure of the solvent of the coated electrolyte slurry for 10 minutes or more. Cell manufacturing method.
JP10800298A 1998-04-17 1998-04-17 Method for manufacturing cell for solid oxide fuel cell Expired - Fee Related JP4154748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10800298A JP4154748B2 (en) 1998-04-17 1998-04-17 Method for manufacturing cell for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10800298A JP4154748B2 (en) 1998-04-17 1998-04-17 Method for manufacturing cell for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH11307113A JPH11307113A (en) 1999-11-05
JP4154748B2 true JP4154748B2 (en) 2008-09-24

Family

ID=14473505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10800298A Expired - Fee Related JP4154748B2 (en) 1998-04-17 1998-04-17 Method for manufacturing cell for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP4154748B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552183B2 (en) * 2004-08-17 2010-09-29 株式会社豊田中央研究所 Sol-like proton conducting electrolyte and fuel cell
JP6232614B2 (en) * 2014-02-05 2017-11-22 三菱日立パワーシステムズ株式会社 Manufacturing method of fuel cell and fuel cell

Also Published As

Publication number Publication date
JPH11307113A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
RU2342740C2 (en) Solid oxide fuel cells with bearing anode and cermet ionogen
EP0476808B1 (en) Process for producing a composite body and use in a solid oxide fuel cell
US5035962A (en) Layered method of electrode for solid oxide electrochemical cells
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2004319491A (en) Fuel cell or electrode having passive support
EP2692003B1 (en) Method for manufacture an electrode for a solid oxide fuel cell
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
KR20140043039A (en) Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells
US20200112043A1 (en) Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication
JP4154748B2 (en) Method for manufacturing cell for solid oxide fuel cell
KR102222436B1 (en) Solid oxide fuel cell comprising porous functional layer with mixed conductivity and method for manufacturing the same
JP3636406B2 (en) SUPPORT FOR SOLID ELECTROLYTE FUEL CELL, UNIT CELL FOR SOLID ELECTROLYTE FUEL CELL, AND METHOD FOR PRODUCING SUPPORT FOR SOLID ELECTROLYTE FUEL CELL
JPH09245813A (en) Manufacture of solid electrolyte fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JPH11329463A (en) Solid electrolyte type fuel cell and its manufacture
KR100284892B1 (en) Manufacturing method of dense membrane by slurry coating method
JPH06283178A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JP2003092113A (en) Fuel electrode membrane for solid electrolyte fuel cell and its manufacturing method
JPH076768A (en) Nickel-scandium stabilized zirconia group cermet fuel electrode for solid electrolyte fuel cell
JPH11343185A (en) Production of dense sintered film
Pham et al. Colloidal spray deposition technique for the processing of thin film solid oxide fuel cells
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2006351403A (en) Green sheet of sofc fuel electrode substrate, and manufacturing method of fuel electrode
KR101670612B1 (en) Method for manufacturing a plate type solid oxide fuel cell
JP3050331B2 (en) Method for manufacturing solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees