JP4147294B2 - Method for producing activated carbon for electric double layer capacitor - Google Patents

Method for producing activated carbon for electric double layer capacitor Download PDF

Info

Publication number
JP4147294B2
JP4147294B2 JP2002145800A JP2002145800A JP4147294B2 JP 4147294 B2 JP4147294 B2 JP 4147294B2 JP 2002145800 A JP2002145800 A JP 2002145800A JP 2002145800 A JP2002145800 A JP 2002145800A JP 4147294 B2 JP4147294 B2 JP 4147294B2
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
double layer
layer capacitor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002145800A
Other languages
Japanese (ja)
Other versions
JP2003338437A (en
Inventor
平田恵一
実 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2002145800A priority Critical patent/JP4147294B2/en
Publication of JP2003338437A publication Critical patent/JP2003338437A/en
Application granted granted Critical
Publication of JP4147294B2 publication Critical patent/JP4147294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【技術分野】
本発明は、電気二重層キャパシタ用活性炭の製造方法に関し、より詳しくは原料である石炭系ピッチの揮発分、メソフェ−ズ量を調整した後、賦活処理することにより、高い静電容量を有するキャパシタ用活性炭を得ることができる製造方法に関する。
【0002】
【従来の技術】
近年、電気二重層の原理を応用した電気二重層キャパシタがエネルギ−貯蔵デバイスとして注目されている。
【0003】
例えば、固体電極と電解質溶液のような異なる二相が接触する界面では、正・負の電荷が非常に短い距離を介して配列、分布する。
電極が正の電荷を帯びている場合は、溶液側にはアニオンが配列し、この電荷の配列により生じる層が電気二重層である。
電気二重層の生成に伴い電極界面に発現する容量を電気二重層容量と呼び、この原理を利用して、エネルギ−を貯蔵するのが電気二重層キャパシタである。
【0004】
電気二重層キャパシタは、その充放電が、化学反応を伴うことなく、物理的な機構であるイオンの吸脱着によって行われるため、繰り返し使用における特性の低下が非常に小さく、また使用温度範囲が広いこと、高速充放電性に優れる等の多くの特徴を備えており、コンピュ−タ−等の小型電子機器のバックアップ電源に幅広く使用されている。
また今後は、電気自動車の併用電源としても期待されている。
【0005】
電気二重層キャパシタの重要な特性は、静電容量が高いことであるが、この静電容量は下記の式で表される。
静電容量 C=∫ε/(4πδ)・dS
ここでεは電解液の誘電率、δは電極界面からイオン中心までの距離、Sは電極界面の表面積を示す。
【0006】
従って、キャパシタに使用される分極性電極の面から考えると、大きな表面積の電極を使用すると、キャパシタの静電容量は増加することになる。
このため比表面積が大きく、且つ導電性を有する活性炭粉末や活性炭素繊維が電気二重層キャパシタ用の材料として主に用いられている。
【0007】
現在、多く使用されている活性炭粉末は石炭、ヤシ殻、フェノ−ル樹脂等を酸化性ガス(水蒸気、二酸化炭素、空気等)雰囲気で賦活することにより製造されており、これらはいずれも比表面積の大きい材料だが、光学的に等方性であるため、導電性について不十分な面がある。
即ち、導電性が低いと、キャパシタの内部抵抗が大きくなり、結果として正電気容量の低下をもたらす。
【0008】
またRandin,Jと Yeagea,E(J.Electroan.Chem.,36,257(1972))によると、活性炭表面が
グラファイト層面のエッジ面で形成されると、静電容量が大幅に向上する。
しかしながら、従来の活性炭は、光学的に等方性の材料であるため、グラファイト層面のエッジ面とベ−サル面の配置を制御することができず、この面での改善はできないという欠点もあった。
【0009】
これらの問題点があるため、比表面積が大きくかつ導電性も高い活性炭を製造する方法が望まれている。
【0010】
【発明の課題】
上記のような状況に鑑み、本発明者は比表面積が大きく、導電性も十分で、高い静電容量を有する電気二重層キャパシタ用活性炭を製造できる方法を提供す
る。
【0011】
【課題解決の手段】
上記のような問題を解決するために、本発明者は鋭意検討した結果、光学的に異方性の材料であるメソフェ−ズピッチを用いることが好適で、原料の石炭系ピッチのメタフェ−ズを特定量に調整した後、熱処理して揮発分とメソフェ−ズ量を調整することによりすぐれた特性のキャパシタ用活性炭が得られることに着眼し、本発明を完成した。
【0012】
即ち、本発明者が、提案するのは、メタフェ−ズ量を3〜20%とした石炭系ピッチを熱処理して揮発分5%以下、メタフェ−ズ量を80%以上に調整した後、
微粉砕し、600〜1000℃で賦活処理することを特徴とする電気二重層キャパシタ用活性炭の製造方法である。
【0013】
以下に本発明を詳細に説明する。
【0014】
まず、出発原料として石炭系のピッチを使用する。
そして本発明で特徴となるのは、石炭系ピッチ中のメタフェ−ズ量を3〜20%に調整することである。
3%未満では、ポアの生成が抑制され、比表面積の大きい活性炭を得ることができず、20%を超えると後述する熱処理後のメソフェ−ズピッチのメソフェ−ズ量を80%以上にできないためいずれも好ましくない。
【0015】
メタフェ−ズ量の調整は、ピッチより分離したメタフェ−ズを添加することにより行う。
メタフェ−ズの分離方法は限定されないが、ピッチの原料であるタ−ルから遠心分離するか、ピッチの溶剤(例えば、石油系の吸収油、キノリン等)抽出法により容易に分離が可能である。
【0016】
このメタフェ−ズ量の調整はメソフェ−ズピッチの結晶性を低下させ、比表面積が大きく、高い静電容量の活性炭を得るために重要である。
【0017】
即ち、ピッチの熱処理により生成するメタフェ−ズは均質で、結晶性に優れているため、熱処時に一方向に分子配向する。その結果、得られたメソフェ−ズを粉砕し、酸化性ガス雰囲気中で賦活する際に酸化が平面的に進行し、ポアが生成しにくくなり、大きな比表面積の活性炭を得ることができなくなる。
【0018】
そこでこの問題の解決のために、熱処理前のピッチのメタフェ−ズ量を調整することにより、メソフェ−ズピッチの結晶性を低下させる。
この処理によっても、賦活は光学的に等方性の材料より進行しにくいが、このことが結果的にキャパシタ用活性炭に最適な孔径のメソポア(2〜50nm)の生成を促進し、高い静電容量のキャパシタを得ることが可能になる。
【0019】
上記のようにメタフェ−ズ量を調整した後、このピッチを窒素または不活性ガス雰囲気中で、450〜600℃で5〜60時間、熱処理を行う。
この熱処理により、得られた熱処理物について生成するメソフェ−ズ量を80%以上、揮発分が5%以下になるように調整する。
【0020】
メソフェ−ズ量が80%未満では、最終製品の静電容量が低下し、また揮発分が5%を超えると、後工程の賦活において、メソフェ−ズピッチ微粉の融着が発生し最終製品の特性が低下するのでいずれも好ましくない。
【0021】
次に上記の熱処理物を粉砕して微粉とする。
粒度は特に限定されないが、通常は平均粒径で50μm以下にするのが適当である。
【0022】
粉砕後は、酸化性ガス雰囲気中で、600〜1000℃で賦活して本発明のキャパシタ用活性炭を得る。
酸化性ガスとしては水蒸気、二酸化炭素、空気等が使用できるが、賦活反応の制御、およびコストの面から考えると水蒸気賦活が好ましい。
また水酸化カリウムや塩化カリウム等のアルカリ金属化合物を用いる賦活も可能だが、賦活後のアルカリ金属の分離・除去に多大な労力を要するので好ましくない。
【0023】
本発明で得られる活性炭は、比表面積は200m2/g〜2000m2/gで、かつ窒素ガス吸着(BET)法で得られる吸・脱着等温線の間の差がないことが好ましい。
比表面積が200m2/g未満では最終製品の静電容量が低下し、2000m2/gを超えると低密度となり強度が低下する。
また窒素ガス吸着(BET)法の吸・脱着等温線の間の差があると電解質の不可逆吸着量が増加し、結果として最終製品の静電容量が低下するのでいずれも好ましくない。
【0024】
以上のような製造方法により本発明の電気二重層キャパシタ用活性炭が得られる。
【0025】
上記のようにして得られた活性炭を電気二重層キャパシタの分極性電極に用いる場合、使用できる結合剤は、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)等が使用できる。
電解液は水系の硫酸および塩酸、非水系のエチレンカ−ボネ−ト、プロピレンカ−ボネ−ト、γ−ブチルラクトン、アセトニトリル、ジメチルフォルムアミド等が使用できる。
また電解質には安定性に優れるテトラアルキルアンモニウム塩、例えば、(CH34NBF4、(C254NBF4、(C374NBF4、(CH34NPF6
が使用できる。
【0026】
【発明の効果】
本発明の方法により得られた活性炭は比表面積が大きく、導電性も十分であり、
電気二重層キャパシタに用いると、高い静電気容量のものが得られる。
【0027】
【実施例および比較例】
【実施例1】
メタフェ−ズ含有量を5.3%とした市販の石炭系ピッチを窒素ガス雰囲気中、
500℃で24時間、熱処理し、メソフェ−ズピッチを得た。
この熱処理したピッチの揮発分は4.5%、偏光顕微鏡で測定したメソフェ−ズ量は95%であった。
このピッチを平均粒径25μmに粉砕した後、水蒸気雰囲気中、小型のロ−タリ−キルンを使用して950℃で2時間、賦活処理して活性炭を得た。
得られた活性炭の比表面積は、450m2/gであり、窒素ガス吸着法で得られた吸・脱着等温線の間に差はなかった。
【0028】
上記の活性炭100重量部に対し、導電助剤10重量部とポリテトラフルオロエチレン10重量部を加え、室温で混合した後、圧延しアルミメッシュに圧着し、
更に、直径10mmに打ち抜き、電極シ−トを作成した。
【0029】
次に、アルゴンガス雰囲気中のグロ−ブボックス内で、一組の電極シ−トの間に多孔質ポリプロピレンシ−トを挟み込み、固定してセルを組立てた。
これに電解液としてテトラエチルアンモニウムテトラフルオロボレ−トを溶解したプロピレンカ−ボネ−ト(濃度1M)を加え、室温で静電容量を測定した結果、15.6F/gであった。
【0030】
【実施例2】
実施例1の石炭系ピッチに10倍量の石炭系吸収油を加え、100℃に加熱してピッチを溶解した後、ろ過し、メタフェ−ズを分離抽出した。
このメタフェ−ズを石炭系ピッチのメタフェ−ズ量が10%になるように添加し、これ以後は、実施例1と同様にして熱処理、粉砕、賦活を行い、活性炭を得た。
メソフェ−ズピッチの揮発分は3.8%、光学顕微鏡で測定したメソフェ−ズ量は98%であった。
また賦活後の活性炭の表面積は650m2/gであり、窒素ガス吸着法で得られた吸、脱着等温線の間に、差は無かった。
次にこの活性炭を用いて実施例1と同様にして電極を作製し、その静電容量を測定した結果、18.3F/gであった。
【0031】
【比較例1】
実施例1における石炭系ピッチのメタフェ−ズ量を30%とする以外は、すべて実施例1と同様にして、熱処理、粉砕、賦活を行い、活性炭を得た。
メソフェ−ズピッチの揮発分は3.8%、光学顕微鏡で測定したメソフェ−ズ量は30%であった。
また賦活後の活性炭の比表面積は780m2/gであり、窒素ガス吸着法で得られた吸、脱着等温線の間に差は無かった。
次にこの活性炭を用いて実施例1と同様にして電極を作製し、その静電容量を測定した結果、9.5F/gであった。
【0032】
【比較例2】
実施例1における石炭系ピッチを用いて、熱処理の条件を450℃で24時間とする以外は、すべて実施例1と同様にして熱処理、粉砕、賦活を行い活性炭を得た。
メソフェ−ズピッチの揮発分は6.5%、光学顕微鏡で測定したメソフェ−ズ量は55%であった。
しかしながら、賦活後の活性炭には粒子同士の固着があり、キャパシタに使用できる状態ではなかった。
【0033】
【比較例3】
実施例1における石炭系ピッチを用いて、賦活条件を800℃で3時間とする以外は実施例1と同様にして熱処理、粉砕、賦活を行い活性炭を得た。
得られた活性炭の比表面積は110m2/gであり、窒素ガス吸着法で得られた吸・脱着等温線の間に差が認められた。
次に、この活性炭を用いて、実施例1と同様に電極を作製し、その静電容量を測定した結果、6.2F/gであった。
[0001]
【Technical field】
The present invention relates to a method for producing activated carbon for an electric double layer capacitor, and more specifically, a capacitor having a high capacitance by adjusting the volatile matter and mesophase amount of a coal-based pitch which is a raw material, and then performing an activation treatment. The present invention relates to a production method capable of obtaining activated carbon.
[0002]
[Prior art]
In recent years, electric double layer capacitors applying the principle of electric double layers have attracted attention as energy storage devices.
[0003]
For example, positive and negative charges are arranged and distributed through a very short distance at an interface where two different phases contact, such as a solid electrode and an electrolyte solution.
When the electrode is positively charged, anions are arranged on the solution side, and a layer generated by this charge arrangement is an electric double layer.
A capacity that appears at the electrode interface as the electric double layer is generated is called an electric double layer capacity, and an electric double layer capacitor stores energy using this principle.
[0004]
The electric double layer capacitor is charged / discharged by ion adsorption / desorption, which is a physical mechanism, without a chemical reaction. Therefore, the deterioration of characteristics in repeated use is extremely small, and the operating temperature range is wide. In addition, it has many features such as excellent high-speed charge / discharge characteristics, and is widely used as a backup power source for small electronic devices such as computers.
In the future, it is also expected as a combined power source for electric vehicles.
[0005]
An important characteristic of the electric double layer capacitor is that the capacitance is high, and this capacitance is expressed by the following equation.
Capacitance C = ∫ε / (4πδ) · dS
Where ε is the dielectric constant of the electrolyte, δ is the distance from the electrode interface to the ion center, and S is the surface area of the electrode interface.
[0006]
Therefore, in view of the polarizable electrode used in the capacitor, the capacitance of the capacitor increases when an electrode having a large surface area is used.
For this reason, activated carbon powder and activated carbon fiber having a large specific surface area and conductivity are mainly used as materials for electric double layer capacitors.
[0007]
Currently used activated carbon powder is produced by activating coal, coconut shell, phenol resin, etc. in an oxidizing gas (water vapor, carbon dioxide, air, etc.) atmosphere, all of which have a specific surface area. Although it is a large material, since it is optically isotropic, it has insufficient conductivity.
That is, when the conductivity is low, the internal resistance of the capacitor increases, resulting in a decrease in positive capacitance.
[0008]
Further, according to Randin, J and Yeagea, E (J. Electroan. Chem., 36, 257 (1972)), when the activated carbon surface is formed by the edge surface of the graphite layer surface, the capacitance is greatly improved.
However, since the conventional activated carbon is an optically isotropic material, the arrangement of the edge surface and the basal surface of the graphite layer surface cannot be controlled, and there is a drawback that improvement in this surface cannot be performed. It was.
[0009]
Because of these problems, a method for producing activated carbon having a large specific surface area and high conductivity is desired.
[0010]
[Problems of the Invention]
In view of the above situation, the present inventor provides a method capable of producing activated carbon for electric double layer capacitors having a large specific surface area, sufficient conductivity, and high capacitance.
[0011]
[Means for solving problems]
In order to solve the above problems, the present inventor has intensively studied. As a result, it is preferable to use a mesophase pitch which is an optically anisotropic material. The present invention was completed by focusing on the fact that an activated carbon for a capacitor having excellent characteristics can be obtained by adjusting the amount of volatile matter and mesophase by heat treatment after adjusting to a specific amount.
[0012]
That is, the present inventor proposes that a coal-based pitch having a metaphase amount of 3 to 20% is heat-treated to adjust the volatile content to 5% or less and the metaphase amount to 80% or more.
A method for producing activated carbon for an electric double layer capacitor, characterized by pulverizing and activating treatment at 600 to 1000 ° C.
[0013]
The present invention is described in detail below.
[0014]
First, coal-based pitch is used as a starting material.
A feature of the present invention is that the amount of metaphase in the coal-based pitch is adjusted to 3 to 20%.
If it is less than 3%, the generation of pores is suppressed, and activated carbon having a large specific surface area cannot be obtained. If it exceeds 20%, the amount of mesophase pitch after heat treatment to be described later cannot be increased to 80% or more. Is also not preferred.
[0015]
The amount of metaphase is adjusted by adding metaphase separated from the pitch.
Although the metaphase separation method is not limited, it can be easily separated by centrifugation from the tar that is the raw material of the pitch, or by extraction with a pitch solvent (for example, petroleum-based absorbent oil, quinoline, etc.). .
[0016]
This adjustment of the metaphase amount is important in order to reduce the crystallinity of the mesophase pitch, to obtain activated carbon having a large specific surface area and high capacitance.
[0017]
That is, Metafe produced by heat treatment of pitch - figure homogeneous and excellent crystallinity, and molecular orientation in one direction at Netsusho sense. As a result, when the obtained mesophase is pulverized and activated in an oxidizing gas atmosphere, the oxidation proceeds planarly, pores are hardly generated, and activated carbon having a large specific surface area cannot be obtained.
[0018]
In order to solve this problem, the crystallinity of the mesophase pitch is lowered by adjusting the metaphase amount of the pitch before the heat treatment.
Even with this treatment, activation is less likely to proceed than optically isotropic materials, but this eventually promotes the generation of mesopores (2-50 nm) with the optimum pore size for the activated carbon for capacitors, resulting in high electrostatic capacity. Capacitance capacitors can be obtained.
[0019]
After adjusting the metaphase amount as described above, this pitch is heat-treated at 450 to 600 ° C. for 5 to 60 hours in a nitrogen or inert gas atmosphere.
By this heat treatment, the amount of mesophase produced for the obtained heat-treated product is adjusted to be 80% or more and the volatile content is 5% or less.
[0020]
When the amount of mesophase is less than 80%, the capacitance of the final product decreases. When the amount of volatile components exceeds 5%, fusion of mesophase pitch fine powder occurs in the activation of the post-process, and the characteristics of the final product. Is not preferable because of the lowering of.
[0021]
Next, the heat-treated product is pulverized into a fine powder.
The particle size is not particularly limited, but it is usually appropriate that the average particle size is 50 μm or less.
[0022]
After pulverization, activation is performed at 600 to 1000 ° C. in an oxidizing gas atmosphere to obtain activated carbon for capacitors according to the present invention.
As the oxidizing gas, water vapor, carbon dioxide, air or the like can be used, but water vapor activation is preferable in view of control of activation reaction and cost.
Although activation using an alkali metal compound such as potassium hydroxide or potassium chloride is possible, it is not preferable because much labor is required for separation and removal of the alkali metal after activation.
[0023]
Activated carbon obtained in the present invention, the specific surface area is 200m 2 / g~2000m 2 / g, and preferably has no difference between the nitrogen gas adsorption (BET) adsorption and desorption isotherm obtained by methods.
When the specific surface area is less than 200 m 2 / g, the capacitance of the final product is lowered, and when it exceeds 2000 m 2 / g, the density is lowered and the strength is lowered.
Further, if there is a difference between the adsorption and desorption isotherms of the nitrogen gas adsorption (BET) method, the amount of irreversible adsorption of the electrolyte increases, and as a result, the capacitance of the final product decreases, which is not preferable.
[0024]
The activated carbon for electric double layer capacitors of the present invention can be obtained by the manufacturing method as described above.
[0025]
When the activated carbon obtained as described above is used for a polarizable electrode of an electric double layer capacitor, usable binders are polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR). Etc. can be used.
As the electrolytic solution, aqueous sulfuric acid and hydrochloric acid, non-aqueous ethylene carbonate, propylene carbonate, γ-butyllactone, acetonitrile, dimethylformamide and the like can be used.
In addition, tetraalkylammonium salts having excellent stability such as (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (C 3 H 7 ) 4 NBF 4 , (CH 3 ) 4 NPF 6 are used as the electrolyte. Etc. can be used.
[0026]
【The invention's effect】
The activated carbon obtained by the method of the present invention has a large specific surface area and sufficient conductivity,
When used for an electric double layer capacitor, a capacitor having a high electrostatic capacity can be obtained.
[0027]
Examples and Comparative Examples
[Example 1]
Commercially available coal pitch with a metaphase content of 5.3% in a nitrogen gas atmosphere,
Heat treatment was performed at 500 ° C. for 24 hours to obtain a mesophase pitch.
The heat-treated pitch had a volatile content of 4.5% and a mesophase amount of 95% as measured with a polarizing microscope.
After the pitch was pulverized to an average particle size of 25 μm, activated carbon was obtained by activation at 950 ° C. for 2 hours in a steam atmosphere using a small rotary kiln.
The obtained activated carbon had a specific surface area of 450 m 2 / g, and there was no difference between the adsorption and desorption isotherms obtained by the nitrogen gas adsorption method.
[0028]
To 100 parts by weight of the activated carbon, 10 parts by weight of a conductive additive and 10 parts by weight of polytetrafluoroethylene are added, mixed at room temperature, then rolled and pressed onto an aluminum mesh,
Further, an electrode sheet was prepared by punching to a diameter of 10 mm.
[0029]
Next, in a glove box in an argon gas atmosphere, a porous polypropylene sheet was sandwiched between a pair of electrode sheets and fixed to assemble the cell.
To this was added propylene carbonate (concentration 1M) in which tetraethylammonium tetrafluoroborate was dissolved as an electrolytic solution, and the capacitance was measured at room temperature. As a result, it was 15.6 F / g.
[0030]
[Example 2]
Ten times the amount of coal-based absorbent oil was added to the coal-based pitch of Example 1, heated to 100 ° C. to dissolve the pitch, and then filtered to separate and extract the metaphase.
This metaphase was added so that the amount of metaphase of the coal-based pitch was 10%. Thereafter, heat treatment, pulverization and activation were performed in the same manner as in Example 1 to obtain activated carbon.
The mesophase pitch had a volatile content of 3.8% and the mesophase amount measured by an optical microscope was 98%.
The activated carbon surface area after activation was 650 m 2 / g, and there was no difference between the absorption and desorption isotherms obtained by the nitrogen gas adsorption method.
Next, an electrode was produced using this activated carbon in the same manner as in Example 1, and the capacitance was measured. As a result, it was 18.3 F / g.
[0031]
[Comparative Example 1]
Except that the amount of metaphase of the coal-based pitch in Example 1 was set to 30%, heat treatment, pulverization, and activation were all performed in the same manner as Example 1 to obtain activated carbon.
The mesophase pitch had a volatile content of 3.8% and the mesophase amount measured with an optical microscope was 30%.
The specific surface area of the activated carbon after activation was 780 m 2 / g, and there was no difference between the absorption and desorption isotherms obtained by the nitrogen gas adsorption method.
Next, an electrode was produced using this activated carbon in the same manner as in Example 1, and the capacitance was measured. As a result, it was 9.5 F / g.
[0032]
[Comparative Example 2]
Using the coal-based pitch in Example 1, heat treatment, pulverization, and activation were carried out in the same manner as in Example 1 except that the heat treatment was performed at 450 ° C. for 24 hours to obtain activated carbon.
The mesophase pitch had a volatile content of 6.5% and the mesophase amount measured by an optical microscope was 55%.
However, the activated carbon has particles adhering to each other and is not in a state where it can be used for a capacitor.
[0033]
[Comparative Example 3]
Using the coal-based pitch in Example 1, heat treatment, pulverization, and activation were performed in the same manner as in Example 1 except that the activation condition was set at 800 ° C. for 3 hours to obtain activated carbon.
The obtained activated carbon had a specific surface area of 110 m 2 / g, and a difference was observed between the adsorption and desorption isotherms obtained by the nitrogen gas adsorption method.
Next, using this activated carbon, an electrode was produced in the same manner as in Example 1, and the capacitance was measured. The result was 6.2 F / g.

Claims (3)

メタフェ−ズ量を5.3〜10%とした石炭系ピッチを窒素または不活性ガス雰囲気中で450〜600℃で熱処理して揮発分5%以下、メソフェーズ量80%以上に調整した後、微粉砕して、この微粉砕物を水蒸気雰囲気において600〜1000℃で賦活処理することを特徴とする電気二重層キャパシタ用活性炭の製造方法。After the coal-based pitch having a metaphase amount of 5.3 to 10% is heat-treated at 450 to 600 ° C. in a nitrogen or inert gas atmosphere, the volatile content is adjusted to 5% or less and the mesophase amount is set to 80% or more. A method for producing an activated carbon for an electric double layer capacitor, comprising pulverizing and subjecting the finely pulverized product to activation treatment at 600 to 1000 ° C. in a water vapor atmosphere. 請求項1において、得られる活性炭の比表面積が200m/g〜2000m/gで、かつ窒素ガス吸着(BET)法で得られる吸・脱着等温線の間の差がないことを特徴とする電気二重層キャパシタ用活性炭の製造方法。In claim 1, the specific surface area of the resulting activated carbon characterized in that there is no difference between 200m in 2 / g~2000m 2 / g, and a nitrogen gas adsorption (BET) adsorption and desorption isotherm obtained by method Manufacturing method of activated carbon for electric double layer capacitor. 請求項1または請求項2の製造方法により得られた活性炭を用いた電気二重層キャパシタ。The electric double layer capacitor using the activated carbon obtained by the manufacturing method of Claim 1 or Claim 2.
JP2002145800A 2002-05-21 2002-05-21 Method for producing activated carbon for electric double layer capacitor Expired - Fee Related JP4147294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145800A JP4147294B2 (en) 2002-05-21 2002-05-21 Method for producing activated carbon for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145800A JP4147294B2 (en) 2002-05-21 2002-05-21 Method for producing activated carbon for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2003338437A JP2003338437A (en) 2003-11-28
JP4147294B2 true JP4147294B2 (en) 2008-09-10

Family

ID=29704968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145800A Expired - Fee Related JP4147294B2 (en) 2002-05-21 2002-05-21 Method for producing activated carbon for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4147294B2 (en)

Also Published As

Publication number Publication date
JP2003338437A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US10008337B2 (en) Activated carbon for an electric double-layer capacitor electrode and manufacturing method for same
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
US8564934B2 (en) Ultracapacitor with improved aging performance
EP2758974A1 (en) High voltage electro-chemical double layer capacitor
WO2015042016A1 (en) Ultracapacitor with improved aging performance
WO2011122309A1 (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
EP3039695A1 (en) High-capacitance activated carbon and carbon-based electrodes
WO2012050104A1 (en) Conductive polymer/porous carbon material composite and electrode material using same
JP4576374B2 (en) Activated carbon, its production method and its use
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2003282369A (en) Carbon material for electric double-layer capacitor and its manufacturing method
JP2006004978A (en) Electrical double-layer capacitor
KR101970134B1 (en) Electrode comprising activated carbon and graphene sheet, method of manufacturing the electrode, and super capacitor comprising the electrode
WO2015123076A1 (en) Method for forming activated carbon
JP2001274044A (en) Capacitor using nonaqueous electrolyte
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
JP5164418B2 (en) Carbon material for electricity storage device electrode and method for producing the same
JP4147294B2 (en) Method for producing activated carbon for electric double layer capacitor
WO2021241334A1 (en) Electrochemical device
WO2021241420A1 (en) Electrode for electrochemical devices, and electrochemical device
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees