JP4154690B2 - Magnetic shield room opening structure - Google Patents

Magnetic shield room opening structure Download PDF

Info

Publication number
JP4154690B2
JP4154690B2 JP2003071567A JP2003071567A JP4154690B2 JP 4154690 B2 JP4154690 B2 JP 4154690B2 JP 2003071567 A JP2003071567 A JP 2003071567A JP 2003071567 A JP2003071567 A JP 2003071567A JP 4154690 B2 JP4154690 B2 JP 4154690B2
Authority
JP
Japan
Prior art keywords
shield
magnetic
opening
ribbon
magnetic ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003071567A
Other languages
Japanese (ja)
Other versions
JP2004281740A (en
Inventor
博和 荒木
千春 三俣
弘光 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003071567A priority Critical patent/JP4154690B2/en
Publication of JP2004281740A publication Critical patent/JP2004281740A/en
Application granted granted Critical
Publication of JP4154690B2 publication Critical patent/JP4154690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、生体磁気測定用ルームや半導体製造設備用ルーム等に使用される磁気シールドルームに設けられる出入口(ドア)やケーブル導入口等の開口部の構造に関するものである。
【0002】
【従来技術】
上記磁気シールドルームはパーマロイ板等の高透磁率材料をアルミニウムや銅等の非磁性板と重ねてシールド壁を作製し、内部に収容する設備や装置の大きさ/形状に合わせてシールド壁を複数接合して箱状や筒状の形状を有するように構成するものである。磁気シールドルームは外部の磁気が内部に侵入するのを防ぐことを目的としている。又は内部の磁気が外部に漏洩するのを防ぐことを目的としている。しかし、磁気シールドルームのシールド壁には人の出入りや物の出し入れをするための出入口(ドア)や内部に収容した機器の動力線や信号線を通すためのケーブル導入口等の開口部を設ける必要がある。このような開口部においても磁気シールド性能が確保されなければならない。
【0003】
図7は開口部において磁気シールド性能を確保するための第一の従来構造である(特許文献1参照)。シールド壁11及び扉12の両面にシート21〜24を取り付けるとシールド壁11の内側のシート21と扉12の内側のシート23により内側のシールド層が構成され、シールド壁11の外側のシート22と扉12の外側のシート24により外側のシールド層が構成される。扉12に設けたローラ付絞りハンドル15を回すとハンドル15と一体に取り付けられたローラ17がシールド壁11の開口部に設けた係合溝16と係合し、シールド壁11及び扉12は互いに強く引き寄せられる。その結果、シールド壁11の内側(図面上側)のシート21と扉12の内側のシート23との密着度およびシールド壁11の外側(図面下側)のシート22と扉12の外側のシート24との密着度が向上し開口部での磁気の漏洩/侵入を防ぐことができるというものである。
【0004】
図8は開口部において磁気シールド性能を確保するための第二の従来構造である(特許文献2参照)。本図はシールドルームの出入口を開閉するドア部の縦断面図である。シールドルームの出入口を構成する壁23,26はステンレス板で形成され、シールドルーム本体の壁27から突出している。ドア22はステンレス、アルミニウム材等によって形成された枠体をステンレス板によって被って構成したもので、内面の周縁部にはシールドルームの出入口内に嵌入する突出壁28,31が形成される。突出壁28,31の外周面と上記周縁部の上部にはベリリウム銅によって形成した帯状のシールド部材(フィンガーコンタクト)32,33が配置される。ドア22が閉じられるとシールド部材32はその弾性によって壁23,26の内面に圧接し、シールド部材33は壁23の端面に圧接してシールドルーム本体とドア22との間を電磁気的にシールドする。
【0005】
【特許文献1】
特開平3−233086号公報
【特許文献2】
特開平2−112581号公報
【0006】
【発明が解決しようとする課題】
磁気シールドルームを設置する場合、シールド壁を構成するのに使用する磁性材料の薄板として、例えば、高透磁率のパーマロイ(NiFe合金)の薄板が使用されている。このパーマロイは、所定の寸法に切断,穴明け等の機械加工を施した後、磁気特性を得るため、最終的には1000℃で熱処理する必要がある。この場合、熱処理による歪が生じる。磁気シールドルームは一般に複数の鋼板を箱型に接合することにより組み立てられる。組み立て後の磁気シールドルームは数〜十数トンの重量になるため通常は部材を現地に運搬しそこで組み立てる。例えば磁気シールドルームを構成する複数のシールド壁を予め作製し現地でそれらのシールド壁を組み立てて接合させるのが合理的である。シールド壁を現地で組み立てる場合、シールド壁自体の寸法誤差や据え付け誤差の累積により接合部の位置に狂いが生じることは避けられない。
【0007】
図7の開口部の構造においては、シールド壁11と扉12との双方の面の平面度や平行度が不十分であってもローラ付絞りハンドル15により互いに強く引き寄せられて圧接されるため十分な密着度を得ることができる。しかし、平面度や平行度が不十分なままローラ付絞りハンドル15により強く圧接するとシート21〜24に過度の応力が加わり磁気特性が低下するという問題点がある。磁気シールドシートがパーマロイ(NiFe合金)からなるときは特にこの現象が顕著に現れる。
【0008】
図7の開口部の構造において、過度の応力を印加せずにシールド壁11と扉12との十分な密着度を得るには互いに圧接する双方の面の平面度や平行度が高精度に確保されていなければならない。しかし、磁気シールドシートがパーマロイからなるときは熱処理による歪のため平面度の確保は困難であるという問題点がある。また、シールド壁11と扉12は現地組み立てされるためシールド壁11と扉12との間で高精度に平行度を確保することは困難であるという問題点がある。
【0009】
これに対し図8の開口部の構造においては、シールド部材32,33はその弾性によって壁23,26の内面や端面に圧接するため、シールド部材32,33と壁23,26の内面や端面との間で高精度に平行度を確保すること無く、かつ過度の応力を印加せずに両者を互いに圧接することができる。しかし、シールド部材32,33と壁23,26とは点接触もしくは線接触であるためそこを磁束が通る際の磁気抵抗が大きくなり、そこで磁束の漏洩または侵入が生じるという問題点がある。
【0010】
本発明はかかる従来の問題点を解決するために為されたもので、本発明の目的は、シールド壁とその開口部を塞ぐ閉塞部材との平面度や平行度が高精度に確保されていなくても両者を磁束の漏洩または侵入が生じることなく磁気的に結合することのできる開口部の閉塞構造を提供することである。
本発明の目的は、シールド壁とその開口部を塞ぐ閉塞部材とを過度の応力を加えなくても磁束の漏洩または侵入が生じることなく磁気的に結合することのできる開口部の閉塞構造を提供することである。
【0011】
【課題を解決するための手段】
柔軟性に優れた磁性薄帯は押し付ける圧力を受けることにより相手方のシールド材表面の平面度や平行度に応じて自在に変形して、相手方シールド材と良好に密着する。本発明者は、シールド壁のシールド材とドア等の開口部閉塞部材のシールド材とを磁気的に接合する接合部材として柔軟性に優れた磁性薄帯を用いることで上記目的を達成できることを見出し本発明に到達した。
【0012】
すなわち本願第一の発明は、シールド壁と、該シールド壁に設けたシールド材と、前記シールド壁の開口部を塞ぐ閉塞部材と、該閉塞部材に設けたシールド材と、前記開口部を閉塞部材で塞いだとき、前記シールド壁側のシールド材と前記閉塞部材側のシールド材の両者に接触する磁性薄帯と、からなる開口部の閉塞構造であって、前記磁性薄帯はそれ自体に柔軟性を有し、その一端側が前記開口部に臨むようになし、さらに前記開口部とは反対側の背面に弾性部材を配設し、前記閉塞部材が開いている状態では、前記開口部に臨む磁性薄帯の一端側の面は、開口部内に入り込んでおり、当該磁性薄帯の他方はシールド壁側のシールド材と接触し、前記磁性薄帯の背面は前記弾性部材で押圧されており、前記閉塞部材が前記開口部を塞ぐとき、前記開口部に臨む磁性薄帯の一端側の面は、前記弾性部材の押圧力に抗して前記閉塞部材側のシールド材の面に押されながら、面接触により密着し、前記閉塞部材を閉じた状態では、前記一端側の面は前記閉塞部材のシールド材の面に押されて面一になることを特徴とする磁気シールドルームの開口部の閉塞構造である。
【0013】
本願第二の発明は、シールド壁と、該シールド壁に設けた磁性薄帯と、前記シールド壁の開口部を塞ぐ閉塞部材と、該閉塞部材に設けたシールド材と、前記開口部を閉塞部材で塞いだとき、前記シールド壁側の磁性薄帯と前記閉塞部材側のシールド材とが接触する開口部の閉塞構造であって、前記磁性薄帯はそれ自体に柔軟性を有し、その一端側が前記開口部に臨むようになし、さらに前記開口部とは反対側の背面に弾性部材を配設し、前記閉塞部材が開いている状態では、前記開口部に臨む磁性薄帯の一端側の面は、開口部内に入り込んでおり、当該磁性薄帯の他方はシールド壁側と接触し、前記磁性薄帯の背面は前記弾性部材で押圧されており、前記閉塞部材が前記開口部を塞ぐとき、前記開口部に臨む磁性薄帯の一端側の面は、前記弾性部材の押圧力に抗して前記閉塞部材側のシールド材の面に押されながら、面接触により密着し、前記閉塞部材を閉じた状態では、前記一端側の面は前記閉塞部材のシールド材の面に押されて面一になることを特徴とする磁気シールドルームの開口部の閉塞構造である。
【0014】
本発明において磁性薄帯として高透磁率のFe基合金であるアモルファス合金材料または鉄元素を主成分とする粒径500nm以下の微細結晶粒が組織の少なくとも50%以上を占める合金材料で形成される磁性材料を好適に使用することができる。この磁性薄帯は以下の特徴を有していることから磁気シールドルーム用接合部材として好適である。
(1)この磁性薄帯は柔軟性に優れた材料である。
(2)この磁性薄帯は空間の磁束を効率よく収集可能なことから従来の磁気シールドと比較して厚さの薄い磁性体として使用することが可能である。
(3)得られるFe基合金はNiFe合金のシールド材と比較すると十分な硬さを有し応力やひずみの影響を受けにくいため、逆磁歪効果を起こしにくい。
【0015】
上記の磁性薄帯は接合部において双方の壁面部材に隙間なく密着させることができるため磁束の漏れを少なくすることができる。これは上記合金材料の優れた柔軟性による効果である。厚さの薄い磁性体であることは柔軟性を保つうえで有利に働く。また、シールド壁と閉塞部材の位置関係によっては磁性薄帯に曲げや捩れによる歪を生じるが、逆磁歪効果を起こしにくい性質であるため磁気特性の劣化は少ない。
【0016】
本発明で使用する磁性薄帯は、材料として用いる細幅の磁性体を互いに接合してシート状に敷き詰めて作製した磁性体シートであることが好ましい。磁性体シートの厚さは10μmから200μmであり、磁性薄帯は流れる磁束量に応じて2枚以上の磁性体シートを積層して構成することもできる。細幅の磁性体はアモルファス合金材料または鉄元素を主成分とする粒径500nm以下の微細結晶粒が組織の少なくとも50%以上を占める合金材料で構成されたシート状またはテープ状の形状とすることが好適である。この磁性体は磁気特性に優れるが磁気飽和を防ぐためにシートを5層から15層程度を積層することが好ましい。
【0017】
前記の1枚の磁性体シートは細幅の磁性体を平行に隙間なく並べて樹脂により一体化した構成とすることができる。隙間なく並べるには隣り合う細幅の磁性体どうしを一部重ねるか、もしくはエッジを突き合わせても良い。
【0018】
【発明の実施の形態】
図1は本発明の開口部の閉塞構造を採用した磁気シールドルーム1の外観図である。シールド壁2を6枚組合せて接合した構造であり、内部空間を磁気シールドするときはシールド壁2に設けた開口部を扉(閉塞部材)3で閉塞する。扉3はヒンジ4により開閉自在にシールド壁2に取り付けられる。シールド壁2を工場で予め作製して据え付け現場に搬入して組み付ける。
【0019】
図2,図3を用いて本願第一の発明の開口部の閉塞構造を説明する。図2は図1のA−A断面図である。(a)は扉3が開いている状態を示す。(b)は扉3が閉じてシールド壁2の開口部を閉塞した状態を示す。シールド壁2は磁気シールドルーム1の内側にシールド材5を備えている。磁性薄帯6はアモルファス合金材料または鉄元素を主成分とする粒径500nm以下の微細結晶粒が組織の少なくとも50%以上を占める合金材料で形成されている。シールド材5はパーマロイ等の柔軟性の無い磁性材料または磁性薄帯6と同様の材料で形成できる。磁性薄帯6は柔軟性を有しておりシールド壁2のシールド材5と接触し、その一部がシールド壁2の開口部に臨むように配置される。磁性薄帯6とシールド壁2のシールド材5とは接着されていることが好ましい。磁性薄帯6は支持板8で支持される弾性部材7により押し付け圧力を受ける。磁性薄帯6と弾性部材7と支持板8は互いに接着されていることが好ましい。弾性部材7にはスポンジ,ゴム,バネ等を使用することができる。扉3が開いている状態において開口部に臨む磁性薄帯6の一部の扉3側の表面の位置L6は、扉3が閉じた状態における扉3のシールド材5の表面の位置L5とオーバーラップしている。扉3を閉じると磁性薄帯6は位置L6から位置L5まで扉3のシールド材5に押される。磁性薄帯6は押されることにより弾性部材7によって付勢され扉3のシールド材5に密着する。その結果、シールド壁2のシールド材5、磁性薄帯6、扉3のシールド材5,磁性薄帯6およびシールド壁2のシールド材5が面接触により密着して磁路を形成する。磁性薄帯6とシールド材5の平面度や平行度が高精度に確保されていなくても磁性薄帯6は柔軟性を有しているため両者は互いに密着し磁束の漏洩または侵入が生じることなく磁気的に結合する。磁気シールドルーム施工後に建て屋が変形してシールド壁2と扉3の位置関係が変わっても磁性薄帯6の柔軟性により磁性薄帯6とシールド材5の密着度に影響は無い。磁性薄帯6は柔軟性を有しているためシールド材5に押されても過度の応力が印加されることはない。図2(b)では磁性薄帯6は弾性変形の無い状態としたが、弾性変形したままであっても十分な硬さを有し応力やひずみの影響を受けにくい性質であるため磁気特性の低下は少なく磁束の漏洩はほとんど問題にならない程度である。
【0020】
図3は本発明の別の実施形態で図1のA−A断面図である。(a)は扉3が開いている状態を示す。(b)は扉3が閉じてシールド壁2の開口部を閉塞した状態を示す。扉3のシールド材5に磁性薄帯6を重ね上から押さえ板9を介してビス10で固定する。磁性薄帯6の一部はシールド壁2の開口部に臨み支持板8により弾性部材7を介して支持される。図2の実施形態と同様に扉3を閉じると磁性薄帯6は位置L6(図示省略)から位置L5(図示省略)まで扉3のシールド材5に押される。磁性薄帯6は押されることにより弾性部材7によって付勢され扉3のシールド材5に密着する。
【0021】
図4は本発明の更に別の実施形態で図1のA−A断面図である。(a)は扉3が開いている状態を示す。(b)は扉3が閉じてシールド壁2の開口部を閉塞した状態を示す。前述の実施形態ではシールド壁2のシールド材5と磁性薄帯6とを別部材としたが、柔軟性を有する磁性薄帯を使用して両者を一部材とすることができる。シールド壁2のシールド材5と磁性薄帯6との磁気的接合部が無くなるので磁路の磁気抵抗が低減し信頼性も向上する。
【0022】
図5はシールド壁2の開口部を磁気シールドルームのコーナー部に近い位置に設ける場合の施工例を示す。磁性薄帯6を延長してコーナー部を越えた位置まで延在させてそこで別のシールド材と接合させる。または別のシールド材を用いずに磁性薄帯6をシールド材として使用する。これにより施工工数を減らすことができる。磁性薄帯6はコーナー部では弾性変形するが、R形状であることや十分な硬さを有し応力やひずみの影響を受けにくい性質であるため磁気特性の低下は少なく磁束の漏洩はほとんど問題にならない程度である。
【0023】
図6は細幅の磁性体6aaを並べて形成した磁性体シート6aである。細幅の磁性体は磁化容易方向Heと磁化困難方向Hdとを有する。磁性体シート6aは厚さが10〜200μmである。磁束が飽和しないよう必要枚数の磁性体シート6aを積層して磁性薄帯6またはシールド材5とする。磁性体シートどうしは接着用ワックスで接着する。一例では厚さ200μmの磁性体シートを10枚積層して2000μm程度の厚さの磁性薄帯6またはシールド材5とすることができる。
【0024】
磁性薄帯6またはシールド材5を構成する細幅の磁性体6aaは、アモルファス合金材料または鉄元素を主成分とする粒径500nm以下の微細結晶粒が組織の少なくとも50%以上を占める合金材料で形成され、シートまたはテープ状の形状であることを特徴とする。この鉄合金(Fe合金)の微細結晶材料は、望ましくはFe−Cu−Nb−Si−B系のbccFeの微細結晶組織(もしくは微細結晶粒)を備える軟磁性材料を用いる。さらに望ましくは前記微細結晶粒の平均結晶粒径が100nm以下である材料を用いる。この鉄合金(Fe合金)の微細結晶材料(ナノ結晶材料とも称する)は、例えば日本国特許第2625485号公報にあるようにアモルファス材料を所望の温度で熱処理することで得られる。この特許の構成では空間の磁束を効率よく収集可能なため、従来の磁気シールドと比較して厚さの薄い磁性体を使用することが可能である。薄い磁性体を得るためには例えば圧延や超急冷法による箔体があるが、圧延しやすい軟鉄やNiFe合金、超急冷で得るアモルファス箔体ではシート材料の変形が逆時歪効果に等による磁気特性の劣化を起こしやすいため、シールド壁の施工において取り扱いが難しくなるなどの問題を生じる可能性がある。また、特にNiFe合金では材料の硬さが不十分になりシールド壁の自重によってシートが変形して発生した結晶欠陥が磁気特性を著しく劣化させる。これに対して高透磁率のFe基合金を超急冷で形成した箔体を熱処理することによって得られる磁性体シートでは、得られたFe基合金の硬さが十分なことや逆磁歪効果を起こしにくいことで、十分な薄さの磁性体シートを得ることが可能である。また、特開平6−112031号公報に述べられているように、機械的な変形に対して材料を破壊しにくくするとともに加工に対する形状的な制約を著しく減じることができる。この磁性体シートを用いた磁気シールドルームでは、シールド壁を軽量化することが可能であり、かつ応力の影響を極力排除可能なため施工時における材料の取り扱いも簡単である。
【0025】
【発明の効果】
本発明により、シールド壁とその開口部を塞ぐ閉塞部材との平面度や平行度が高精度に確保されていなくても両者を磁束の漏洩または侵入が生じることなく磁気的に結合することのできる開口部の閉塞構造を提供することができる。
本発明により、シールド壁とその開口部を塞ぐ閉塞部材とを過度の応力を加えなくても磁束の漏洩または侵入が生じることなく磁気的に結合することのできる開口部の閉塞構造を提供することができる。
【図面の簡単な説明】
【図1】本発明の開口部の閉塞構造を採用した磁気シールドルームの外観図である。
【図2】本発明の実施形態で図1のA−A断面図であり(a)は扉が開いている状態を示し、(b)は扉が閉じてシールド壁の開口部を閉塞した状態を示す。
【図3】本発明の別の実施形態で図1のA−A断面図であり(a)は扉が開いている状態を示し、(b)は扉が閉じてシールド壁の開口部を閉塞した状態を示す。
【図4】本発明の更に別の実施形態で図1のA−A断面図であり(a)は扉が開いている状態を示し、(b)は扉が閉じてシールド壁の開口部を閉塞した状態を示す。
【図5】シールド壁の開口部を磁気シールドルームのコーナー部に近い位置に設ける場合の施工例を示す。
【図6】細幅の磁性体を並べて形成した磁性体シートである。
【図7】シールド壁の開口部において磁気シールド性能を確保するための第一の従来構造である。
【図8】シールド壁の開口部において磁気シールド性能を確保するための第二の従来構造である。
【符号の説明】
1…磁気シールドルーム
2…シールド壁
3…扉(閉塞部材)
4…ヒンジ
5…シールド材
6…磁性薄帯
6a…磁性体シート
6aa…細幅の磁性体
7…弾性部材
8…支持板
9…押さえ板
10…ビス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of an opening portion such as an entrance / exit (door) and a cable introduction port provided in a magnetic shield room used in a biomagnetism measurement room, a semiconductor manufacturing facility room, and the like.
[0002]
[Prior art]
In the above magnetic shield room, a high permeability material such as a permalloy plate is overlapped with a non-magnetic plate such as aluminum or copper to create a shield wall, and there are multiple shield walls according to the size / shape of equipment and equipment accommodated inside. It joins and has a box shape or a cylindrical shape. The purpose of the magnetic shield room is to prevent external magnetism from entering the interior. Alternatively, it is intended to prevent internal magnetism from leaking to the outside. However, the shield wall of the magnetic shield room is provided with openings such as entrances and exits (doors) for entering and exiting people and objects and cable introduction ports for passing power lines and signal lines of equipment housed inside. There is a need. Magnetic shield performance must be ensured even in such an opening.
[0003]
FIG. 7 shows a first conventional structure for ensuring magnetic shielding performance in the opening (see Patent Document 1). When the sheets 21 to 24 are attached to both surfaces of the shield wall 11 and the door 12, an inner shield layer is constituted by the inner sheet 21 of the shield wall 11 and the inner sheet 23 of the door 12, and the outer sheet 22 of the shield wall 11 An outer shield layer is constituted by the sheet 24 on the outer side of the door 12. When the roller diaphragm handle 15 provided on the door 12 is turned, the roller 17 attached integrally with the handle 15 engages with the engagement groove 16 provided in the opening of the shield wall 11, and the shield wall 11 and the door 12 are mutually connected. It is strongly attracted. As a result, the degree of adhesion between the sheet 21 inside the shield wall 11 (upper side in the drawing) and the sheet 23 inside the door 12, the sheet 22 outside the shield wall 11 (lower side in the drawing), and the sheet 24 outside the door 12 This improves the degree of adhesion of the magnetic field and prevents magnetic leakage / intrusion at the opening.
[0004]
FIG. 8 shows a second conventional structure for ensuring magnetic shielding performance in the opening (see Patent Document 2). This figure is a longitudinal sectional view of a door portion that opens and closes the entrance / exit of the shield room. The walls 23 and 26 constituting the entrance / exit of the shield room are formed of stainless steel plates and project from the wall 27 of the shield room main body. The door 22 is configured by covering a frame formed of stainless steel, aluminum material, or the like with a stainless steel plate, and projecting walls 28 and 31 that fit into the entrance / exit of the shield room are formed on the periphery of the inner surface. Band-shaped shield members (finger contacts) 32, 33 formed of beryllium copper are disposed on the outer peripheral surfaces of the protruding walls 28, 31 and the upper part of the peripheral edge. When the door 22 is closed, the shield member 32 is pressed against the inner surfaces of the walls 23 and 26 due to its elasticity, and the shield member 33 is pressed against the end surface of the wall 23 to electromagnetically shield between the shield room body and the door 22. .
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-233086 [Patent Document 2]
Japanese Patent Laid-Open No. 2-112581 [0006]
[Problems to be solved by the invention]
When installing a magnetic shield room, for example, a thin plate of high magnetic permeability permalloy (NiFe alloy) is used as a thin plate of magnetic material used to form the shield wall. This permalloy needs to be finally heat treated at 1000 ° C. in order to obtain magnetic properties after machining such as cutting and drilling to a predetermined dimension. In this case, distortion due to heat treatment occurs. The magnetic shield room is generally assembled by joining a plurality of steel plates in a box shape. The assembled magnetic shield room weighs several to a dozen tons, so usually the members are transported to the site and assembled there. For example, it is reasonable to prepare a plurality of shield walls constituting the magnetic shield room in advance and assemble and bond the shield walls on site. When the shield wall is assembled on site, it is inevitable that the position of the joint will be distorted due to accumulation of dimensional errors and installation errors of the shield wall itself.
[0007]
In the structure of the opening in FIG. 7, even if the flatness and parallelism of both surfaces of the shield wall 11 and the door 12 are insufficient, they are sufficiently attracted and pressed against each other by the roller-equipped handle 15 and are sufficiently in contact with each other. High degree of adhesion can be obtained. However, there is a problem in that if the flatness and the parallelism are insufficient and the roller handle with roller 15 is pressed strongly, excessive stress is applied to the sheets 21 to 24 and the magnetic characteristics are deteriorated. This phenomenon is particularly noticeable when the magnetic shield sheet is made of permalloy (NiFe alloy).
[0008]
In the structure of the opening shown in FIG. 7, in order to obtain sufficient adhesion between the shield wall 11 and the door 12 without applying excessive stress, the flatness and parallelism of both surfaces that are in pressure contact with each other are ensured with high accuracy. Must have been. However, when the magnetic shield sheet is made of permalloy, there is a problem that it is difficult to ensure flatness due to distortion caused by heat treatment. Further, since the shield wall 11 and the door 12 are assembled on site, there is a problem that it is difficult to ensure parallelism between the shield wall 11 and the door 12 with high accuracy.
[0009]
On the other hand, in the structure of the opening in FIG. 8, the shield members 32 and 33 are pressed against the inner surfaces and end surfaces of the walls 23 and 26 by their elasticity, and therefore the shield members 32 and 33 and the inner surfaces and end surfaces of the walls 23 and 26 Both can be pressed against each other without securing parallelism with high accuracy and without applying excessive stress. However, since the shield members 32 and 33 and the walls 23 and 26 are in point contact or line contact, there is a problem that the magnetic resistance when the magnetic flux passes through the shield member 32 and 33 and the walls 23 and 26 increases.
[0010]
The present invention was made to solve such conventional problems, and the object of the present invention is to ensure that the flatness and parallelism between the shield wall and the closing member that closes the opening are not secured with high accuracy. However, it is an object of the present invention to provide an opening closing structure capable of magnetically coupling the two without causing leakage or intrusion of magnetic flux.
SUMMARY OF THE INVENTION An object of the present invention is to provide an opening closing structure capable of magnetically coupling a shield wall and a closing member for closing the opening without applying magnetic flux leakage or intrusion without applying excessive stress. It is to be.
[0011]
[Means for Solving the Problems]
The magnetic ribbon having excellent flexibility is deformed freely according to the flatness and parallelism of the surface of the other shield material by receiving the pressing pressure, and adheres well to the other shield material. The present inventor has found that the above object can be achieved by using a magnetic ribbon having excellent flexibility as a joining member for magnetically joining a shielding material for a shielding wall and a shielding material for an opening closing member such as a door. The present invention has been reached.
[0012]
That is, the first invention of the present application includes a shield wall, a shield material provided on the shield wall, a closing member that closes the opening of the shield wall, a shield material provided on the closing member, and the opening. And a magnetic ribbon that contacts both the shield material on the shield wall side and the shield material on the closure member side when closed by the shield, wherein the magnetic ribbon is flexible to itself. And has one end facing the opening, and an elastic member is disposed on the back side opposite to the opening, and when the closing member is open, the opening faces the opening. The surface on one end side of the magnetic ribbon enters the opening, the other of the magnetic ribbon contacts the shield material on the shield wall side, and the back surface of the magnetic ribbon is pressed by the elastic member, When the closing member closes the opening The surface on one end side of the magnetic ribbon facing the opening is brought into close contact with the surface of the shield member on the side of the closing member against the pressing force of the elastic member, and closes the closing member. In the closed state, the one end side surface is pushed by the surface of the shielding member of the blocking member to be flush with the opening structure of the magnetic shield room.
[0013]
A second invention of the present application includes a shield wall, a magnetic ribbon provided on the shield wall, a closing member that closes the opening of the shield wall, a shield material provided on the closing member, and a closing member for the opening A closed structure of an opening where the magnetic ribbon on the shield wall side and the shield material on the closure member side are in contact with each other, the magnetic ribbon having its own flexibility, and one end thereof The elastic member is disposed on the back surface opposite to the opening, and in the state where the closing member is open, the one side of the magnetic ribbon facing the opening is arranged. The surface penetrates into the opening, the other of the magnetic ribbon contacts the shield wall side, the back of the magnetic ribbon is pressed by the elastic member, and the closing member closes the opening The surface of one end of the magnetic ribbon facing the opening is While pressed against the surface of the shielding material on the side of the blocking member against the pressing force of the member, the surface on the one end side of the shielding material of the blocking member is in close contact with the surface contact and the closing member is closed. It is the obstruction | occlusion structure of the opening part of the magnetic shield room characterized by being pushed by the surface and becoming flush | level .
[0014]
In the present invention, the magnetic ribbon is formed of an amorphous alloy material that is an Fe-based alloy having a high magnetic permeability, or an alloy material in which fine crystal grains having a grain size of 500 nm or less mainly composed of iron element occupy at least 50% of the structure. A magnetic material can be preferably used. Since this magnetic ribbon has the following characteristics, it is suitable as a joining member for a magnetic shield room.
(1) This magnetic ribbon is a material excellent in flexibility.
(2) Since this magnetic ribbon can efficiently collect magnetic flux in the space, it can be used as a magnetic material having a smaller thickness than a conventional magnetic shield.
(3) The obtained Fe-based alloy has sufficient hardness and is less susceptible to stress and strain than the NiFe alloy shielding material, and thus hardly causes the inverse magnetostriction effect.
[0015]
Since the magnetic ribbon described above can be closely attached to both wall members at the joint portion, leakage of magnetic flux can be reduced. This is due to the excellent flexibility of the alloy material. A thin magnetic material is advantageous for maintaining flexibility. Depending on the positional relationship between the shield wall and the blocking member, the magnetic ribbon is distorted by bending or twisting. However, since the inverse magnetostriction effect is unlikely to occur, the magnetic characteristics are hardly deteriorated.
[0016]
The magnetic ribbon used in the present invention is preferably a magnetic sheet produced by joining thin magnetic bodies used as materials and spreading them into a sheet. The thickness of the magnetic sheet is 10 μm to 200 μm, and the magnetic ribbon can be configured by laminating two or more magnetic sheets according to the amount of magnetic flux flowing. The narrow magnetic body should be an amorphous alloy material or a sheet-like or tape-like shape composed of an alloy material in which fine crystal grains having a grain size of 500 nm or less, whose main component is iron element, occupy at least 50% of the structure. Is preferred. This magnetic material is excellent in magnetic properties, but it is preferable to laminate about 5 to 15 sheets in order to prevent magnetic saturation.
[0017]
The single magnetic sheet can be formed by arranging thin magnetic bodies in parallel without gaps and integrating them with a resin. In order to arrange them without gaps, adjacent narrow magnetic bodies may be partially overlapped or edges may be abutted.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an external view of a magnetic shield room 1 that employs an opening closing structure according to the present invention. In this structure, six shield walls 2 are combined and joined. When the internal space is magnetically shielded, an opening provided in the shield wall 2 is closed with a door (blocking member) 3. The door 3 is attached to the shield wall 2 by a hinge 4 so as to be opened and closed. The shield wall 2 is produced in advance at the factory, and is brought into the installation site and assembled.
[0019]
The opening closing structure according to the first aspect of the present invention will be described with reference to FIGS. 2 is a cross-sectional view taken along the line AA in FIG. (A) shows the state in which the door 3 is open. (B) shows a state in which the door 3 is closed and the opening of the shield wall 2 is closed. The shield wall 2 includes a shield material 5 inside the magnetic shield room 1. The magnetic ribbon 6 is formed of an amorphous alloy material or an alloy material in which fine crystal grains having a particle size of 500 nm or less, whose main component is iron element, occupy at least 50% of the structure. The shield material 5 can be formed of a non-flexible magnetic material such as permalloy or a material similar to the magnetic ribbon 6. The magnetic ribbon 6 has flexibility and is arranged so as to come into contact with the shield material 5 of the shield wall 2 and a part thereof faces the opening of the shield wall 2. The magnetic ribbon 6 and the shield material 5 of the shield wall 2 are preferably bonded. The magnetic ribbon 6 receives a pressing pressure by an elastic member 7 supported by a support plate 8. The magnetic ribbon 6, the elastic member 7, and the support plate 8 are preferably bonded to each other. A sponge, rubber, spring, or the like can be used for the elastic member 7. The position L6 of the surface on the door 3 side of a part of the magnetic ribbon 6 that faces the opening when the door 3 is open is over the position L5 of the surface of the shield material 5 of the door 3 when the door 3 is closed. Wrapping. When the door 3 is closed, the magnetic ribbon 6 is pushed by the shield material 5 of the door 3 from the position L6 to the position L5. When pressed, the magnetic ribbon 6 is urged by the elastic member 7 and is in close contact with the shield material 5 of the door 3. As a result, the shield material 5 of the shield wall 2, the magnetic ribbon 6, the shield material 5 of the door 3, the magnetic ribbon 6, and the shield material 5 of the shield wall 2 are brought into close contact with each other to form a magnetic path. Even if the flatness and parallelism of the magnetic ribbon 6 and the shield material 5 are not ensured with high accuracy, the magnetic ribbon 6 has flexibility, so that they adhere to each other and leakage or intrusion of magnetic flux occurs. Without magnetic coupling. Even if the building is deformed after the magnetic shield room is constructed and the positional relationship between the shield wall 2 and the door 3 is changed, the flexibility of the magnetic ribbon 6 does not affect the degree of adhesion between the magnetic ribbon 6 and the shield material 5. Since the magnetic ribbon 6 has flexibility, no excessive stress is applied even if it is pressed by the shield material 5. In FIG. 2B, the magnetic ribbon 6 is not elastically deformed. However, even if it remains elastically deformed, the magnetic ribbon 6 has sufficient hardness and is hardly affected by stress or strain. The decrease is small, and the leakage of magnetic flux is hardly a problem.
[0020]
FIG. 3 is a cross-sectional view taken along line AA of FIG. 1 according to another embodiment of the present invention. (A) shows the state in which the door 3 is open. (B) shows a state in which the door 3 is closed and the opening of the shield wall 2 is closed. A magnetic ribbon 6 is overlapped on the shield material 5 of the door 3 and fixed with screws 10 through a pressing plate 9 from above. Part of the magnetic ribbon 6 faces the opening of the shield wall 2 and is supported by the support plate 8 via the elastic member 7. When the door 3 is closed as in the embodiment of FIG. 2, the magnetic ribbon 6 is pushed by the shield material 5 of the door 3 from a position L6 (not shown) to a position L5 (not shown). When pressed, the magnetic ribbon 6 is urged by the elastic member 7 and is in close contact with the shield material 5 of the door 3.
[0021]
FIG. 4 is a cross-sectional view taken along line AA of FIG. 1 according to still another embodiment of the present invention. (A) shows the state in which the door 3 is open. (B) shows a state in which the door 3 is closed and the opening of the shield wall 2 is closed. In the above-described embodiment, the shield material 5 of the shield wall 2 and the magnetic ribbon 6 are separate members. However, the magnetic ribbon having flexibility can be used as one member. Since the magnetic joint between the shield material 5 and the magnetic ribbon 6 on the shield wall 2 is eliminated, the magnetic resistance of the magnetic path is reduced and the reliability is improved.
[0022]
FIG. 5 shows a construction example when the opening of the shield wall 2 is provided at a position close to the corner of the magnetic shield room. The magnetic ribbon 6 is extended to extend to a position beyond the corner portion, where it is joined with another shield material. Alternatively, the magnetic ribbon 6 is used as a shield material without using another shield material. Thereby, construction man-hours can be reduced. Although the magnetic ribbon 6 is elastically deformed at the corner, it is R-shaped and has sufficient hardness and is not easily affected by stress or strain. It is a grade not to become.
[0023]
FIG. 6 shows a magnetic sheet 6a formed by arranging narrow magnetic bodies 6aa. The narrow magnetic body has an easy magnetization direction He and a hard magnetization direction Hd. The magnetic sheet 6a has a thickness of 10 to 200 μm. A required number of magnetic sheets 6a are laminated so as not to saturate the magnetic flux, thereby forming the magnetic ribbon 6 or the shield material 5. The magnetic sheets are bonded with an adhesive wax. For example, ten magnetic sheets having a thickness of 200 μm can be laminated to form the magnetic ribbon 6 or the shield material 5 having a thickness of about 2000 μm.
[0024]
The narrow magnetic body 6aa constituting the magnetic ribbon 6 or the shield material 5 is an amorphous alloy material or an alloy material in which fine crystal grains having a grain size of 500 nm or less, whose main component is iron element, occupy at least 50% of the structure. It is formed and has a sheet-like or tape-like shape. As the fine crystal material of the iron alloy (Fe alloy), a soft magnetic material having a fine crystal structure (or fine crystal grains) of bccFe of an Fe—Cu—Nb—Si—B system is desirably used. More desirably, a material in which the average crystal grain size of the fine crystal grains is 100 nm or less is used. This iron alloy (Fe alloy) fine crystal material (also referred to as nanocrystal material) can be obtained by heat-treating an amorphous material at a desired temperature as disclosed in, for example, Japanese Patent No. 2625485. Since the magnetic flux in the space can be collected efficiently in the configuration of this patent, it is possible to use a magnetic material that is thinner than a conventional magnetic shield. In order to obtain a thin magnetic body, for example, there is a foil body by rolling or ultra-quenching method, but soft iron or NiFe alloy that is easy to roll, or amorphous foil body obtained by ultra-quenching, the deformation of the sheet material is due to the reverse strain effect etc. Since characteristic deterioration is likely to occur, problems such as difficulty in handling in the construction of shield walls may occur. In particular, in NiFe alloy, the hardness of the material is insufficient, and crystal defects generated by deformation of the sheet due to the weight of the shield wall significantly deteriorate the magnetic characteristics. On the other hand, in the magnetic sheet obtained by heat-treating a foil body formed by ultra-rapid cooling of a high permeability Fe-based alloy, the obtained Fe-based alloy is sufficiently hard and has an inverse magnetostrictive effect. It is difficult to obtain a sufficiently thin magnetic sheet. In addition, as described in JP-A-6-112031, it is possible to make the material difficult to break against mechanical deformation and to significantly reduce the shape restrictions on processing. In the magnetic shield room using this magnetic sheet, the shield wall can be reduced in weight, and the influence of stress can be eliminated as much as possible, so that the material can be handled easily during construction.
[0025]
【The invention's effect】
According to the present invention, even if the flatness and parallelism between the shield wall and the closing member that closes the opening are not ensured with high accuracy, both can be magnetically coupled without causing leakage or intrusion of magnetic flux. An opening closing structure can be provided.
According to the present invention, there is provided an opening closing structure capable of magnetically coupling a shield wall and a closing member for closing the opening without applying magnetic flux without causing leakage or intrusion of magnetic flux. Can do.
[Brief description of the drawings]
FIG. 1 is an external view of a magnetic shield room that employs an opening closing structure according to the present invention.
2 is a cross-sectional view taken along the line AA of FIG. 1 in the embodiment of the present invention, where (a) shows a state where the door is open, and (b) shows a state where the door is closed and the opening of the shield wall is closed. Indicates.
3 is a cross-sectional view taken along the line AA of FIG. 1 in another embodiment of the present invention, wherein (a) shows a state where the door is open, and (b) shows that the door is closed and the opening of the shield wall is closed. Shows the state.
4 is a cross-sectional view taken along the line AA of FIG. 1 in still another embodiment of the present invention, wherein (a) shows a state where the door is open, and (b) shows that the door is closed and the opening of the shield wall is opened. Indicates a blocked state.
FIG. 5 shows a construction example when the opening of the shield wall is provided at a position near the corner of the magnetic shield room.
FIG. 6 is a magnetic sheet formed by arranging narrow magnetic bodies.
FIG. 7 shows a first conventional structure for ensuring magnetic shielding performance at the opening of the shield wall.
FIG. 8 is a second conventional structure for ensuring magnetic shielding performance at the opening of the shield wall.
[Explanation of symbols]
1 ... Magnetic shield room 2 ... Shield wall 3 ... Door (blocking member)
4 ... Hinge 5 ... Shielding material 6 ... Magnetic ribbon 6a ... Magnetic material sheet 6aa ... Narrow magnetic material 7 ... Elastic member 8 ... Support plate 9 ... Holding plate 10 ... Screw

Claims (3)

シールド壁と、該シールド壁に設けたシールド材と、前記シールド壁の開口部を塞ぐ閉塞部材と、該閉塞部材に設けたシールド材と、前記開口部を閉塞部材で塞いだとき、前記シールド壁側のシールド材と前記閉塞部材側のシールド材の両者に接触する磁性薄帯と、からなる開口部の閉塞構造であって、前記磁性薄帯はそれ自体に柔軟性を有し、その一端側が前記開口部に臨むようになし、さらに前記開口部とは反対側の背面に弾性部材を配設し、前記閉塞部材が開いている状態では、前記開口部に臨む磁性薄帯の一端側の面は、開口部内に入り込んでおり、当該磁性薄帯の他方はシールド壁側のシールド材と接触し、前記磁性薄帯の背面は前記弾性部材で押圧されており、前記閉塞部材が前記開口部を塞ぐとき、前記開口部に臨む磁性薄帯の一端側の面は、前記弾性部材の押圧力に抗して前記閉塞部材側のシールド材の面に押されながら、面接触により密着し、前記閉塞部材を閉じた状態では、前記一端側の面は前記閉塞部材のシールド材の面に押されて面一になることを特徴とする磁気シールドルームの開口部の閉塞構造。A shield wall, a shield material provided on the shield wall, a closing member that closes the opening of the shield wall, a shield material provided on the closing member, and the shield wall when the opening is closed with a closing member And a magnetic ribbon that contacts both the shield member on the side and the shield member on the closure member side, and the magnetic ribbon has its own flexibility, and one end side thereof is A surface on one end of the magnetic ribbon that faces the opening when the elastic member is disposed on the back surface opposite to the opening and the closing member is open. Is in the opening, the other of the magnetic ribbon contacts the shield material on the shield wall side, the back of the magnetic ribbon is pressed by the elastic member, and the blocking member opens the opening Magnetic ribbon facing the opening when closing The surface on the one end side is in close contact with the surface of the shield member on the closing member side against the pressing force of the elastic member, and comes into close contact with the surface, and in the state where the closing member is closed, the surface on the one end side Is pressed against the surface of the shield member of the blocking member to be flush with the opening structure of the magnetic shield room. シールド壁と、該シールド壁に設けた磁性薄帯と、前記シールド壁の開口部を塞ぐ閉塞部材と、該閉塞部材に設けたシールド材と、前記開口部を閉塞部材で塞いだとき、前記シールド壁側の磁性薄帯と前記閉塞部材側のシールド材とが接触する開口部の閉塞構造であって、前記磁性薄帯はそれ自体に柔軟性を有し、その一端側が前記開口部に臨むようになし、さらに前記開口部とは反対側の背面に弾性部材を配設し、前記閉塞部材が開いている状態では、前記開口部に臨む磁性薄帯の一端側の面は、開口部内に入り込んでおり、当該磁性薄帯の他方はシールド壁側と接触し、前記磁性薄帯の背面は前記弾性部材で押圧されており、前記閉塞部材が前記開口部を塞ぐとき、前記開口部に臨む磁性薄帯の一端側の面は、前記弾性部材の押圧力に抗して前記閉塞部材側のシールド材の面に押されながら、面接触により密着し、前記閉塞部材を閉じた状態では、前記一端側の面は前記閉塞部材のシールド材の面に押されて面一になることを特徴とする磁気シールドルームの開口部の閉塞構造。A shield wall; a magnetic ribbon provided on the shield wall; a closing member that closes an opening of the shield wall; a shield material provided on the closing member; and the shield when the opening is closed with a closing member An opening closing structure in which a magnetic ribbon on the wall side and a shield material on the closing member side are in contact with each other, and the magnetic ribbon has its own flexibility, and one end side thereof faces the opening. Further, an elastic member is disposed on the back surface opposite to the opening, and when the closing member is open, the surface on one end side of the magnetic ribbon facing the opening enters the opening. The other of the magnetic ribbon is in contact with the shield wall side, the back surface of the magnetic ribbon is pressed by the elastic member, and when the closing member closes the opening, the magnetic facing the opening The surface on one end side of the ribbon is resistant to the pressing force of the elastic member. While being pushed to the surface of the closure member side shield member Te, close contact by surface contact, in the closed state of the closing member, the surface of one end side is pushed to the surface of the shield material of the closure member flush A structure for closing a magnetic shield room opening. 前記磁性薄帯はアモルファス合金材料または鉄元素を主成分とする粒径500nm以下の微細結晶粒が組織の少なくとも50%以上を占める合金材料で形成されることを特徴とする請求項1又は2に記載の磁気シールドルームの開口部の閉塞構造。The magnetic thin ribbon is formed of an amorphous alloy material or an alloy material in which fine crystal grains having a particle size of 500 nm or less, the main component of which is an iron element, occupy at least 50% of the structure. The opening structure of the magnetic shield room described.
JP2003071567A 2003-03-17 2003-03-17 Magnetic shield room opening structure Expired - Fee Related JP4154690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071567A JP4154690B2 (en) 2003-03-17 2003-03-17 Magnetic shield room opening structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071567A JP4154690B2 (en) 2003-03-17 2003-03-17 Magnetic shield room opening structure

Publications (2)

Publication Number Publication Date
JP2004281740A JP2004281740A (en) 2004-10-07
JP4154690B2 true JP4154690B2 (en) 2008-09-24

Family

ID=33287978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071567A Expired - Fee Related JP4154690B2 (en) 2003-03-17 2003-03-17 Magnetic shield room opening structure

Country Status (1)

Country Link
JP (1) JP4154690B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049014B2 (en) * 2013-01-11 2016-12-21 鹿島建設株式会社 Open type magnetic shield structure with door
JP6265423B2 (en) * 2014-04-24 2018-01-24 大成建設株式会社 Storage body performance evaluation apparatus and performance evaluation method
JP7088535B2 (en) * 2018-03-29 2022-06-21 メディカル・エイド株式会社 Vehicle with electromagnetic wave shield room and electromagnetic wave shield room

Also Published As

Publication number Publication date
JP2004281740A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US6301088B1 (en) Magnetoresistance effect device and method of forming the same as well as magnetoresistance effect sensor and magnetic recording system
JP4815443B2 (en) Joint structure between wall materials of magnetic shielding room
US9910107B2 (en) Patterned magnetoresistive (MR) device with adjacent flux absorbing stripes
EP1321943A3 (en) Magnetic memory
EP0620573B1 (en) Flux spreading thin film magnetic devices
JP2004335071A (en) Cpp giant magnetoresistive head
WO2008105095A1 (en) Vertical magnetic recording medium and magnetic recorder
JP4154690B2 (en) Magnetic shield room opening structure
TW201608220A (en) Pressure sensor, microphone, ultrasonic sensor, blood pressure sensor, and touch panel
KR20010078004A (en) Magnetic sensor and magnetic storage using same
JP2837595B2 (en) Amorphous magnetic shield plate and magnetic shield method
JP3560713B2 (en) Multilayer thin film material for magnetoresistive element and method of adjusting magnetization of magnetic layer
JPH1126981A (en) Shield member
Zhang et al. Improved magnetoelectric effect in magnetostrictive/piezoelectric composite with flux concentration effect for sensitive magnetic sensor
WO2015182645A1 (en) Magnetoresistive element, magnetic sensor and current sensor
JP3183329B2 (en) Reel stand device
US5703738A (en) Magnetic head magneto-resistive element with c-shaped multi-layered structure
JP4618556B2 (en) Composite magnetic member
JP2003318586A (en) Bonding material for magnetic shield room and magnetic shield room
JPS59221824A (en) Magnetoresistance effect type magnetic head
JP3624355B2 (en) Magnetoresistive sensor
JP3461688B2 (en) Magnetic head and magnetic recording device using the same
JP4822722B2 (en) Magnetic shield wall and magnetic shield room
JP2564458Y2 (en) Magnetic shield room opening structure
JPS63244407A (en) Thin film magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees