JP4152515B2 - Ultra fine electrical discharge machine - Google Patents

Ultra fine electrical discharge machine Download PDF

Info

Publication number
JP4152515B2
JP4152515B2 JP01687999A JP1687999A JP4152515B2 JP 4152515 B2 JP4152515 B2 JP 4152515B2 JP 01687999 A JP01687999 A JP 01687999A JP 1687999 A JP1687999 A JP 1687999A JP 4152515 B2 JP4152515 B2 JP 4152515B2
Authority
JP
Japan
Prior art keywords
machining
discharge
liquid
electric discharge
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01687999A
Other languages
Japanese (ja)
Other versions
JP2000218444A (en
Inventor
哲彦 末吉
康正 鈴木
浩文 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01687999A priority Critical patent/JP4152515B2/en
Publication of JP2000218444A publication Critical patent/JP2000218444A/en
Application granted granted Critical
Publication of JP4152515B2 publication Critical patent/JP4152515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微細化した放電電極と被加工材との間の微小な放電ギャップに発生する放電を利用して、主として、微細孔や微細なスリットの加工に用いられる超微細放電加工機に関するものである。
【0002】
【従来の技術】
従来、マイクロ放電加工技術は、インクジェットプリンタのノズルの孔加工をはじめとして、主に微細孔の加工法として用いられており、近年では、最小5μmまでの孔加工を可能とする超微細放電加工機が開発されている。このような超微細放電加工機は図4の構成図に示すような全体構成を備えている。この超微細放電加工機は、微細な放電電極2を取り付けて移動する加工ヘッド部1と、被加工材3を位置決めする位置決め機構部4と、放電電極2を任意の形状に成形するワイヤ放電研削ユニット(図示せず)と、NC制御部(図示せず)を有するマイクロ放電回路7との基本構成に大別される。
【0003】
上記加工ヘッド部1には、鉛直に配置されたマンドレル9が、軸受8を介して回転自在に取り付けられ、且つDCモータ10により高精度に回転駆動されるようになっている。このマンドレル9の下端部には放電電極2が取り付けられている。この加工ヘッド部1はボールねじ11の回転により昇降される。また、位置決め機構部4は、被加工材3を位置決め状態に載置する加工台13が加工槽12の内部に設置された構成になっている。マイクロ放電回路7は、中央処理ユニット14と、この中央処理ユニット14の制御によりコンデンサ切換器17を介して放電電極2と被加工材3との間にパルス電圧を印加する電源部18と、中央処理ユニット14の制御を受けてDCモータ10の回転を高精度に制御するモータ駆動制御回路19とを備えて構成されている
また、上記超微細放電加工機には、図5(a)の側面図および同図(b)の切断平面図に示すように、電気的に絶縁液である純水を放電加工液20として吐出ノズル21aから吐出する加工液供給部21が、その吐出ノズル21aを被加工材3の放電電極2による放電加工位置に向けた配置で支持部材22を介して加工台13に取り付けられている。この超微細放電加工機は、加工液供給部21の吐出ノズル21aから放電加工液20が放電加工位置に噴き付けられた状態において、この放電加工液20を介在して放電電極2と被加工材3との間に電源部18から電圧が印加され、加工ヘッド部1の下降によって放電電極2を被加工材3に近接させたときに発生する放電を利用して微細孔の加工などを行うものである。
【0004】
この加工は、放電に伴う発熱によって、被加工材3の溶融および放電加工くずの除去を繰り返しながら進行する。したがって、放電はパルス化されている。
【0005】
この超微細放電加工機は以下のような種々の大きな特長を有している。すなわち、放電エネルギを微小化し、且つ放電電極2を微細化することにより、マイクロ放電加工を行うことができ、導電性があればどのような材質の被加工材3でも加工が可能であって、硬度の高い材質の被加工材3でも容易に加工できる。また、通常の放電加工では割れなどの問題があるシリコン・フェライトなどの高い比抵抗を持つ材質の加工も可能であり、しかも、非接触加工であるから、被加工材3に対し加工力を与えることなく加工でき、ドリル加工などでは困難な曲面、傾斜面および薄板などへの加工を高精度に行うことができる。さらに、孔径が50μm以上であれば、その10倍の深さの孔の加工も可能であるから、マイクロ機械部品の打ち抜きなどの塑性加工用に使用される金型の加工にも好適に適用できるなどの種々の大きな特長を有している。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の超微細放電加工機では、図5に明示したように、放電加工液20を被加工材3の放電加工位置に直接吹き掛けて垂れ流す方式で供給されているため、加工液供給部21の吐出ノズル21aから噴出された放電加工液20は、その表面張力によって流線が安定しないので、図6の平面図に示すように、被加工材3における放電加工位置からずれた箇所に吹き付けられたり、図7の断面図に示すように、放電加工くず23が放電によって舞い上がるのに伴って気泡24が発生したりする。このような場合には、放電現象が常に電気絶縁体である放電加工液20内で発生せず、結果的に空気中での放電現象となることから、被加工材3の加工面が荒れるなどの加工不良が生じるだけでなく、放電電極2と被加工材3との間の空気が介在することにより、放電現象の発生が途切れたりして加工が停止するといった不都合が生じることもある。
【0007】
また、上記の空気中での放電現象となるのを防止するために、放電加工液20による加工液層を形成して、この加工液層で被加工材3と放電電極2との放電ギャップGを覆うようにしているので、高価な純水である放電加工液20を大量に必要としてランニングコストが高くつく上に、使用済みの大量の放電加工液20を溜めるための貯溜槽を必要とするので、装置全体が大型化するとともに、コスト高となる。しかも、放電加工液20の流量が多くなるのに伴い、微細な放電電極2が振動を受けて高精度な加工ができなくなったり、放電電極2の破損を招くといった重大なトラブルが発生することもある。さらに、図7に明示するように、多量に噴き掛けられる放電加工液20による加工液層は、放電加工くず23を含んで厚い淀みを形成し、その淀みの中で放電加工くず23が放電電極2に付着すると、所定の範囲を越えた広い範囲で放電が発生し、これに起因して被加工材3に加工不良が生じることもある。
【0008】
また、加工液供給部21は、加工台13に対し回動可能に取り付けられているので、被加工材3の厚みの相違や加工位置の移動などに際しては、その都度、加工液供給部21を回動させて吐出ノズル21aの向きを調節しなければならない。
【0009】
そこで、本発明は、上記従来の課題に鑑みてなされたもので、可及的に少ない流量の放電加工液で放電電極と被加工材との間の放電ギャップを常に確実に覆うことのできる加工液層を形成することのできる構成を備えた超微細放電加工機を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の超微細放電加工機は、放電加工液を介して加工台面上に水平に取り付けられた被加工材との間に電圧が印加され、前記被加工材への近接によって加工用の放電を発生する放電電極と、前記放電電極の周囲に集中的に集まって、前記放電電極の先端部と前記被加工材の放電加工位置との間の放電ギャップを常に確実に覆うことのできる薄い加工液層を形成するために、前記放電加工液を吐出ノズルから必要最小限微量ずつ連続的に供給する加工液供給部と、前記加工液層における使用済みの前記放電加工液を放電加工くずと共に吸液ノズルから吸収して回収する加工液回収部とを備え、前記加工液供給部と前記加工液回収部とが、各々の前記吐出ノズルの吐出方向と吸液ノズルの吸液方向とが前記被加工材の前記放電電極による加工位置で交わり、且つ前記吐出ノズルと前記吸液ノズルとが互いに同一線上に近接して相対向する配置で設けられていることで、前記加工液供給部から供給された放電加工液が前記加工用の放電で使用されたのちに、前記加工液供給部から供給された分だけ前記加工液回収部に吸収されて回収されていくとともに、前記吐出ノズルから前記吸液ノズルに至る一定の流動路から外れることなく前記加工液回収部に回収されていくことを特徴としている。
【0011】
この超微細放電加工機では、放電加工液が、互いに近接して相対向するよう配置された加工液供給部の吐出ノズルから加工液回収部の吸液ノズルに至る一定の流動路から外れることなく安定に流れるため、放電加工液の流線が常に安定している。そして必要最小限微量ずつ連続的に供給される放電加工液は、放電電極の周囲に集中的に集まって、被加工材と放電電極との間の放電ギャップを常に確実に覆うことのできる薄い加工液層を形成している。その結果、空気中での放電現象の発生を確実に防止できるので、常に高精度な微細放電加工を行うことが可能になる。しかも、一般に高価なものである放電加工液は必要最小限だけ供給しながら極めて効果的に活用できるので、ランニングコストを大幅に低減できるのに加えて、従来の使用済みの放電加工液を溜めるための貯溜槽が不要となる。しかも、放電加工液の流量は微量であるから、微細な放電電極が放電加工液の流動の影響を受けて振動するといったことが全くなくなり、これによっても高精度な微細放電加工を常に安定に行うことが一層確実となり、放電電極の破損といったトラブルは発生することがない。
【0012】
また、放電加工に伴い発生する放電加工くずは、発生直後に加工液回収部の吸液ノズルに吸収されてしまうので、従来加工機の場合のように放電加工くずが放電によって舞い上がるといった現象が生じなく、それに伴う気泡の大量発生といった事態も生じない。また、放電加工液は微量ずつ供給されて薄い加工液層を形成するので、従来加工機のように加工液層が放電加工くずを含んで厚い淀みを形成するといった状態も生じることがなく、放電加工くずが放電電極に殆ど付着しないので、従来加工機の場合に発生していた所定の範囲を越えた広い範囲での放電を確実に防止できる。
【0013】
上記発明において、加工液供給部と加工液回収部とが、放電電極の取付部材に支持部材を介して支持されている構成とすることが好ましい。
【0014】
これにより、加工液供給部および加工液回収部と放電電極とは、常に所定の相対位置を保持しながら一体的に移動するので、被加工材の厚みの相違や加工の進行度合或いは加工位置の移動などに際しても、常に好適な位置関係を自動的に保持する。そのため、放電加工液はどのような状況においても常に所要の箇所に確実に噴き掛けられるので、空気中での放電現象の発生を確実に防止でき、被加工材の加工面が荒れるなどの加工不良が生じない。
【0015】
また、上記発明において、放電加工液としては、完全な電気絶縁液である純水を用いるのが好ましい。
【0016】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しつつ詳細に説明する。図1は本発明の一実施の形態に係る超微細放電加工機の要部の概略を示した側面図、図2はその切断平面図である。この超微細放電加工機では、放電加工液20としての純水を供給する加工液供給部27と、使用済みの放電加工液20を吸液しながら回収する加工液回収部28とが、各々の吐出ノズル27aおよび吸液ノズル28aをそれぞれ被加工材3の放電加工位置に向けた傾斜状態で支持部材29,30を介してマンドレル9に吊り下げ形態に支持されている。その他の構成は既存のものと同様である。
【0017】
図2に明示するように、加工液供給部27と加工液回収部28とは、各々の吐出ノズル27aの吐出方向と吸液ノズル28aの吸液方向とが被加工材3の放電電極2による加工位置で交わり、且つ吐出ノズル27aと吸液ノズル28aとが互いに可及的に近接して相対向する配置で、それぞれ個別の支持部材29,30を介してマンドレル9に支持されている。これにより、加工液供給部27と加工液回収部28とは、放電電極2との相対位置を常に一定に保持しながらマンドレル9と一体に上下動する。
【0018】
上記超微細放電加工機では、加工液供給部27の吐出ノズル27aから被加工材3の放電加工位置に向け噴き掛けられた放電加工液20は、放電加工に使用されたのちに、放電加工くず23と共に加工液回収部28の吸液ノズル28aに吸収されて回収されていく。放電加工液20は、加工液供給部27から供給された分だけ加工液回収部28に吸収されて回収されていくととともに、互いに同一線上に近接して配置された加工液供給部27の吐出ノズル27aから加工液回収部28の吸液ノズル28aに至る一定の流動路から外れることなく安定に流れる。
【0019】
そのため、放電加工液20は、その流線は常に安定しているので、被加工材3における放電加工位置からずれた箇所に噴き掛けられることがない。
【0020】
このように、放電加工液20は、常に一定の流動路から外れることなく安定に流れるから、加工液供給部27から微量ずつ連続的に供給するだけでよい。その微量の放電加工液20は、図2に明示するように、放電電極2の周囲に集中的に集まって、被加工材3と放電電極2との間の放電ギャップGを常に確実に覆うことのできる薄い加工液層20aを形成することができる。この薄い加工液層20aは、常に被加工材3と放電電極2との間の放電ギャップGを覆う箇所に形成されるので、空気中での放電現象の発生を確実に防止でき、それに伴って常に高精度な微細放電加工を行うことが可能になる。しかも、高価な純水である放電加工液20は必要最小限の微量ずつ供給しながら極めて効果的に活用できるので、ランニングコストを大幅に低減できる。それに加えて、従来の使用済みの放電加工液20を溜めるための貯溜槽は不要となる利点もある。
【0021】
しかも、放電加工液20の流量は微量であるから、微細な放電電極2が放電加工液20の流動の影響を受けて振動するといったことが全くなくなる。これにより、高精度な微細放電加工を常に安定に行うことが一層確実となり、放電電極2の破損といったトラブルは発生することがない。
【0022】
図3は上記超微細放電加工機によって被加工材3に微細孔の加工を行う過程を順に示した工程図で、(a)は下降する放電電極2の被加工材3への近接によって放電が発生し、微細孔の加工が開始された状態を示す。(b),(c)は微細孔加工の進行過程を順に示し、(d)は微細孔31の加工完了状態、(e)は放電電極2が加工完了後に上昇した状態をそれぞれ示している。
【0023】
同図に示すように、放電加工に伴い発生する放電加工くず23は、発生直後に加工液回収部28の吸液ノズル28aに吸収されてしまうので、従来加工機の場合のように放電によって舞い上がるといった現象が生じなく、それに伴う気泡24の大量発生といった事態も生じない。また、放電加工液20は微量ずつ供給されて薄い加工液層20aを形成するので、従来加工機のように加工液層20aが放電加工くず23を含んで厚い淀みを形成するといった状態も生じることがなく、したがって、放電加工くず23が放電電極2に殆ど付着しないので、従来加工機の場合に発生していた所定の範囲を越えた広い範囲での放電を確実に防止できる。
【0024】
また、加工液供給部27および加工液回収部28と放電電極2とは、常に所定の相対位置を保持しながら一体的に上下動するので、被加工材3の厚みの相違や加工の進行度合或いは加工位置の移動などに際しても、常に好適な位置関係を自動的に保持する。そのため、放電加工液20はどのような状況においても常に所要の箇所に確実に噴き掛けるので、空気中での放電現象の発生を確実に防止できる。そのため、被加工材3の加工面が荒れるなどの加工不良は生じない。
【0025】
【発明の効果】
以上のように本発明の超微細放電加工機によれば、放電加工液が、互いに同一線上に近接して配置された加工液供給部の吐出ノズルから加工液回収部の吸液ノズルに至る一定の流動路から外れることなく安定に流れる構成としたので、放電加工液を放電電極の周囲に集中させて、被加工材と放電電極との間の放電ギャップを常に確実に覆うことのできる薄い加工液層を形成することができ、空気中での放電現象の発生を確実に防止して常に高精度な微細放電加工を行うことが可能となり、高価な純水を可及的に節約してランニングコストの大幅な低減を図ることができ、使用済みの放電加工液を溜めるための貯溜槽も不要となる。
【0026】
しかも、微細な放電電極が放電加工液の流動の影響を受けて振動するといったことが全くなくなるから、高精度な微細放電加工を常に安定に行うことが一層確実となり、放電電極の破損といったトラブルは発生することがない。また、放電加工に伴い発生する放電加工くずは、発生直後に加工液回収部の吸液ノズルに吸収されてしまうので、放電加工くずの舞い上がりや気泡の大量発生といった事態も生じなく、放電加工くずの放電電極への付着に起因する所定の範囲を越えた広い範囲での放電を確実に防止できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る超微細放電加工機の要部の概略構成を示した側面図。
【図2】同上加工機の切断平面図。
【図3】同上加工機によって被加工材に微細孔の加工を行う過程を順に示した工程図。
【図4】超微細放電加工機の全体構成を示す構成図。
【図5】従来の超微細放電加工機を示し、(a)は一部の側面図、(b)はその切断平面図。
【図6】同上超微細放電加工機における放電加工液が被加工材の放電加工位置からずれた箇所に吹き掛けられ状態を示す平面図。
【図7】同上超微細放電加工機における気泡が発生して放電加工くずが放電電極に付着した状態を示す断面図。
【符号の説明】
2 放電電極
3 被加工材
9 マンドレル(取付部材)
20 放電加工液
20a 加工液層
27 加工液供給部
27a 吐出ノズル
28 加工液回収部
28a 吸液ノズル
29,30 支持部材
G 放電ギャップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-fine electric discharge machine mainly used for machining fine holes and fine slits by utilizing discharge generated in a fine discharge gap between a miniaturized discharge electrode and a workpiece. It is.
[0002]
[Prior art]
Conventionally, micro electric discharge machining technology has been mainly used as a micro hole machining method, including nozzle hole machining for inkjet printers. In recent years, an ultra fine electric discharge machine capable of machining holes up to a minimum of 5 μm. Has been developed. Such an ultra fine electric discharge machine has an overall configuration as shown in the configuration diagram of FIG. This ultra-fine electric discharge machine includes a machining head portion 1 that moves with a fine electric discharge electrode 2 attached thereto, a positioning mechanism portion 4 that positions a workpiece 3, and wire electric discharge grinding that forms the electric discharge electrode 2 into an arbitrary shape. The basic configuration is roughly divided into a unit (not shown) and a micro discharge circuit 7 having an NC control unit (not shown).
[0003]
A vertical mandrel 9 is rotatably attached to the machining head 1 via a bearing 8 and is driven to rotate with high accuracy by a DC motor 10. A discharge electrode 2 is attached to the lower end of the mandrel 9. The machining head 1 is moved up and down by the rotation of the ball screw 11. Further, the positioning mechanism unit 4 has a configuration in which a processing table 13 on which the workpiece 3 is placed in a positioning state is installed inside the processing tank 12. The micro discharge circuit 7 includes a central processing unit 14, a power supply unit 18 that applies a pulse voltage between the discharge electrode 2 and the workpiece 3 via a capacitor switch 17 under the control of the central processing unit 14, A motor drive control circuit 19 that controls the rotation of the DC motor 10 with high accuracy under the control of the processing unit 14 is provided. As shown in the drawing and the cut plan view of FIG. 5B, a machining liquid supply unit 21 that discharges pure water, which is an electrically insulating liquid, from the discharge nozzle 21a as an electric discharge machining liquid 20, covers the discharge nozzle 21a. The workpiece 3 is attached to the machining table 13 via a support member 22 in an arrangement toward the electric discharge machining position by the discharge electrode 2. This ultra-fine electric discharge machine is configured such that the electric discharge machining liquid 20 is sprayed from the discharge nozzle 21a of the machining liquid supply unit 21 to the electric discharge machining position, and the electric discharge electrode 2 and the workpiece are interposed via the electric discharge machining liquid 20. 3 is applied with a voltage from the power supply unit 18 and the discharge is generated when the discharge electrode 2 is brought close to the workpiece 3 by the lowering of the processing head unit 1 to process a fine hole. It is.
[0004]
This processing proceeds while repeating melting of the workpiece 3 and removal of electric discharge machining waste due to heat generated by electric discharge. Therefore, the discharge is pulsed.
[0005]
This ultra fine electric discharge machine has various major features as follows. That is, by minimizing the discharge energy and miniaturizing the discharge electrode 2, it is possible to perform micro electric discharge machining, and any material 3 can be processed as long as it has conductivity, Even the workpiece 3 made of a material having high hardness can be easily processed. Further, it is possible to process a material having a high specific resistance such as silicon ferrite, which has a problem such as cracking in normal electric discharge machining, and also provides a processing force to the workpiece 3 because it is non-contact machining. It can be processed without any problem, and can be processed with high precision into curved surfaces, inclined surfaces, thin plates, etc., which are difficult by drilling. Furthermore, if the hole diameter is 50 μm or more, it is possible to process a hole having a depth 10 times that of the hole. Therefore, the hole diameter can be suitably applied to processing of a mold used for plastic processing such as punching of micro mechanical parts. It has various big features such as.
[0006]
[Problems to be solved by the invention]
However, in the conventional ultra-fine electric discharge machine, as shown in FIG. 5, since the electric discharge machining liquid 20 is supplied in such a manner that the electric discharge machining liquid 20 is directly sprayed and dripped onto the electric discharge machining position of the workpiece 3, the machining liquid supply is performed. Since the electric discharge machining fluid 20 ejected from the discharge nozzle 21a of the section 21 is not streamlined due to the surface tension, as shown in the plan view of FIG. As shown in the cross-sectional view of FIG. 7, bubbles 24 are generated as the electric discharge machining waste 23 rises by electric discharge. In such a case, the discharge phenomenon does not always occur in the electric discharge machining liquid 20 that is an electrical insulator, resulting in a discharge phenomenon in the air, so that the processed surface of the workpiece 3 is roughened. In addition to the above-described processing failure, the air between the discharge electrode 2 and the workpiece 3 may cause an inconvenience that the discharge phenomenon is interrupted and the processing stops.
[0007]
Further, in order to prevent the above-described discharge phenomenon in the air, a machining liquid layer is formed by the electric discharge machining liquid 20, and the discharge gap G between the workpiece 3 and the discharge electrode 2 is formed in the machining liquid layer. Therefore, a large amount of electric discharge machining liquid 20 which is expensive pure water is required and the running cost is high, and a storage tank for storing a large amount of used electric discharge machining liquid 20 is required. As a result, the overall size of the apparatus increases and the cost increases. In addition, as the flow rate of the electric discharge machining fluid 20 increases, the fine electric discharge electrode 2 is vibrated and cannot be processed with high accuracy, or the electric discharge electrode 2 may be damaged. is there. Further, as clearly shown in FIG. 7, the machining liquid layer formed by the electric discharge machining liquid 20 sprayed in a large amount forms a thick stagnation including the electric discharge machining waste 23, and the electric discharge machining swarf 23 becomes the discharge electrode in the stagnation. If it adheres to 2, the electric discharge will generate | occur | produce in the wide range exceeding a predetermined range, and the process defect may arise in the workpiece 3 resulting from this.
[0008]
In addition, since the machining liquid supply unit 21 is rotatably attached to the machining table 13, the machining liquid supply unit 21 is provided each time a difference in the thickness of the workpiece 3 or the movement of the machining position is performed. The direction of the discharge nozzle 21a must be adjusted by turning.
[0009]
Therefore, the present invention has been made in view of the above-described conventional problems, and is capable of always reliably covering the discharge gap between the discharge electrode and the workpiece with an electric discharge machining liquid having a flow rate as small as possible. An object of the present invention is to provide an ultra-fine electric discharge machine having a configuration capable of forming a liquid layer.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the ultra-fine electric discharge machine of the present invention, a voltage is applied to a workpiece that is horizontally mounted on a machining table surface via an electric discharge machining fluid, and the workpiece is applied to the workpiece. A discharge electrode that generates a machining discharge due to the proximity of the discharge electrode and concentrated around the discharge electrode to ensure a discharge gap between the tip of the discharge electrode and the discharge machining position of the workpiece. In order to form a thin working fluid layer that can be covered, a machining fluid supply unit that continuously supplies the electrical discharge machining fluid from a discharge nozzle in a necessary minimum amount, and the used electrical discharge machining in the machining fluid layer A machining liquid recovery unit that absorbs and recovers the liquid from the liquid absorption nozzle together with the electric discharge machining waste, and the machining liquid supply unit and the machining liquid recovery unit include a discharge direction of each of the discharge nozzles and a liquid absorption nozzle. The liquid absorption direction is the workpiece. The intersection at the processing position by the discharge electrodes, and by said discharge nozzle and said liquid absorbing nozzle is provided in an arrangement opposed in proximity on the same line with each other, said supplied from the machining fluid supply unit discharge machining After the liquid is used in the machining discharge, the machining liquid recovery unit absorbs and collects the liquid supplied from the machining liquid supply unit, and reaches the liquid suction nozzle from the discharge nozzle. It is characterized in that it is recovered by the machining fluid recovery unit without deviating from a certain flow path.
[0011]
In this ultra-fine electric discharge machine, the electric discharge machining liquid does not deviate from a constant flow path from the discharge nozzle of the machining liquid supply unit arranged so as to face each other in close proximity to the liquid absorption nozzle of the machining liquid recovery unit. In order to flow stably, the streamline of the electric discharge machining fluid is always stable. And the electric discharge machining liquid that is continuously supplied in a minimum amount is concentrated around the discharge electrode, and it is a thin process that can always reliably cover the discharge gap between the workpiece and the discharge electrode. to form a liquid layer. As a result, it is possible to reliably prevent the occurrence of an electric discharge phenomenon in the air, and it is possible to always perform highly accurate micro electric discharge machining. Moreover, since the EDM, which is generally expensive, can be used very effectively while supplying only the necessary minimum, the running cost can be greatly reduced, and the conventional EDM can be stored. No storage tank is required. In addition, since the flow rate of the electric discharge machining liquid is very small, the fine electric discharge electrode never oscillates due to the influence of the electric flow of the electric discharge machining liquid, so that highly accurate electric discharge machining is always performed stably. Thus, troubles such as breakage of the discharge electrode do not occur.
[0012]
Moreover, since the electric discharge machining waste generated by the electric discharge machining is absorbed by the liquid absorption nozzle of the machining liquid recovery part immediately after the occurrence, the phenomenon that the electric discharge machining waste is caused by the electric discharge as in the case of a conventional processing machine does not occur. Also, there will be no occurrence of a large amount of bubbles. In addition, since the electrical discharge machining fluid is supplied in small amounts to form a thin machining fluid layer, there is no occurrence of a state in which the machining fluid layer forms a thick stagnation including electrical discharge machining waste as in conventional processing machines. Since the processing waste hardly adheres to the discharge electrode, it is possible to reliably prevent discharge in a wide range exceeding a predetermined range, which has been generated in the case of a conventional processing machine.
[0013]
In the above invention, it is preferable that the machining fluid supply unit and the machining fluid recovery unit are supported by the discharge electrode mounting member via a support member.
[0014]
As a result, the machining fluid supply unit, the machining fluid recovery unit, and the discharge electrode always move together while maintaining a predetermined relative position, so that the difference in the thickness of the workpiece, the progress of machining, or the machining position Even when moving, a suitable positional relationship is always automatically maintained. As a result, electrical discharge machining fluid is always sprayed to the required location in any situation, so it is possible to reliably prevent the occurrence of discharge phenomenon in the air, and machining defects such as rough machining of the workpiece. Does not occur.
[0015]
Moreover, in the said invention, it is preferable to use the pure water which is a perfect electric insulation liquid as an electric discharge machining liquid.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a side view showing an outline of a main part of an ultrafine electric discharge machine according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. In this ultra-fine electric discharge machine, each of a machining liquid supply unit 27 that supplies pure water as the electric discharge machining liquid 20 and a machining liquid collection unit 28 that collects the used electric discharge machining liquid 20 while absorbing the liquid. The discharge nozzle 27a and the liquid suction nozzle 28a are supported in a suspended form on the mandrel 9 via support members 29 and 30 in an inclined state toward the electric discharge machining position of the workpiece 3 respectively. Other configurations are the same as the existing ones.
[0017]
As clearly shown in FIG. 2, the machining liquid supply unit 27 and the machining liquid collection unit 28 are configured such that the discharge direction of each discharge nozzle 27 a and the liquid suction direction of the liquid suction nozzle 28 a depend on the discharge electrode 2 of the workpiece 3. The discharge nozzle 27a and the liquid absorption nozzle 28a intersect with each other at the processing position, and are supported by the mandrel 9 via the individual support members 29 and 30 in an arrangement where the discharge nozzle 27a and the liquid absorption nozzle 28a face each other as close as possible. As a result, the machining fluid supply unit 27 and the machining fluid recovery unit 28 move up and down integrally with the mandrel 9 while keeping the relative position of the discharge electrode 2 constant.
[0018]
In the ultra-fine electric discharge machine, the electric discharge machining liquid 20 sprayed from the discharge nozzle 27a of the machining liquid supply unit 27 toward the electric discharge machining position of the workpiece 3 is used for electric discharge machining, and then is subjected to electric discharge machining waste. 23 is absorbed and collected by the liquid suction nozzle 28a of the machining liquid collection unit 28 together. The electric discharge machining fluid 20 is absorbed and collected by the machining fluid recovery unit 28 by the amount supplied from the machining fluid supply unit 27, and discharged from the machining fluid supply unit 27 arranged close to each other on the same line. It flows stably without deviating from a fixed flow path from the nozzle 27a to the liquid suction nozzle 28a of the machining liquid recovery unit 28.
[0019]
For this reason, the electric discharge machining liquid 20 is always sprayed at a location shifted from the electric discharge machining position in the workpiece 3 because the streamline thereof is always stable.
[0020]
As described above, the electric discharge machining liquid 20 always flows stably without deviating from a constant flow path, so it is only necessary to continuously supply a small amount from the machining liquid supply unit 27. As clearly shown in FIG. 2, the minute amount of the electric discharge machining liquid 20 is concentrated around the discharge electrode 2 and always covers the discharge gap G between the workpiece 3 and the discharge electrode 2 reliably. A thin working fluid layer 20a that can be formed can be formed. Since this thin working fluid layer 20a is always formed at a location covering the discharge gap G between the workpiece 3 and the discharge electrode 2, it is possible to reliably prevent the occurrence of a discharge phenomenon in the air. It is always possible to perform highly accurate micro-EDM. In addition, since the electric discharge machining liquid 20 which is expensive pure water can be used very effectively while supplying the necessary minimum amount by a minute amount, the running cost can be greatly reduced. In addition, there is an advantage that a conventional storage tank for storing the used electric discharge machining liquid 20 is unnecessary.
[0021]
In addition, since the flow rate of the electric discharge machining liquid 20 is very small, the fine electric discharge electrode 2 does not vibrate under the influence of the flow of the electric discharge machining liquid 20 at all. Thereby, it is further certain that high-precision fine electrical discharge machining is always performed stably, and troubles such as breakage of the discharge electrode 2 do not occur.
[0022]
FIG. 3 is a process diagram sequentially showing the process of processing microholes in the workpiece 3 by the above-described ultrafine electrical discharge machine. FIG. 3 (a) shows the discharge caused by the proximity of the descending discharge electrode 2 to the workpiece 3. FIG. The state which generate | occur | produced and the process of the micropore was started is shown. (B) and (c) show the progress of the micro hole processing in sequence, (d) shows the processing completion state of the micro hole 31, and (e) shows the state where the discharge electrode 2 is raised after the processing is completed.
[0023]
As shown in the figure, since the electric discharge machining waste 23 generated by the electric discharge machining is absorbed by the liquid absorption nozzle 28a of the machining liquid recovery unit 28 immediately after the occurrence, the electric discharge machining waste 23 rises by electric discharge as in the case of a conventional machining machine. Such a phenomenon does not occur, and a large amount of bubbles 24 associated therewith does not occur. Further, since the electric discharge machining liquid 20 is supplied in small amounts to form a thin machining liquid layer 20a, there is a situation in which the machining liquid layer 20a includes the electric discharge machining waste 23 and forms a thick stagnation as in a conventional machining machine. Therefore, since the electric discharge machining waste 23 hardly adheres to the discharge electrode 2, it is possible to reliably prevent electric discharge in a wide range exceeding a predetermined range, which has been generated in the case of a conventional processing machine.
[0024]
In addition, the machining fluid supply unit 27, the machining fluid recovery unit 28, and the discharge electrode 2 move up and down integrally while always maintaining a predetermined relative position. Therefore, the thickness difference of the workpiece 3 and the progress of the machining are determined. Alternatively, a suitable positional relationship is always automatically maintained when the machining position is moved. For this reason, the electric discharge machining liquid 20 is always reliably sprayed to a required portion in any situation, so that the occurrence of a discharge phenomenon in the air can be reliably prevented. Therefore, processing defects such as roughening of the processing surface of the workpiece 3 do not occur.
[0025]
【The invention's effect】
As described above, according to the ultrafine electric discharge machine of the present invention, the electric discharge machining liquid is constant from the discharge nozzle of the machining liquid supply unit arranged close to the same line to the liquid absorption nozzle of the machining liquid recovery unit. Because it is configured to flow stably without deviating from the flow path, it is possible to concentrate the electrical discharge machining fluid around the discharge electrode and to ensure that the discharge gap between the workpiece and the discharge electrode is always covered reliably. A liquid layer can be formed, it is possible to reliably prevent the occurrence of electric discharge phenomenon in the air and always perform highly accurate fine electric discharge machining, and save expensive pure water as much as possible. The cost can be greatly reduced, and a storage tank for storing the used electric discharge machining liquid becomes unnecessary.
[0026]
Moreover, since the fine discharge electrode never oscillates under the influence of the flow of the electric discharge machining liquid, it is further certain that high-precision fine electric discharge machining is always performed stably, and troubles such as breakage of the discharge electrode can be avoided. It does not occur. In addition, since the EDM waste generated by EDM is absorbed by the liquid absorption nozzle of the machining fluid recovery section immediately after the occurrence, there is no occurrence of soaring of EDM waste or the generation of a large amount of bubbles. It is possible to reliably prevent discharge in a wide range exceeding a predetermined range due to adhesion to the discharge electrode.
[Brief description of the drawings]
FIG. 1 is a side view showing a schematic configuration of a main part of an ultrafine electric discharge machine according to an embodiment of the present invention.
FIG. 2 is a sectional plan view of the processing machine.
FIG. 3 is a process diagram sequentially illustrating a process of processing a microhole in a workpiece by the processing machine same as above.
FIG. 4 is a configuration diagram showing the overall configuration of an ultra-fine electric discharge machine.
FIGS. 5A and 5B show a conventional ultra-fine electric discharge machine, in which FIG. 5A is a partial side view, and FIG.
FIG. 6 is a plan view showing a state in which the electric discharge machining liquid is sprayed on a position shifted from the electric discharge machining position of the workpiece in the ultra-fine electric discharge machine.
FIG. 7 is a cross-sectional view showing a state in which bubbles are generated and electric discharge machining waste adheres to the discharge electrode in the ultra fine electric discharge machine.
[Explanation of symbols]
2 Discharge electrode 3 Work material 9 Mandrel (mounting member)
DESCRIPTION OF SYMBOLS 20 Electric discharge machining liquid 20a Processing liquid layer 27 Processing liquid supply part 27a Discharge nozzle 28 Processing liquid collection | recovery part 28a Liquid absorption nozzles 29 and 30 Support member G Discharge gap

Claims (3)

放電加工液を介して加工台面上に水平に取り付けられた被加工材との間に電圧が印加され、前記被加工材への近接によって加工用の放電を発生する放電電極と、
前記放電電極の周囲に集中的に集まって、前記放電電極の先端部と前記被加工材の放電加工位置との間の放電ギャップを常に確実に覆うことのできる薄い加工液層を形成するために、前記放電加工液を吐出ノズルから必要最小限微量ずつ連続的に供給する加工液供給部と、
前記加工液層における使用済みの前記放電加工液を放電加工くずと共に吸液ノズルから吸収して回収する加工液回収部とを備え、
前記加工液供給部と前記加工液回収部とが、各々の前記吐出ノズルの吐出方向と吸液ノズルの吸液方向とが前記被加工材の前記放電電極による加工位置で交わり、且つ前記吐出ノズルと前記吸液ノズルとが互いに同一線上に近接して相対向する配置で設けられていることで、前記加工液供給部から供給された放電加工液が前記加工用の放電で使用されたのちに、前記加工液供給部から供給された分だけ前記加工液回収部に吸収されて回収されていくとともに、前記吐出ノズルから前記吸液ノズルに至る一定の流動路から外れることなく前記加工液回収部に回収されていくことを特徴とする超微細放電加工機。
A voltage is applied between the workpiece horizontally mounted on the machining table surface via the electric discharge machining liquid, and a discharge electrode that generates a machining discharge by proximity to the workpiece;
In order to intensively gather around the discharge electrode to form a thin working fluid layer that can always reliably cover the discharge gap between the tip of the discharge electrode and the discharge machining position of the workpiece A machining fluid supply unit that continuously supplies the electrical discharge machining fluid from the discharge nozzle in a necessary minimum amount;
A machining fluid recovery part that absorbs and recovers the used electrical discharge machining fluid in the machining fluid layer from a liquid suction nozzle together with electric discharge machining waste;
The processing liquid supply unit and the processing liquid recovery unit have a discharge direction of each discharge nozzle and a liquid absorption direction of the liquid absorption nozzle intersect at a processing position of the workpiece by the discharge electrode, and the discharge nozzle. And the liquid absorption nozzle are provided in an arrangement close to each other on the same line and facing each other, so that the electric discharge machining liquid supplied from the machining liquid supply unit is used in the electric discharge for the machining The machining fluid recovery unit absorbs and recovers the amount supplied from the machining fluid supply unit, and does not deviate from a constant flow path from the discharge nozzle to the liquid suction nozzle. An ultra-fine electrical discharge machine characterized by being collected in
加工液供給部と加工液回収部とが、放電電極の取付部材に支持部材を介して支持されている請求項1に記載の超微細放電加工機。  The ultrafine electric discharge machine according to claim 1, wherein the machining liquid supply unit and the machining liquid recovery unit are supported by a mounting member of the discharge electrode via a support member. 放電加工液として、純水を用いる請求項1または請求項2に記載の超微細放電加工機。  The ultrafine electric discharge machine according to claim 1 or 2, wherein pure water is used as the electric discharge machining liquid.
JP01687999A 1999-01-26 1999-01-26 Ultra fine electrical discharge machine Expired - Fee Related JP4152515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01687999A JP4152515B2 (en) 1999-01-26 1999-01-26 Ultra fine electrical discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01687999A JP4152515B2 (en) 1999-01-26 1999-01-26 Ultra fine electrical discharge machine

Publications (2)

Publication Number Publication Date
JP2000218444A JP2000218444A (en) 2000-08-08
JP4152515B2 true JP4152515B2 (en) 2008-09-17

Family

ID=11928481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01687999A Expired - Fee Related JP4152515B2 (en) 1999-01-26 1999-01-26 Ultra fine electrical discharge machine

Country Status (1)

Country Link
JP (1) JP4152515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801799B (en) * 2015-04-30 2017-09-29 苏州科技学院 Digital control wire-electrode cutting is to liquid method and liquid dispensing apparatus
CN116117250A (en) * 2023-03-06 2023-05-16 中国石油大学(华东) Self-adaptive following flushing device for electric discharge machining working medium

Also Published As

Publication number Publication date
JP2000218444A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JPH0529786Y2 (en)
JP4288223B2 (en) Method for processing arbitrary shape on workpiece made of conductive material and composite processing apparatus
JP4152515B2 (en) Ultra fine electrical discharge machine
JP2012051108A (en) Small-hole electric-discharge machining device and small-hole electric-discharge machining method
KR100527459B1 (en) a micro cutting and grinding machine make use of ultrasonic vibration
KR102688369B1 (en) Creep feed grinding method
JP2003311541A (en) Thin hole electric discharge machining device detachably mounted in wire electric discharge machine
TWI594826B (en) A hybrid micro electrical discharge machining and precise grinding machine table
WO1999061191A1 (en) Wire electric discharge machine
CN212071301U (en) Portable micro-ultrasonic or micro-ultrasonic vibration auxiliary machining spindle
JP3596157B2 (en) Electric discharge machine
JPH0248377B2 (en)
CN111438569A (en) Portable micro-ultrasonic or micro-ultrasonic vibration auxiliary machining spindle
JPH11197950A (en) Small-diameter hole working device for printed circuit board
JP2002337026A (en) Electric discharge machining device and method
JP2000343000A (en) Method and device for machining nozzle and nozzle hole
JP2000263332A (en) Electrode mounting head for electric discharge machine
JP2000354914A (en) Electrical discharge machine
JPS60123221A (en) Wire-cut electric discharge machining device
JPH02131822A (en) Minute hole press machining device
JPH0319016B2 (en)
JPS6218296B2 (en)
CN115780932A (en) Electrolytic-grinding precise reaming device
JPS6314985Y2 (en)
JP2730307B2 (en) Electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees