JP4153391B2 - Tissue formation promoting factor - Google Patents

Tissue formation promoting factor Download PDF

Info

Publication number
JP4153391B2
JP4153391B2 JP2003317758A JP2003317758A JP4153391B2 JP 4153391 B2 JP4153391 B2 JP 4153391B2 JP 2003317758 A JP2003317758 A JP 2003317758A JP 2003317758 A JP2003317758 A JP 2003317758A JP 4153391 B2 JP4153391 B2 JP 4153391B2
Authority
JP
Japan
Prior art keywords
cells
cartilage
dimensional
cartilage tissue
creating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003317758A
Other languages
Japanese (ja)
Other versions
JP2005080599A (en
Inventor
憲司 山下
道雄 野村
英夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003317758A priority Critical patent/JP4153391B2/en
Publication of JP2005080599A publication Critical patent/JP2005080599A/en
Application granted granted Critical
Publication of JP4153391B2 publication Critical patent/JP4153391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、試験管内で培養された軟骨細胞、同前駆細胞、間葉系幹細胞あるいは生体内に存在するこれら細胞を脂溶性ビタミンを含有する三次元環境下で培養することによる生体内および生体外で効率的軟骨組織製造方法およびこれを用いた軟骨損傷治療方法に関する。   The present invention relates to chondrocytes, progenitor cells, mesenchymal stem cells cultured in vitro, or these cells present in vivo in a three-dimensional environment containing fat-soluble vitamins, in vivo and in vitro. And an efficient method for producing cartilage tissue and a method for treating cartilage damage using the same.

変形性関節症などの軟骨疾患は、老齢人口の増加とともに急速な増加傾向にあり、これに起因する社会的経済的コストは大きく、関節機能を回復できる有効な治療法が強く望まれている。   Cartilage diseases such as osteoarthritis tend to increase rapidly with an aging population, and the resulting social and economic costs are high, and an effective treatment that can restore joint function is strongly desired.

従来、損傷関節面が適切な細胞外基質を再構築するとみられる自己由来細胞を移植することにより損傷関節面が修復されるという仮説に基づき、主に関節由来の軟骨細胞を培養し同じ患者の膝に導入する治療が有望とされ、これの実用化、製品化もなされた(Brittbergら(非特許文献1、非特許文献2)。しかしながらこの治療方法はスポーツ障害など小規模の軟骨損傷を対象としたもので患者数の多い重篤度の高い変形性膝関節症など大規模な軟骨損傷への適用は無理とされている。また小規模軟骨損傷への適用においても加齢による患者軟骨細胞の軟骨組織形成能力の低下、あるいは年齢を問わず体外で増幅させることによる軟骨組織形成能の低下などによりその治療効果に疑問が投げかけられているのが現実である(非特許文献3)。   Traditionally, based on the hypothesis that the damaged joint surface can be repaired by transplanting autologous cells that the damaged joint surface appears to reconstruct the appropriate extracellular matrix, The treatment to be introduced into the knee is considered promising, and this has been put into practical use and commercialized (Brittberg et al. (Non-patent Document 1, Non-patent Document 2). However, this treatment method targets small-scale cartilage damage such as sports disorders. It is impossible to apply to large-scale cartilage damage such as osteoarthritis with high severity and a large number of patients. The reality is that there are doubts about the therapeutic effect due to the decrease in cartilage tissue formation ability of the body, or the decrease in cartilage tissue formation ability caused by amplification outside the body regardless of age (non-patented) Document 3).

さらに自己の関節由来軟骨細胞など自家組織を細胞ソースとする自家移植治療においては、患者自身の細胞を関節より採取する必要があることよる侵襲性の問題がある。そこで採取による侵襲度が比較的に低い間葉系幹細胞の利用が期待され、この実用化の検討も行われている。   Furthermore, in autotransplantation treatment using autologous tissue such as autologous joint-derived chondrocytes as a cell source, there is an invasive problem due to the need to collect the patient's own cells from the joint. Therefore, utilization of mesenchymal stem cells, which have a relatively low degree of invasiveness by collection, is expected, and this practical application is also being studied.

間葉系幹細胞(MSCs)は脂肪、骨、軟骨、弾性、筋および線維などの結合組織を含む特殊な型の間葉あるいは結合組織に分化することのできる骨髄、血液、真皮、および骨膜に見出される形成多能芽細胞あるいは胚状細胞である。これらの細胞は通常骨髄に非常に低い頻度で存在する。組織培養でこれらの細胞の集団を分離し、精製し、また増幅させるプロセスは、フリーデンスタイン他により既に報告されている(非特許文献4)。   Mesenchymal stem cells (MSCs) are found in bone marrow, blood, dermis, and periosteum that can differentiate into special types of mesenchymal or connective tissue including connective tissues such as fat, bone, cartilage, elasticity, muscle and fibers. Are pluripotent blast cells or embryonic cells. These cells are usually present at a very low frequency in the bone marrow. The process of separating, purifying, and amplifying these cell populations in tissue culture has already been reported by Friedenstein et al.

またMSCsの軟骨細胞への分化は既に数多く報告されている(非特許文献5、非特許文献6、非特許文献7、非特許文献8)。生体内でのMSCsから軟骨創製は、ウサギを用いて軟骨欠損治療実験を行ったWakitaniらの報告がある(非特許文献9)あるいは。また生体外での軟骨創製は、Johnstoneらのウサギ骨髄由来間葉系幹細胞を用いた軟骨創製に関する報告など(非特許文献10、非特許文献11、非特許文献12)がある。

BrittbergらThe New England Journal of Medicine Vol.331,No.14、889−895(1994) 諸橋ら(培養自己軟骨移植法の米国における企業化事例)組織培養工学、Vol.23、568−571 Breinanら Orthopedics Vol.20:525−538(1997) Friedensteinら Cell Tissue Kinet.Vol.20、263−272(1987) Grigoriadisら Journal of Cell Biology Vol.106,2139(1988) Babら J.Cell Sci.Vol.84、139−151(1986) Friedensteinら Bone Miner Res.Vol.7、243−272(1990) Caplanら J.Orthop. Res.Vol.9、641−650(1991) Wakitaniら Journalof Bone Joint Surgery Am.、Vol.76A、579(1994) Johnstoneら Trans.Orthop.Res.Soc.Vol.21、65(1996) Johonstoneら Experimental Cell Research Vol.238、265−272(1998) Mackayら Tissue Engineering Vol.4、No.4、415−428(1998)
Many differentiations of MSCs into chondrocytes have already been reported (Non-patent document 5, Non-patent document 6, Non-patent document 7, Non-patent document 8). As for the creation of cartilage from MSCs in vivo, there is a report of Wakitani et al. Who conducted a cartilage defect treatment experiment using rabbits (Non-patent Document 9). In addition, there are reports on the creation of cartilage in vitro by Johnstone et al. Regarding the creation of cartilage using rabbit bone marrow-derived mesenchymal stem cells (Non-patent document 10, Non-patent document 11, Non-patent document 12).

Brittberg et al. The New England Journal of Medicine Vol. 331, no. 14, 889-895 (1994) Morohashi et al. (Example of commercialization of cultured autocartilage transplantation in the US) Tissue culture engineering, Vol. 23, 568-571 Breinan et al. Orthopedics Vol. 20: 525-538 (1997) Friedenstein et al. Cell Tissue Kinet. Vol. 20, 263-272 (1987) Grigoriadis et al. Journal of Cell Biology Vol. 106, 2139 (1988) Bab et al. Cell Sci. Vol. 84, 139-151 (1986) Friedenstein et al. Bone Miner Res. Vol. 7, 243-272 (1990) Caplan et al. Orthop. Res. Vol. 9, 641-650 (1991) Wakitani et al. Journalof Bone Joint Surgage Am. Vol. 76A, 579 (1994) Johnstone et al. Trans. Orthop. Res. Soc. Vol. 21, 65 (1996) Johnstone et al. Experimental Cell Research Vol. 238, 265-272 (1998) Mackay et al., Tissue Engineering Vol. 4, no. 4, 415-428 (1998)

上記の現状において軟骨細胞、同前駆細胞あるいは間葉系幹細胞を用いる場合ともに課題とされるのが、如何に細胞に軟骨組織形成能を維持させるかである。すなわち軟骨細胞では加齢あるいは増幅操作による軟骨細胞機能の低下、喪失、また間葉系幹細胞では同じく加齢あるいは増幅操作による軟骨細胞への分化能の低下、喪失が問題となる。そのような状況で、より安定に軟骨細胞機能あるいは軟骨細胞への分化能を保持し、良好な軟骨形成を導く環境の設定が望まれている。   In the above situation, a problem that arises when using chondrocytes, progenitor cells or mesenchymal stem cells is how to maintain the ability of the cells to form cartilage tissue. In other words, chondrocytes suffer from a decrease or loss of chondrocyte function due to aging or amplification, and mesenchymal stem cells also suffer from a decrease or loss of differentiation ability into chondrocytes due to aging or amplification. Under such circumstances, it is desired to set an environment that leads to better cartilage formation while maintaining more stable chondrocyte function or ability to differentiate into chondrocytes.

三次元環境下での培養が脱分化を抑制し、各組織細胞への分化能を維持させることは知られており、三次元環境下で体外あるいは体内で軟骨創製を行うことによりある程度軟骨組織の形成が維持、増強されるとの報告は数多くなされている。しかしながら実際の臨床における軟骨再生ではまだまだ十分といえる状況ではなく、分化能の低下を改善するさらなる手法の開発が強く望まれている。   It is known that culturing in a three-dimensional environment suppresses dedifferentiation and maintains the ability to differentiate into each tissue cell, and cartilage tissue is created to some extent by performing cartilage creation in vitro or in the body in a three-dimensional environment. There have been many reports that formation is maintained and enhanced. However, the actual clinical cartilage regeneration is still not enough, and there is a strong demand for the development of a further method for improving the decrease in differentiation ability.

分化能を維持させる最も簡便であり、実用的な手法は因子の活用である。軟骨細胞としての機能を維持あるいは間葉系幹細胞から軟骨細胞への分化誘導効果を有するものとして、デキサメタゾンなどのグルココルチコイド、トランスフォーミング成長因子−βファミリーと呼ばれる因子(TGF−β)、例えば骨形態形成タンパク質(望ましくはBMP−2あるいはBMP−4)、塩基性繊維芽細胞成長因子(bFGF)、インヒビンAあるいは軟骨形成刺激活性因子(CSA)など、I型コラーゲン(とりわけゲル形態にあるもの)などのコラーゲン性細胞外基質、およびレチノイン酸などのビタミンA類似体、アスコルビン酸などがある。   The simplest and most practical method for maintaining differentiation potential is the utilization of factors. Glucocorticoids such as dexamethasone, transforming growth factor-β family factor (TGF-β), such as bone morphology, which maintains the function as chondrocytes or has an effect of inducing differentiation from mesenchymal stem cells to chondrocytes Forming protein (preferably BMP-2 or BMP-4), basic fibroblast growth factor (bFGF), inhibin A or chondrogenic stimulating activity factor (CSA), type I collagen (especially in gel form), etc. Collagenous extracellular matrix, and vitamin A analogs such as retinoic acid, ascorbic acid and the like.

上記の「背景技術」の項で述べてきたより実用的な軟骨作製研究では、軟骨細胞、間葉系幹細胞からの軟骨創製ではともにアスコルビン酸が有効な因子として用いられているが増幅に伴う脱分化を満足できるレベルで抑制するものではない。   In the more practical cartilage production research described in the “Background Art” section above, ascorbic acid is used as an effective factor in the creation of cartilage from chondrocytes and mesenchymal stem cells. Is not suppressed at a satisfactory level.

以上の課題を解決すべく種々の因子を探索、検討した結果、脂溶性ビタミン類のひとつ還元型コーエンザイムQ10および酸化型コーエンザイムQ10が軟骨細胞あるいは間葉系幹細胞を用いた軟骨再生においてアスコルビン酸の組織形成能増強作用をさらに強めることを見出し、この還元型コーエンザイムQ10および酸化型コーエンザイムQ10を用いた軟骨組織形成促進方法、さらにはこれを活用することによる軟骨損傷治療方法を提供する本発明の完成に至った。   As a result of searching and examining various factors to solve the above problems, one of the fat-soluble vitamins, reduced coenzyme Q10 and oxidized coenzyme Q10, is used in the regeneration of cartilage using chondrocytes or mesenchymal stem cells. The present invention provides a method for promoting cartilage tissue formation using this reduced coenzyme Q10 and oxidized coenzyme Q10, and further a method for treating cartilage damage using the same. The invention has been completed.

即ち、本発明の第1は、生体外において還元型コエンザイムQ10もしくは酸化型コエンザイムQ10あるいはその混合物を含有する培地を使用する三次元培養環境下で軟骨組織由来の細胞、同前駆細胞あるいは間葉系幹細胞を培養することを特徴とする軟骨組織を創製する方法に関する。That is, the first of the present invention is that cells derived from cartilage tissue, progenitor cells or mesenchymal cells in a three-dimensional culture environment using a medium containing reduced coenzyme Q10, oxidized coenzyme Q10 or a mixture thereof in vitro. The present invention relates to a method for creating a cartilage tissue characterized by culturing stem cells.

本発明は、軟骨損傷治療のための生体内および生体外での軟骨組織再生用三次元細胞結合体の製造を、産業化を前提に、より実用的にするための手段を提供するものである。   The present invention provides means for making the production of a three-dimensional cell conjugate for cartilage tissue regeneration in vivo and in vitro for the treatment of cartilage damage more practical on the premise of industrialization. .

軟骨細胞としての機能を維持あるいは間葉系幹細胞から軟骨細胞への分化誘導効果を有する因子として、デキサメタゾンなどのグルココルチコイド、トランスフォーミング成長因子−βファミリーと呼ばれる因子(TGF−β)、例えば骨形態形成タンパク質(望ましくはBMP−2あるいはBMP−4)、塩基性繊維芽細胞成長因子(bFGF)、インヒビンAあるいは軟骨形成刺激活性因子(CSA)など、I型コラーゲン(とりわけゲル形態にあるもの)などのコラーゲン性細胞外基質、およびレチノイン酸などのビタミンA類似体、ビタミンB12、トコフェロールなどの脂溶性ビタミンあるいはアスコルビン酸など水溶性ビタミンがある。特にTGF−βは軟骨創製において必須のものであるとされている。   Glucocorticoids such as dexamethasone, transforming growth factor-β family factor (TGF-β), such as bone morphology, as a factor that maintains chondrocyte function or has an effect of inducing differentiation from mesenchymal stem cells to chondrocytes Forming protein (preferably BMP-2 or BMP-4), basic fibroblast growth factor (bFGF), inhibin A or chondrogenic stimulating activity factor (CSA), type I collagen (especially in gel form), etc. Collagenous extracellular matrix, vitamin A analogs such as retinoic acid, fat-soluble vitamins such as vitamin B12 and tocopherol, and water-soluble vitamins such as ascorbic acid. In particular, TGF-β is said to be essential in the creation of cartilage.

本発明の非蛋白性の軟骨分化因子探索では、上記の軟骨分化誘導活性を有する蛋白性因子を共存させることなく、血清存在下で培養した関節軟骨細胞の軟骨基質産生を促進するものをターゲットとしてスクリーニングを行った。結果、脂溶性ビタミン、特に還元型コーエンザイムQ10および酸化型コーエンザイムQ10にこの強い活性を見出した。   In the search for non-protein cartilage differentiation factor of the present invention, the target is to promote the production of cartilage matrix of articular chondrocytes cultured in the presence of serum without coexisting with the protein factor having cartilage differentiation-inducing activity described above. Screening was performed. As a result, this strong activity was found in fat-soluble vitamins, particularly reduced coenzyme Q10 and oxidized coenzyme Q10.

本発明において、還元型コーエンザイムQ10および酸化型コーエンザイムQ10の3次元培養環境下での濃度は、1ng/ml以上、1000μg/ml以下であり、望ましくは100ng/ml以上、100μg/ml以下である。   In the present invention, the concentration of reduced coenzyme Q10 and oxidized coenzyme Q10 in a three-dimensional culture environment is 1 ng / ml or more and 1000 μg / ml or less, preferably 100 ng / ml or more and 100 μg / ml or less. is there.

軟骨細胞、同前駆細胞は生体の軟骨組織すべてを供給元として用いることができるが好ましくは関節あるいは肋骨由来の軟骨細胞である。特に関節軟骨細胞は最も好ましい供給元である。軟骨細胞はこれら組織からコラゲナーゼを用いることにより分離することができる。分離された軟骨細胞は、ウシまたはヒト血清環境あるいは合成無血清環境下で培養増幅され、軟骨組織の形成はこれらの細胞を三次元形態、望ましくは三次元環境を付与する支持体との混合物(三次元細胞結合体と呼ぶ)として合成無血清あるいは血清環境下で培養することにより行われた。この三次元細胞結合体は体外および体内での軟骨形成に適用することができる。   The chondrocytes and progenitor cells can be used as a source of all living cartilage tissues, but are preferably chondrocytes derived from joints or ribs. Articular chondrocytes are the most preferred source. Chondrocytes can be isolated from these tissues by using collagenase. The isolated chondrocytes are cultured and amplified in a bovine or human serum environment or a synthetic serum-free environment, and the formation of cartilage tissue is a mixture with a support that provides these cells with a three-dimensional morphology, preferably a three-dimensional environment ( This was performed by culturing in a synthetic serum-free or serum environment as a three-dimensional cell conjugate). This three-dimensional cell conjugate can be applied to cartilage formation in vitro and in vivo.

間葉系幹細胞(MSCs)は骨髄、血液(末梢血を含む)、骨膜および真皮、ならびに中胚葉起源を持つ他の組織などからウシまたはヒト血清環境あるいは合成無血清環境下の密度勾配分画などにより分離することができる。それら組織に含まれているMSCsは年齢と共に大幅に減少するが、とりわけ骨髄から分離することができ、分離された分画調製物は細胞の少くとも約90%、また望ましくは少くとも約95%がヒト間葉幹細胞の細胞を含むであろうということが考えられる。   Mesenchymal stem cells (MSCs) from bone marrow, blood (including peripheral blood), periosteum and dermis, and other tissues with mesodermal origin, etc. Density gradient fraction in bovine or human serum environment or synthetic serum-free environment Can be separated. The MSCs contained in these tissues decrease significantly with age, but can be isolated from the bone marrow, among other things, and the isolated fractional preparation contains at least about 90% of the cells, and preferably at least about 95% of the cells. Is likely to contain cells of human mesenchymal stem cells.

さらに分画調製された同細胞は、ウシまたはヒト血清培地を含む環境あるいは無血清合成培地を含む環境下で培養増幅され、軟骨組織の形成はこれらの細胞を三次元形態、望ましくは三次元環境を付与する支持体との混合物(三次元細胞結合体と呼ぶ)として無血清合成培地を含む環境下で培養することにより行われた。この三次元細胞結合体は体外および体内での軟骨形成に適用することができる。   Further, the same fractionally prepared cells are cultured and amplified in an environment containing bovine or human serum medium or an environment containing serum-free synthetic medium, and the formation of cartilage tissue causes these cells to have a three-dimensional morphology, preferably a three-dimensional environment. It was carried out by culturing in an environment containing a serum-free synthetic medium as a mixture (referred to as a three-dimensional cell conjugate) with a support to which the above is applied. This three-dimensional cell conjugate can be applied to cartilage formation in vitro and in vivo.

三次元培養環境としては、以下のものを用いることができる。軟骨細胞、前駆細胞、間葉系幹細胞を遠心分離等の処理をすることにより単純な細胞塊状態の三次元培養環境を構築することができる。ここで言う単純な細胞塊とは、三次元培養環境を付与する特別の支持体のない状態の細胞塊である。また天然物あるいは非天然物由来の生体適合性材料を用いて作製した支持体を三次元培養環境として用いることができる。   The following can be used as the three-dimensional culture environment. By processing the chondrocytes, progenitor cells, and mesenchymal stem cells such as centrifugation, a simple three-dimensional culture environment in a cell mass state can be constructed. The simple cell mass referred to here is a cell mass without a special support that provides a three-dimensional culture environment. In addition, a support produced using a biocompatible material derived from a natural product or a non-natural product can be used as a three-dimensional culture environment.

天然物由来の生体適合性材料としては、コラーゲン、ゼラチン、キチン、キトサン、寒天、基底膜成分、フィブロネクチン、ラミニン、グリコサミノグリカン、ヒアルロン酸およびそれらの混合物を用いることができる。   As biocompatible materials derived from natural products, collagen, gelatin, chitin, chitosan, agar, basement membrane components, fibronectin, laminin, glycosaminoglycan, hyaluronic acid and mixtures thereof can be used.

非天然物由来の生体適合性材料としては、α及びβ−ヒドロキシカルボン酸の加水分解性ポリマーであるポリ乳酸、ポリグリコール酸、乳酸/グリコール酸共重合体、ポリεカプロラクトン、乳酸/εカプロラクトン共重合体等を用いることができる。   Non-naturally occurring biocompatible materials include polylactic acid, polyglycolic acid, lactic acid / glycolic acid copolymer, polyε caprolactone, lactic acid / ε caprolactone co-polymer, which are hydrolyzable polymers of α and β-hydroxycarboxylic acids. A polymer or the like can be used.

なお本発明において「組織再生用の支持体」とは、生体を構成する種々組織の再生用支持体を意味する。本発明の組織再生用支持体の構造としてはゲル、不織布、フォーム、スポンジ、織物構造等が挙げられることができる。   In the present invention, the “support for tissue regeneration” means a support for regeneration of various tissues constituting a living body. Examples of the structure of the tissue regeneration support of the present invention include gels, nonwoven fabrics, foams, sponges, and fabric structures.

また本発明で使用される組織再生用支持体は、厚さを適宜設定し、患部を補填するために必要なサイズにすることができる。本発明の支持体の厚さは、好ましくは50μmから1cmである。なおヒトの膝あるいは股関節の治療に用いる場合には、1ないし4mmの厚さのものが実際上好ましい。   In addition, the tissue regeneration support used in the present invention can be appropriately sized to compensate for the affected area by appropriately setting the thickness. The thickness of the support of the present invention is preferably 50 μm to 1 cm. When used for treatment of human knees or hip joints, a thickness of 1 to 4 mm is practically preferable.

また上記支持体の形状および面積については特に限定はなく、患部を補填するために十分なサイズのものを作製することができる。例えば、ヒトの膝あるいは股関節の治療に用いる場合には、好ましくは10ないし20mmの直径の円筒形のものである。   Moreover, there is no limitation in particular about the shape and area of the said support body, The thing of sufficient size in order to fill an affected part can be produced. For example, when used for treatment of a human knee or hip joint, it is preferably a cylindrical one having a diameter of 10 to 20 mm.

次に、本発明の軟骨組織再生用三次元細胞結合体の製造法について説明する。上記製造法は、本発明で使用される三次元支持体に、軟骨細胞、同前駆細胞あるいは間葉系幹細胞を播種し、人工環境内および/または生体内で合成培地を用い三次元培養環境下で培養することを特徴とする。   Next, a method for producing a three-dimensional cell conjugate for cartilage tissue regeneration according to the present invention will be described. In the production method described above, a three-dimensional support used in the present invention is seeded with chondrocytes, the same progenitor cells or mesenchymal stem cells, and a synthetic medium is used in an artificial environment and / or in a living body in a three-dimensional culture environment. It is characterized by culturing in.

ここで使用される「合成培地」という用語は、この発明の組成物がとりわけこの発明の方法に従って試験管内軟骨形成を受けることができ、また最小必須培地、アスコルビン酸塩あるいはその類似体、鉄源等微量金属およびインスリンもしくはインスリン状成長因子を含むような維持、成長あるいは培養培地を意味する。なお、その他蛋白性因子としてヒトでの実績のあるウシアルブミンを用いることが好ましい。本実験では最小必須培地としてDMEM、鉄源等微量、インスリン、ウシアルブミンを別添加として用いた。   As used herein, the term “synthetic medium” means that the composition of the present invention is capable of undergoing in vitro chondrogenesis according to the method of the present invention, and that the minimum essential medium, ascorbate or analog thereof, iron source Means a maintenance, growth or culture medium containing equimolar metals and insulin or insulin-like growth factor. In addition, it is preferable to use bovine albumin that has a proven record in humans as another protein factor. In this experiment, DMEM, a trace amount of iron source, insulin, and bovine albumin were additionally used as minimum essential media.

上記製造法において、間葉系幹細胞あるいは前駆細胞の播種は公知の方法で行うことができるが、支持体1cm3あたり106〜108の密度となるように細胞又は前駆細胞を播種することが好ましい。 In the above production method, seeding of mesenchymal stem cells or progenitor cells can be performed by a known method, but seeding of cells or progenitor cells so that the density is 10 6 to 10 8 per 1 cm 3 of the support. preferable.

上記方法において、「人工環境内で培養」とは、試験管、培養器など生体外で培養することを意味する。静置または旋回でのバッチ培養、あるいは循環式の連続培養を行うことができ、望ましくは旋回バッチ培養あるいは循環式の連続培養である。   In the above method, “culturing in an artificial environment” means culturing in vitro such as a test tube or an incubator. Batch culture by static or swirling or circulating continuous culture can be performed, preferably swiveling batch culture or circulating continuous culture.

また本発明で使用された三次元細胞結合体の製造法において、人工環境内の培養は、培養液を支持体に対し毎秒0.1cmから毎秒50cmの速度で移動させる条件で行われることが、三次元細胞結合体への新鮮な培地の供給の観点、また三次元細胞結合体からの老廃物の除去の観点より好ましい。   In the method for producing a three-dimensional cell conjugate used in the present invention, the culture in the artificial environment is performed under the condition that the culture solution is moved relative to the support at a speed of 0.1 cm / second to 50 cm / second, This is preferable from the viewpoint of supplying a fresh medium to the three-dimensional cell conjugate and from the viewpoint of removing waste products from the three-dimensional cell conjugate.

上記方法において、「生体内で培養」とは、例えば、支持体あるいは支持体と細胞の混合物を生体組織内に設置して細胞を培養するような、生体組織内での培養を意味する。   In the above method, “culturing in vivo” means culturing in a living tissue, for example, by culturing cells by placing a support or a mixture of a support and cells in the living tissue.

以下に実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

(実施例1)軟骨組織の創製
生後約1年の日本ザーネン種ヤギ膝関節より軟骨組織を採取し、コラゲナーゼにより軟骨細胞を分離した。この細胞を10%ウシ胎児血清及び終濃度50μg/mlのアスコルビン酸を含有するHam’s F−12培地を用いて培養し、2回継代した軟骨細胞を培養軟骨の作製に供した。
(Example 1) Creation of cartilage tissue Cartilage tissue was collected from a Japanese Saanen goat knee joint approximately one year after birth, and chondrocytes were separated by collagenase. The cells were cultured using Ham's F-12 medium containing 10% fetal bovine serum and ascorbic acid at a final concentration of 50 μg / ml, and chondrocytes passaged twice were used for the production of cultured cartilage.

1×107個/5mlの細胞懸濁液(10%ウシ胎児血清及び終濃度50μg/mlのアスコルビン酸を含有するHam’s F−12培地)1mlを15mlのポリプロピレン製の遠心チューブに入れ、1200rpmで5分間遠心処理することにより、遠心チューブ内に上清部の培地と下部の単純な細胞塊からなる3次元培養環境を作製した。酸化型コーエンザイムQ10、還元型コーエンザイムQ10をそれぞれ0.175μg/ml、35μg/mlとなるように培地に添加し、5%CO2、37℃で14日間培養した。培地交換を3日間毎実施した。比較として、酸化型コーエンザイムQ10あるいは還元型コーエンザイムQ10無添加での培養を同様に行った。培養後の細胞塊について組織学的及び生化学的に評価した。組織学的評価としてはアルシアンブルー染色、生化学的評価としてグリコサミノグリカン産生の色素法による定量を行った。結果、細胞塊の組織染色では、図1に示されたように顕著なアルシアンブルー陽性を呈した。この培養軟骨を4Mグアニジン塩酸溶液で可溶化し、DMMB(Dimethyl Methylene Blue)法と呼ばれる色素法により軟骨に特徴的なマトリクスのひとつであるグリコサミノグリカンの定量を試みたところ、還元型コーエンザイムQ10あるいは酸化型コーエンザイムQ10の添加により顕著な産生増強が認められた(図2)。図2中、DNA測定は抽出効率の違いによるバラツキを相殺するための内部標準として測定したものである。したがってグリコサミノグリカン量は単位DNA量あたりの数字(グリコサミノグリカン産生比)で示されている。GAG/DNAはグリコサミノグリカン/DNAを指す。 1 ml of 1 × 10 7 cells / 5 ml cell suspension (Ham's F-12 medium containing 10% fetal bovine serum and final concentration of 50 μg / ml ascorbic acid) was placed in a 15 ml polypropylene centrifuge tube, By centrifuging at 1200 rpm for 5 minutes, a three-dimensional culture environment consisting of a supernatant medium and a simple cell mass at the bottom was prepared in a centrifuge tube. Oxidized coenzyme Q10 and reduced coenzyme Q10 were added to the medium to give 0.175 μg / ml and 35 μg / ml, respectively, and cultured at 5% CO 2 and 37 ° C. for 14 days. Medium change was performed every 3 days. As a comparison, culture without addition of oxidized coenzyme Q10 or reduced coenzyme Q10 was performed in the same manner. The cell mass after culture was evaluated histologically and biochemically. As a histological evaluation, Alcian blue staining was used, and as a biochemical evaluation, glycosaminoglycan production was determined by a dye method. As a result, the tissue staining of the cell cluster showed remarkable Alcian blue positivity as shown in FIG. When this cultured cartilage was solubilized with 4M guanidine hydrochloride solution and glycosaminoglycan, one of the matrix characteristic of cartilage, was quantified by a dye method called DMMB (Dimethyl Methylene Blue) method, reduced coenzyme was determined. Significant production enhancement was observed by the addition of Q10 or oxidized coenzyme Q10 (FIG. 2). In FIG. 2, DNA measurement is performed as an internal standard for offsetting variations due to differences in extraction efficiency. Therefore, the amount of glycosaminoglycan is indicated by a number per unit DNA amount (glycosaminoglycan production ratio). GAG / DNA refers to glycosaminoglycan / DNA.

14日間培養したヤギ軟骨細胞塊の組織染色(アルシアンブルー染色)の結果を示したものである。The results of tissue staining (alcian blue staining) of goat chondrocyte mass cultured for 14 days are shown. 14日間培養したヤギ軟骨細胞塊のグリコサミノグリカンを定量したものである。This is a quantification of glycosaminoglycan in a goat chondrocyte mass cultured for 14 days.

符号の説明Explanation of symbols

1 QX;酸化型コーエンザイムQ10
2 QH;還元型コーエンザイムQ10
3 GAG;グリコサミノグリカン

1 QX; oxidized coenzyme Q10
2 QH; Reduced Coenzyme Q10
3 GAG; glycosaminoglycan

Claims (7)

生体外において還元型コエンザイムQ10もしくは酸化型コエンザイムQ10あるいはその混合物を含有する培地を使用する三次元培養環境下で軟骨組織由来の細胞、同前駆細胞あるいは間葉系幹細胞を培養することを特徴とする軟骨組織を創製する方法。 Characterized by culturing reduced coenzyme Q10 or oxidized coenzyme Q10 or cartilage-derived cells under three-dimensional culture environment using a medium containing the mixture, the progenitor cells or mesenchymal stem cells in vitro A method of creating cartilage tissue. 三次元培養環境下で使用する培地が、アスコルビン酸を含有する培地である請求項1記載の軟骨組織創製方法。 The method for creating a cartilage tissue according to claim 1, wherein the medium used in the three-dimensional culture environment is a medium containing ascorbic acid. 三次元培養環境下の細胞が単純な細胞塊である請求項1記載の軟骨組織創製方法。 The method for creating a cartilage tissue according to claim 1, wherein the cells in the three-dimensional culture environment are simple cell clusters. 三次元培養環境下の細胞が、細胞を天然物由来の生体適合性材料から作製された組織再生用の支持体に播種した三次元細胞結合体である請求項1記載の軟骨組織創製方法。 The method for creating a cartilage tissue according to claim 1, wherein the cells in the three-dimensional culture environment are three-dimensional cell conjugates in which the cells are seeded on a tissue regeneration support prepared from a biocompatible material derived from a natural product. 三次元培養環境下の細胞が、細胞を非天然物由来の生体適合性材料から作製された組織再生用の支持体に播種した三次元細胞結合体である請求項1記載の軟骨組織創製方法。 The method for creating a cartilage tissue according to claim 1, wherein the cells in the three-dimensional culture environment are three-dimensional cell conjugates in which the cells are seeded on a tissue regeneration support prepared from a biocompatible material derived from a non-natural product. 三次元培養環境下の細胞が軟骨組織損傷部に移植した請求項記載の細胞塊あるいは請求項4又は5項記載の三次元細胞結合体である請求項1記載の軟骨組織創製方法。 Claim 1 cartilage creation method according cells in three-dimensional culture environment is a three-dimensional cell combination of cell mass or claim 4 or 5 of Claims 3, wherein transplanted into cartilage lesion. 軟骨組織が関節軟骨組織である請求項1記載軟骨組織創製方法。 The method for creating a cartilage tissue according to claim 1 , wherein the cartilage tissue is an articular cartilage tissue.
JP2003317758A 2003-09-10 2003-09-10 Tissue formation promoting factor Expired - Fee Related JP4153391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317758A JP4153391B2 (en) 2003-09-10 2003-09-10 Tissue formation promoting factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317758A JP4153391B2 (en) 2003-09-10 2003-09-10 Tissue formation promoting factor

Publications (2)

Publication Number Publication Date
JP2005080599A JP2005080599A (en) 2005-03-31
JP4153391B2 true JP4153391B2 (en) 2008-09-24

Family

ID=34417221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317758A Expired - Fee Related JP4153391B2 (en) 2003-09-10 2003-09-10 Tissue formation promoting factor

Country Status (1)

Country Link
JP (1) JP4153391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138102A (en) * 2015-09-29 2018-06-08 株式会社钟化 Bio-tissue prepares information generation device, bio-tissue preparation system, payment for medical care computing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929447B2 (en) * 2005-05-16 2012-05-09 国立大学法人北海道大学 Method for preparing chondrocytes from mesenchymal stem cells
JP4942354B2 (en) * 2006-02-06 2012-05-30 株式会社カネカ Reduced coenzyme Q water-soluble composition
US11213550B2 (en) 2016-12-02 2022-01-04 Nippon Shokubai Co., Ltd. Cell preparation for treating cartilage tissue-related disorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138102A (en) * 2015-09-29 2018-06-08 株式会社钟化 Bio-tissue prepares information generation device, bio-tissue preparation system, payment for medical care computing system

Also Published As

Publication number Publication date
JP2005080599A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
Yin et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles
Nam et al. Current therapeutic strategies for stem cell-based cartilage regeneration
Shieh et al. Tissue engineering auricular reconstruction: in vitro and in vivo studies
US5919702A (en) Production of cartilage tissue using cells isolated from Wharton's jelly
Li et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
Stevens et al. FGF‐2 enhances TGF‐β1‐induced periosteal chondrogenesis
US20070104692A1 (en) Breast tissue regeneration
RU2523339C2 (en) Extracellular matrix compositions for treating cancer
US20060182725A1 (en) Treatment of tissue with undifferentiated mesenchymal cells
CA2650649C (en) Methods and compositions for repairing cartilage using type b synoviocytes
US20100028308A1 (en) Methods to maintain, improve and restore the cartilage phenotype of chondrocytes
US7186557B2 (en) Methods of producing neurons
Uto et al. Application of induced pluripotent stem cells for cartilage regeneration in CLAWN miniature pig osteochondral replacement model
CN115777016A (en) Method for producing synovial-derived mesenchymal stem cells and method for producing cell preparation for joint treatment
KR101277970B1 (en) A composition for treatment of cartilage diseases, artificial cartilage, and preparation methods thereof
JP4153391B2 (en) Tissue formation promoting factor
US20170306283A1 (en) Trypsin-free cell stamp system and use thereof
JP2021530965A (en) Methods for Producing Pellets of Chondrocytes from Human-Induced Universal Stem Cells and Their Applications
Tong et al. Novel scaffold containing transforming growth factor-β1 DNA for cartilage tissue engineering
JP2004254655A (en) Cartilage differentiation induction
KR20230058721A (en) Method for manufacturing cell preparation for joint treatment, method for culturing cell preparation for joint treatment and mesenchymal stem cell
Vinod et al. Autologous platelet rich fibrin as a scaffold for chondrocyte culture and transplantation: An in vitro bovine study
Leone Cartilage replacement implants using hydrogels
Jeyaraman et al. Tissue engineering in chondral defect
Dabaghi et al. Allografts for partial meniscus repair: an in vitro and ex vivo meniscus culture study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4153391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees