JP4149829B2 - Pulse wave measuring electrode and pulse wave measuring device - Google Patents

Pulse wave measuring electrode and pulse wave measuring device Download PDF

Info

Publication number
JP4149829B2
JP4149829B2 JP2003035068A JP2003035068A JP4149829B2 JP 4149829 B2 JP4149829 B2 JP 4149829B2 JP 2003035068 A JP2003035068 A JP 2003035068A JP 2003035068 A JP2003035068 A JP 2003035068A JP 4149829 B2 JP4149829 B2 JP 4149829B2
Authority
JP
Japan
Prior art keywords
electrode
pulse wave
pair
measurement
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003035068A
Other languages
Japanese (ja)
Other versions
JP2004242851A5 (en
JP2004242851A (en
Inventor
和夫 大庭
一樹 玉村
宏和 田中
典朗 大山
稔道 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2003035068A priority Critical patent/JP4149829B2/en
Publication of JP2004242851A publication Critical patent/JP2004242851A/en
Publication of JP2004242851A5 publication Critical patent/JP2004242851A5/ja
Application granted granted Critical
Publication of JP4149829B2 publication Critical patent/JP4149829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脈波測定用電極及び脈波測定装置に関し、特に被験者の負担が小さく、かつ簡便な構成で脈波の測定が可能な脈波測定用電極及び脈波測定装置に関する。
【0002】
【従来の技術】
従来、動脈硬化等の血管疾患の指標として、脈波伝播速度又は脈波速度(Pulse Wave Velocity:PWV)が一般的に用いられている。PWVは心臓から大動脈に血液を送り出す際に派生した血管壁圧が動脈中を移動する際に発生する波動が血管壁を伝わる速さであり、速くなるほど血管が硬くなっていることを意味する。PWVは血管上の2点の脈波及びその伝播時間を測定し、この2点間の距離を伝播時間で除すことにより求められる。
【0003】
また、動脈脈波はSTI(心収縮期時相)等の心機能指標を得るためにも用いられており、近年では末梢からの反射波がどのように心機能や冠動脈疾患、脳疾患に影響するかが検討されている。
【0004】
脈波の測定方法としては、1)圧力センサ等からなる脈波センサを用いて脈波を検出するもの、2)カフを用いて被験者の四肢を軽度圧迫して動脈の脈波を検出するもの、3)超音波センサを用いて測定した血管径変動から脈波を検出するものが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の脈波センサでは脈が触れる場所を探す必要がある。また、カフを用いる方法では、脈波を検出するために被験者の測定部位を圧迫する必要があり、被験者に負担を強いることになる。一方、超音波センサを用いる方法では、超音波センサが高価であり、また測定のための装置が大型化するという問題があった。
【0006】
また、心機能評価に用いる動脈脈波は、動脈の内圧あるいは容積脈波を忠実に反映したものである必要があるが、センサの装着部位の特定や、押圧力は検査者に依存しており、得られる脈波形の再現性が問題になることも多かった。
また、血管の一部が平坦になるまで押圧し、血管が平らになった部分にかかる側圧をマルチセンサによって測定する方法(トノメトリ方法)もあるが、腕を固定するために非常に大がかりな機構を必要とする上、血管を押圧する程度によっては脈波速度に影響を与える虞がある。
【0007】
本発明はこのような従来の脈波測定装置の問題点に鑑みなされたものであり、その目的は、被験者の負担が少なく、かつ簡便な構成により精度の高い動脈容積脈波測定が可能な脈波測定装置及び脈波測定用電極を提供することにある。
【0008】
【課題を解決するための手段】
すなわち、本発明の要旨は、電極装着面を有する支持手段と、電極装着面に装着される第1の電極対を有する脈波測定用電極であって、電極装着面、第1の電極対の各電極が設けられる第1の一対の部位と、当第1の一対の部位から外方に延びる第2の一対の部位とを有し、第1の一対の部位は略同一平面から構成され、第2の一対の部位がそれぞれ第1の一対の部位に対して互いに逆向きかつ内側に傾斜した面から構成されることを特徴とする脈波測定用電極に存する。
【0009】
このような脈波測定電極において、支持手段における電極装着面の、第1の電極対の電極が装着される部位の間に突起部を有することが好ましく、突起部は平面で装着部表面に接する形状であることが更に好ましい。このような突起部を設け、突起部が測定対象となる血管の上に位置するように電極を装着すれば、より精度の高い動脈容積脈波を測定することが可能になる。
【0010】
さらに、傾斜した面の各々に設けられる電極からなる第2の電極対を有することが好ましく、第2の電極対の幅は第1の電極対及び突起部の幅よりも狭いことが特に好ましい。このような構成により、第2の電極対間で流れる電流が突起部下の組織、血管に集中して流れるようになり、高精度な脈波測定が可能になる。
【0011】
また、本発明の別の要旨は、本発明の脈波測定用電極と、脈波測定用電極が生体に装着された状態で、生体の、第1の電極対を挟む位置に装着される第3の電極対と、第3の電極対間に所定の定電流を供給する定電流供給手段と、第1の電極対から生体インピーダンスの変化を表す電圧波形を脈波として取得する脈波取得手段とを有することを特徴とする脈波測定装置に存する。
【0012】
【発明の実施の形態】
■(第1の実施形態)
以下、図面を参照して本発明をその好適な実施形態に基づき詳細に説明する。
■(脈波測定装置の構成)
図1は、本発明の一実施形態に係る脈波測定装置の構成例を示すブロック図である。
図において、10は本実施形態における脈波測定装置の全体制御を司る演算制御部であり、図示しないCPU、ROM、RAM等から構成され、例えばROMに記憶されたプログラムをCPUが実行することにより後述する測定処理を含めた装置全体の制御を実行する。
【0013】
演算制御部10は、インピーダンス変換部50によって測定した生体インピーダンス値から、脈波を得ることが可能である。演算制御部10にはまた、LCD、CRT等から構成可能な表示部70、プリンタ等の記録部75、HDD等の大容量記憶装置から構成可能な保存部80、スピーカ等の音声発生部85が接続されている。演算制御部10はこれら各部を制御可能である。また、演算制御部10に対して設定、入力等を行うためのユーザインタフェースとして、例えばキーボード、マウス等を有する操作部90が設けられている。
【0014】
40は定電流電極41、42間に所定周波数の定電流(例えば50KHz、数100μA程度)を供給可能な定電流供給部であり、例えば約50KHzの信号を発振する発振回路と定電流源とを有している。定電流電極41、42の間には、1対の電圧電極51a、bが所定の距離をおいて配置される。なお、本明細書においては、一対の電圧電極51a、bをまとめて電圧電極対51ともいう。本実施形態においては、後述するように定電流電極41、42と電圧電極対51を固定配置した脈波測定用電極を用いて測定を行う。
【0015】
電圧電極51としては例えばAg−Agcl電極等、測定に適した材料からなる電極が用いられ、被験者の体表面(皮膚)に直接固定される。本実施形態の脈波測定装置は、脈波を生体インピーダンス波形として測定する。
【0016】
電圧電極対51はインピーダンス変換部50に接続される。インピーダンス変換部50は定電流電極41,42間に装着される電圧電極51a、b間のインピーダンス値(生体インピーダンス)を検出する。
【0017】
定電流電極41、42間に微小高周波電流を流すと、電圧電極対51では両電極間に存在する生体組織のインピーダンスに比例した電圧が検出される。血液は他の生体組織に比べて導電率が極めて高いため、特に上腕や下肢など、他の臓器などが無い部分では、電圧電極対51で検出されるインピーダンスは主に心臓から拍出される血液の流量に支配される。従って、電圧電極対51で測定されるインピーダンス波形(電圧波形)を計測することにより、その部位を流れる血流量の変化を求めることが可能となる。血流量の変化は心臓の脈拍に対応して変化する容積脈波に相当するため、血流量の変化をしめすインピーダンス波形を測定することによって脈波を測定することが可能である。
【0018】
インピーダンス変換部50の出力する生体インピーダンス波形は演算制御部10へ入力される。演算制御部10は、得られた生体インピーダンス波形を記録部75に記憶するとともに、表示部70に表示することが可能である。
【0019】
■(電極配置)
図2は、本実施形態における定電流電極41、42と電圧電極対51の配置を示す図である。
図2からわかるように、本実施形態において、各電極は脈波を測定する動脈を挟んで、好ましくは動脈の走向方向に実質的に直交する直線上に配置される。このように、動脈を挟んで位置するように電極を配置することにより、以下のような利点がある。
1)血管走向方向に離間して電極を配置した場合には、電圧電極間の距離に応じて平均化された脈波が計測されるのに対し、観測する血管長が短くなるため、シャープなインピーダンス波形を得ることができる。
2)観測する血管長が短いため、動脈の局所的な脈波を測定することができる。
3)電極を血管走向方向に離間して配置する必要がないため、狭い範囲で測定が可能であり、被検者の他の部位に対する影響がきわめて少ない。
4)測定部位に動脈の走向がありさえすれば脈波を測定可能であるため、測定部位を容易に決めることができる。
5)複数の動脈が存在する部位(例えば足首)において、特定の動脈を選択して脈波を測定することができる。
電極を装着する位置は特に限定されないが、生体組織構成が単純であることが好ましい。例えば、四肢、頸部、指等に装着することが好ましい。
【0020】
■(脈波測定用電極の構成)
図2に示した電極配置を容易に実現するため、本実施形態においては定電流電極41、42及び電圧電極対51を所定の位置に取り付けた脈波測定用電極を用いる。図3は本実施形態における脈波測定用電極の構成例を示す図であり、図3(a)が電極面からみた平面図、図3(b)が側面図をそれぞれ示す。
【0021】
図3に示すように、脈波測定用電極100は、プラスチック、ゴム等の絶縁物で形成される支持体53と、定電流電極41、42及び電圧電極対51から構成される。なお、図3には示していないが、実際には各電極を定電流供給部40及びインピーダンス変換部50と電気的に接続するためのケーブル、コネクタ等が支持体53から外部へ延びている。
【0022】
支持体53は、定電流電極41、42及び電圧電極対51の全てを、図2に示したような位置関係でかつ適切に被検者体表面に接触させるべく、その電極配置面が同一平面ではなく、電圧電極対51の配置される面から延びる、定電流電極41、42が配置される面が、電圧電極対51の配置される面に対して内側に、かつ逆向きに傾斜した形状を有する。すなわち、定電流が定電流電極41、42間の組織の厚さ方向に均等に流れるよう、また、定電流電極41、42が四肢等の曲面的な体表面に十分密着するよう、定電流電極41、42を逆向きに傾斜した面に設ける。
【0023】
また、電圧電極対51の間には、電圧電極対51が配置される面よりも少し突出した押圧部(突起部)52が設けられている。この押圧部52を設けることにより、皮膚と動脈血管間に存在する静脈内血液を排除し、軟組織に剛性を与え、動脈の脈動によるインピーダンス波形の歪みを抑制することができる。
インピーダンス測定に基づく脈波測定は、基本的に血液の量に基づく脈波測定と見なせるため、押圧部52による押圧は、動脈の脈動によるインピーダンス波形の歪みを抑制できる程度でよい。従って、動脈血管の一部が平坦になるまで押圧する上述のトノメトリ方法と比較して弱い押圧力で良く、動脈脈波への影響は無視できる。
【0024】
また、押圧部52はその目的上、装着部表面(皮膚)に平面で接することが好ましい。また、その大きさ(接触面積)についても、インピーダンス波形の歪みを抑制できる程度に定めることが好ましい。
図4に示すように、測定時にはこの押圧部52が測定対象の動脈54上に位置するようにし、支持部53を適当な保持具を用いて、あるいは手で握って脈波測定用電極100全体を測定部位体表面に軽く押しつける。このように、電圧電極対51間に押圧部52が存在することにより、さらに精度の良い生体インピーダンス波形を得ることができる。
なお、測定時に脈波測定用電極100を固定する際は、脈波波形や脈波速度に影響を与えないよう、測定部位における末梢から中枢に戻る静脈環流を妨げないような方法を用いることが好ましい。
【0025】
押圧部52の大きさ(接触面積)が大きくなると、測定時の押圧力も大きくする必要があること、また生体組織は一般に均一でないこと、局所脈波計測の利点を得ること等を鑑み、電圧電極対を構成する各電極(51a、51b)間の距離は、生体インピーダンス波形を良好に取得するために必要な最低限の距離であることが好ましい。また、定電流電極41、42間の距離も、押圧部52が接する部位に対して安定して定電流を流すという観点から短い方が好ましい。ただし、測定する血管が存在する深さに対する感度を調節するため、定電流電極41、42の距離を調節可能とすることが好ましい。電極距離の異なる複数種の測定電極を用意しても良いし、電極を可動式にする等、任意の手段によって距離調節を行うことが可能である。
【0026】
電圧電極51、定電流電極41、42とも、その形状は任意に設定可能であるが、体表面と良好な接触がなされるよう、例えば定電流電極41、42を平板状ではなく、体表面に接する部分を凸円弧状に構成することが好ましい(図6(a))。
また、図7(a)及び(b)に示すように、電流の流れる範囲を狭くし、より局所的な測定を可能とするため、定電流電極41、42の幅を電圧電極51や押圧部52の幅よりも小さくすることが好ましい。
【0027】
なお、電極配置面の形状を含め、支持体53の形状は、各電極が測定部位の体表面に良く密着し、また定電流が測定部位の深さ方向にできるだけ均等に流れるように定電流電極41、42が配置可能であれば、他の形状であってもよい。
【0028】
支持体53の、定電流電極41、42が配置される部分の傾斜角(開き具合)が可変な構造とすることで、太さの異なる様々な部位の測定において、定電流電極41、42をより確実に装着部位に接触させることが可能となる。具体的には、図6(a)に示すように、支持体53の少なくとも定電流電極41、42が配置される部分を弾性体で構成したり、図6(b)に示すように、バネ等を用いて常に内側方向(閉じる方向)に付勢しておく等の構成が考えられる。
【0029】
■(測定処理)
次に、測定時の手順について説明する。まず、上述したように、脈波測定用電極100を被検者の四肢、例えば腕に、図2及び図4に示したように配置し、軽く押圧する。
【0030】
次に、脈波測定用電極を押圧した状態で、測定を開始する。なお、上述の通り、測定処理は演算制御部10に含まれるCPUがROM等に記憶された制御プログラムを実行し、各部を制御することによって実現することができる。
【0031】
例えば操作部90を介して測定開始の指示がなされると、まず、定電流供給部40から所定の高周波定電流を定電流電極41、42間に供給する。上述したように、生体に印加する定電流は50KHz、数100μA程度とする。
【0032】
次に、インピーダンス変換部50の出力するインピーダンス波形取得を開始する。取得したインピーダンス波形は所定周波数でサンプリングを行いディジタルデータに変換され、直近の所定時間分のデータが例えば保存部80に記憶される。或いは、予め定めた測定時間内のインピーダンス波形のディジタルデータを保存部80に記憶しても良い。
もちろん、測定した波形を表示部70に表示したり、記録部75からプリントアウトすることも可能である。
【0033】
このように、本実施形態にかかる脈波測定装置によれば、電極を測定部位に軽く押し当てるだけで脈波を測定することができ、被験者の負担がほとんど無視できる程度に軽減されるほか、簡便な構成で装置を構成でき、装置の小型化が可能である。また、超音波センサのような高価なセンサを使用する必要がなく、装置のコストを低減することが可能である。さらに、脈を触れる場所を探す必要もないため、測定操作自体も容易である。
【0034】
なお、測定開始の指示は、操作部90から明示的に与えられる以外に、例えば脈波測定用電極に設けたボタンから与えられるように構成しても良いし、常に定電流電極41、42へは定電流を供給するとともに、インピーダンス変換部50からの出力を監視しておき、電極が測定部位に押圧されたと判断されたら測定を自動的に開始するようにしてもよい。
【0035】
■(第1の実施形態の変形例)
第1の実施形態においては、被験者の脈波を一カ所で測定する脈波測定装置を示したが、図5に示すように、定電流供給部、インピーダンス変換部及び脈波測定用電極(定電流電極対と電圧電極対)を複数組設け、複数部位で脈波を測定することにより、脈波伝播速度を測定することが可能となる。
【0036】
この場合、各インピーダンス変換部50a、50bからのインピーダンス波形は上述のようにディジタル化及び記憶された後、各ディジタル波形データから、各波形に共通する特徴点(波形一周期内の脈波立ち上がり点や、切痕等)を検出し、特徴点の時間ずれ(遅延量)を検出する。そして、検出した遅延量を、電極対間距離Lあるいは解剖学的血管長で除算することによって脈波伝播速度を算出する。脈波伝播速度は既知の方法で血圧値により補正された値としても良い。
【0037】
算出した値は表示部70及び/又は記録部75において、所定のフォーマットで他の必要な情報とともに出力される。また、保存部80に算出結果を記憶することも可能である。この際、対応するインピーダンス波形データ、算出した脈波伝播速度及び測定に関する他の情報(例えば、被験者の性別、年齢、測定部位、電極対間距離L、印加した定電流の大きさや定電流電極間距離等)から選択される情報とともに記憶しても良い。
【0038】
また、既知の心音マイクをさらに設け、この心音マイクを用いて取得した被験者の心音第2音と、被験者の頚部及び大腿部に装着した電極から得た脈波との時間差を求めることによって、大動脈における脈波伝播速度の測定にも適用可能である。
【0039】
さらに、動脈の容積脈波を精度良く計測できるため、局所の脈波形状から、STI(心収縮期時相)の計測や前期収縮波と後期収縮波の比較による動脈血管の硬化度指標の計測、心臓への負荷の程度の計測、拡張期波形から血管コンプライアンス計測等を行うことが可能となる。これらの計測機能を演算制御部10に持たせ、計測結果の表示、保存、出力等を行うことも可能である。
【0040】
【他の実施形態】
上述の実施形態、例えば図1に示した実施形態においては、定電流電極対41、42と電圧電極対51a、51bとが独立した構成を説明したが、定電流電極対と電圧電極対を共用することも可能である。例えば図1において、電圧電極51aと51bとを定電流電極対の電極として用いてもよい。この場合、定電流供給部40は電圧電極51a及び51bに接続され、定電流電極対41、42は不要となる。
【0041】
この場合、脈波測定用電極100の支持体53に定電流電極41、42は設けなくて良いが、支持体53の電極接地面の形状は変更しない方が好ましい。すなわち、定電流電極41、42を設けている面が互いに逆方向に傾斜しているのは、定電流が測定部位の深さ方向に均一に流れること以外に、電極対を動脈の走向方向に略直交する方向に配置するためのガイドとしての機能も意図されているからである。すなわち、特に四肢において測定する場合、脈波測定用電極を四肢の断面形状に対応するように配置すれば、自ずと動脈の走向方向に略直交する方向に電極対が並ぶことになる。
【0042】
また、脈波伝播速度を測定する場合、取得したインピーダンス波形から検出した特徴点(立ち上がり、切痕等)の時間ずれをもって波形の時間ずれを検出したが、インピーダンス波形の一方を遅延させて順次相互相関を求め、最大の相互相関が得られる際の遅延量を波形の時間ずれとして用いるなど、他の任意の方法を用いて時間ずれの検出を行うことが可能である。
【0043】
【発明の効果】
以上説明したように本発明によれば、被検者の負荷が小さく、しかも簡便な構成により脈波の測定が可能になるという効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る脈波測定装置の構成例を示すブロック図である。
【図2】本発明の第1の実施形態に係る脈波測定装置を用いた測定時の電極配置例を示す図である
【図3】本発明の第1の実施形態に係る脈波測定装置における脈波測定用電極の構成例を示す図である。
【図4】図3の脈波測定用電極の装着時の状態を示す図である
【図5】本発明の第1の実施形態の変形例に係る脈波測定装置の構成例を示すブロック図である。
【図6】(a)は定電流電極の別の形状例、(b)及び(c)は、脈波測定用電極の別の構成例を示す図である。
【図7】定電流電極の幅を狭くすることによる効果を説明する図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for pulse wave measurement and a pulse wave measurement device, and more particularly to an electrode for pulse wave measurement and a pulse wave measurement device that can measure a pulse wave with a simple configuration with a small burden on a subject.
[0002]
[Prior art]
Conventionally, pulse wave velocity or pulse wave velocity (PWV) is generally used as an indicator of vascular diseases such as arteriosclerosis. PWV is the speed at which the wave generated when the blood vessel wall pressure derived when pumping blood from the heart moves through the artery is transmitted through the blood vessel wall, and the higher the speed, the harder the blood vessel. PWV is obtained by measuring pulse waves at two points on a blood vessel and their propagation times, and dividing the distance between the two points by the propagation time.
[0003]
Arterial pulse waves are also used to obtain cardiac function indicators such as STI (systolic time phase). In recent years, how reflected waves from the periphery affect cardiac function, coronary artery disease, and brain disease. Whether to do is being considered.
[0004]
The pulse wave measurement method includes 1) detecting a pulse wave using a pulse wave sensor such as a pressure sensor, and 2) detecting a pulse wave of an artery by slightly pressing a subject's limb using a cuff. 3) What detects a pulse wave from the blood vessel diameter fluctuation | variation measured using the ultrasonic sensor is known.
[0005]
[Problems to be solved by the invention]
However, in the conventional pulse wave sensor, it is necessary to search for a place where the pulse touches. Moreover, in the method using a cuff, it is necessary to press the measurement site | part of a test subject in order to detect a pulse wave, and a test subject is forced. On the other hand, the method using an ultrasonic sensor has a problem that the ultrasonic sensor is expensive and the apparatus for measurement is enlarged.
[0006]
In addition, the arterial pulse wave used for cardiac function evaluation needs to faithfully reflect the internal pressure or volume pulse wave of the artery. However, the location of the sensor and the pressing force depend on the examiner. In many cases, the reproducibility of the obtained pulse waveform is a problem.
There is also a method (tonometry method) in which a part of the blood vessel is pressed until it becomes flat and the lateral pressure applied to the flattened portion of the blood vessel is measured with a multi-sensor (tonometry method), but a very large mechanism for fixing the arm And the pulse wave velocity may be affected depending on the degree to which the blood vessel is pressed.
[0007]
The present invention has been made in view of the problems of such a conventional pulse wave measuring device, and its purpose is to reduce the burden on the subject and to enable pulse volume measurement with high accuracy with a simple configuration. An object of the present invention is to provide a wave measuring device and a pulse wave measuring electrode.
[0008]
[Means for Solving the Problems]
That is, the gist of the present invention is a pulse wave measuring electrode having support means having an electrode mounting surface and a first electrode pair mounted on the electrode mounting surface, the electrode mounting surface being the first electrode pair. Each of the first pair of portions and a second pair of portions extending outward from the first pair of portions, and the first pair of portions are configured from substantially the same plane. lies in the pulse wave measurement electrode, wherein a second pair of sites are composed of surface inclined opposite and inwardly to each other with respect to the site of the first one pair, respectively.
[0009]
In such a pulse wave measurement electrode, it is preferable that the electrode mounting surface of the support means has a protrusion between the portions where the electrodes of the first electrode pair are mounted, and the protrusion touches the mounting surface in a plane. More preferably, it has a shape. If such a protrusion is provided and the electrode is attached so that the protrusion is positioned on the blood vessel to be measured, it is possible to measure the arterial volume pulse wave with higher accuracy.
[0010]
Furthermore, it is preferable to have a second electrode pair composed of electrodes provided on each of the inclined surfaces, and it is particularly preferable that the width of the second electrode pair is narrower than the width of the first electrode pair and the protrusion. With such a configuration, the current flowing between the second electrode pair flows in a concentrated manner in the tissues and blood vessels under the protrusions, thereby enabling highly accurate pulse wave measurement.
[0011]
Further, another gist of the present invention is that the pulse wave measurement electrode of the present invention and the pulse wave measurement electrode are mounted on a living body, and are mounted on the living body at a position sandwiching the first electrode pair . Three electrode pairs, a constant current supply means for supplying a predetermined constant current between the third electrode pairs, and a pulse wave acquisition means for acquiring a voltage waveform representing a change in bioimpedance from the first electrode pair as a pulse wave It exists in the pulse-wave measuring device characterized by having.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
■ (First embodiment)
Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the drawings.
■ (Configuration of pulse wave measuring device)
FIG. 1 is a block diagram illustrating a configuration example of a pulse wave measurement device according to an embodiment of the present invention.
In the figure, reference numeral 10 denotes an arithmetic control unit that controls the overall control of the pulse wave measuring device according to the present embodiment. The arithmetic control unit includes a CPU, a ROM, a RAM, and the like (not shown). For example, the CPU executes a program stored in the ROM. Control of the entire apparatus including measurement processing described later is executed.
[0013]
The arithmetic control unit 10 can obtain a pulse wave from the bioelectrical impedance value measured by the impedance conversion unit 50. The arithmetic control unit 10 also includes a display unit 70 that can be configured from an LCD, a CRT, etc., a recording unit 75 such as a printer, a storage unit 80 that can be configured from a mass storage device such as an HDD, and an audio generation unit 85 such as a speaker. It is connected. The arithmetic control unit 10 can control these units. An operation unit 90 having, for example, a keyboard and a mouse is provided as a user interface for performing settings, inputs, and the like with respect to the arithmetic control unit 10.
[0014]
A constant current supply unit 40 can supply a constant current of a predetermined frequency (for example, about 50 KHz, several hundreds μA) between the constant current electrodes 41 and 42. For example, an oscillation circuit that oscillates a signal of about 50 KHz and a constant current source are provided. Have. A pair of voltage electrodes 51a and 51b are arranged between the constant current electrodes 41 and 42 at a predetermined distance. In the present specification, the pair of voltage electrodes 51 a and 51 b are collectively referred to as a voltage electrode pair 51. In the present embodiment, measurement is performed using a pulse wave measurement electrode in which constant current electrodes 41 and 42 and a voltage electrode pair 51 are fixedly arranged as will be described later.
[0015]
As the voltage electrode 51, an electrode made of a material suitable for measurement, such as an Ag-Agcl electrode, is used, and is directly fixed to the body surface (skin) of the subject. The pulse wave measuring device of this embodiment measures a pulse wave as a bioimpedance waveform.
[0016]
The voltage electrode pair 51 is connected to the impedance converter 50. The impedance converter 50 detects the impedance value (biological impedance) between the voltage electrodes 51a and 51b mounted between the constant current electrodes 41 and 42.
[0017]
When a minute high-frequency current is passed between the constant current electrodes 41 and 42, the voltage electrode pair 51 detects a voltage proportional to the impedance of the living tissue existing between both electrodes. Since blood has an extremely high electrical conductivity compared to other living tissues, impedance detected by the voltage electrode pair 51 is mainly blood that is pumped from the heart, particularly in a portion where there is no other organ such as the upper arm or the lower limb. Is governed by the flow rate. Therefore, by measuring the impedance waveform (voltage waveform) measured by the voltage electrode pair 51, it is possible to obtain a change in the blood flow volume flowing through the part. Since the change in blood flow corresponds to a volume pulse wave that changes in response to the pulse of the heart, it is possible to measure the pulse wave by measuring an impedance waveform that indicates a change in blood flow.
[0018]
The bioimpedance waveform output from the impedance conversion unit 50 is input to the calculation control unit 10. The arithmetic control unit 10 can store the obtained bioimpedance waveform in the recording unit 75 and display it on the display unit 70.
[0019]
■ (Electrode arrangement)
FIG. 2 is a diagram showing the arrangement of the constant current electrodes 41 and 42 and the voltage electrode pair 51 in the present embodiment.
As can be seen from FIG. 2, in the present embodiment, each electrode is preferably disposed on a straight line that is substantially perpendicular to the direction of the arterial movement, with the artery for measuring the pulse wave in between. Thus, by arranging the electrodes so as to be located across the artery, there are the following advantages.
1) When the electrodes are arranged apart from each other in the blood vessel running direction, the averaged pulse wave is measured according to the distance between the voltage electrodes, whereas the observed blood vessel length is shortened, so that it is sharp. An impedance waveform can be obtained.
2) Since the blood vessel length to be observed is short, the local pulse wave of the artery can be measured.
3) Since it is not necessary to dispose the electrodes separately in the direction of blood vessel travel, measurement can be performed in a narrow range, and the influence on other parts of the subject is extremely small.
4) Since the pulse wave can be measured as long as the measurement site has an arterial direction, the measurement site can be easily determined.
5) A pulse wave can be measured by selecting a specific artery at a site where a plurality of arteries exist (for example, an ankle).
The position where the electrode is mounted is not particularly limited, but it is preferable that the living tissue structure is simple. For example, it is preferable to wear it on the limbs, neck, fingers and the like.
[0020]
■ (Configuration of electrode for pulse wave measurement)
In order to easily realize the electrode arrangement shown in FIG. 2, the present embodiment uses pulse wave measurement electrodes in which the constant current electrodes 41 and 42 and the voltage electrode pair 51 are attached at predetermined positions. 3A and 3B are diagrams showing a configuration example of the pulse wave measurement electrode in the present embodiment. FIG. 3A is a plan view seen from the electrode surface, and FIG. 3B is a side view.
[0021]
As shown in FIG. 3, the pulse wave measurement electrode 100 includes a support 53 formed of an insulator such as plastic or rubber, constant current electrodes 41 and 42, and a voltage electrode pair 51. Although not shown in FIG. 3, cables, connectors, and the like for electrically connecting each electrode to the constant current supply unit 40 and the impedance conversion unit 50 actually extend from the support 53 to the outside.
[0022]
The support 53 has the same electrode arrangement surface so that all of the constant current electrodes 41 and 42 and the voltage electrode pair 51 are in the positional relationship as shown in FIG. Instead, the surface on which the constant current electrodes 41 and 42 are disposed extending from the surface on which the voltage electrode pair 51 is disposed is inclined inwardly and in the opposite direction with respect to the surface on which the voltage electrode pair 51 is disposed. Have That is, the constant current electrode is so that the constant current flows evenly in the thickness direction of the tissue between the constant current electrodes 41, 42, and the constant current electrodes 41, 42 are sufficiently adhered to the curved body surface such as the extremities. 41 and 42 are provided on the inclined surface in the opposite direction.
[0023]
Further, between the voltage electrode pair 51, a pressing portion (projection portion) 52 is provided that slightly protrudes from the surface on which the voltage electrode pair 51 is disposed. By providing the pressing portion 52, the venous blood existing between the skin and the arterial blood vessel can be eliminated, the soft tissue can be given rigidity, and the distortion of the impedance waveform due to the pulsation of the artery can be suppressed.
Since the pulse wave measurement based on the impedance measurement can be basically regarded as a pulse wave measurement based on the amount of blood, the pressing by the pressing unit 52 may be such that the distortion of the impedance waveform due to the pulsation of the artery can be suppressed. Accordingly, the pressing force may be weaker than that in the above-described tonometry method in which a part of the arterial blood vessel is pressed to become flat, and the influence on the arterial pulse wave can be ignored.
[0024]
Moreover, it is preferable that the press part 52 contacts the mounting part surface (skin) in a plane for the purpose. Further, the size (contact area) is preferably determined so as to suppress the distortion of the impedance waveform.
As shown in FIG. 4, at the time of measurement, the pressing portion 52 is positioned on the artery 54 to be measured, and the support portion 53 is held by an appropriate holder or by hand, and the pulse wave measuring electrode 100 as a whole. Press lightly against the surface of the body to be measured. Thus, the presence of the pressing part 52 between the voltage electrode pair 51 makes it possible to obtain a more accurate bioimpedance waveform.
When fixing the pulse wave measurement electrode 100 at the time of measurement, a method that does not hinder the venous perfusion returning from the periphery to the center at the measurement site is used so as not to affect the pulse waveform or pulse wave velocity. preferable.
[0025]
When the size (contact area) of the pressing portion 52 is increased, it is necessary to increase the pressing force at the time of measurement, the biological tissue is generally not uniform, and the advantages of local pulse wave measurement are obtained. It is preferable that the distance between each electrode (51a, 51b) which comprises an electrode pair is the minimum distance required in order to acquire a bioimpedance waveform favorably. Further, the distance between the constant current electrodes 41 and 42 is preferably shorter from the viewpoint of allowing a constant current to flow stably to a portion where the pressing portion 52 is in contact. However, in order to adjust the sensitivity to the depth at which the blood vessel to be measured exists, it is preferable that the distance between the constant current electrodes 41 and 42 be adjustable. A plurality of types of measurement electrodes having different electrode distances may be prepared, and the distance can be adjusted by any means such as making the electrodes movable.
[0026]
The shape of the voltage electrode 51 and the constant current electrodes 41 and 42 can be arbitrarily set. However, for example, the constant current electrodes 41 and 42 are not formed in a flat plate shape on the body surface so that good contact with the body surface is achieved. It is preferable that the contact portion is formed in a convex arc shape (FIG. 6A).
Further, as shown in FIGS. 7A and 7B, the width of the constant current electrodes 41 and 42 is set to the voltage electrode 51 and the pressing portion in order to narrow the current flow range and enable more local measurement. It is preferable to make it smaller than the width of 52.
[0027]
The shape of the support 53, including the shape of the electrode arrangement surface, is such that each electrode is in close contact with the body surface of the measurement site and that the constant current flows as evenly as possible in the depth direction of the measurement site. As long as 41 and 42 can be arranged, other shapes may be used.
[0028]
In the measurement of various parts having different thicknesses, the constant current electrodes 41 and 42 can be formed by changing the inclination angle (opening degree) of the portion of the support 53 where the constant current electrodes 41 and 42 are arranged. It becomes possible to make it contact with a mounting site more reliably. Specifically, as shown in FIG. 6A, at least a portion where the constant current electrodes 41 and 42 of the support 53 are arranged is formed of an elastic body, or as shown in FIG. It is conceivable to use a structure such as always energizing in the inner direction (the closing direction).
[0029]
■ (Measurement processing)
Next, the procedure at the time of measurement will be described. First, as described above, the pulse wave measurement electrode 100 is arranged on the extremity of the subject, for example, the arm as shown in FIGS. 2 and 4 and lightly pressed.
[0030]
Next, measurement is started with the pulse wave measurement electrode pressed. As described above, the measurement process can be realized by a CPU included in the arithmetic control unit 10 executing a control program stored in a ROM or the like and controlling each unit.
[0031]
For example, when an instruction to start measurement is given via the operation unit 90, first, a predetermined high-frequency constant current is supplied from the constant current supply unit 40 between the constant current electrodes 41 and 42. As described above, the constant current applied to the living body is about 50 KHz and about several hundred μA.
[0032]
Next, the acquisition of the impedance waveform output from the impedance converter 50 is started. The acquired impedance waveform is sampled at a predetermined frequency and converted into digital data, and data for the most recent predetermined time is stored in the storage unit 80, for example. Alternatively, digital data of an impedance waveform within a predetermined measurement time may be stored in the storage unit 80.
Of course, the measured waveform can be displayed on the display unit 70 or printed out from the recording unit 75.
[0033]
Thus, according to the pulse wave measurement device according to the present embodiment, it is possible to measure the pulse wave simply by lightly pressing the electrode against the measurement site, and the burden on the subject can be reduced to an extent that can be almost ignored. The apparatus can be configured with a simple configuration, and the apparatus can be miniaturized. Further, it is not necessary to use an expensive sensor such as an ultrasonic sensor, and the cost of the apparatus can be reduced. Furthermore, since it is not necessary to find a place where the pulse is touched, the measurement operation itself is easy.
[0034]
The measurement start instruction may be given from, for example, a button provided on the pulse wave measurement electrode, in addition to being given explicitly from the operation unit 90, or to the constant current electrodes 41 and 42 at all times. May supply a constant current, monitor the output from the impedance converter 50, and automatically start the measurement when it is determined that the electrode is pressed against the measurement site.
[0035]
■ (Modification of the first embodiment)
In the first embodiment, the pulse wave measuring device that measures the pulse wave of the subject at one place is shown. However, as shown in FIG. 5, the constant current supply unit, the impedance conversion unit, and the pulse wave measurement electrode By providing a plurality of pairs of current electrode pairs and voltage electrode pairs and measuring pulse waves at a plurality of sites, the pulse wave propagation velocity can be measured.
[0036]
In this case, after the impedance waveforms from the impedance conversion units 50a and 50b are digitized and stored as described above, the characteristic points common to each waveform (pulse wave rising points within one waveform period) are obtained from each digital waveform data. And a notch or the like), and a time shift (delay amount) of the feature point is detected. Then, the pulse wave propagation velocity is calculated by dividing the detected delay amount by the distance L between the electrode pairs or the anatomical blood vessel length. The pulse wave velocity may be a value corrected by the blood pressure value by a known method.
[0037]
The calculated value is output together with other necessary information in a predetermined format in the display unit 70 and / or the recording unit 75. It is also possible to store the calculation result in the storage unit 80. At this time, the corresponding impedance waveform data, the calculated pulse wave propagation velocity, and other information related to the measurement (for example, the sex of the subject, age, measurement site, distance L between the electrode pair, the magnitude of the applied constant current, and between the constant current electrodes You may memorize | store with the information selected from distance etc.).
[0038]
Further, by further providing a known heart sound microphone, by determining the time difference between the second heart sound of the subject obtained using this heart sound microphone and the pulse wave obtained from the electrodes attached to the neck and thigh of the subject, It is also applicable to the measurement of pulse wave velocity in the aorta.
[0039]
Furthermore, since arterial volume pulse waves can be accurately measured, measurement of STI (time phase of systole) and measurement of arterial vascular stiffness index by comparison of early and late systolic waves from local pulse wave shape Measurement of the degree of load on the heart, blood vessel compliance measurement from the diastolic waveform, and the like can be performed. It is also possible to give these measurement functions to the arithmetic control unit 10 to display, save, and output measurement results.
[0040]
[Other Embodiments]
In the above-described embodiment, for example, the embodiment shown in FIG. 1, the configuration in which the constant current electrode pair 41 and 42 and the voltage electrode pair 51a and 51b are independent has been described. However, the constant current electrode pair and the voltage electrode pair are shared. It is also possible to do. For example, in FIG. 1, the voltage electrodes 51a and 51b may be used as the electrodes of the constant current electrode pair. In this case, the constant current supply unit 40 is connected to the voltage electrodes 51a and 51b, and the constant current electrode pairs 41 and 42 are not necessary.
[0041]
In this case, the constant current electrodes 41 and 42 need not be provided on the support 53 of the pulse wave measurement electrode 100, but it is preferable that the shape of the electrode ground plane of the support 53 is not changed. That is, the surfaces on which the constant current electrodes 41 and 42 are provided are inclined in directions opposite to each other, in addition to the constant current flowing uniformly in the depth direction of the measurement site, This is because a function as a guide for arranging in a substantially orthogonal direction is also intended. That is, particularly when measuring in the limbs, if the pulse wave measuring electrodes are arranged so as to correspond to the cross-sectional shape of the limbs, the electrode pairs are naturally arranged in a direction substantially orthogonal to the direction of the artery.
[0042]
Also, when measuring the pulse wave propagation velocity, the time lag of the waveform was detected with the time lag of the feature points (rise, notch, etc.) detected from the acquired impedance waveform. It is possible to detect the time lag using any other method such as obtaining the correlation and using the delay amount when the maximum cross-correlation is obtained as the time lag of the waveform.
[0043]
【The invention's effect】
As described above, according to the present invention, the load on the subject is small, and the pulse wave can be measured with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a pulse wave measurement device according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an example of electrode arrangement at the time of measurement using the pulse wave measuring device according to the first embodiment of the present invention. FIG. 3 is a diagram showing a pulse wave measuring device according to the first embodiment of the present invention. It is a figure which shows the structural example of the electrode for pulse wave measurement in.
4 is a diagram showing a state when the pulse wave measurement electrode of FIG. 3 is mounted. FIG. 5 is a block diagram showing a configuration example of a pulse wave measurement device according to a modification of the first embodiment of the present invention. It is.
6A is a diagram showing another example of the shape of the constant current electrode, and FIGS. 6B and 6C are diagrams showing another example of the configuration of the pulse wave measurement electrode.
FIG. 7 is a diagram for explaining the effect of reducing the width of the constant current electrode.

Claims (7)

電極装着面を有する支持手段と、
前記電極装着面に装着される第1の電極対を有する脈波測定用電極であって、
前記電極装着面、前記第1の電極対の各電極が設けられる第1の一対の部位と、当該第1の一対の部位から外方に延びる第2の一対の部位とを有し、前記第1の一対の部位は略同一平面から構成され、前記第2の一対の部位がそれぞれ前記第1の一対の部位に対して互いに逆向きかつ内側に傾斜した面から構成されることを特徴とする脈波測定用電極。
A support means having an electrode mounting surface;
A pulse wave measurement electrode having a first electrode pair mounted on the electrode mounting surface,
The electrode mounting surface has a first pair of portions where each electrode of the first electrode pair is provided, and a second pair of portions extending outward from the first pair of portions, the first pair of sites consists substantially the same plane, characterized in that said second pair of sites are composed of surface inclined opposite and inwardly to each other with respect to portions of each of the first a pair An electrode for pulse wave measurement.
さらに、前記傾斜した面の各々に設けられる電極からなる第2の電極対を有することを特徴とする請求項1記載の脈波測定用電極。  2. The pulse wave measuring electrode according to claim 1, further comprising a second electrode pair comprising electrodes provided on each of the inclined surfaces. さらに、前記支持手段が、
前記電極装着面の、前記第1の電極対の電極が装着される第1の一対の部位の間に突起部を有することを特徴とする請求項1又は請求項2記載の脈波測定用電極。
Furthermore, the support means comprises
3. The pulse wave measurement electrode according to claim 1, wherein the electrode mounting surface has a protrusion between a first pair of portions on which the electrodes of the first electrode pair are mounted. 4. .
請求項1記載の脈波測定用電極と、
前記第1の電極対間に所定の定電流を供給する定電流供給手段と、
前記第1の電極対から生体インピーダンスの変化を表す電圧波形を脈波として取得する脈波取得手段とを有することを特徴とする脈波測定装置。
The pulse wave measurement electrode according to claim 1,
Constant current supply means for supplying a predetermined constant current between the first electrode pair;
A pulse wave measurement device comprising: a pulse wave acquisition unit that acquires a voltage waveform representing a change in bioimpedance from the first electrode pair as a pulse wave.
請求項2記載の脈波測定用電極と、
前記第2の電極対間に所定の定電流を供給する定電流供給手段と、
前記第1の電極対から生体インピーダンスの変化を表す電圧波形を脈波として取得する脈波取得手段とを有することを特徴とする脈波測定装置。
An electrode for pulse wave measurement according to claim 2,
Constant current supply means for supplying a predetermined constant current between the second electrode pair;
A pulse wave measuring device, comprising: a pulse wave acquisition unit that acquires a voltage waveform representing a change in bioimpedance from the first electrode pair as a pulse wave.
前記第1の電極対を構成する電極が、走向する動脈を挟んで位置するように、被検者の四肢、頸部または指表面に装着されることを特徴とする請求項4又は請求項5に記載の脈波測定装置。  The electrode constituting the first electrode pair is attached to the extremity, neck, or finger surface of the subject so as to be located across the artery that runs. The pulse wave measuring device according to 1. さらに、前記支持手段が、
前記電極装着面の、前記第1の電極対の電極が装着される第1の一対の部位の間に突起部を有し、
前記第1の電極対及び前記突起部の幅よりも、前記第2の電極対の幅が小さいことを特徴とする請求項2記載の脈波測定用電極。
Furthermore, the support means comprises
A protrusion between the first pair of portions on the electrode mounting surface where the electrodes of the first electrode pair are mounted;
The pulse wave measurement electrode according to claim 2, wherein a width of the second electrode pair is smaller than a width of the first electrode pair and the protrusion.
JP2003035068A 2003-02-13 2003-02-13 Pulse wave measuring electrode and pulse wave measuring device Expired - Lifetime JP4149829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035068A JP4149829B2 (en) 2003-02-13 2003-02-13 Pulse wave measuring electrode and pulse wave measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035068A JP4149829B2 (en) 2003-02-13 2003-02-13 Pulse wave measuring electrode and pulse wave measuring device

Publications (3)

Publication Number Publication Date
JP2004242851A JP2004242851A (en) 2004-09-02
JP2004242851A5 JP2004242851A5 (en) 2006-03-30
JP4149829B2 true JP4149829B2 (en) 2008-09-17

Family

ID=33020590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035068A Expired - Lifetime JP4149829B2 (en) 2003-02-13 2003-02-13 Pulse wave measuring electrode and pulse wave measuring device

Country Status (1)

Country Link
JP (1) JP4149829B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136655A (en) 2006-12-01 2008-06-19 Omron Healthcare Co Ltd Sphygmometric electrode unit and sphygmometer
HUE035450T2 (en) * 2011-02-17 2018-05-02 Qualcomm Inc A method of and a system for determining a cardiovascular quantity of a mammal
JP6381977B2 (en) * 2014-06-11 2018-08-29 フクダ電子株式会社 Pulse wave propagation time measurement tool and pulse wave propagation time measurement device
WO2016178363A1 (en) * 2015-05-07 2016-11-10 株式会社村田製作所 Biosignal detection device
WO2017068751A1 (en) * 2015-10-21 2017-04-27 日本電気株式会社 Electrocardiogram measurement apparatus and electrocardiogram measurement method
JP6692026B2 (en) * 2016-01-20 2020-05-13 セイコーエプソン株式会社 Blood vessel elasticity index value measuring device, blood pressure measurement device, and blood vessel elasticity index value measuring method
CN108498081A (en) * 2018-05-25 2018-09-07 深圳市知赢科技有限公司 Pulse wave velocity device, blood pressure continuous measurement device and method

Also Published As

Publication number Publication date
JP2004242851A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP3575025B2 (en) Pulse wave detector and pulsation detector
KR101068116B1 (en) Apparatus and method for sensing radial arterial pulses for noninvasive and continuous measurement of blood pressure
FI103760B (en) Method and arrangement for measuring blood pressure
JP4644993B2 (en) Acupuncture point exploration device and treatment effect judgment device
JP3898047B2 (en) Blood rheology measuring device
US20110257539A1 (en) Electronic sphygmomanometer and blood pressure measurement method
KR20210148267A (en) blood pressure measurement
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
JPWO2018043692A1 (en) Blood pressure measurement device, blood pressure measurement method, and recording medium recording blood pressure measurement program
KR20070056925A (en) Blood pressure measuring method and apparatus
JP3970697B2 (en) Biological information processing device
JP6381977B2 (en) Pulse wave propagation time measurement tool and pulse wave propagation time measurement device
EP3897363B1 (en) Control unit for deriving a measure of arterial compliance
JP4149829B2 (en) Pulse wave measuring electrode and pulse wave measuring device
JP3866967B2 (en) Pulse wave velocity measuring device
JP4314710B2 (en) Atherosclerosis evaluation device
JP2024502997A (en) Method and system for measuring blood pressure
JP2009000388A (en) Vascular endothelial function measurement apparatus
JP4629430B2 (en) Vascular endothelial function measuring device
JP5255771B2 (en) Biological information processing apparatus and biological information processing method
JP2002200052A (en) Vascular endothelium function tester
JP4105738B2 (en) Pulse wave velocity measuring device
JP6399852B2 (en) Pulse wave measuring device and biological information measuring device
JP2018130227A (en) Vascular pulse wave measuring system
KR100447827B1 (en) Examinator of pulse based on bioelectrical impedance analysis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4149829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term