JP4147066B2 - Solenoid switching valve with detent mechanism - Google Patents

Solenoid switching valve with detent mechanism Download PDF

Info

Publication number
JP4147066B2
JP4147066B2 JP2002232543A JP2002232543A JP4147066B2 JP 4147066 B2 JP4147066 B2 JP 4147066B2 JP 2002232543 A JP2002232543 A JP 2002232543A JP 2002232543 A JP2002232543 A JP 2002232543A JP 4147066 B2 JP4147066 B2 JP 4147066B2
Authority
JP
Japan
Prior art keywords
valve body
iron core
switching position
axial direction
movable iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002232543A
Other languages
Japanese (ja)
Other versions
JP2004069015A (en
Inventor
浩平 山本
靖丈 加藤
昌廣 藤坂
秀和 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2002232543A priority Critical patent/JP4147066B2/en
Publication of JP2004069015A publication Critical patent/JP2004069015A/en
Application granted granted Critical
Publication of JP4147066B2 publication Critical patent/JP4147066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の流路間を切換連通する弁体の切換位置を自己保持するデテント機構を備えたデテント機構付電磁切換弁に関する。
【0002】
【従来の技術】
従来のデテント機構付電磁切換弁は、弁本体(弁ボディ)内に弁体(弁スプール)を軸方向へ摺動自在に嵌挿し、弁本体の両側部に設けたソレノイド部の一方に通電して固定鉄心に吸引される可動鉄心(プランジャ)で弁体を一方の切換位置に向けて押圧したり、他方のソレノイド部に通電して固定鉄心に吸引される可動鉄心で弁体を他方の切換位置に向けて押圧したりして、複数の流路間を切換連通する。そして、弁体には軸方向へ離間して2個の環状溝を形成し、一方及び他方の切換位置で一方及び他方の環状溝にそれぞれ鋼球が嵌合してばねの弾性力によって係止された状態で自己保持するデテント機構を備えている。(例えば、実用新案登録第2581185号公報参照)。
【0003】
【発明が解決しようとする課題】
ところが、かかる従来のデテント機構付電磁切換弁では、一方または他方の切換位置に自己保持された弁体を他方または一方の切換位置に向けて押圧する際に、ソレノイド部への通電で可動鉄心を固定鉄心に吸引する吸引力に基づき弁体を押圧するため、弁体の一方または他方の切換位置で鋼球を環状溝に係止するばねの弾性力に基づく自己保持力を上回る大きな吸引力を有するソレノイド部を必要としてソレノイド部が大型化してしまう。
【0004】
本発明は、ソレノイド部の固定鉄心に吸引される可動鉄心の行程距離を弁体の一方と他方との切換位置間の行程距離より短くし、可動鉄心の短い行程距離に基づきソレノイド部を大型化することなく大きな吸引力で自己保持された弁体を確実に切換作動し得るデテント機構付電磁切換弁を提供することを課題としている。
【0005】
【課題を解決するための手段】
このため、本発明では、弁本体内に弁体を軸方向へ摺動自在に嵌挿し、弁体は軸方向へ離間した一方の切換位置と他方の切換位置とにおいて流体が流通する複数の流路間を切換連通自在に設け、弁本体の両側部には通電により発生する吸引力で可動鉄心を固定鉄心に向けて軸方向へ吸引するソレノイド部をそれぞれ備え、一方のソレノイド部は通電により固定鉄心に吸引される可動鉄心で弁体を一方の切換位置に向けて押圧するよう可動鉄心を弁体の軸方向一端部と係合自在に設け、他方のソレノイド部は通電により固定鉄心に吸引される可動鉄心で弁体を他方の切換位置に向けて押圧するよう可動鉄心を弁体の軸方向他端部と係合自在に設け、弁本体には軸方向へ移動不能で径方向へ移動自在に設けた球状部材を弾性力で径方向の内方へ付勢し、弁体には一方及び他方の切換位置でそれぞれ弾性力により付勢された球状部材が係止する2個の環状溝を軸方向へ離間して形成し、弾性力により付勢された球状部材と2個の環状溝とで弁体を一方及び他方の切換位置で自己保持するデテント機構を構成し、一方の環状溝には、一方のソレノイド部への通電により吸引されて弁体を一方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上一方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この一方の環状溝に有する傾斜面は、可動鉄心により一方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で一方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成し、他方の環状溝には、他方のソレノイド部への通電により吸引されて弁体を他方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上他方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この他方の環状溝に有する傾斜面は、可動鉄心により他方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で他方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成して成る。この場合、前記一方および他方の環状溝は断面形状をそれぞれ略V字形状に形成し、略V字形状における二つの傾斜面の一つを、前記一方および他方のソレノイド部への通電により吸引された可動鉄心が固定鉄心に接した状態で球状部材が接する傾斜面としても良い。
【0006】
かかる本発明によると、一方または他方のソレノイド部を通電すると、可動鉄心が固定鉄心に吸引されて弁体を一方または他方の切換位置に向けて押圧し、吸引された可動鉄心が固定鉄心に接した状態では、可動鉄心によりこれ以上弁体を一方または他方の切換位置に向けて押圧することはできないが、弾性力により径方向の内方へ付勢された球状部材が一方または他方の環状溝に有した傾斜面に接し、球状部材を傾斜面に押し付ける弾性力の軸方向分力で弁体を一方または他方の切換位置に向けて押圧し、一方または他方の切換位置で球状部材が一方または他方の環状溝に係止して弁体を自己保持する。このため、ソレノイド部における可動鉄心を固定鉄心に吸引する吸引力で弁体を一方の切換位置と他方の切換位置との間の全行程を押圧しなくて良く、固定鉄心に吸引される可動鉄心の行程距離を弁体の一方の切換位置と他方の切換位置との間の行程距離より短くでき、可動鉄心の短い行程距離に基づきソレノイド部を大型化することなく大きな吸引力で自己保持された弁体を確実に切換作動することができる。
【0007】
【発明の実施の形態】
以下、本発明の第1実施形態を図面に基づき説明する。
図1において、1は弁本体で、略直方体形状を成し、 スプール状の弁体2を軸方向へ摺動自在に嵌挿する嵌挿孔3を内部に貫通形成し、弁本体1の両側面に開口する嵌挿孔3の両端部にはそれぞれめねじ部を螺刻している。嵌挿孔3の軸方向の略中央部には圧力流体を供給する供給流路Pを開口し、また、供給流路Pの接続個所の軸方向両側へ間隙を有して流体アクチュエータ(図示せず)に接続する2個の負荷流路A、Bをそれぞれ開口し、さらに両負荷流路A、Bの軸方向外側へ間隙を有して低圧側に接続する排出流路R1、R2をそれぞれ開口している。弁体2は図1の上半分に示す一方の切換位置では供給流路Pを負荷流路Aに切換連通すると共に負荷流路Bを排出流路R2に切換連通し、図1の下半分に示す他方の切換位置では供給流路Pを負荷流路Bに切換連通すると共に負荷流路Aを排出流路R1に切換連通するようランド部2A、2Bを備えている。
【0008】
5A、5Bはソレノイド部で、固定鉄心6A、6Bを嵌挿孔3の両端部のめねじ部にそれぞれ螺合して弁本体1の両側部に備えている。両ソレノイド部5A、5Bは固定鉄心6A、6Bと対向して可動鉄心7A、7Bを筒状部材8A、8Bの内部に軸方向へ摺動自在に嵌挿し、コイル9A、9Bへの通電により発生する吸引力で可動鉄心7A、7Bを固定鉄心6、6Bに向けて軸方向へ吸引し、吸引する終端で可動鉄心7A、7Bが固定鉄心6A、6Bに接する。一方のソレノイド部5Aは吸引される可動鉄心7Aで弁体2を一方の切換位置に向けて押圧するよう可動鉄心7Aをピン部材10Aを介して弁体2の軸方向一端部と係合自在に設け、他方のソレノイド部5Bは吸引される可動鉄心7Bで弁体2を他方の切換位置に向けて押圧するよう可動鉄心7Bをピン部材10Bを介して弁体2の軸方向他端部と係合自在に設け、両ピン部材10A、10Bはそれぞれ固定鉄心6A、6Bの内部を軸方向へ挿通して弁体2の軸方向端部に至っている。11は弁本体1上部に備えた端子箱で、外部電源からの電気配線を両ソレノイド部5A、5Bのコイル9A、9Bと電機接続する。
【0009】
12は保持部材で、一方のソレノイド部5Aの固定鉄心6Aを嵌挿孔3のめねじ部に螺合することで弁本体1と固定鉄心6Aとの間に挟持されて弁本体1内部に取り付けられ、図2及び図3に示す如き、中心部には弁体2の軸方向一端部を軸方向へ挿通する挿通孔13を貫設している。保持部材12には外面を環状に窪ませて収装溝14を形成すると共に、外面における収装溝14の形成個所と挿通孔13との間を径方向へ貫通して2個の縦孔15、16を対向形成し、収装溝14は縦孔15、16の略中心部を通り、溝幅寸法を縦孔15、16の直径寸法より小さく設けている。17、18は球状部材としての鋼球で、保持部材12の縦孔15、16に嵌挿することで軸方向へ移動不能で径方向へ移動自在に設けている。19は断面形状を略C字形状に形成したばねで、保持部材12の収装溝14に収装して鋼球17、18の外周面に圧接し、鋼球17、18を自己の弾性力で径方向の内方へ付勢している。20、21はピン形状の回り止め部材で、収装溝14に収装したばね19の回転を阻止するよう保持部材12に設けている。保持部材12の挿通孔13に挿通する弁体2の軸方向一端部には、外周面を窪ませて2個の環状溝22、23を軸方向へ離間して形成し、弁体2の一方の切換位置で一方の環状溝22にばね19の弾性力により付勢された鋼球17、18が係止すると共に、弁体2の他方の切換位置で他方の環状溝23にばね19の弾性力により付勢された鋼球17、18が係止し、保持部材12に設けてばね19の弾性力により付勢された鋼球17、18と2個の環状溝22、23とで弁体2を一方及び他方の切換位置で自己保持するデテント機構を構成する。
【0010】
両環状溝22、23は断面形状を略V字形状に形成し、一方の環状溝22が弁体2の軸方向外方(図3の右方)に位置すると共に、他方の環状溝23が弁体2の軸方向内方(図3の左方)に位置する。一方の環状溝22は略V字形状における軸方向中心部を対称として軸方向内方の傾斜面22Aと軸方向外方の傾斜面22Bとの二つを有し、軸方向内方にある一つの傾斜面22Aは一方のソレノイド部5Aへの通電により吸引された可動鉄心7Aが固定鉄心6Aに接した状態で鋼球17、18を接し、鋼球17、18を押し付けるばね19の弾性力の軸方向分力で弁体2を一方の切換位置に向けて押圧するよう弁体2の軸方向外方に向けて順次縮径するテーパ状に形成している。もう一つの傾斜面22Bは弁体2の軸方向内方に向けて順次縮径するテーパ状に形成し、弁体2の一方の切換位置では鋼球17、18を二つの傾斜面22A、22Bにそれぞれ接する2点支持で環状溝22に係止する。他方の環状溝23は略V字形状における軸方向中心部を対称として軸方向内方の傾斜面23Bと軸方向外方の傾斜面23Aとの二つを有し、軸方向外方にある一つの傾斜面23Aは他方のソレノイド部5Bへの通電により吸引された可動鉄心7Bが固定鉄心6Bに接した状態で鋼球17、18を接し、鋼球17、18を押し付けるばね19の弾性力の軸方向分力で弁体2を他方の切換位置に向けて押圧するよう弁体2の軸方向内方に向けて順次縮径するテーパ状に形成している。もう一つの傾斜面23Bは弁体2の軸方向外方に向けて順次縮径するテーパ状に形成し、弁体2の他方の切換位置では鋼球17、18を二つの傾斜面23A、23Bにそれぞれ接する2点支持で環状溝23に係止する。
【0011】
次に、かかる構成の作動を説明する。
図1における弁体2の下半分及び図3は、鋼球18、19が他方の環状溝23に係止して弁体2を他方の切換位置で自己保持した状態を示し、両ソレノイド部5A、5Bは非通電で、弁体2は供給流路Pを負荷流路Bに切換連通すると共に負荷流路Aを排出流路R1に切換連通している。
【0012】
この状態で、一方のソレノイド部5Aに通電すると、通電により発生する吸引力で可動鉄心7Aが固定鉄心6Aに向けて軸方向へ図1の左方に吸引され、この吸引によりピン部材10Aを介して弁体2を一方の切換位置に向けて図1の左方に押圧し、鋼球17、18は他方の環状溝23から離脱する。このとき、弁体2の図1左方への押圧に伴い、他方のソレノイド部5Bの可動鉄心7Bもピン部材10Bを介して図1の左方に押圧される。そして、吸引される可動鉄心7Aが固定鉄心6Aに接すると、可動鉄心7Aによりこれ以上弁体2を一方の切換位置に向けて押圧することはできないが、図4に示す如き、ばね19の弾性力により径方向の内方へ付勢された鋼球17、18が一方の環状溝22の傾斜面22Aに接し、鋼球17、18を傾斜面22Aに押し付けるばね19の弾性力の軸方向分力が図4の左方に作用して弁体2を一方の切換位置に向けて図4の左方に押圧する。
【0013】
そして、図1における弁体2の上半分及び図5に示す如き、弁体2が一方の切換位置に達すると、ばね19の弾性力で径方向の内方へ付勢される鋼球17、18は、一方の環状溝22における軸方向中心部に位置して二つの傾斜面22A、22Bにそれぞれ接する2点支持で環状溝22に係止して弁体2を自己保持し、弁体2は供給流路Pを負荷流路Aに切換連通すると共に負荷流路Bを排出流路R2に切換連通する。このとき、弁体2の軸方向一端部はピン部材10Aから離間する。そして、一方のソレノイド部5Aを非通電にする。
【0014】
弁体2を一方の切換位置に自己保持する図1における弁体2の上半分及び図5に示す状態で、他方のソレノイド部5Bを通電すると、通電により発生する吸引力で可動鉄心7Bが固定鉄心6Bに向けて軸方向へ図1の右方へ吸引され、ピン部材10Bを介して弁体2を他方の切換位置に向けて図1の右方へ押圧し、鋼球17、18は一方の環状溝22から離脱する。このとき、弁体2の図1右方への押圧に伴い、一方のソレノイド部5Aの可動鉄心7Aもピン部材10Aを介して図1の右方に押圧される。そして、吸引される可動鉄心7Bが固定鉄心6Bに接すると、可動鉄心7Bによりこれ以上弁体2を他方の切換位置に向けて押圧することはできないが、鋼球17、18が他方の環状溝23の傾斜面23Aに接し、鋼球17、18を傾斜面23Aに押し付けるばね19の弾性力の軸方向分力が図1の右方に作用して弁体2を他方の切換位置に向けて押圧し、図1における弁体2の下半分及び図3に示す他方の切換位置に弁体2が復帰すると、鋼球17、18は他方の環状溝23における軸方向中心部に位置して二つの傾斜面23A、23Bにそれぞれ接する2点支持で環状溝23に係止して弁体2を自己保持し、このとき、弁体2の軸方向他端部はピン部材10Bから離間する。そして、他方のソレノイド部5Bを非通電にする。
【0015】
かかる作動で、弁体2を一方または他方の切換位置から他方または一方の切換位置へ切換作動する際に、ソレノイド部5A、5Bにおける可動鉄心7A、7Bが吸引されて固定鉄心6A、6Bに接した状態で、鋼球17、18を一方または他方の環状溝22または23に有する傾斜面22Aまたは23Aに接し、鋼球17、18を傾斜面22Aまたは23Aに押し付けるばね19の弾性力の軸方向分力で弁体2を一方または他方の切換位置に向けて押圧するため、ソレノイド部5A、5Bにおける可動鉄心7A、7Bを固定鉄心6A、6Bに吸引する吸引力で弁体2を一方の切換位置と他方の切換位置との間の全行程を押圧しなくて良く、固定鉄心6A、6Bに吸引される可動鉄心7A、7Bの行程距離を弁体2の一方の切換位置と他方の切換位置との間の行程距離より短くでき、可動鉄心7A、7Bの短い行程距離に基づきソレノイド部5A、5Bを大型化することなく大きな吸引力で自己保持された弁体2を確実に切換作動することができる。また、鋼球17、18を環状溝22、23に係止するためのばね19の弾性力の軸方向分力で弁体2を一方または他方の切換位置に向けて押圧するため、鋼球17、18を付勢するばね19の弾性力を利用して弁体2を押圧することができ、ソレノイド部5A、5Bの他に弁体2を押圧する格別な手段を別途設ける必要がなく、部品点数の増加による構成の複雑化を招くことなくできる。さらにまた、環状溝22、23は断面形状を略V字形状に形成し、略V字形状における二つの傾斜面22A、22Bと23A、23Bの一つを、ソレノイド部5A、5Bへの通電により吸引された可動鉄心7A、7Bが固定鉄心6A、6Bに接した状態で鋼球17、18が接する傾斜面22A、23Aとしているため、環状溝22、23の溝形状を複雑な形状にすることなく簡易に形成することができる。
【0016】
図6は、デテント機構を弁体2の軸方向他端部側に設けた第1実施形態の変形例を示し、異なる個所について説明すると、保持部材12を弁本体1と他方のソレノイド部5Bの固定鉄心6Bとの間に挟持して弁本体1内部に取り付け、保持部材12の挿通孔13へ挿通する弁体2の軸方向他端部の外周面を窪ませて2個の環状溝22、23を軸方向へ離間して形成しているが、第1実施形態とは逆の配置で、一方の環状溝22が弁体2の軸方向内方(図6の右方)に位置すると共に、他方の環状溝23が弁体2の軸方向外方(図6の左方)に位置する。そして、一方の環状溝22における二つの傾斜面22A、22Bで、軸方向外方にあり弁体2の軸方向内方に向けて順次縮径するテーパ状に形成した一つの傾斜面22Aが一方のソレノイド部5Aへの通電により吸引された可動鉄心7Aが固定鉄心6Aに接した状態で鋼球17、18を接してばね19の弾性力の軸方向分力で弁体2を一方の切換位置に向けて押圧する。また、他方の環状溝23における二つの傾斜面23A、23Bで、軸方向内方にあり弁体2の軸方向外方に向けて順次縮径する一つの傾斜面23Aが他方のソレノイド部5Bへの通電により吸引された可動鉄心7Bが固定鉄心6Bに接した状態で鋼球17、18を接してばね19の弾性力の軸方向分力で弁体2を他方の切換位置に向けて押圧する。そして、第1実施形態と同様の作用効果を得ることができる。
【0017】
図7は本発明の第2実施形態を示し、第1実施形態と同一個所については同符号を付して説明を省略し、異なる個所についてのみ説明する。
弁体2の軸方向一端部に、軸方向へ離間して外周面を窪ませて形成した2個の環状溝30、31は、一つの傾斜面30A、31Aと一つの垂直面30B、31Bとをそれぞれ有している。一方の環状溝30に有する傾斜面30Aはソレノイド部5Aへの通電により吸引された可動鉄心7Aが固定鉄心6Aに接した状態で鋼球17、18を接し、弁体2の軸方向外方(図7の右方)に向けて順次縮径するテーパ状に形成し、垂直面30Bは傾斜面30Aの最縮径個所に連なって弁体2の外周面に至る。他方の環状溝31に有する傾斜面31Aはソレノイド部5Bへの通電により吸引された可動鉄心7Bが固定鉄心6Bに接した状態で鋼球17、18を接し、弁体2の軸方向内方(図7の左方)に向けて順次縮径するテーパ状に形成し、垂直面31Bは傾斜面31Aの最縮径個所に連なって弁体2の外周面に至る。そして、弁体2の一方の切換位置で鋼球17、18を傾斜面30A及び垂直面30Bと弁体2外周面との稜部にそれぞれ接する2点支持で一方の環状溝30に係止し、弁体2の他方の切換位置で鋼球17、18を傾斜面31A及び垂直面31Bと弁体2外周面との稜部にそれぞれ接する2点支持で他方の環状溝31に係止する。
作動は、第1実施形態と同様で、可動鉄心7A、7Bの短い行程距離に基づきソレノイド部5A、5Bを大型化することなく大きな吸引力で自己保持された弁体2を確実に切換作動することができ、また、鋼球17、18を環状溝30、31に係止するためのばね19の弾性力を利用して弁体2を一方または他方の切換位置に向けて押圧するため、部品点数の増加による構成の複雑化を招くことなくできる。
【0018】
なお、前述の各実施形態では、球状部材として鋼球17、18を用いたが、硬質材より成るボール等を用いても良く、また、鋼球17、18を弾性力で径方向の内方へ付勢するばねとして断面形状を略C字形状に形成したばね19を用いたが、鋼球17、18をそれぞれ径方向の内方へ付勢する二つのコイルばねや板ばね等を用いて適宜実施できることは勿論である。
【0019】
【発明の効果】
このように請求項1に記載の発明では、一方の環状溝には、一方のソレノイド部への通電により吸引されて弁体を一方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上一方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この一方の環状溝に有する傾斜面は、可動鉄心により一方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で一方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成し、他方の環状溝には、他方のソレノイド部への通電により吸引されて弁体を他方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上他方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この他方の環状溝に有する傾斜面は、可動鉄心により他方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で他方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成しことにより、固定鉄心に吸引される可動鉄心の行程距離を弁体の一方の切換位置と他方の切換位置との間の行程距離より短くでき、可動鉄心の短い行程距離に基づきソレノイド部を大型化することなく大きな吸引力で自己保持された弁体を確実に切換作動することができる。また、球状部材を径方向の内方へ付勢して環状溝に係止する弾性力の軸方向分力で弁体を一方または他方の切換位置に向けて押圧するため、球状部材を付勢する弾性力を利用して弁体を押圧することができ、ソレノイド部の他に弁体を押圧する格別な手段を別途設ける必要がなく、部品点数の増加による構成の複雑化を招くことなくできる。
【0020】
また、請求項2に記載の発明では、請求項1に記載の発明の効果に加え、一方および他方の環状溝は断面形状をそれぞれ略V字形状に形成し、略V字形状における二つの傾斜面の一つを、一方および他方のソレノイド部への通電により吸引された可動鉄心が固定鉄心に接した状態で球状部材が接する傾斜面としているため、環状溝の溝形状を複雑な形状にすることなく簡易に形成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示したデテント機構付電磁切換弁の縦断面図である。
【図2】図1の線A−Aに沿った拡大断面図である。
【図3】要部の拡大断面図である。
【図4】図3の作動状態を示した図である。
【図5】図4とは異なる作動状態を示した図である。
【図6】第1実施形態の変形例を示した要部の拡大断面図である。
【図7】本発明の第2実施形態を示した要部の拡大断面図である。
【符号の説明】
1 弁本体
2 弁体
5A、5B ソレノイド部
6A、6B 固定鉄心
7A、7B 可動鉄心
17、18 鋼球(球状部材)
22、23、30、31 環状溝
22A、23A、30A、31A 傾斜面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic switching valve with a detent mechanism provided with a detent mechanism that self-holds a switching position of a valve body that switches and communicates between a plurality of flow paths.
[0002]
[Prior art]
In a conventional electromagnetic switching valve with a detent mechanism, a valve body (valve spool) is slidably inserted in the valve body (valve body) in the axial direction, and one solenoid part provided on both sides of the valve body is energized. The valve body is pressed toward one switching position with a movable iron core (plunger) that is sucked into the fixed iron core, or the other solenoid is energized to switch the valve body with the movable iron core that is sucked into the fixed iron core. For example, by pressing toward the position, the plurality of flow paths are switched and communicated. Then, two annular grooves are formed in the valve body so as to be separated from each other in the axial direction, and steel balls are fitted in the one and the other annular grooves at one and the other switching positions, and are locked by the elastic force of the spring. A detent mechanism is provided for self-holding in a state in which it is held. (For example, see Utility Model Registration No. 2581185).
[0003]
[Problems to be solved by the invention]
However, in such a conventional electromagnetic switching valve with a detent mechanism, when the valve body self-held at one or the other switching position is pressed toward the other or one switching position, the movable iron core is energized by energizing the solenoid part. In order to press the valve body based on the suction force attracted to the fixed iron core, a large suction force exceeding the self-holding force based on the elastic force of the spring that locks the steel ball in the annular groove at one or the other switching position of the valve body. The solenoid part which has it is needed and a solenoid part will enlarge.
[0004]
In the present invention, the stroke distance of the movable iron core attracted by the fixed iron core of the solenoid portion is made shorter than the stroke distance between the switching positions of one of the valve bodies, and the solenoid portion is enlarged based on the short stroke distance of the movable iron core. It is an object of the present invention to provide an electromagnetic switching valve with a detent mechanism that can reliably switch over a valve body that is self-held with a large suction force without the need to do so.
[0005]
[Means for Solving the Problems]
For this reason, in the present invention, a valve body is slidably inserted into the valve body in the axial direction, and the valve body has a plurality of flows through which fluid flows in one switching position and the other switching position that are separated in the axial direction. The passages can be switched and communicated freely, and both sides of the valve body are equipped with solenoid parts that draw the movable iron core in the axial direction toward the fixed iron core by the suction force generated by energization. One solenoid part is fixed by energization The movable iron core is slidably engaged with one axial end of the valve body so that the valve body is pressed toward one switching position by the movable iron core sucked by the iron core, and the other solenoid part is sucked by the fixed iron core when energized. The movable iron core is engagable with the other axial end of the valve body so that the valve body is pressed toward the other switching position with the movable iron core, and the valve body cannot move in the axial direction but is movable in the radial direction. The spherical member provided on the The valve body is formed with two annular grooves that are engaged with a spherical member that is urged by elastic force at one and the other switching positions to be separated from each other in the axial direction. The member and the two annular grooves constitute a detent mechanism that self-holds the valve body at one and the other switching position. The one annular groove is sucked by energization of one solenoid part, and the valve body is movable iron core for pressing the switching position is an inclined surface which is spherical member in contact in a state that can no longer be pressed towards the more one switching position of the valve body in contact with the fixed iron core, the one inclined surface having the annular groove, the valve body can no longer be pressed toward the one switching position by the movable iron core toward the switching position of the hand in the axial direction component force of the elastic force that presses the spherical member pressing To reduce the diameter of the tape Forming the path shape, the other in the annular groove, the other more other valve body is movable iron core against the fixed iron core for pressing the being sucked valve body to the other switching position by energizing the solenoid portion The inclined surface which the spherical member contacts in a state where it is no longer possible to press toward the switching position, and the inclined surface which the other annular groove has can be pressed toward the other switching position by the movable iron core. the valve body can no longer be made in tapered sequentially reduced in diameter toward the axial direction so as to press toward the switching position of the other side in the axial direction component force of the elastic force pressing the spherical member. In this case, the one and the other annular grooves to form a cross section in a V-shape substantially each one of the two inclined surfaces in a substantially V-shape, is sucked by energizing said to one and the other of the solenoid portion The movable core may be an inclined surface with which the spherical member is in contact with the stationary core.
[0006]
According to the present invention, when one or the other solenoid part is energized, the movable iron core is attracted to the fixed iron core and presses the valve body toward the one or the other switching position, and the sucked movable iron core contacts the fixed iron core. In this state, the movable iron core cannot push the valve body further toward the one or the other switching position, but the spherical member biased radially inward by the elastic force is applied to the one or the other annular groove. The valve body is pressed toward one or the other switching position by the axial component of the elastic force that presses the spherical member against the inclined surface, and the spherical member is moved to one or the other switching position. The valve body is self-held by engaging with the other annular groove. For this reason, it is not necessary to press the whole stroke between one switching position and the other switching position by the suction force which attracts the movable iron core in the solenoid part to the stationary iron core, and the movable iron core sucked by the stationary iron core The stroke distance of the valve body can be shorter than the stroke distance between one switching position and the other switching position of the valve body, and it is self-held with a large suction force without increasing the size of the solenoid part based on the short stroke distance of the movable iron core. The valve body can be switched and operated reliably.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a valve body, which has a substantially rectangular parallelepiped shape, and has insertion holes 3 through which a spool-like valve body 2 is slidably inserted in the axial direction. Female thread portions are threaded at both ends of the fitting insertion hole 3 that opens to the surface. A supply flow path P for supplying a pressure fluid is opened at a substantially central portion in the axial direction of the insertion hole 3, and a fluid actuator (not shown) is provided with gaps on both sides in the axial direction of connection points of the supply flow path P. And two discharge flow paths A1 and B2 connected to the low pressure side with a gap outward in the axial direction of the load flow paths A and B, respectively. It is open. In the switching position shown in the upper half of FIG. 1, the valve body 2 switches the supply flow path P to the load flow path A and switches the load flow path B to the discharge flow path R 2. In the other switching position shown, land portions 2A and 2B are provided so that the supply flow path P is switched to the load flow path B and the load flow path A is switched to the discharge flow path R1.
[0008]
5A and 5B are solenoid parts, and the fixed iron cores 6A and 6B are respectively screwed into the female thread parts at both ends of the fitting insertion hole 3 and are provided on both side parts of the valve body 1. Both solenoid parts 5A and 5B are opposed to the fixed iron cores 6A and 6B, and the movable iron cores 7A and 7B are inserted into the cylindrical members 8A and 8B so as to be slidable in the axial direction, and are generated by energizing the coils 9A and 9B. The movable iron cores 7A and 7B are sucked in the axial direction toward the fixed iron cores 6 and 6B by the suction force to be applied, and the movable iron cores 7A and 7B are in contact with the fixed iron cores 6A and 6B at the end of the suction. One solenoid portion 5A is engageable with one axial end portion of the valve body 2 via the pin member 10A so that the solenoid body 5A is pressed by the attracted movable core 7A and presses the valve body 2 toward one switching position. The other solenoid part 5B is engaged with the other axial end of the valve body 2 via the pin member 10B so that the other solenoid part 5B presses the valve body 2 toward the other switching position by the attracted movable core 7B. Both pin members 10A and 10B are inserted through the fixed iron cores 6A and 6B in the axial direction to reach the axial end of the valve body 2 respectively. Reference numeral 11 denotes a terminal box provided on the upper part of the valve body 1, and electrically connects electrical wiring from an external power source to the coils 9A and 9B of both solenoid parts 5A and 5B.
[0009]
Reference numeral 12 denotes a holding member, which is attached to the inside of the valve body 1 by being sandwiched between the valve body 1 and the fixed iron core 6A by screwing the fixed iron core 6A of one solenoid part 5A into the female thread portion of the fitting insertion hole 3. As shown in FIGS. 2 and 3, an insertion hole 13 is formed through the central portion so as to insert one end of the valve body 2 in the axial direction in the axial direction. The outer surface on the holding member 12 to form a OsamuSomizo 14 by depressing the annular, vertical hole between two through the radially of the formation positions and the insertion hole 13 of OsamuSomizo 14 on the outer surface 15 , 16 are formed opposite to each other, and the collection groove 14 passes through substantially the center of the vertical holes 15, 16 and has a groove width dimension smaller than the diameter dimension of the vertical holes 15, 16. Reference numerals 17 and 18 denote steel balls as spherical members, which are provided so as to be movable in the radial direction but not in the axial direction by being fitted into the vertical holes 15 and 16 of the holding member 12. A spring 19 having a substantially C-shaped cross section is received in the receiving groove 14 of the holding member 12 and pressed against the outer peripheral surfaces of the steel balls 17 and 18 so that the steel balls 17 and 18 have their own elastic force. It is energized inward in the radial direction. Reference numerals 20 and 21 denote pin-shaped detent members which are provided on the holding member 12 so as to prevent the rotation of the spring 19 accommodated in the accommodation groove 14. At one end in the axial direction of the valve body 2 inserted through the insertion hole 13 of the holding member 12, two annular grooves 22 and 23 are formed in the axial direction so as to be recessed in the outer peripheral surface. The steel balls 17 and 18 urged by the elastic force of the spring 19 are engaged with the one annular groove 22 at the switching position, and the elasticity of the spring 19 is retained in the other annular groove 23 at the other switching position of the valve body 2. The steel balls 17 and 18 urged by the force are locked, and the disc is provided by the steel balls 17 and 18 provided on the holding member 12 and urged by the elastic force of the spring 19 and the two annular grooves 22 and 23. A detent mechanism for holding 2 at one and the other switching positions is configured.
[0010]
Both annular grooves 22 and 23 have a substantially V-shaped cross section. One annular groove 22 is located on the axially outer side of valve body 2 (right side in FIG. 3), and the other annular groove 23 is formed. It is located inward in the axial direction of valve body 2 (left side in FIG. 3). One annular groove 22 has an axially inwardly inclined surface 22A and an axially outwardly inclined surface 22B with the axially central portion of the substantially V-shaped being symmetrical, and is in the axially inward direction. The two inclined surfaces 22A are in contact with the steel balls 17 and 18 in a state where the movable iron core 7A attracted by energizing one solenoid part 5A is in contact with the fixed iron core 6A, and the elastic force of the spring 19 pressing the steel balls 17 and 18 is applied. The valve body 2 is formed in a tapered shape that sequentially decreases in diameter toward the outer side in the axial direction of the valve body 2 so as to press the valve body 2 toward one switching position with an axial component force. The other inclined surface 22B is formed in a taper shape that gradually decreases in diameter toward the inner side in the axial direction of the valve body 2, and the steel balls 17 and 18 are formed into two inclined surfaces 22A and 22B at one switching position of the valve body 2. The ring groove 22 is latched by two-point support that contacts each other. The other annular groove 23 has two of an axially inwardly inclined surface 23B and an axially outwardly inclined surface 23A with the axial center portion of the substantially V-shape being symmetrical, and is located on the axially outer side. The two inclined surfaces 23A contact the steel balls 17 and 18 with the movable iron core 7B attracted by energizing the other solenoid part 5B in contact with the fixed iron core 6B, and the elastic force of the spring 19 that presses the steel balls 17 and 18 It forms in the taper shape which diameter-reduces sequentially toward the axial direction inward of the valve body 2 so that the valve body 2 may be pressed toward the other switching position with an axial direction component force. The other inclined surface 23B is formed in a tapered shape that gradually decreases in diameter toward the outer side in the axial direction of the valve body 2, and the steel balls 17 and 18 are formed into two inclined surfaces 23A and 23B at the other switching position of the valve body 2. The ring groove 23 is locked by two-point support that contacts each other.
[0011]
Next, the operation of this configuration will be described.
The lower half of the valve body 2 in FIG. 1 and FIG. 3 show a state in which the steel balls 18 and 19 are locked in the other annular groove 23 and the valve body 2 is self-held in the other switching position. 5B is de-energized, and the valve body 2 switches and communicates the supply flow path P to the load flow path B and the load flow path A to the discharge flow path R1.
[0012]
In this state, when one solenoid portion 5A is energized, the movable iron core 7A is attracted toward the fixed iron core 6A in the axial direction toward the left in FIG. 1 by the attraction force generated by energization, and this suction causes the pin member 10A to pass through. Then, the valve body 2 is pressed to the left in FIG. 1 toward one switching position, and the steel balls 17 and 18 are detached from the other annular groove 23. At this time, as the valve body 2 is pressed to the left in FIG. 1, the movable iron core 7B of the other solenoid part 5B is also pressed to the left in FIG. 1 via the pin member 10B. When the attracted movable iron core 7A comes into contact with the fixed iron core 6A, the movable iron core 7A cannot press the valve body 2 toward one switching position any more, but the elasticity of the spring 19 as shown in FIG. The steel balls 17 and 18 urged inward in the radial direction by the force are in contact with the inclined surface 22A of the one annular groove 22, and the axial direction component of the elastic force of the spring 19 pressing the steel balls 17 and 18 against the inclined surface 22A. The force acts on the left side of FIG. 4 to push the valve body 2 toward the one switching position and to the left side of FIG.
[0013]
Then, as shown in FIG. 5 and the upper half of the valve body 2 in FIG. 1 and when the valve body 2 reaches one switching position, the steel ball 17 urged radially inward by the elastic force of the spring 19, 18 is a two-point support located at the axial center of one annular groove 22 and in contact with the two inclined surfaces 22A and 22B, and is engaged with the annular groove 22 to hold the valve body 2 by itself. Connects the supply flow path P to the load flow path A and switches the load flow path B to the discharge flow path R2. At this time, one axial end of the valve body 2 is separated from the pin member 10A. And one solenoid part 5A is deenergized.
[0014]
In the state shown in FIG. 5 and the upper half of the valve body 2 in FIG. 1 that self-holds the valve body 2 in one switching position, when the other solenoid part 5B is energized, the movable iron core 7B is fixed by the suction force generated by energization. 1 is sucked in the axial direction toward the iron core 6B to the right in FIG. 1, and the valve body 2 is pressed toward the other switching position via the pin member 10B to the right in FIG. The annular groove 22 is detached. At this time, as the valve body 2 is pressed to the right in FIG. 1, the movable iron core 7A of one solenoid part 5A is also pressed to the right in FIG. 1 via the pin member 10A. When the attracted movable iron core 7B contacts the fixed iron core 6B, the movable iron core 7B cannot press the valve body 2 toward the other switching position any more, but the steel balls 17 and 18 are in the other annular groove. The axial component of the elastic force of the spring 19 that is in contact with the inclined surface 23A of 23 and presses the steel balls 17 and 18 against the inclined surface 23A acts to the right in FIG. 1 so that the valve body 2 is directed to the other switching position. When the valve body 2 returns to the lower half of the valve body 2 in FIG. 1 and the other switching position shown in FIG. 3, the steel balls 17 and 18 are positioned at the axially central portion of the other annular groove 23. The valve body 2 is self-held by being locked to the annular groove 23 by two-point support in contact with the two inclined surfaces 23A and 23B. At this time, the other axial end of the valve body 2 is separated from the pin member 10B. Then, the other solenoid unit 5B is deenergized.
[0015]
With this operation, when the valve body 2 is switched from one or the other switching position to the other or one switching position, the movable iron cores 7A and 7B in the solenoid portions 5A and 5B are sucked and contact the fixed iron cores 6A and 6B. In the state where the steel balls 17 and 18 are in contact with the inclined surface 22A or 23A having the one or the other annular groove 22 or 23, the axial direction of the elastic force of the spring 19 pressing the steel balls 17 or 18 against the inclined surface 22A or 23A. In order to press the valve body 2 toward one or the other switching position with a component force, the valve body 2 is switched to one side with a suction force that attracts the movable iron cores 7A and 7B in the solenoid portions 5A and 5B to the fixed iron cores 6A and 6B. It is not necessary to press the entire stroke between the position and the other switching position, and the stroke distance of the movable iron cores 7A and 7B sucked by the fixed iron cores 6A and 6B is set to one switching position and the other switching position of the valve body 2. The valve body 2 that is self-held with a large suction force can be switched reliably without increasing the size of the solenoid parts 5A and 5B based on the short stroke distance of the movable iron cores 7A and 7B. be able to. In addition, the steel ball 17 is used to press the valve body 2 toward one or the other switching position by the axial component of the elastic force of the spring 19 for locking the steel balls 17 and 18 in the annular grooves 22 and 23. , 18 can be used to press the valve body 2 by using the elastic force of the spring 19, and there is no need to provide a special means for pressing the valve body 2 in addition to the solenoid parts 5A and 5B. This can be done without complicating the configuration due to an increase in the number of points. Furthermore, the annular grooves 22 and 23 have a substantially V-shaped cross section, and one of the two inclined surfaces 22A and 22B and 23A and 23B in the substantially V-shape is energized to the solenoid parts 5A and 5B. Since the suctioned movable iron cores 7A and 7B are in contact with the fixed iron cores 6A and 6B and the inclined surfaces 22A and 23A are in contact with the steel balls 17 and 18, the groove shapes of the annular grooves 22 and 23 are complicated. And can be formed easily.
[0016]
FIG. 6 shows a modified example of the first embodiment in which the detent mechanism is provided on the other end side in the axial direction of the valve body 2, and different points will be described. The holding member 12 is connected to the valve body 1 and the other solenoid part 5B. Two annular grooves 22 that are sandwiched between the fixed iron core 6B and attached to the inside of the valve body 1 and the outer circumferential surface of the other end in the axial direction of the valve body 2 inserted into the insertion hole 13 of the holding member 12 is depressed. 23 is spaced apart in the axial direction, but with an arrangement opposite to that of the first embodiment, one annular groove 22 is located inward in the axial direction of the valve body 2 (right side in FIG. 6). The other annular groove 23 is positioned outward in the axial direction of the valve body 2 (left side in FIG. 6). The two inclined surfaces 22A and 22B in the one annular groove 22 have one inclined surface 22A that is formed in a tapered shape that is outward in the axial direction and that gradually decreases in diameter toward the inner side in the axial direction of the valve body 2. In the state where the movable iron core 7A attracted by energizing the solenoid portion 5A is in contact with the fixed iron core 6A, the steel balls 17 and 18 are brought into contact with each other and the valve body 2 is moved to one switching position by the axial component of the elastic force of the spring 19. Press toward. Further, two inclined surfaces 23A and 23B in the other annular groove 23 have one inclined surface 23A which is inward in the axial direction and sequentially reduces in diameter toward the outer side in the axial direction of the valve body 2 to the other solenoid portion 5B. In a state where the movable iron core 7B attracted by the energization is in contact with the fixed iron core 6B, the steel balls 17 and 18 are brought into contact with each other and the valve body 2 is pressed toward the other switching position by the axial component of the elastic force of the spring 19. . And the effect similar to 1st Embodiment can be acquired.
[0017]
FIG. 7 shows a second embodiment of the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described.
Two annular grooves 30 and 31 formed at one end of the valve body 2 in the axial direction so as to be spaced apart in the axial direction and recessed in the outer peripheral surface are composed of one inclined surface 30A and 31A and one vertical surface 30B and 31B. Respectively. The inclined surface 30A of one annular groove 30 is in contact with the steel balls 17 and 18 in a state where the movable iron core 7A sucked by energization of the solenoid portion 5A is in contact with the fixed iron core 6A, and the valve body 2 is axially outward ( It forms in the taper shape which diameters reduce sequentially toward the right side of FIG. 7, and the vertical surface 30B continues to the diameter reduction part of the inclined surface 30A, and reaches the outer peripheral surface of the valve body 2. Inclined surfaces 31A with the other of the annular groove 31 is in contact with the steel balls 17, 18 in a state where the movable iron core 7B sucked by energizing the solenoid portion 5B is in contact with the fixed iron core 6B, axially inward of the valve body 2 ( sequentially reduced in diameter to form a tapered shape toward the left) in FIG. 7, the vertical surface 31B reaches the outer peripheral surface of the valve body 2 continuous to the outermost contraction径個plants of the inclined surface 31A. Then, at one switching position of the valve body 2, the steel balls 17 and 18 are locked to the one annular groove 30 by two-point support respectively contacting the ridges of the inclined surface 30A and the vertical surface 30B and the outer peripheral surface of the valve body 2. At the other switching position of the valve body 2, the steel balls 17 and 18 are locked to the other annular groove 31 by two-point support in contact with the ridge portions of the inclined surface 31 </ b> A and the vertical surface 31 </ b> B and the outer peripheral surface of the valve body 2.
The operation is the same as in the first embodiment, and the valve body 2 that is self-held with a large suction force is reliably switched and operated without enlarging the solenoid parts 5A and 5B based on the short stroke distance of the movable iron cores 7A and 7B. Parts for pressing the valve body 2 toward one or the other switching position by using the elastic force of the spring 19 for locking the steel balls 17 and 18 to the annular grooves 30 and 31. This can be done without complicating the configuration due to an increase in the number of points.
[0018]
In each of the embodiments described above, the steel balls 17 and 18 are used as the spherical members. However, balls or the like made of a hard material may be used, and the steel balls 17 and 18 may be radially inward by elastic force. A spring 19 having a substantially C-shaped cross section is used as a spring for urging the steel ball. However, two coil springs, leaf springs, and the like for urging the steel balls 17 and 18 inward in the radial direction are used. Of course, it can be implemented appropriately.
[0019]
【The invention's effect】
In invention described in claim 1, the one annular groove, the movable iron core is pressed toward the one switching position the being sucked valve body by energizing the one of the solenoid portion is in contact with the fixed iron core valve body has an inclined surface which is spherical member in contact in a state that can no longer be pressed towards the more one switching position, the inclined surface having the annular groove of the one hand, in one switching position by the movable iron core the valve body can no longer be pressed towards sequentially formed in a tapered shape that decreases in diameter toward the axial direction component force of the elastic force pressing the spherical member in the axial direction so as to press toward the switching position of the hand In the other annular groove, the movable iron core that is attracted by energizing the other solenoid part and presses the valve body toward the other switching position is in contact with the fixed iron core, and the valve body is directed to the other switching position any more. Can not press An inclined surface which is spherical member in contact state, the valve element inclined surface having this other annular groove is no longer able to press toward the movable iron core to the other switching position, an elastic force to press the spherical member of by the tapered sequentially reduced in diameter toward the axial direction so as to press toward the switching position of the other side in the axial direction component force, the stroke distance of the movable iron core is attracted to the fixed iron core of the valve body The stroke distance between one switching position and the other switching position can be made shorter, and the valve body that is self-held with a large suction force can be switched reliably without enlarging the solenoid part based on the short stroke distance of the movable core. can do. Further, the spherical member is urged toward the one or the other switching position by the axial component of the elastic force that urges the spherical member inward in the radial direction and engages the annular groove. It is possible to press the valve body by using the elastic force, and it is not necessary to separately provide a special means for pressing the valve body in addition to the solenoid part, and without complicating the configuration due to an increase in the number of parts. .
[0020]
In addition, in the invention described in claim 2, in addition to the effect of the invention described in claim 1, one and the other annular grooves each have a substantially V-shaped cross section, and two slopes in the approximately V-shape. Since one of the surfaces is an inclined surface with which the spherical member is in contact with the movable iron core that is attracted by energizing one and the other solenoid part in contact with the fixed iron core, the groove shape of the annular groove is complicated. And can be formed easily.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic switching valve with a detent mechanism showing a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 3 is an enlarged cross-sectional view of a main part.
4 is a diagram showing an operating state of FIG. 3;
FIG. 5 is a view showing an operating state different from that in FIG. 4;
FIG. 6 is an enlarged cross-sectional view of a main part showing a modification of the first embodiment.
FIG. 7 is an enlarged cross-sectional view of a main part showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve body 2 Valve body 5A, 5B Solenoid part 6A, 6B Fixed iron core 7A, 7B Movable iron core 17, 18 Steel ball (spherical member)
22, 23, 30, 31 Annular groove 22A, 23A, 30A, 31A Inclined surface

Claims (2)

弁本体内に弁体を軸方向へ摺動自在に嵌挿し、弁体は軸方向へ離間した一方の切換位置と他方の切換位置とにおいて流体が流通する複数の流路間を切換連通自在に設け、弁本体の両側部には通電により発生する吸引力で可動鉄心を固定鉄心に向けて軸方向へ吸引するソレノイド部をそれぞれ備え、一方のソレノイド部は通電により固定鉄心に吸引される可動鉄心で弁体を一方の切換位置に向けて押圧するよう可動鉄心を弁体の軸方向一端部と係合自在に設け、他方のソレノイド部は通電により固定鉄心に吸引される可動鉄心で弁体を他方の切換位置に向けて押圧するよう可動鉄心を弁体の軸方向他端部と係合自在に設け、弁本体には軸方向へ移動不能で径方向へ移動自在に設けた球状部材を弾性力で径方向の内方へ付勢し、弁体には一方及び他方の切換位置でそれぞれ弾性力により付勢された球状部材が係止する2個の環状溝を軸方向へ離間して形成し、弾性力により付勢された球状部材と2個の環状溝とで弁体を一方及び他方の切換位置で自己保持するデテント機構を構成し、一方の環状溝には、一方のソレノイド部への通電により吸引されて弁体を一方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上一方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この一方の環状溝に有する傾斜面は、可動鉄心により一方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で一方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成し、他方の環状溝には、他方のソレノイド部への通電により吸引されて弁体を他方の切換位置に向けて押圧する可動鉄心が固定鉄心に接して弁体をこれ以上他方の切換位置に向けて押圧することができなくなった状態で球状部材が接する傾斜面を有し、この他方の環状溝に有する傾斜面は、可動鉄心により他方の切換位置に向けて押圧することができなくなった弁体を、球状部材を押し付ける弾性力の軸方向分力で他方の切換位置に向けて押圧するよう軸方向へ向けて順次縮径するテーパ状に形成しことを特徴とするデテント機構付電磁切換弁。A valve body is slidably inserted in the valve body in the axial direction, and the valve body can be switched between a plurality of flow paths through which fluid flows at one switching position and the other switching position separated in the axial direction. Provided on both sides of the valve body is a solenoid part that attracts the movable iron core in the axial direction toward the fixed iron core by the suction force generated by energization, and one solenoid part is a movable iron core that is attracted to the fixed iron core by energization The movable iron core is slidably engaged with one end of the valve body in the axial direction so as to press the valve body toward one of the switching positions, and the other solenoid part is a movable iron core that is attracted to the fixed iron core by energization. A movable iron core is provided to be able to engage with the other axial end of the valve body so as to be pressed toward the other switching position, and a spherical member provided in the valve body so as not to move in the axial direction but to be movable in the radial direction is elastic. Urged radially inward by force, Two annular grooves, each of which engages with a spherical member urged by an elastic force at each switching position, are formed apart from each other in the axial direction, and the spherical member urged by an elastic force and the two annular grooves constitute a detent mechanism for self-holding in the valve body at one and the other switching position, the one annular groove is pressed toward the one switching position the being sucked valve body by energizing the one of the solenoid portion an inclined surface which is spherical member in contact in a state where the movable iron core can no longer be pressed towards the more one switching position of the valve body in contact with the fixed core, the inclined surface having the annular groove of the one hand, the valve body can no longer be pressed toward the one switching position by the movable core, with the axial component force of the elastic force that presses the spherical member sequentially toward the axial direction so as to press toward the switching position of the hand diameter is formed in a tapered shape, the other The movable iron core, which is attracted by energizing the other solenoid part and presses the valve element toward the other switching position, contacts the fixed iron core and further presses the valve element toward the other switching position. The inclined surface that the spherical member is in contact with when the spherical member cannot be used, and the inclined surface that the other annular groove has has a spherical shape that prevents the valve body that can no longer be pressed toward the other switching position by the movable iron core. the electromagnetic switching valve with detent mechanism being characterized in that formed sequentially reduced in diameter to taper toward the axial direction so as to press toward the switching position of the other side in the axial direction component force of the elastic force to press the member. 前記一方および他方の環状溝は断面形状をそれぞれ略V字形状に形成し、略V字形状における二つの傾斜面の一つを、前記一方および他方のソレノイド部への通電により吸引された可動鉄心が固定鉄心に接した状態で球状部材が接する傾斜面としたことを特徴とする請求項1に記載のデテント機構付電磁切換弁。The one and the other annular grooves each have a substantially V-shaped cross section, and one of the two inclined surfaces in the substantially V-shape is attracted by energizing the one and other solenoid parts. 2. The electromagnetic switching valve with a detent mechanism according to claim 1, wherein an inclined surface is in contact with the spherical member while being in contact with the fixed iron core.
JP2002232543A 2002-08-09 2002-08-09 Solenoid switching valve with detent mechanism Expired - Fee Related JP4147066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232543A JP4147066B2 (en) 2002-08-09 2002-08-09 Solenoid switching valve with detent mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232543A JP4147066B2 (en) 2002-08-09 2002-08-09 Solenoid switching valve with detent mechanism

Publications (2)

Publication Number Publication Date
JP2004069015A JP2004069015A (en) 2004-03-04
JP4147066B2 true JP4147066B2 (en) 2008-09-10

Family

ID=32017914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232543A Expired - Fee Related JP4147066B2 (en) 2002-08-09 2002-08-09 Solenoid switching valve with detent mechanism

Country Status (1)

Country Link
JP (1) JP4147066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100717382B1 (en) 2006-10-12 2007-05-11 신우공업 주식회사 Solenoid valve
JP2012067874A (en) * 2010-09-24 2012-04-05 Nobuyuki Sugimura Detent-type 3-position electromagnetic selector valve
JP6007872B2 (en) * 2013-08-29 2016-10-12 Smc株式会社 Double solenoid valve
CN107499174A (en) * 2017-09-28 2017-12-22 浙江智辰能源科技有限公司 A kind of article placing frame for charging pile
DE102019202052B4 (en) * 2019-02-15 2022-09-01 Hawe Hydraulik Se directional seated valve

Also Published As

Publication number Publication date
JP2004069015A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US7137411B2 (en) Electromagnetic hydraulic valve, typically a 3/2 directional switching valve for controlling a variable valve train of an internal combustion engine
EP1134470B1 (en) Solenoid-operated valve
JPH0339664Y2 (en)
US7958909B2 (en) Spool valve
US6691740B2 (en) Self-holding type solenoid-operated valve
JP4147066B2 (en) Solenoid switching valve with detent mechanism
JP2001208233A (en) Solenoid valve
US5617894A (en) Valve body
US20030030020A1 (en) Solenoid-operated valve
JPS595188B2 (en) solenoid valve
JP2001343086A (en) Solenoid valve device
JP6779681B2 (en) Electromagnetic switching valve with detent mechanism
JP2003188014A (en) Electromagnet
KR20220098794A (en) electromagnetic actuation device
CN102753872B (en) Solenoid valve
JP2010525281A (en) Solenoid assembly
JP2014062583A (en) Solenoid valve device
JP2021166269A (en) electromagnet
JP4065158B2 (en) solenoid
JP2007002957A (en) Solenoid valve
JP2021163796A (en) electromagnet
JP3752648B2 (en) Movable pin support device in electromagnet
JPH1167527A (en) Solenoid
JP2017129241A (en) Bearing structure, manufacturing method thereof, and solenoid valve
JP2004079565A (en) Solenoid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Ref document number: 4147066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees