JP4148574B2 - Light diffusion device for optical duct - Google Patents

Light diffusion device for optical duct Download PDF

Info

Publication number
JP4148574B2
JP4148574B2 JP31248198A JP31248198A JP4148574B2 JP 4148574 B2 JP4148574 B2 JP 4148574B2 JP 31248198 A JP31248198 A JP 31248198A JP 31248198 A JP31248198 A JP 31248198A JP 4148574 B2 JP4148574 B2 JP 4148574B2
Authority
JP
Japan
Prior art keywords
light
duct
optical
optical duct
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31248198A
Other languages
Japanese (ja)
Other versions
JP2000149627A (en
Inventor
幸一 海宝
秀雄 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Original Assignee
Nikken Sekkei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd filed Critical Nikken Sekkei Ltd
Priority to JP31248198A priority Critical patent/JP4148574B2/en
Publication of JP2000149627A publication Critical patent/JP2000149627A/en
Application granted granted Critical
Publication of JP4148574B2 publication Critical patent/JP4148574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光ダクトを介して建築物内部に光を導き建築物内部を照明する光ダクトに使用される光拡散装置に関する。
【0002】
【従来の技術】
近年、省エネルギーや二酸化炭素の排出削減による環境保護の必要性が注目されており、この要望に答えるための手段の一つとして太陽光を内面に反射率の高い部材で構成したダクトを介して室内に取り込み、照明光源として利用する光ダクト装置が提案されている。
この装置は、エネルギーを電気など他のエネルギーに変換せず、そのまま活用するため、エネルギーの利用効率が高く、省エネルギーや二酸化炭素排出削減に貢献できる。
【0003】
図11、図12は、本発明が適用される光ダクト装置の概念図であり、図11はビルの南側壁面から光を取り込んでオフィスなどの照明に利用する水平型光ダクト装置、図12は地下や屋上など採光位置と照明位置の高低差がある場合に光を下方に搬送する部分を持つ垂直型光ダクト装置を示している。また、図11(b)は水平型ダクト本体の斜視図である。
図11、図12において、1は自然光(太陽光)、2は採光口、3は反射材、4は光ダクト、5はビル壁面、6は室内、7はガラスカバー、8は放光口、9は屋上または地上である。光ダクト4は図11(b)に示すように断面が矩形状で、内面が反射面で構成されている。
図11,図12において、太陽光1は、採光口2から直接、あるいは反射材3に反射した後、ダクト4内部に取り込まれ、内面での反射を繰り返しながら照射位置まで運ばれ、放光口8から照射される。
【0004】
図13は水平の光ダクト装置に太陽光が入射したときの光路を概念的に示す図である。図13(a)は斜視図、図13(b)は光ダクト内の光路を同図(a)のA方向から見た図、図13(c)は光ダクト内の光路を同図(a)のB方向から見た図、図13(d)は光ダクト内の光路を同図(a)のC方向から見た図である。同図に示すように、光ダクト装置に入射した光は、光ダクトの反射面で反射を繰り返しながら、光ダクトの奥行き方向に進む。
【0005】
【発明が解決しようとする課題】
光ダクト装置に入射した光は、前記図13に示したような光路で光ダクト内部を進行する。一方、光ダクトに入射する太陽光は、時間や季節によって照射方向が大きく変化する平行光線である。したがって、平行光線が光ダクト装置に入射すると、図14に示すように、ダクト内部の光密度に大きな濃淡が生ずる。
これをそのまま放光口8から室内に照射すると、室内位置の照度分布にばらつきを生じたり、光の照射面に濃淡模様を映し出すなどの問題を発生する。
このような問題を解決するには、光を拡散させる手段を光ダクト装置に取り付けることが考えられる。
【0006】
光を拡散させる手段としては、例えば、図15に示すように光拡散機能を持ったフィルム10を光路の途中に挿入して拡散効果を得る方法がある。
しかし、この方法は、強い指向性を持つ太陽光の拡散には充分な効果が得られず、さらに、フィルムやこれを貼るガラスや樹脂を透過する際に20%以上の大きな光の減衰が起こり装置の効率低下を招く。
本発明は上記した事情に鑑みなされたものであって、その目的とするところは、光の減衰が少なく、光ダクト内に入射した光を効果的に拡散することができる光ダクト用拡散装置を提供することである。
【0007】
【課題を解決するための手段】
光ダクト装置にダクトの斜め上方から太陽光が入ってくるとき、その光路の途中に光ダクトの奥行き方向に平行で入射光に対して傾けた反射材を置くと、光ダクト内の光路を変えることができる。
以下、説明の便宜上、光ダクトの奥行き方向をX軸方向、X軸を含む水平面上にありX軸に直交する方向をY軸方向、XY平面に垂直な方向をZ軸方向とする。
図1は上記のようにX軸に平行でXY平面に対して傾けた反射板12を置いたときの光路を示す図であり、同図は、YZ平面上を斜めに入射する光が反射板12で反射したときの光路を示しており、実線が反射板12を置いたときの光路、点線は反射板12を置かない場合の光路である。また、図1(a)は斜視図を示し、同図(b)は光ダクト内の光路をX軸方向から見た図、同図(c)は光ダクト内の光路をY軸方向から見た図、同図(d)は光ダクト内の光路をZ軸方向から見た図である。
【0008】
図1に示すように、光ダクトの斜め上方から入射し反射板12で反射した光は、光ダクトの右側面R→上面U→左側面L→右側面Rと反射を繰り返し、光ダクトのX軸方向に進む。すなわち、上記反射板12を置くことにより、点線で示す光路1’を実線で示す光路1のように変えることができる。
ここで、図2(a)に示すように上記反射材12の反射面をX軸を中心に回転させると、光ダクトに対して入射角αで入射する光の反射光は、同図(b)に示すように、点14とX軸の成す角度がαの円錐面上を移動する。上記反射光をYZ平面に投影すると、反射光の方向は同図(c)に示すように360度全周方向に変わり、反射面の回転角度に応じて、光ダクトに入射する平行光の反射方向を変えることができる(ここでは、光を異なった方向に分散させることを拡散すると呼ぶこととする)。
【0009】
すなわち、X軸に直交する平面に現れる反射面の断面直線の傾き、もしくは、断面曲線の接線の傾きが光の反射点によって異なる反射面は、光ダクト内部で光を拡散する機能を有する。
例えば、図3(a)に示すように、X軸方向に平行で、X軸に直交する平面に現れる断面形状が曲線である反射材15を光ダクト内に設置すると、同図(b)に示すように、光1は反射材15に接する平面16で反射した場合と同じ光路となるため、平行光が入射した場合でも、その反射位置によって反射光の光路を異なる方向に変えることができ、図2で説明したように高い拡散効果を得ることができる。すなわち、この場合は、1枚の反射材15が拡散装置20としての機能を持つ。
【0010】
図4は図3に示した断面形状が曲線である反射材15による入射光の拡散の様子を示す図であり、実線(同図の1)は反射材15を設けた場合の光路、点線(同図1’)は反射材15を設けない場合の元の光路を示している。また、同図(a)は光ダクト内の光路をX軸方向から見た図、同図(b)はY軸方向から見た図、同図(d)はZ軸方向から見た図である。
同図に示すように、光ダクトの斜め上方から平行光が入射すると(同図では、Y軸方向に一列の平行光が入射した場合を仮定している)、半円形の反射材15への入射位置に応じて、反射光の光路は異なった経路となり、光ダクト内の光の密度は均一化する。このため、前記図14に示したように、ダクト内部の光密度に大きな濃淡が生ずることがない。
【0011】
上記反射材15は例えば後述する図6に示すように、相互の角度が鈍角をなす直線の集合からなる曲線に近似した形状であっても類似した効果を得ることができる。また、上記のような半円形状だけでなく、後述する図8に示すように、断面形状が曲線の集合、直線の集合であっても同様な効果を得ることができる。
上記構成の拡散装置を光ダクトの採光口側、終端側、もしくは適当な箇所に1もしくは複数に設けることにより、光ダクト内の光の密度を均一化することができ、室内の照度分布を均一化し、光の照射面に濃淡模様が生ずるといった問題を解消することができる。
【0012】
本発明は上記点に着目してなされたものであって自然光を照明に利用する光ダクト装置に使用され、光ダクト装置に取り入れた平行光を光ダクト内部で拡散させるための光ダクト用光拡散装置において、上記光拡散装置を、光ダクトの長手方向に平行で、光の入射位置に応じて、入射光を異なる方向に反射させる反射面を有する反射材から構成し、光ダクト内に入射した平行光を拡散し、光ダクト内の光の密度を均一化する。
すなわち、本発明は前記課題を次のようにして解決する。
)自然光を照明に利用する光ダクト装置に使用され、光ダクト装置に取り入れた平行光を光ダクト内部で拡散させるための光ダクト用光拡散装置において、上記光拡散装置を、光ダクトの長手方向に平行な反射面を有する反射材から構成し、光ダクトの奥行き方向に垂直な平面に現れる上記反射面の断面形状を、曲線、又は、隣接する線の角度が鈍角をなす直線と直線、直線と曲線、もしくは曲線と曲線の組み合わせからなる曲線に近似した形状とする。
また、本発明は次のように構成することもできる。
)上記光拡散装置を、光ダクトの長手方向に平行な反射面を有する反射材から構成し、光ダクトの奥行き方向に垂直な平面に現れる上記反射面の断面形状を、2以上の曲線の組み合わせとする。
)上記光拡散装置を、光ダクトの長手方向に平行な反射面を有する反射材から構成し、光ダクトの奥行き方向に垂直な平面に現れる上記反射面の断面形状を、離間した2以上の曲線の組み合わせとする。
【0013】
【発明の実施の形態】
図5は本発明の実施例の拡散装置の構成例を示す図であり、同図は円弧状に形成された反射材を用いた拡散装置を示している。
図5(a)は本実施例で使用される半円形の反射材を示しており、2枚のアルミニウム鏡面材17(例えば、ドイツ、アラノッド社製のアルミニウム鏡面材ミロ板厚さ0.5mm)を、同図に示すようにダクト底面の幅と同じ直径の半円に曲げ加工し、両面が鏡面になるようにエポキシ系の接着剤で張り合わせたものである。
以上のようにして形成した反射材を2組用意し〔同図(b)(c)の15a,15b〕、それを背中合わせにして反射材15a,15bに設けた固定用穴17aを介してリベット止めすることにより、両者を固定し、図5(b)に示すように組み立て、図5(c)に示すように光ダクト内に設置する。
以上のように構成した拡散装置21を光ダクト内に設置することにより、前記図3、図4に示したように光ダクトに入射する平行光を拡散し、光ダクト内の光の密度を均一化することができる。
【0014】
図6は拡散装置の他の構成例を示す図である、同図は、多角形状に形成した反射材を用いた拡散装置を示している。
図6において、反射材18は、前記したように2枚のアルミニウム材料を鏡面が外側になるように貼り合わせた反射材であり、反射材18は、同図に示すようにその断面が、多角形状(相互の角度が鈍角をなす直線の集合からなる曲線に近似した形状)である。上記のような反射材18を、前記図5に示したように背中合わせにしてリベット等で固定することにより、図5と同様な拡散装置を構成することができる。図6においては、隣接する線が直線と直線の組み合わせである例を示したが、隣接する線が直線と曲線、曲線と曲線の組み合わせてとしてもよい。
【0015】
なお、上記反射材の断面形状は、必ずしも光ダクトの中心軸に対して点対象もしくは中心軸を通る直線に対して線対称にする必要はない。
例えば、光ダクトに対する光の入射方向が偏っている場合等には、線対称もしくは点対象でない断面形状の拡散装置を用いることにより、光を効率的に拡散することができる。
図7は、右上方の斜め方向から光が光ダクト4に入射する場合に好適な拡散装置22の断面形状を示しており、同図は光ダクトをX軸方向から見た図を示している。光ダクト4の右上方から斜めに入射する場合には、同図に示すように、断面が1/4円状に形成された円弧状の2枚の反射材19a,19bを用い、2枚の反射材19a,19bの向きを同心円状に揃えて光ダクトの対角線方向に配置し、反射材19a,19bの反射面が光ダクト装置の長手方向に平行になるように、光ダクト4内に設置する。これにより、斜め右上方から入射する光を、効率的に拡散することができる。
【0016】
図8は拡散装置の構成例を示す図であり、拡散装置は次にように構成することができる。
(1)図8(a)に示すように断面形状が半円の反射材を用い反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する(前記図3に示した構成と同じ)。
(2)図8(b)に示すように断面形状が半円の反射材を背中合わせに接続し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する(前記図5に示した構成と同じ)。
(3)図8(c)に示すように、断面が1/4円状に形成された円弧状の4枚の反射材を用い、断面が菱形に近似した形状となるように4枚の反射材の円弧の端部を接続する。そして、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
【0017】
(4)図8(d)に示すように、反射材を円筒形状に形成し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
(5)図8(e)に示すように、断面が1/4円状に形成された円弧状の2枚の反射材を用い、2枚の反射材の向きを同心円状に揃えて光ダクトの対角線方向に配置し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト4内に設置する(前記図7を90°回転させた形状)。
(6)図8(f)に示すように、くの字状に折り曲げた反射材を両端部を接触させ、中間部分を離間させて複数枚重ね合わせ、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト4内に設置する。
(7)図8(g)に示すように、断面が放物線の反射材を用い、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
【0018】
(8)図8(h)に示すように、円筒形の第1の反射材の周囲に、板状の第2の反射材の一方端を取り付け、第2の反射材の他方端を光ダクトに取り付け、第1、第2の反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト4内に設置する。
(9)図8(i)に示すように、波型の反射材を光ダクトの対角線方向に配置し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト4内に設置する。
(10)図8(j)に示すように、断面が半円形状に形成された2枚の反射材を離間させ、円弧の頂部を対向させて2枚の反射材を水平方向に配置し、反射材の反射面が光ダクト装置の長手方向に平行になるように光ダクト内に設置する。
【0019】
(11)図8(k)に示すように、断面が略1/4円状に形成された円弧状の2枚の反射材を円弧の頂部を対向させて離間し、2枚の反射材を光ダクトの対角線方向に配置し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
(12)図8(l)に示すように、断面が半円形状に形成された2枚の反射材の端部を半円形の凸部が上側と下側になるように接続して反射面を形成し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
(13)図8(m)に示すように、断面が放物線状に形成された2枚の反射材の頂部を接続して、2枚の反射材を水平方向に配置し、反射材の反射面が光ダクト装置の長手方向に平行になるように、光ダクト内に設置する。
なお、上記図8(a)〜(m)に示した拡散装置を光ダクトのX軸を中心に任意の角度回転させて使用してもよい。
【0020】
拡散装置を上記のように構成することにより、前記図3、図4で説明した原理に基づき、光ダクトに入射した平行光を効果的に拡散することができる。
また、より高い拡散効果を必要とする場合には、図9に示すように異なる形状の拡散装置を組み合わせて複数使用してもよい。図9は前記図8(c)に示した拡散装置23と、前記図5に示した拡散装置21を組み合わせた例を示しているが、その他前記した各種形状の拡散装置を適宜組み合わせることができる。
さらに、図8に示した各種拡散装置を図10に示すように採光口2側とダクト終端側に設置する等、複数箇所に設置してもよい。拡散装置を光ダクト終端側に設けることにより終端で反射された光を再拡散し活用することができる。
【0021】
なお、拡散装置のX方向の長さが長くなると光の反射回数が増え、減衰が大きくなるので拡散装置のX方向の長さは適切に設定する必要がある。
また、拡散装置の曲線の形状は、上記したように円弧もしくは円、放物線にする外、楕円曲線等のその他の曲線にしてもよい。さらに、図8に示した各種形状の拡散装置の断面を、前記図6に示したように隣接する線の角度が鈍角をなす直線と直線の組み合わせからなる曲線に近似した形状としてもよい。
【0022】
【発明の効果】
以上説明したように、本発明においては、光ダクト装置内に、光を拡散させる拡散装置を設けたので、光ダクト内の光の密度を均一化することができ、室内の照度分布を均一化することができ、また、光の照射面に濃淡模様が生ずるといった問題を解消することができる。
【図面の簡単な説明】
【図1】光路の途中に反射材を挿入した場合の光路の変化を示す図である。
【図2】光路の途中に設けた反射材を回転したときの光路の変化を示す図である。
【図3】曲面を持った反射材を用いた拡散装置の構成例を示す図である。
【図4】反射材による入射光の拡散の様子を示す図である。
【図5】本発明の実施例の拡散装置の構成例を示す図である。
【図6】直線で近似した曲面を持つ反射材の構成例を示す図である。
【図7】右上方の斜め方向から光が光ダクトに入射する場合に好適な拡散装置の断面形状例を示す図である。
【図8】拡散装置の断面形状の構成例を示す図である。
【図9】異なる形状の拡散装置を組み合わせて複数使用した場合を示す図である。
【図10】拡散装置を光ダクト内における拡散装置の設置位置例を示す図である。
【図11】水平ダクト型光ダクト装置の概念図である。
【図12】垂直ダクト型光ダクト装置の概念図である。
【図13】光ダクトに入射した光の光路例を示す図である。
【図14】ダクト内に平行光が入射した場合に発生する光の密度差を説明する図である。
【図15】拡散フイルムを使用した拡散装置の構成例を示す図である。
【符号の説明】
1 自然光(太陽光)
2 採光口
3 反射材
4 ダクト
5 ビル壁面
6 室内
7 ガラスカバー
8 放光口
9 屋上または地上
10 フィルム
12 反射板
15 反射材
17 鏡面材
18 反射材
19a,19b 反射材
20,21,22,23 拡散装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light diffusing device used for an optical duct that guides light into a building through an optical duct and illuminates the inside of the building.
[0002]
[Prior art]
In recent years, the need for environmental protection by saving energy and reducing carbon dioxide emissions has attracted attention. As one means for responding to this demand, the interior of a room is made through a duct made of highly reflective material on the inner surface of sunlight. An optical duct device has been proposed that is used as an illumination light source.
Since this device does not convert energy into other energy such as electricity, but uses it as it is, it has high energy use efficiency and can contribute to energy saving and carbon dioxide emission reduction.
[0003]
11 and 12 are conceptual diagrams of an optical duct device to which the present invention is applied. FIG. 11 is a horizontal optical duct device that takes in light from the south side wall surface of a building and uses it for lighting in an office, etc. A vertical light duct device having a portion for conveying light downward when there is a height difference between a lighting position and an illumination position such as in the basement or rooftop is shown. FIG. 11B is a perspective view of the horizontal duct body.
11 and 12, 1 is natural light (sunlight), 2 is a daylighting port, 3 is a reflector, 4 is a light duct, 5 is a building wall surface, 6 is a room, 7 is a glass cover, 8 is a light outlet, 9 is a rooftop or the ground. As shown in FIG. 11B, the optical duct 4 has a rectangular cross section and an inner surface formed of a reflective surface.
In FIGS. 11 and 12, sunlight 1 is reflected directly from the lighting port 2 or after being reflected by the reflecting material 3 and then taken into the duct 4 and carried to the irradiation position while being repeatedly reflected on the inner surface. 8 is irradiated.
[0004]
FIG. 13 is a diagram conceptually showing an optical path when sunlight enters a horizontal optical duct device. FIG. 13A is a perspective view, FIG. 13B is a view of the optical path in the optical duct as viewed from the direction A in FIG. 13A, and FIG. 13C is the optical path in the optical duct. FIG. 13D is a view of the optical path in the optical duct as seen from the C direction of FIG. As shown in the figure, the light incident on the optical duct device travels in the depth direction of the optical duct while being repeatedly reflected by the reflecting surface of the optical duct.
[0005]
[Problems to be solved by the invention]
The light incident on the optical duct device travels inside the optical duct along the optical path as shown in FIG. On the other hand, sunlight incident on the light duct is a parallel light beam whose irradiation direction changes greatly depending on time and season. Therefore, when parallel light rays enter the optical duct device, as shown in FIG. 14, a large shade is produced in the light density inside the duct.
If this is irradiated into the room from the light emission port 8 as it is, problems such as variations in the illuminance distribution in the indoor position and the appearance of a shade pattern on the light irradiation surface occur.
In order to solve such a problem, it is conceivable to attach a means for diffusing light to the optical duct device.
[0006]
As a means for diffusing light, for example, there is a method of obtaining a diffusion effect by inserting a film 10 having a light diffusing function in the middle of an optical path as shown in FIG.
However, this method does not provide a sufficient effect for the diffusion of sunlight with strong directivity, and further, a large attenuation of light of 20% or more occurs when it passes through the film, the glass or resin on which it is applied. The efficiency of the apparatus is reduced.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a light duct diffusing device capable of effectively diffusing light incident in an optical duct with little attenuation of light. Is to provide.
[0007]
[Means for Solving the Problems]
When sunlight enters the light duct device from diagonally above the duct, placing a reflective material that is parallel to the depth direction of the light duct and inclined with respect to the incident light in the middle of the light path changes the light path in the light duct. be able to.
Hereinafter, for convenience of description, the depth direction of the optical duct is defined as the X-axis direction, the direction perpendicular to the X-axis on the horizontal plane including the X-axis is defined as the Y-axis direction, and the direction perpendicular to the XY plane is defined as the Z-axis direction.
FIG. 1 is a diagram showing an optical path when the reflector 12 that is parallel to the X axis and inclined with respect to the XY plane is placed as described above. In FIG. 1, light incident obliquely on the YZ plane is reflected by the reflector. The solid line shows the optical path when the reflecting plate 12 is placed, and the dotted line shows the optical path when the reflecting plate 12 is not placed. 1A shows a perspective view, FIG. 1B shows a view of the optical path in the optical duct from the X-axis direction, and FIG. 1C shows the optical path in the optical duct from the Y-axis direction. The figure (d) is the figure which looked at the optical path in an optical duct from the Z-axis direction.
[0008]
As shown in FIG. 1, light incident from obliquely above the optical duct and reflected by the reflector 12 is repeatedly reflected from the right side R of the optical duct to the right side R → the upper side U → the left side L → the right side R, and X Proceed in the axial direction. That is, by placing the reflecting plate 12, the optical path 1 ′ indicated by the dotted line can be changed to the optical path 1 indicated by the solid line.
Here, as shown in FIG. 2 (a), when the reflecting surface of the reflector 12 is rotated around the X axis, the reflected light of the light incident on the optical duct at an incident angle α is shown in FIG. ), The angle formed by the point 14 and the X axis moves on a conical surface having an angle α. When the reflected light is projected onto the YZ plane, the direction of the reflected light changes to 360 degrees all around as shown in FIG. 5C, and the reflection of the parallel light incident on the optical duct depends on the rotation angle of the reflecting surface. The direction can be changed (here, dispersing light in different directions is referred to as diffusing).
[0009]
That is, the reflecting surface in which the inclination of the sectional straight line of the reflecting surface appearing on the plane orthogonal to the X axis or the inclination of the tangent of the sectional curve differs depending on the light reflection point has a function of diffusing light inside the light duct.
For example, as shown in FIG. 3A, when a reflector 15 having a curved cross-sectional shape appearing on a plane parallel to the X-axis direction and perpendicular to the X-axis is installed in the optical duct, As shown, since the light 1 has the same optical path as that reflected by the plane 16 in contact with the reflector 15, even when parallel light is incident, the optical path of the reflected light can be changed in different directions depending on the reflection position. As described with reference to FIG. 2, a high diffusion effect can be obtained. That is, in this case, the single reflector 15 has a function as the diffusion device 20.
[0010]
FIG. 4 is a diagram showing a state of diffusion of incident light by the reflecting material 15 whose cross-sectional shape shown in FIG. 3 is a curve, and a solid line (1 in FIG. 3) is an optical path when the reflecting material 15 is provided, a dotted line ( FIG. 1 ′) shows the original optical path when the reflecting material 15 is not provided. 2A is a view of the optical path in the optical duct viewed from the X-axis direction, FIG. 2B is a view viewed from the Y-axis direction, and FIG. 2D is a view viewed from the Z-axis direction. is there.
As shown in the figure, when parallel light is incident from obliquely above the optical duct (in the figure, it is assumed that a row of parallel light is incident in the Y-axis direction), the semicircular reflecting material 15 is irradiated. Depending on the incident position, the optical path of the reflected light is different, and the light density in the optical duct is made uniform. For this reason, as shown in FIG. 14, the light density inside the duct does not vary greatly.
[0011]
For example, as shown in FIG. 6 to be described later, the reflecting material 15 can obtain a similar effect even if the reflecting material 15 has a shape approximated to a curve formed by a set of straight lines having an obtuse angle. In addition to the semicircular shape as described above, the same effect can be obtained even if the cross-sectional shape is a set of curves or a set of straight lines as shown in FIG.
By providing one or more diffusers with the above configuration on the light outlet side, end side, or appropriate location of the light duct, the light density in the light duct can be made uniform, and the illuminance distribution in the room is uniform. Thus, the problem that a light and shade pattern occurs on the light irradiation surface can be solved.
[0012]
The present invention was made in view of the above point, is used in the light duct system utilizing the illumination of natural light, light for the optical duct for the parallel light taken into the light duct device is diffused inside the light duct In the diffusing device, the light diffusing device is composed of a reflecting material having a reflecting surface that is parallel to the longitudinal direction of the light duct and reflects incident light in different directions according to the incident position of the light, and enters the light duct. The parallel light is diffused to make the light density in the light duct uniform.
That is, this invention solves the said subject as follows.
( 1 ) A light diffusing device for an optical duct that is used in an optical duct device that uses natural light for illumination and diffuses parallel light taken into the optical duct device inside the optical duct. Consists of a reflective material having a reflective surface parallel to the longitudinal direction, and the cross-sectional shape of the reflective surface appearing on a plane perpendicular to the depth direction of the optical duct is a curve or a straight line and a straight line in which the angle of an adjacent line forms an obtuse angle The shape approximates a straight line and a curve, or a curve composed of a combination of a curve and a curve.
The present invention can also be configured as follows.
( 2 ) The light diffusing device is made of a reflective material having a reflective surface parallel to the longitudinal direction of the optical duct, and the cross-sectional shape of the reflective surface that appears on a plane perpendicular to the depth direction of the optical duct is two or more curves. A combination of
( 3 ) The light diffusing device is made of a reflective material having a reflective surface parallel to the longitudinal direction of the optical duct, and the cross-sectional shape of the reflective surface appearing on a plane perpendicular to the depth direction of the optical duct is separated by two or more. This is a combination of curves.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 is a diagram showing a configuration example of the diffusing device according to the embodiment of the present invention, and FIG. 5 shows a diffusing device using a reflecting material formed in an arc shape.
FIG. 5A shows a semicircular reflecting material used in this embodiment, and two aluminum mirror materials 17 (for example, aluminum mirror material Miro plate thickness 0.5 mm manufactured by Allanod, Germany). Is bent into a semicircle having the same diameter as the width of the duct bottom as shown in the figure, and bonded with an epoxy-based adhesive so that both surfaces become mirror surfaces.
Two sets of the reflective material formed as described above are prepared [15a, 15b in FIGS. 5 (b) and (c)], and rivets are formed through the fixing holes 17a provided in the reflective materials 15a, 15b. By stopping, both are fixed, assembled as shown in FIG. 5 (b), and installed in the optical duct as shown in FIG. 5 (c).
By installing the diffusing device 21 configured as described above in the optical duct, the parallel light incident on the optical duct is diffused as shown in FIGS. 3 and 4, and the light density in the optical duct is made uniform. Can be
[0014]
FIG. 6 is a diagram showing another configuration example of the diffusing device. FIG. 6 shows a diffusing device using a reflective material formed in a polygonal shape.
In FIG. 6, the reflecting material 18 is a reflecting material in which two aluminum materials are bonded so that the mirror surface is on the outside as described above, and the reflecting material 18 has a polygonal cross section as shown in FIG. It is a shape (a shape approximating a curve made up of a set of straight lines in which the mutual angles form an obtuse angle). A diffusion device similar to that shown in FIG. 5 can be configured by fixing the reflecting material 18 as described above back to back as shown in FIG. 5 with a rivet or the like. Although FIG. 6 shows an example in which the adjacent lines are a combination of straight lines and straight lines, the adjacent lines may be a combination of straight lines and curves, or a combination of curves and curves.
[0015]
In addition, the cross-sectional shape of the reflective material does not necessarily need to be line-symmetric with respect to the central axis of the optical duct with respect to a point object or a straight line passing through the central axis.
For example, when the incident direction of light with respect to the optical duct is deviated, the light can be diffused efficiently by using a diffusing device having a cross-sectional shape that is not line-symmetric or point-oriented.
FIG. 7 shows a cross-sectional shape of the diffusing device 22 suitable for the case where light enters the optical duct 4 from an oblique direction at the upper right, and FIG. 7 shows a view of the optical duct viewed from the X-axis direction. . When entering obliquely from the upper right side of the optical duct 4, as shown in the figure, two arcuate reflectors 19a and 19b having a cross section of a quarter circle are used. The reflectors 19a and 19b are concentrically arranged in the diagonal direction of the optical duct and installed in the optical duct 4 so that the reflecting surfaces of the reflectors 19a and 19b are parallel to the longitudinal direction of the optical duct device. To do. Thereby, the light incident from diagonally upper right can be diffused efficiently.
[0016]
FIG. 8 is a diagram showing a configuration example of the diffusion device, and the diffusion device can be configured as follows.
(1) As shown in FIG. 8 (a), a reflecting material having a semicircular cross-section is used, and the reflecting surface of the reflecting material is installed in the optical duct so as to be parallel to the longitudinal direction of the optical duct device (see FIG. 8). 3 is the same as the configuration shown in FIG.
(2) As shown in FIG. 8 (b), the reflecting members having a semicircular cross section are connected back to back, and the reflecting surfaces of the reflecting materials are installed in the optical duct so that they are parallel to the longitudinal direction of the optical duct device. (Same as the configuration shown in FIG. 5).
(3) As shown in FIG. 8 (c), four reflecting members having an arc shape having a cross section of ¼ circle are used, and four reflections are made so that the cross section has a shape approximate to a rhombus. Connect the ends of the arcs of the material. And it installs in an optical duct so that the reflective surface of a reflecting material may become parallel to the longitudinal direction of an optical duct apparatus.
[0017]
(4) As shown in FIG. 8D, the reflecting material is formed in a cylindrical shape, and is installed in the optical duct so that the reflecting surface of the reflecting material is parallel to the longitudinal direction of the optical duct device.
(5) As shown in FIG. 8 (e), two arc-shaped reflectors having a ¼ cross section are used, and the two reflectors are aligned concentrically to form an optical duct. Are installed in the optical duct 4 so that the reflecting surface of the reflector is parallel to the longitudinal direction of the optical duct device (the shape of FIG. 7 rotated 90 °).
(6) As shown in FIG. 8 (f), both ends of the reflective material bent in a U-shape are brought into contact with each other, a plurality of the intermediate portions are separated from each other, and the reflective surface of the reflective material is the optical duct device. It is installed in the optical duct 4 so as to be parallel to the longitudinal direction.
(7) As shown in FIG. 8G, a reflecting material having a parabolic cross section is used, and the reflecting surface of the reflecting material is installed in the optical duct so as to be parallel to the longitudinal direction of the optical duct device.
[0018]
(8) As shown in FIG. 8 (h), one end of the plate-like second reflecting material is attached around the cylindrical first reflecting material, and the other end of the second reflecting material is connected to the optical duct. And installed in the optical duct 4 so that the reflective surfaces of the first and second reflective members are parallel to the longitudinal direction of the optical duct device.
(9) As shown in FIG. 8 (i), the wave-shaped reflecting material is arranged in the diagonal direction of the light duct, and the light duct 4 is arranged so that the reflecting surface of the reflecting material is parallel to the longitudinal direction of the light duct device. Install in.
(10) As shown in FIG. 8 (j), the two reflectors having a semicircular cross section are separated from each other, the two reflectors are arranged in the horizontal direction with the tops of the arcs facing each other, The reflecting material is installed in the optical duct so that the reflecting surface thereof is parallel to the longitudinal direction of the optical duct device.
[0019]
(11) As shown in FIG. 8 (k), two arcuate reflectors having a substantially circular cross section are separated with the tops of the arcs facing each other, and the two reflectors are separated. It arrange | positions in the diagonal direction of an optical duct, and installs in an optical duct so that the reflective surface of a reflecting material may become parallel to the longitudinal direction of an optical duct apparatus.
(12) As shown in FIG. 8 (l), the reflection surface is formed by connecting the end portions of two reflectors having a semicircular cross section so that the semicircular convex portions are on the upper side and the lower side. And is installed in the optical duct so that the reflective surface of the reflective material is parallel to the longitudinal direction of the optical duct device.
(13) As shown in FIG. 8 (m), the tops of two reflectors having a parabolic cross section are connected, the two reflectors are arranged in the horizontal direction, and the reflection surface of the reflector Is installed in the optical duct so that is parallel to the longitudinal direction of the optical duct device.
Note that the diffusing device shown in FIGS. 8A to 8M may be used by rotating it at an arbitrary angle around the X axis of the optical duct.
[0020]
By configuring the diffusing device as described above, it is possible to effectively diffuse the parallel light incident on the optical duct based on the principle described with reference to FIGS.
When a higher diffusion effect is required, a plurality of diffusion devices having different shapes may be used in combination as shown in FIG. FIG. 9 shows an example in which the diffusion device 23 shown in FIG. 8C and the diffusion device 21 shown in FIG. 5 are combined. In addition, the above-described various shapes of diffusion devices can be appropriately combined. .
Furthermore, the various diffusing devices shown in FIG. 8 may be installed at a plurality of locations, for example, as shown in FIG. By providing the diffusing device on the optical duct end side, the light reflected at the end can be re-diffused and utilized.
[0021]
In addition, since the frequency | count of reflection of light will increase and the attenuation | damping will become large when the length of the X direction of a diffuser becomes long, it is necessary to set the length of the X direction of a diffuser appropriately.
Further, the shape of the curve of the diffusion device may be an arc, a circle, a parabola, or another curve such as an elliptic curve as described above. Further, the cross section of the diffuser having various shapes shown in FIG. 8 may have a shape approximated to a curve formed by a combination of straight lines and straight lines in which the angles of adjacent lines form an obtuse angle as shown in FIG.
[0022]
【The invention's effect】
As described above, in the present invention, since the diffusion device for diffusing light is provided in the light duct device, the light density in the light duct can be made uniform, and the illuminance distribution in the room is made uniform. In addition, it is possible to solve the problem that a shade pattern is generated on the light irradiation surface.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in an optical path when a reflecting material is inserted in the middle of the optical path.
FIG. 2 is a diagram showing a change in an optical path when a reflecting material provided in the middle of the optical path is rotated.
FIG. 3 is a diagram illustrating a configuration example of a diffusion device using a reflecting material having a curved surface.
FIG. 4 is a diagram illustrating a state of diffusion of incident light by a reflecting material.
FIG. 5 is a diagram illustrating a configuration example of a diffusion device according to an embodiment of the present invention.
FIG. 6 is a diagram illustrating a configuration example of a reflector having a curved surface approximated by a straight line.
FIG. 7 is a diagram showing an example of a cross-sectional shape of a diffusion device suitable when light enters the optical duct from an oblique direction on the upper right.
FIG. 8 is a diagram illustrating a configuration example of a cross-sectional shape of a diffusion device.
FIG. 9 is a diagram illustrating a case where a plurality of diffusion devices having different shapes are used in combination.
FIG. 10 is a diagram showing an example of the installation position of the diffusing device in the optical duct.
FIG. 11 is a conceptual diagram of a horizontal duct type optical duct device.
FIG. 12 is a conceptual diagram of a vertical duct type optical duct device.
FIG. 13 is a diagram illustrating an example of an optical path of light incident on an optical duct.
FIG. 14 is a diagram for explaining a density difference of light generated when parallel light enters the duct.
FIG. 15 is a diagram illustrating a configuration example of a diffusion device using a diffusion film.
[Explanation of symbols]
1 Natural light (sunlight)
2 Lighting port 3 Reflecting material 4 Duct 5 Building wall surface 6 Indoor 7 Glass cover 8 Light emitting port 9 Rooftop or ground 10 Film 12 Reflecting plate 15 Reflecting material 17 Mirror surface material 18 Reflecting material 19a, 19b Reflecting material 20, 21, 22, 23 Diffuser

Claims (1)

自然光を照明に利用する光ダクト装置内に設置され、光ダクト装置に取り入れた平行光を光ダクト内部で拡散させるための光ダクト用光拡散装置であって、
上記光拡散装置は、光ダクトの長手方向に平行で、光の入射位置に応じて、入射光を異なる方向に反射させる形状の反射面を有する反射材から構成され、
光ダクトの奥行き方向に垂直な平面に現れる上記反射面の断面形状は、曲線、又は、隣接する線の角度が鈍角をなす直線と直線、直線と曲線、もしくは曲線と曲線の組み合わせからなる形状であり、
光ダクトに入射した光を拡散させ、光ダクト内の光の密度をほぼ均一化する
ことを特徴とする光ダクト用光拡散装置。
A light diffusing device for a light duct that is installed in a light duct device that uses natural light for illumination and diffuses the parallel light taken into the light duct device inside the light duct,
The light diffusing device is composed of a reflecting material having a reflecting surface that is parallel to the longitudinal direction of the light duct and reflects the incident light in different directions according to the incident position of the light,
The cross-sectional shape of the reflecting surface that appears in the plane perpendicular to the depth direction of the optical duct is a curve or a shape formed by a combination of a straight line and a straight line, a straight line and a curved line, or a combination of a curved line and a curved line where the angle of an adjacent line forms an obtuse angle. Yes,
A light diffusing device for an optical duct, characterized by diffusing light incident on the optical duct and making the density of light in the optical duct substantially uniform.
JP31248198A 1998-11-02 1998-11-02 Light diffusion device for optical duct Expired - Lifetime JP4148574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31248198A JP4148574B2 (en) 1998-11-02 1998-11-02 Light diffusion device for optical duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31248198A JP4148574B2 (en) 1998-11-02 1998-11-02 Light diffusion device for optical duct

Publications (2)

Publication Number Publication Date
JP2000149627A JP2000149627A (en) 2000-05-30
JP4148574B2 true JP4148574B2 (en) 2008-09-10

Family

ID=18029739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31248198A Expired - Lifetime JP4148574B2 (en) 1998-11-02 1998-11-02 Light diffusion device for optical duct

Country Status (1)

Country Link
JP (1) JP4148574B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228508A (en) * 2005-02-16 2006-08-31 Nikken Sekkei Ltd Light diffusion equipment of vertical optical duct
JP4971061B2 (en) 2007-07-23 2012-07-11 東洋鋼鈑株式会社 Light reflecting plate, method for manufacturing the same, and light reflecting device

Also Published As

Publication number Publication date
JP2000149627A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
US4517631A (en) Indirect light reflector
JP5775528B2 (en) Direct and indirect light diffusing apparatus and method
US20160369972A1 (en) Light-emitting device
US5725296A (en) Light head assembly with remote light source
JPH02148601A (en) Optical system of headlight
JPH056704A (en) Light distribution variable lighting device
JP4148574B2 (en) Light diffusion device for optical duct
CA1197496A (en) Reflector lamp with shaped reflector and lens
CN108800061B (en) Grading lens of line lamp
JP2008287920A (en) Optical duct device which has level branch duct
JP2000250136A5 (en)
WO2019138459A1 (en) Lighting device
JP3190818B2 (en) Lamp
CN111911828A (en) Grading subassembly, illumination lamps and lanterns and illumination module
JPH0243044Y2 (en)
JP5253270B2 (en) Daylighting system
CN221054865U (en) Light source diffusion structure and lighting lamp
JPH09231813A (en) Lamp
JP6519156B2 (en) Daylighting system
JP2006228508A (en) Light diffusion equipment of vertical optical duct
JP3147556B2 (en) Vehicle lighting
JP3190815B2 (en) Lamp
JP2015018773A (en) Sunlight illumination device
JP3244837B2 (en) lighting equipment
JPH05242713A (en) Louver apparatus of high brightness for luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term