JP4148483B2 - Yeast derived protein - Google Patents

Yeast derived protein Download PDF

Info

Publication number
JP4148483B2
JP4148483B2 JP22796898A JP22796898A JP4148483B2 JP 4148483 B2 JP4148483 B2 JP 4148483B2 JP 22796898 A JP22796898 A JP 22796898A JP 22796898 A JP22796898 A JP 22796898A JP 4148483 B2 JP4148483 B2 JP 4148483B2
Authority
JP
Japan
Prior art keywords
yeast
treatment
protein according
aqueous solution
subjecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22796898A
Other languages
Japanese (ja)
Other versions
JP2000053698A (en
Inventor
斉 小幡
和弘 山出
秀久 河原
彰子 浜野
Original Assignee
斉 小幡
玉乃光酒造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 斉 小幡, 玉乃光酒造株式会社 filed Critical 斉 小幡
Priority to JP22796898A priority Critical patent/JP4148483B2/en
Publication of JP2000053698A publication Critical patent/JP2000053698A/en
Application granted granted Critical
Publication of JP4148483B2 publication Critical patent/JP4148483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はカルシウム塩結晶化抑制能を有する酵母菌由来タンパク質に関する。
【0002】
【従来の技術】
人体等の動物体を構成する無機質のうち最も多い成分はカルシウムであり、その約99%は骨や歯の構成要素であり、残りの約1%は各種酵母の活性や細胞の興奮沈静化等の生命維持作用において重要な役割を果たしている。後者の場合、特定の器官内でカルシウム塩が結晶化して形成される結石が分泌腺等を閉塞すると生体が死に到ることになるが、正常な生体内ではカルシウム塩結晶化抑制能を有する特殊なタンパク質が作り出されるために該結晶化は効果的に抑制されている。
例えば、ヒトの膵臓から小腸管腔内へ分泌される膵液は多種の消化酵素以外に過飽和状態の炭酸カルシウムを含有しているが、該カルシウム塩の結晶化は膵液中に含まれるPSP(Pancreatic Stone Protein; 水性アミノ酸を豊富に含む糖リンタンパク質の1種)によって適切に抑制されている[A.デ・カロら、Biochem.J.、第222巻、第669頁(1984年)参照]。
しかしながら、このバランスが何んらかの原因(例えば、加齢に伴うPSPの濃度低下等)によってくずれると、カルシウム塩が結晶化してカルサイト(方解石)状の結石を膵管内に形成するという問題をもたらす。
【0003】
このような問題の1つの解決策はこのような結石で患う患者にPSPを生体外から投与する方法であるが、PSPを実用的な臨床的規模で調製する方法は知られていない。このため、PSPの代替薬としてカルサイトと結合し得る各種のキレート化剤が市販されているが、副作用があるために一般的に使用されるには到っていないのが実情である。
【0004】
【発明が解決しようとする課題】
この発明は当該分野の上記の実情に鑑み、副作用のないPSP代替薬を実用的な臨床的規模で提供するためになされたものである。
【0005】
【課題を解決するための手段】
即ち、この発明は下記の過程(i)〜(vi)を含む調製法によって得られるカルシウム塩結晶化抑制能を有する酵母菌由来タンパク質に関する:
(i) ケフィアから分離される酵母菌を温度5〜55℃およびpH5〜7の条 件下で培養し、
(ii) 培養菌体をトリス塩酸緩衝液を用いて処理し、
(iii)回収菌体をEDTA水溶液に懸濁させた状態での細胞破砕処理に付し、
(iv) 該細胞破砕処理物の上澄み液を核酸除去処理に付し、
(v) 該核酸除去処理物の上澄み液を透析処理に付し、次いで
(vi) 該透析処理物を濃縮処理に付す。
【0006】
【発明の実施の形態】
本発明において用いる酵母菌はケフィアから分離される自体公知のZygosaccharomyces属の酵母菌である。この酵母菌は、常套の分離法によって容易に分離することができる。
【0007】
ケフィアから分離される上記酵母菌の培養用培地は特に限定的ではなく、この種の酵母菌の培養に常用されているものを適宜使用すればよいが、好適なものとしては蒸留水に酵母エキス2〜5g、麦芽エキス2〜5g、ペプトン3〜8gおよびグルコース10〜15g溶解させた培地が例示される。
培地のpHは通常は5〜7の範囲内に調製する。pHがこの範囲から外れると菌の成育が低下するだけでなく、最終的に得られるタンパク質のカルシウム塩結晶化抑制能が低下するので好ましくない。
培養温度と培養時間は特に限定的ではないが、通常は5〜55℃、好ましくは20〜40℃(特に、25〜30℃)および12〜48時間(好ましくは14〜36時間)である。
また、培養雰囲気としては通常好気条件を採用する。
【0008】
培養した菌体は遠心分離処理によって分離する。遠心分離は通常4000〜6000×gで0〜5℃において10〜20 分間おこなう。
分離された菌体は、例えば、5〜15mMのトリス塩酸緩衝液(pH8.0〜9.0)を用いて1回または数回処理する。
処理後の菌体は遠心分離処理に付すことによって回収する。遠心分離は通常25000〜30000×gで0〜5℃において10〜20分間おこなう。
回収された菌体は約0.5〜3.0倍容量の、例えば、0.3〜0.6MのEDTA(pH8.0〜9.0)水溶液に懸濁させた状態での細胞破砕処理に付す。細胞破砕処理は常法に従い、例えば、超音波破砕機またはフレンチプレス等を用いておこなう。この細胞破砕処理は通常0〜5℃において10〜20分間おこなう。
【0009】
上記の細胞破砕処理物を遠心分離処理に付して得られる上澄み液は核酸除去処理に付する。この場合の遠心分離は通常25000〜30000×gで0〜5℃において10〜20分間おこなう。また、核酸除去処理は常法に従い、例えば、硫酸ストレプトマイシンと0.3〜0.6MのEDTA水溶液(pH8.0〜9.0)を用いて0〜4℃においておこなう。
核酸除去処理後の上澄み液は適当な透析手段を用いる透析処理に付す。例えば、該上澄み液を透析チューブ[例えば、「ダイアライシスメンブラン20」(WakoChem.USA.Inc.製)]に入れ、0〜5℃において蒸留水を3〜4時間間隔で交換しながら18〜36時間透析をおこなう。
透析物を適当な濃縮剤、例えば、ポリエチレングリコール6000を用いて濃縮することによって本発明によるカルシウム塩結晶化抑制能を有する酵母菌由来タンパク質が得られる。
【0010】
本発明による酵母菌由来タンパク質の特性を明らかにするために、上記の調製法で得られる高分子物質を超遠心分離処理(105,000×g; 4℃; 2時間)に付した後、硫安分画処理(40〜80%)に付すことによって精製した。
この精製試料に対する種々の酵素の影響を検討するために、該精製試料のカルシウム塩結晶化抑制能を表1に示す種々の酵素を用いて30〜37℃でpH6.0〜8.0の条件下で処理した後で測定し、結果を表1に示す。
【0011】
【表1】

Figure 0004148483
【0012】
カルシウム塩結晶化抑制能は次の様にして評価した。即ち、炭酸水素ナトリウムの20mM水溶液(pH8.7)1.5mlに試料水溶液30μlを添加した後、塩化カルシウムの20ml水溶液(pH8.7)1.5mlを添加し、系の温度を25℃に維持しながら次式で表される反応をおこない、反応系の波長570nmにおける吸光度(A570)またはpHを分光光度計またはpH測定計を用いて経時的に測定する:
【化1】
Figure 0004148483
【0013】
上記の反応系に試料溶液として蒸留水30μlを添加したときのA570の経時変化を図1に示す。吸光度は約20秒後から急激に増大し、約200秒後にほぼ最大値に達し、反応はほぼ完了する。また、図1に対するpHの経時変化を図2に示す。
従って、試料によるカルシウム塩結晶化抑制能(%)は200秒後のA570を測定し、次式から算出するのが簡便である:
【数1】
Figure 0004148483
【0014】
表1から明らかなように、本発明による酵母菌由来タンパク質のカルシウム塩結晶化抑制能(相対活性: 100%)はプロテイナーゼKを用いる処理によって大幅に低下すると共に、β−ガラクトシダーゼを用いる処理によってかなり低下する。
このことは本発明による酵母菌由来タンパク質が糖タンパク質の1種である可能性を示唆するものである。
【0015】
上記の精製試料のカルシウム塩結晶化抑制能を10℃、20℃、25℃、30℃、35℃、40℃、50℃または60℃で60分間処理した後で測定し、その結果(熱安定性)を図3に示す。
【0016】
ケフィアから分離した酵母菌をYM培地(pH6.0)中、好気条件下において30℃で振盪培養させた時の増殖曲線および種々の培養時間後に得られた本発明による酵母菌由来タンパク質のカルシウム塩結晶化抑制能をそれぞれ図4および図5に示す。なお、図4には培地のpHの経時変化も示す。これらの図の比較から明らかなように、対数増殖期の初期の酵母菌に由来するタンパク質は特に高いカルシウム塩結晶化抑制能を示す。
【0017】
本発明による酵母菌由来タンパク質は実質的な副作用を伴うことなく、カルシウム塩の結晶化を有効に抑制するので、種々の用途が期待されるが、特に膵臓結石症の処置剤として特に有用である。
従って、本発明の別の観点によれば、前述の酵母菌由来タンパク質を有効成分とする膵臓結石症処置剤が提供される。
【0018】
本発明による膵臓結石症処置剤は経口投与に適した形態に調製するのが一般的である。このような形態としてはタブレット、トローチ、ドロップ、水性もしくは油性懸濁液、分散性の粉末もしくは顆粒、エマルション、硬質もしくは軟質カプセル、シロップおよびエリキシル等が例示される。これらの経口投与用処置剤は薬剤組成物の製造分野において既知のいずれかの方法によって調製すればよく、また、該処置剤には甘味剤、香味剤、着色剤および防腐剤から選択される1種または2種以上の添加剤を適宜配合してもよい。
【0019】
なお、タブレットには有効成分と共にタブレットの製造に適した非毒性の賦形剤、例えば、不活性希釈剤(例えば、炭酸ナトリウムやラクトース等)、造粒剤や崩壊剤(例えば、コースターチ、アルギン酸等)、結合剤(例えば、デンプン、ゼラチン等)および潤滑剤(例えば、ステアリン酸マグネシウム、タルク等)等を適宜配合すればよいが、既知の遅延剤(例えば、モノステアリン酸グリセリン、ジステアリン酸グリセリン等)を用いて被覆することによって胃腸管内の崩壊と吸収を遅延させて有効成分が長時間にわたって徐放されるようにしてもよい。
【0020】
本発明による膵臓結石症処置剤は注射可能な無菌の水性もしくは油性懸濁液の形態に調製してもよい。この種の注射用懸濁液は適当な分散剤もしくは潤滑剤および沈澱防止剤を使用し、既知の方法によって調製すればよい。この場合の懸濁媒体としては、水、リンゲル液、等張性塩化ナトリウム溶液、合成のモノグリセリドやジグリセリドおよびオレイン酸等が例示される。
【0021】
【実施例】
以下、本発明を実施例によって説明する。
実施例1
酵母エキス3g、麦芽エキス3g、ペプトン5gおよびグルコース10gを蒸留水1000mlに溶解させた培地(pH6.0)を用いて30℃で前培養したケフィアから分離した酵母菌の培養液(OD660=0.1)1mlを坂口フラスコ(500ml)に100mlずつ分注して121℃で20分間高圧滅菌した後で冷却した該培地へ添加し、30℃で120rpmの条件下で24時間培養した。
菌体を遠心分離し(5000×g; 4℃; 15分間)、10mMトリス塩酸緩衝液(pH8.7)を用いて2回処理した。得られた菌体にその約2倍容量の0.5MのEDTA水溶液(pH8.0)を添加した懸濁液を超音波破砕機を用いる4℃での細胞破砕処理に30秒間隔で15分間付した後、遠心分離処理(27700×g; 4℃; 15分間)に付した。上澄み液を透析チユーブ(「ダイアライシスメンブラン20」)に入れ、蒸留水を2〜3時間間隔で交換しながら透析処理を一昼夜おこなった。透析物をポリエチレングリコール6000を用いる濃縮処理に付すことによって酵母菌由来タンパク質を得た。
【0022】
得られた酵母菌由来タンパク質(濃度: 1.5μg/ml、2.1μg/mlまたは6.1μg/ml)のカルシウム塩結晶化抑制能を前述の方法に準拠して調べた。結果を図6(A570の経時変化)および図7(pHの経時変化)に示す。
酵母菌由来タンパク質の濃度をさらに変化させることにより、カルシウム塩の結晶化を完全に抑制する該タンパク質の最低濃度は約3μg/mlであることが判明した。
【0023】
比較例1
表2に示す成分のカルシウム塩結晶化抑制能を前述の方法に準拠して測定した。結果を表2に示す。
【表2】
Figure 0004148483
【0024】
表3に示す細菌または酵母を所定の培地で培養した後、実施例1と同様の処理に付し、得られた微生物由来タンパク質(1.4μg/ml)のカルシウム塩結晶化抑制能を前述の方法に準拠して測定した。結果を表3に示す。
【表3】
Figure 0004148483
【0025】
【発明の効果】
本発明による酵母菌由来タンパク質は食品ケフィアに由来する酵母菌を入手源とするので副作用がないだけでなく、カルシウム塩の結晶化を有効に抑制するので種々の用途が期待されるが、特に膵臓結石症で患う患者の処置剤(治療剤および予防剤)および食品用高カルシウム吸収剤等として有用である。
【図面の簡単な説明】
【図1】 NaHCO3−CaCl2反応系における酵母菌由来タンパク質の不存在下でのA570の経時変化を示すグラフである。
【図2】 NaHCO3−CaCl2反応系における酵母菌由来タンパク質の不存在下でのpHの経時変化を示すグラフである。
【図3】 酵母菌由来タンパク質の処理温度とカルシウム塩結晶化抑制能に関する相対活性との関係を示すグラフである。
【図4】 ケフィアから分離した酵母菌の増殖曲線と培地のpHの経時変化を示すグラフである。
【図5】 種々の培養時間後に得られた酵母菌由来タンパク質のカルシウム塩結晶化抑制能を示すグラフである。
【図6】 NaHCO3−CaCl2反応系における酵母菌由来タンパク質(実施例1で調製した試料)の存在下または不存在下でのA570の経時変化を示すグラフである。
【図7】 NaHCO3−CaCl2反応系における酵母菌由来タンパク質(実施例1で調製した試料)の存在下または不存在下でのpHの経時変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yeast-derived protein having a calcium salt crystallization inhibitory ability.
[0002]
[Prior art]
Calcium is the most abundant component of the minerals that make up the human body, such as the human body, about 99% of which is a component of bones and teeth, and the remaining about 1% is the activity of various yeasts and the calming of cells. Plays an important role in the life-sustaining action of In the latter case, if a stone formed by crystallization of calcium salt in a specific organ blocks the secretory gland, the living body will die, but in a normal living body, it has a special ability to inhibit calcium salt crystallization. The crystallization is effectively suppressed because of the production of a new protein.
For example, pancreatic juice secreted from the human pancreas into the small intestinal lumen contains supersaturated calcium carbonate in addition to various digestive enzymes, and crystallization of the calcium salt is caused by PSP (Pancreatic Stone) contained in the pancreatic juice. Protein; one of glycophosphoproteins rich in aqueous amino acids) [A. De Caro et al., Biochem. J. et al. 222, 669 (1984)].
However, if this balance breaks down due to some cause (for example, a decrease in the concentration of PSP with aging, etc.), the calcium salt crystallizes and forms a calcite-shaped calculus in the pancreatic duct. Bring.
[0003]
One solution to this problem is to administer PSP ex vivo to patients suffering from such stones, but no method is known for preparing PSP on a practical clinical scale. For this reason, various chelating agents capable of binding to calcite are commercially available as substitutes for PSP, but the fact is that they have not been generally used due to side effects.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned actual situation in the field in order to provide a PSP substitute without side effects on a practical clinical scale.
[0005]
[Means for Solving the Problems]
That is, the present invention relates to a yeast-derived protein having calcium salt crystallization inhibitory ability obtained by a preparation method comprising the following steps (i) to (vi):
(i) culturing a yeast isolated from kefir under conditions of a temperature of 5 to 55 ° C. and a pH of 5 to 7,
(ii) treating cultured cells with Tris-HCl buffer,
(iii) subjecting the recovered cells to cell disruption in a state suspended in an EDTA aqueous solution;
(iv) subjecting the supernatant of the cell disrupted product to a nucleic acid removal treatment,
(v) subjecting the supernatant of the nucleic acid removal product to a dialysis treatment;
(vi) The dialyzed product is subjected to a concentration treatment.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The yeast used in the present invention is a yeast of the genus Zygosaccharomyces known per se isolated from kefir. This yeast can be easily separated by conventional separation methods.
[0007]
The culture medium for the yeast isolated from the kefir is not particularly limited, and those commonly used for culturing this type of yeast may be used as appropriate. Examples include 2 to 5 g, malt extract 2 to 5 g, peptone 3 to 8 g and glucose 10 to 15 g.
The pH of the medium is usually adjusted within the range of 5-7. If the pH is out of this range, not only the growth of the fungus will be reduced, but also the ability of the protein finally obtained to suppress crystallization of calcium salt will be unfavorable.
The culture temperature and culture time are not particularly limited, but are usually 5 to 55 ° C, preferably 20 to 40 ° C (particularly 25 to 30 ° C) and 12 to 48 hours (preferably 14 to 36 hours).
Moreover, aerobic conditions are usually employed as the culture atmosphere.
[0008]
The cultured cells are separated by centrifugation. Centrifugation is usually performed at 4000 to 6000 × g at 0 to 5 ° C. for 10 to 20 minutes.
The separated cells are treated once or several times using, for example, 5 to 15 mM Tris-HCl buffer (pH 8.0 to 9.0).
The treated cells are collected by subjecting them to a centrifugation treatment. Centrifugation is usually performed at 25,000 to 30000 × g for 10 to 20 minutes at 0 to 5 ° C.
The collected cells are disrupted by about 0.5 to 3.0 times the volume of cells, for example, suspended in an aqueous solution of 0.3 to 0.6 M EDTA (pH 8.0 to 9.0). Attached. The cell disruption treatment is performed according to a conventional method, for example, using an ultrasonic disrupter or a French press. This cell disruption treatment is usually performed at 0 to 5 ° C. for 10 to 20 minutes.
[0009]
The supernatant obtained by subjecting the cell disrupted product to centrifugation is subjected to nucleic acid removal treatment. Centrifugation in this case is usually performed at 25000 to 30000 × g at 0 to 5 ° C. for 10 to 20 minutes. The nucleic acid removal treatment is carried out at 0 to 4 ° C. according to a conventional method, for example, using streptomycin sulfate and a 0.3 to 0.6 M EDTA aqueous solution (pH 8.0 to 9.0).
The supernatant after the nucleic acid removal treatment is subjected to a dialysis treatment using an appropriate dialysis means. For example, the supernatant is put into a dialysis tube [for example, “Dialysis Membrane 20” (manufactured by WakoChem. USA, Inc.)], and the distilled water is exchanged at intervals of 3 to 4 hours at 0 to 5 ° C. Perform time dialysis.
By concentrating the dialyzate using a suitable concentrating agent such as polyethylene glycol 6000, the yeast-derived protein having the ability to suppress crystallization of calcium salt according to the present invention can be obtained.
[0010]
In order to clarify the characteristics of the yeast-derived protein according to the present invention, the polymer material obtained by the above preparation method is subjected to ultracentrifugation treatment (105,000 × g; 4 ° C .; 2 hours), and then ammonium sulfate. Purification by fractionation (40-80%).
In order to examine the influence of various enzymes on this purified sample, the ability of the purified sample to inhibit crystallization of calcium salt was measured under the conditions of pH 6.0 to 8.0 at 30 to 37 ° C. using various enzymes shown in Table 1. Measurements were made after processing below and the results are shown in Table 1.
[0011]
[Table 1]
Figure 0004148483
[0012]
The ability to suppress calcium salt crystallization was evaluated as follows. That is, 30 μl of a sample aqueous solution was added to 1.5 ml of a 20 mM aqueous solution of sodium bicarbonate (pH 8.7), and then 1.5 ml of a 20 ml aqueous solution of calcium chloride (pH 8.7) was added to maintain the temperature of the system at 25 ° C. Then, the reaction represented by the following formula is carried out, and the absorbance (A 570 ) or pH at a wavelength of 570 nm of the reaction system is measured over time using a spectrophotometer or a pH meter:
[Chemical 1]
Figure 0004148483
[0013]
FIG. 1 shows the change over time of A 570 when 30 μl of distilled water was added as a sample solution to the above reaction system. Absorbance increases rapidly after about 20 seconds, reaches a maximum value after about 200 seconds, and the reaction is almost complete. Further, FIG. 2 shows a change in pH over time with respect to FIG.
Therefore, the calcium salt crystallization inhibitory ability (%) of the sample can be easily calculated by measuring A 570 after 200 seconds and calculating from the following formula:
[Expression 1]
Figure 0004148483
[0014]
As is apparent from Table 1, the ability of the yeast-derived protein according to the present invention to suppress the calcium salt crystallization (relative activity: 100%) is significantly reduced by the treatment with proteinase K, and considerably reduced by the treatment with β-galactosidase. descend.
This suggests the possibility that the yeast-derived protein according to the present invention is a kind of glycoprotein.
[0015]
The above-described purified sample was measured for the calcium salt crystallization inhibiting ability after treatment at 10 ° C., 20 ° C., 25 ° C., 30 ° C., 35 ° C., 40 ° C., 50 ° C. or 60 ° C. for 60 minutes. The property is shown in FIG.
[0016]
Growth curves of yeast isolated from kefir in YM medium (pH 6.0) under aerobic conditions at 30 ° C. and calcium of the protein derived from yeast according to the present invention obtained after various culture times The ability to suppress salt crystallization is shown in FIGS. 4 and 5, respectively. FIG. 4 also shows changes over time in the pH of the medium. As is clear from the comparison of these figures, proteins derived from yeast in the early logarithmic growth phase show particularly high calcium salt crystallization inhibition ability.
[0017]
The yeast-derived protein according to the present invention effectively suppresses the crystallization of calcium salt without substantial side effects, and thus is expected to be used in various ways, but is particularly useful as a treatment for pancreatic stone disease. .
Therefore, according to another aspect of the present invention, there is provided a therapeutic agent for pancreatic stone disease comprising the aforementioned yeast-derived protein as an active ingredient.
[0018]
The treatment for pancreatic stone disease according to the present invention is generally prepared in a form suitable for oral administration. Examples of such forms include tablets, troches, drops, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups and elixirs. These treatment agents for oral administration may be prepared by any method known in the field of manufacturing pharmaceutical compositions, and the treatment agent is selected from sweeteners, flavoring agents, coloring agents and preservatives. You may mix | blend a seed | species or 2 or more types of additives suitably.
[0019]
Tablets include active ingredients and non-toxic excipients suitable for tablet production, such as inert diluents (e.g., sodium carbonate and lactose), granulating agents and disintegrants (e.g., coast starch, alginic acid, etc.). Etc.), binder (e.g. starch, gelatin etc.) and lubricant (e.g. magnesium stearate, talc etc.) etc. may be added as appropriate, but known retarders (e.g. glyceryl monostearate, glyceryl distearate) Etc.), the disintegration and absorption in the gastrointestinal tract may be delayed so that the active ingredient is released gradually over a long period of time.
[0020]
The agent for treating pancreatic stones according to the present invention may be prepared in the form of a sterile injectable aqueous or oily suspension. Such an injectable suspension may be prepared by a known method using an appropriate dispersant or lubricant and an anti-settling agent. Examples of the suspending medium in this case include water, Ringer's solution, isotonic sodium chloride solution, synthetic monoglyceride, diglyceride and oleic acid.
[0021]
【Example】
Hereinafter, the present invention will be described by way of examples.
Example 1
A culture solution of yeast isolated from kefir pre-cultured at 30 ° C. using a medium (pH 6.0) in which 3 g of yeast extract, 3 g of malt extract, 5 g of peptone and 10 g of glucose were dissolved in 1000 ml of distilled water (OD 660 = 0 .1) 1 ml was dispensed into Sakaguchi flasks (500 ml) in 100 ml portions, autoclaved at 121 ° C. for 20 minutes, added to the cooled medium, and cultured at 30 ° C. under 120 rpm for 24 hours.
The cells were centrifuged (5000 × g; 4 ° C .; 15 minutes) and treated twice with 10 mM Tris-HCl buffer (pH 8.7). The suspension obtained by adding approximately twice the volume of 0.5 M EDTA aqueous solution (pH 8.0) to the obtained bacterial cells was subjected to cell disruption treatment at 4 ° C. using an ultrasonic disrupter for 15 minutes at 30 second intervals. And then subjected to centrifugation (27700 × g; 4 ° C .; 15 minutes). The supernatant was put into a dialysis tube ("Dialysis Membrane 20"), and the dialysis treatment was carried out all day and night while exchanging distilled water at intervals of 2 to 3 hours. The dialyzate was subjected to a concentration treatment using polyethylene glycol 6000 to obtain a yeast-derived protein.
[0022]
The ability of the obtained yeast-derived protein (concentration: 1.5 μg / ml, 2.1 μg / ml or 6.1 μg / ml) to inhibit crystallization of calcium salt was examined according to the method described above. The results are shown in FIG. 6 (A 570 change over time) and FIG. 7 (pH change over time).
It was found that by further changing the concentration of the yeast-derived protein, the minimum concentration of the protein that completely suppresses the crystallization of the calcium salt was about 3 μg / ml.
[0023]
Comparative Example 1
The calcium salt crystallization inhibiting ability of the components shown in Table 2 was measured according to the method described above. The results are shown in Table 2.
[Table 2]
Figure 0004148483
[0024]
After culturing the bacteria or yeast shown in Table 3 in a predetermined medium, it was subjected to the same treatment as in Example 1, and the calcium salt crystallization inhibitory ability of the obtained microorganism-derived protein (1.4 μg / ml) was described above. Measured according to the method. The results are shown in Table 3.
[Table 3]
Figure 0004148483
[0025]
【The invention's effect】
Since the yeast-derived protein according to the present invention is obtained from yeast derived from food kefir, it has no side effects and effectively suppresses crystallization of calcium salts, so various uses are expected. It is useful as a therapeutic agent (therapeutic agent and prophylactic agent) for patients suffering from calculus and a high calcium absorbent for foods.
[Brief description of the drawings]
It is a graph showing temporal change of A 570 in the absence of yeast-derived proteins in [1] NaHCO 3-CaCl 2 reaction system.
FIG. 2 is a graph showing changes in pH over time in the absence of yeast-derived protein in a NaHCO 3 —CaCl 2 reaction system.
FIG. 3 is a graph showing the relationship between the processing temperature of a protein derived from yeast and the relative activity relating to the ability to suppress calcium salt crystallization.
FIG. 4 is a graph showing the time course of the growth curve of yeast isolated from kefir and the pH of the medium.
FIG. 5 is a graph showing calcium salt crystallization inhibitory ability of yeast-derived proteins obtained after various culture times.
FIG. 6 is a graph showing the time course of A570 in the presence or absence of a yeast-derived protein (sample prepared in Example 1) in a NaHCO 3 —CaCl 2 reaction system.
FIG. 7 is a graph showing the time course of pH in the presence or absence of a yeast-derived protein (sample prepared in Example 1) in a NaHCO 3 —CaCl 2 reaction system.

Claims (8)

下記の過程(i)〜(vi)を含む調製法によって得られるカルシウム塩結晶化抑制能を有する酵母菌由来タンパク質:
(i) ケフィアから分離される酵母菌を温度5〜55℃およびpH5〜7の条 件下で培養し、
(ii) 培養菌体をトリス塩酸緩衝液を用いて処理し、
(iii)回収菌体をEDTA水溶液に懸濁させた状態での細胞破砕処理に付し、
(iv) 該細胞破砕処理物の上澄み液を核酸除去処理に付し、
(v) 該核酸除去処理物の上澄み液を透析処理に付し、次いで
(vi) 該透析処理物を濃縮処理に付す。
Yeast-derived protein having calcium salt crystallization inhibitory ability obtained by a preparation method comprising the following steps (i) to (vi):
(i) culturing a yeast isolated from kefir under conditions of a temperature of 5 to 55 ° C. and a pH of 5 to 7,
(ii) treating cultured cells with Tris-HCl buffer,
(iii) subjecting the recovered cells to cell disruption in a state suspended in an EDTA aqueous solution;
(iv) subjecting the supernatant of the cell disrupted product to a nucleic acid removal treatment,
(v) subjecting the supernatant of the nucleic acid removal product to a dialysis treatment;
(vi) The dialyzed product is subjected to a concentration treatment.
5〜15mMのトリス塩酸緩衝液を用いる請求項1記載のタンパク質。The protein according to claim 1, wherein 5 to 15 mM Tris-HCl buffer is used. 0.3〜0.6MのEDTA水溶液を用いる請求項1記載のタンパク質。The protein according to claim 1, wherein a 0.3 to 0.6M EDTA aqueous solution is used. 細胞破砕処理を超音波破砕機またはフレンチプレスを用いておこなう請求項1記載のタンパク質。The protein according to claim 1, wherein the cell disruption treatment is performed using an ultrasonic disrupter or a French press. 核酸除去処理を硫酸ストレプトマイシンとEDTA水溶液を用いておこなう請求項1記載のタンパク質。The protein according to claim 1, wherein the nucleic acid removal treatment is performed using streptomycin sulfate and an EDTA aqueous solution. 透析処理を蒸留水を用いておこなう請求項1記載のタンパク質。The protein according to claim 1, wherein the dialysis treatment is performed using distilled water. 濃縮処理をポリエチレングリコール6000を用いておこなう請求項1記載のタンパク質。The protein according to claim 1, wherein the concentration treatment is performed using polyethylene glycol 6000. 請求項1から7いずれかに記載の酵母菌由来タンパク質を有効成分とする膵臓結石症処置剤。An agent for treating pancreatic stone disease comprising the yeast-derived protein according to any one of claims 1 to 7 as an active ingredient.
JP22796898A 1998-08-12 1998-08-12 Yeast derived protein Expired - Fee Related JP4148483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22796898A JP4148483B2 (en) 1998-08-12 1998-08-12 Yeast derived protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22796898A JP4148483B2 (en) 1998-08-12 1998-08-12 Yeast derived protein

Publications (2)

Publication Number Publication Date
JP2000053698A JP2000053698A (en) 2000-02-22
JP4148483B2 true JP4148483B2 (en) 2008-09-10

Family

ID=16869087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22796898A Expired - Fee Related JP4148483B2 (en) 1998-08-12 1998-08-12 Yeast derived protein

Country Status (1)

Country Link
JP (1) JP4148483B2 (en)

Also Published As

Publication number Publication date
JP2000053698A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP5982376B2 (en) Preventive or therapeutic agent for oral diseases
Miller The micro-organisms of the human mouth: the local and general diseases which are caused by them
WO2012004522A1 (en) Macromolecular complex of bacterial origin and use of said macromolecular complex for preventing and treating inflammatory rheumatism
JP3960393B2 (en) Health composition
AU2005203558A1 (en) A protectant of periodontal membranes
KR101489732B1 (en) Composition for preventing or treating the colon cancer comprising 3,6-anhydro-L-galactose(L-AHG)
KR101184349B1 (en) Composition for enhancement of immune function and improvement of hematopoiesis which comprises antler fermented with Bacillus subtilis KCTC 11454BP as an active ingredient, and a preparation method thereof
CA1259045A (en) Membrane polysaccharides useful as drugs and preparation process thereof
KR20160052855A (en) Pharmaceutical composition comprising fermented Aralia cordata Thunb for preventing or treating arthritis
TWI383798B (en) Lactobacillus fermentum sg-a95 for improving oral bacterial groups and health care compositions thereof
US20110318281A1 (en) Lactobacillus Salivarius SG-M6 for Improving Oral Bacterial Groups and Health Care Compositions Thereof
KR101539820B1 (en) A food for preventing thrombotic diseases
JPS6128389A (en) Purification of lactase preparation
JP4148483B2 (en) Yeast derived protein
SU1732815A3 (en) Method for preparation of hypotriglyceridemic polysaccharides
JP5526320B2 (en) Intestinal protective agent
JPH0881380A (en) Anti-periodontitis agent and anti-periodontitis food containing high-molecular weight polyphenol as active component
EP0148025B1 (en) Antibodies and antibody-containing compositions for inhibiting periodontitis
CN110907372A (en) In-vitro evaluation model and method for anti-inflammatory performance of toothpaste containing bletilla striata extract
JP2001136959A (en) Culture product containing bacillus subtilis cell and/or product thereof, water-soluble vitamin k derivative originated from the same, medicine, food and feed containing the same and method for producing the same
JP2816564B2 (en) Lactic acid bacteria preparation
US5830914A (en) Apoptosis-controlling agent
EP1615656B9 (en) Immunomodulatory product obtained from a bifidobacterium culture and compositions containing the same
JP2001000175A (en) Culture of bacillus subtilis, cultured product of microorganism thereby, water-soluble vitamin k derivative derived from the same cultured product, and food, drink and feed which comprise cultured product of microorganism of vitamin k derivative
WO2007111534A1 (en) Method for producing an interleukin-2 preparation and the thus obtainable preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees