JP4146810B2 - Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof - Google Patents

Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4146810B2
JP4146810B2 JP2004059357A JP2004059357A JP4146810B2 JP 4146810 B2 JP4146810 B2 JP 4146810B2 JP 2004059357 A JP2004059357 A JP 2004059357A JP 2004059357 A JP2004059357 A JP 2004059357A JP 4146810 B2 JP4146810 B2 JP 4146810B2
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
manufacturing
optical device
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059357A
Other languages
Japanese (ja)
Other versions
JP2005250040A (en
Inventor
和也 斎藤
明 生嶋
洋 垣内田
晴彦 関谷 Edson
和正 大薗
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota School Foundation
Original Assignee
Hitachi Cable Ltd
Toyota School Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota School Foundation filed Critical Hitachi Cable Ltd
Priority to JP2004059357A priority Critical patent/JP4146810B2/en
Publication of JP2005250040A publication Critical patent/JP2005250040A/en
Application granted granted Critical
Publication of JP4146810B2 publication Critical patent/JP4146810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/14Re-forming fibres or filaments, i.e. changing their shape
    • C03B37/15Re-forming fibres or filaments, i.e. changing their shape with heat application, e.g. for making optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ファイバ型光デバイスや光導波路型光デバイスを含むガラス製光デバイスの製造方法及びファイバ型光デバイスの製造装置に関するものである。   The present invention relates to a glass optical device manufacturing method including a fiber optical device and an optical waveguide optical device, and a fiber optical device manufacturing apparatus.

コアに局所的な屈折率分布が形成されたファイバ型光デバイスの製造方法として、Ge添加シリカファイバに紫外線照射して製造する方法が有効であることが知られている。既にこの方法でコアにグレーティングを形成したファイバグレーティングが実用化されている。通常のGe添加シリカファイバではデバイス化に必要な10-4以上の屈折率差が紫外線照射で誘起できないために、Ge添加濃度を高濃度にしたり、BやSnを共添加するなどの高感度化の工夫が種々なされている(例えば、非特許文献1参照)。最も効果的な高感度法として行われている方法に光ファイバに高圧下で水素を充填、添加する方法がある(例えば、特許文献1参照)。 As a method for manufacturing a fiber-type optical device in which a local refractive index profile is formed in the core, it is known that a method of manufacturing a Ge-doped silica fiber by irradiating with ultraviolet rays is effective. A fiber grating in which a grating is formed on a core by this method has already been put into practical use. In ordinary Ge-doped silica fibers, the difference in refractive index of 10 −4 or more necessary for device development cannot be induced by ultraviolet irradiation. Therefore, the Ge addition concentration is increased or B or Sn are co-added. Various ideas have been made (for example, see Non-Patent Document 1). As the most effective high sensitivity method, there is a method of filling an optical fiber with hydrogen under high pressure and adding it (for example, see Patent Document 1).

特開平7−244210号公報JP 7-244210 A 山根正之,他著,「ガラス光学ハンドブック」,朝倉書店,1999年7月5日,p.548Masayuki Yamane, et al., “Glass Optical Handbook”, Asakura Shoten, July 5, 1999, p. 548

しかしながら、10-4以上の屈折率差を実現するための水素添加等の処理は、プロセスが複雑であり、コストも掛かる。また、紫外線照射による屈折率分布の書き込みは、照射後に屈折率が照射前の値に近づいていく緩和現象が見られ、デバイスの長期安定性(寿命)の点でも問題がある。さらに、ファイバ型光デバイスの製造方法では、屈折率分布の書き込み処理は線引工程後に別途行う必要があり、これもコスト増の原因となっている。 However, processes such as hydrogenation for realizing a refractive index difference of 10 −4 or more are complicated in process and costly. In addition, the writing of the refractive index distribution by ultraviolet irradiation shows a relaxation phenomenon in which the refractive index approaches the value before irradiation after irradiation, and there is also a problem in terms of long-term stability (lifetime) of the device. Furthermore, in the fiber type optical device manufacturing method, the refractive index distribution writing process needs to be performed separately after the drawing process, which also causes an increase in cost.

そこで、本発明の目的は、上記課題を解決し、コアへの屈折率分布の形成を容易に行うことができ、長期安定性に優れたデバイスを製造できるガラス製光デバイスの製造方法、及びファイバ型光デバイスの製造方法とその製造装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, to easily form a refractive index distribution in the core, and to produce a device having excellent long-term stability. An object of the present invention is to provide a method for manufacturing a type optical device and an apparatus for manufacturing the same.

上記目的を達成するために、請求項1の発明は、光ファイバ、或いは光導波路に局所的な屈折率分布を形成するためのガラス製光デバイスの製造方法において、純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバ、或いは光導波路の仮想温度を1400℃以下に低下させる加熱処理をした後、その光ファイバ、或いは光導波路の所定箇所の仮想温度を上記加熱処理後よりも100℃以上上昇させるべく、赤外線レーザ光を照射することにより上記所定箇所を局所的に急速加熱処理するラス製光デバイスの製造方法である。 To achieve the above object, the invention of claim 1, an optical fiber, or in the manufacturing method of glass optical device for forming a local refractive index distribution in the optical waveguide, pure silica glass, or the concentration of 10 After performing the heat treatment for reducing the fictive temperature of the optical fiber or the optical waveguide using Ge-doped silica glass of less than 1% to 1400 ° C. or less, the fictive temperature of the predetermined portion of the optical fiber or the optical waveguide after the heat treatment to raise 100 ° C. or higher than a locally rapidly heated glass made light device manufacturing method of the predetermined portion by irradiating the infrared laser beam.

請求項の発明は、溶融炉で母材を溶融して線引した光ファイバに屈折率分布を形成するファイバ型光デバイスの製造方法において、溶融炉から線引して純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバの仮想温度を1400℃以下に低下させる加熱処理を施した後、光ファイバの所定箇所の仮想温度を上記加熱処理後よりも100℃以上上昇させるべく赤外線レーザ光を照射することにより上記所定箇所を局所的に急速加熱処理して屈折率分布を形成することを特徴とするファイバ型光デバイスの製造方法。 According to a second aspect of the invention, in the method for manufacturing a fiber type optical device to form a refractive index distribution in the optical fiber and drawing by melting the base metal in a melting furnace, pure silica glass was drawing from the melting furnace, or concentration After heat treatment for reducing the fictive temperature of optical fiber using 10% or less Ge-added silica glass to 1400 ° C. or lower, the fictive temperature at a predetermined position of the optical fiber is raised by 100 ° C. or higher than after the heat treatment. A method of manufacturing a fiber-type optical device, wherein a refractive index profile is formed by irradiating an infrared laser beam in order to rapidly heat the predetermined portion locally.

請求項の発明は、母材を溶融する溶融炉を設け、溶融母材を落下凍結させて純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバを線引するラインの溶融炉直下に、仮想温度を1400℃以下に低下させるためのアニール炉を設け、そのアニール炉を通過した光ファイバに、上記仮想温度を上記加熱処理よりも100℃以上上昇させるべく赤外線レーザ光を照射することにより局所的に急速加熱処理して屈折率分布を形成するためのレーザ発振装置を設けたファイバ型光デバイスの製造装置である。 According to a third aspect of the present invention, there is provided a melting furnace for melting a base material, and a line for drawing an optical fiber using pure silica glass or Ge-doped silica glass having a concentration of 10% or less by dropping and freezing the molten base material. An annealing furnace for lowering the fictive temperature to 1400 ° C. or less is provided immediately below the melting furnace, and an infrared laser beam is used to increase the fictive temperature by 100 ° C. or more to the optical fiber that has passed through the annealing furnace. Is a fiber-type optical device manufacturing apparatus provided with a laser oscillation device for forming a refractive index distribution by local rapid heating treatment by irradiating.

本発明によれば、コアへの屈折率分布の形成が容易にでき、長期安定性に優れたガラス製光デバイスを製造できるといった優れた効果を発揮する。   According to the present invention, it is possible to easily form a refractive index distribution in the core, and to produce an excellent effect that a glass optical device having excellent long-term stability can be manufactured.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明者らは、「純粋シリカガラス及び濃度10%以下のGe添加シリカガラスにおいて、仮想温度差が100℃以上あれば屈折率差は10-4以上になること」および「1400℃以下の低仮想温度をもつ光ファイバに、赤外線を短時間照射して局所的な仮想温度を100℃以上上昇させることにより、コアに10-4以上の屈折率差を書き込むことが可能である」ことを見出し、本発明に至った。 The inventors of the present invention have described that “in a pure silica glass and a Ge-added silica glass having a concentration of 10% or less, if the fictive temperature difference is 100 ° C. or more, the refractive index difference is 10 −4 or more” and “1400 ° C. or less It is possible to write a refractive index difference of 10 −4 or more in the core by irradiating an optical fiber having a virtual temperature with infrared rays for a short time to increase the local virtual temperature by 100 ° C. or more. The present invention has been reached.

図1は、本実施の形態のファイバ型光デバイス製造装置の概略図である。   FIG. 1 is a schematic diagram of a fiber type optical device manufacturing apparatus according to the present embodiment.

図1に示すように、ファイバ型光デバイス製造装置10は、ファイバ母材を溶融する溶融炉11、光ファイバを加熱処理するアニール炉12、光ファイバ表面に樹脂を被覆するコーティング器13、光ファイバに赤外線レーザ光を照射するレーザ発振装置14とを備える。その構成は、光ファイバの線引ラインの溶融炉11直下にアニール炉12を設け、そのアニール炉12下の線引ラインに赤外線レーザ光を照射するようにレーザ発振装置14を設け、その下流の線引ライン上にコーティング器13を設けている。   As shown in FIG. 1, a fiber-type optical device manufacturing apparatus 10 includes a melting furnace 11 that melts a fiber preform, an annealing furnace 12 that heat-treats the optical fiber, a coating device 13 that coats the surface of the optical fiber, and an optical fiber. And a laser oscillation device 14 for irradiating infrared laser light. In the configuration, an annealing furnace 12 is provided immediately below the melting furnace 11 of the drawing line of the optical fiber, a laser oscillation device 14 is provided so as to irradiate the drawing line under the annealing furnace 12 with infrared laser light, A coating device 13 is provided on the drawing line.

次にファイバ型光デバイスの製造方法について説明する。   Next, a manufacturing method of the fiber type optical device will be described.

光ファイバ用の母材が溶融炉11で溶融され、その溶融母材は溶融炉11から落下固化されて、縮径、延伸化された光ファイバ15となり線引される。ここで形成される光ファイバ15は、コアに濃度4.5%のGeが添加されたGe添加シリカガラスファイバである。線引された光ファイバ15はアニール炉12で加熱処理され、光ファイバ15の仮想温度を低下させる。   The optical fiber preform is melted in the melting furnace 11, and the molten preform is dropped and solidified from the melting furnace 11 to be drawn into an optical fiber 15 that has been reduced in diameter and stretched. The optical fiber 15 formed here is a Ge-added silica glass fiber in which 4.5% concentration of Ge is added to the core. The drawn optical fiber 15 is heat-treated in the annealing furnace 12 to reduce the fictive temperature of the optical fiber 15.

仮想温度とは、ガラス構造が、熱平衡状態にある過冷却液体の何度の状態と同じであるかを示す温度で、ガラス中に凍結されている構造の良い指標となるものであり(固化したガラスはその構造によって仮想温度が異なる)、仮想温度が異なるガラスは、その屈折率も異なる。   The fictive temperature is a temperature that indicates how many times the supercooled liquid is in a thermal equilibrium state and is a good indicator of the structure frozen in the glass (solidified Glass has a different fictive temperature depending on its structure), and glass having a different fictive temperature has a different refractive index.

次に、アニール炉12を通過した光ファイバ16に局所的に赤外線レーザ光を照射して仮想温度の高い箇所を形成する。加熱処理により光ファイバの仮想温度を下げた直後に、レーザ発振装置14によりパルス発振された赤外線レーザ光の短時間照射による局所急加熱及び急冷を行い、仮想温度が周囲より高い領域を形成する。照射されるレーザ光はレーザ発振装置14からパルス発振された赤外線レーザ光であるので、線引される光ファイバには、赤外線レーザ光が照射される箇所と照射されない箇所が発生し、仮想温度の異なる箇所が交互に形成された屈折率分布を有するファイバ型光デバイス17となる。また、パルス発振されたレーザ光の他に、連続発振された赤外線レーザ光を用いて、そのレーザ光をチョッパー等により微小時間を隔てて光ファイバに照射してもよい。この場合、連続発振されたレーザ光の波長は、赤外線レーザ光の波長と同じになるように調整される。   Next, the optical fiber 16 that has passed through the annealing furnace 12 is locally irradiated with infrared laser light to form a portion having a high virtual temperature. Immediately after the virtual temperature of the optical fiber is lowered by the heat treatment, local rapid heating and rapid cooling are performed by short-time irradiation of the infrared laser light pulsed by the laser oscillation device 14 to form a region where the virtual temperature is higher than the surroundings. Since the irradiated laser beam is an infrared laser beam pulse-oscillated from the laser oscillation device 14, the drawn optical fiber has a portion where the infrared laser beam is irradiated and a portion where the infrared laser beam is not irradiated. A fiber-type optical device 17 having a refractive index distribution in which different portions are alternately formed is obtained. Further, in addition to pulsed laser light, continuously oscillated infrared laser light may be used to irradiate the optical fiber with a chopper or the like with a short time interval. In this case, the wavelength of the continuously oscillated laser beam is adjusted to be the same as the wavelength of the infrared laser beam.

最後に、屈折率分布が形成されたファイバ型デバイス17はその表面を保護するために被覆樹脂等が被覆され、ファイバ型光デバイス18が得られる。   Finally, the fiber type device 17 in which the refractive index profile is formed is coated with a coating resin or the like to protect the surface, and the fiber type optical device 18 is obtained.

ファイバ型光デバイス18の製造方法に際して、加熱処理を施さなかった場合(アニール炉OFF)と、加熱処理を施した場合(アニール炉ON)とを比較するための、ファイバコアの仮想温度分布を図2に示す。   In the manufacturing method of the fiber type optical device 18, the virtual temperature distribution of the fiber core for comparing the case where the heat treatment is not performed (annealing furnace OFF) and the case where the heat treatment is performed (annealing furnace ON) is shown. It is shown in 2.

ここで、仮想温度の評価法は、赤外分光を用いる方法とラマン散乱を用いる方法とがある。赤外吸収では2260cm-1付近のピーク位置の変化、ラマン散乱ではD1、D2線とよばれるピーク強度の変化が仮想温度と非常によい相関をもつことから、これらの測定により仮想温度を求めることができる。光ファイバの測定の場合は、顕微分光法が必要であるが、赤外分光では空間分解能を高くすることができないために、顕微ラマン分光により光ファイバの仮想温度を決定している。 Here, the virtual temperature evaluation method includes a method using infrared spectroscopy and a method using Raman scattering. Since the change in peak position near 2260 cm -1 in infrared absorption and the change in peak intensity called D1 and D2 lines in Raman scattering have a very good correlation with the virtual temperature, the virtual temperature is obtained by these measurements. Can do. In the case of measurement of an optical fiber, a microspectroscopic method is required, but since the spatial resolution cannot be increased by infrared spectroscopy, the virtual temperature of the optical fiber is determined by microscopic Raman spectroscopy.

図2に示すように、アニール炉12をONにして作製した光ファイバ16では、仮想温度が約1250℃まで下がり、赤外線レーザ光を照射した部分のみ仮想温度が1400℃付近に上昇している。赤外線レーザ光照射の有無で100℃以上の差がついている。一方、アニール炉12をOFFにして作製した光ファイバでは、仮想温度が1500℃以上であり、赤外線レーザ光を照射した箇所との温度差が殆どない。よって、赤外線レーザ光を照射した箇所の仮想温度は1400℃付近であるため、赤外線レーザ光の照射の有無で仮想温度に差をつけるためには加熱処理による仮想温度は1400℃以下とするのが好ましく、より好ましくは1000〜1400℃であるのがよい。その加熱処理は、1100〜1400℃の条件で施す。   As shown in FIG. 2, in the optical fiber 16 manufactured by turning on the annealing furnace 12, the fictive temperature is lowered to about 1250 ° C., and the fictive temperature is raised to around 1400 ° C. only in the portion irradiated with the infrared laser light. There is a difference of 100 ° C. or more with and without infrared laser light irradiation. On the other hand, the optical fiber manufactured with the annealing furnace 12 turned off has a fictive temperature of 1500 ° C. or higher, and there is almost no temperature difference from the portion irradiated with the infrared laser light. Therefore, since the virtual temperature of the portion irradiated with the infrared laser light is around 1400 ° C., the virtual temperature by the heat treatment should be 1400 ° C. or less in order to make a difference in the virtual temperature depending on whether or not the infrared laser light is irradiated. Preferably, it is 1000-1400 degreeC more preferably. The heat treatment is performed under conditions of 1100 to 1400 ° C.

光ファイバの製造装置にアニール炉12を設置して、光ファイバ15に加熱処理を施すことによりガラスの構造緩和を進め、1400℃以下の低仮想温度を有する光ファイバ16を製造すれば、レーザ光発振装置14による赤外線の短時間照射によりコアに局所的な急加熱及び急冷を行い、局所的な仮想温度を上昇させて屈折率分布をコアに書き込むことができる。尚、ここでは、光ファイバ線引中に連続的に仮想温度を低くするための加熱処理を施したが、仮想温度が低い光ファイバ16の作製は、線引後に別途加熱処理を行ってもよい。   If an annealing furnace 12 is installed in the optical fiber manufacturing apparatus and the optical fiber 15 is subjected to heat treatment to promote structural relaxation of the glass, an optical fiber 16 having a low fictive temperature of 1400 ° C. or lower is manufactured. The core can be rapidly heated and cooled locally by short-time irradiation of infrared rays by the oscillation device 14 to increase the local virtual temperature and write the refractive index distribution to the core. Here, the heat treatment for continuously lowering the fictive temperature was performed during the drawing of the optical fiber, but the optical fiber 16 having a low fictive temperature may be separately heat-treated after the drawing. .

また、光ファイバの線引中に、加熱処理及び赤外線レーザ光照射による局所的な加熱処理により屈折率分布をコアに書き込むので、線引後に紫外線照射を行う従来の方法に比べてコスト面ではるかに有利である。尚、本実施の形態のファイバ型光デバイスは、光ファイバ線引後に線引ラインの走行を停止させた状態で赤外線を照射して屈折率分布書き込むことも可能である。その際には、光ファイバとレーザ発振装置との間にスリット等を設け、赤外線を干渉縞状に照射して屈折率分布を書き込んでもよい。   In addition, since the refractive index distribution is written in the core during the drawing of the optical fiber by the heat treatment and the local heat treatment by the infrared laser light irradiation, the cost is much lower than the conventional method in which the ultraviolet irradiation is performed after the drawing. Is advantageous. Note that the fiber type optical device of the present embodiment can also write the refractive index distribution by irradiating infrared rays in a state where travel of the drawing line is stopped after drawing the optical fiber. In that case, a slit or the like may be provided between the optical fiber and the laser oscillation device, and the refractive index distribution may be written by irradiating infrared rays in the form of interference fringes.

図3は、純粋シリカファイバ(脱水処理のために塩素を1000ppm程度含む)のコアの仮想温度と屈折利率の関係を示す図である。これは仮想温度を1000〜1500℃内で形成したファイバ型光デバイスの屈折率を実測したものである。図3に示すように、屈折率と仮想温度は同じ比率で上昇する関係があり、仮想温度が100℃変化する毎に屈折率が1×10-4ずつ変化する。また、図4はGe添加シリカファイバ(Ge濃度4.5%)における仮想温度と屈折率との関係を示す図であり、図3と同様に仮想温度が100℃変化する毎に屈折率が1×10-4ずつ変化することを示している。 FIG. 3 is a diagram showing the relationship between the fictive temperature and the refractive index of the core of a pure silica fiber (containing about 1000 ppm of chlorine for dehydration). This is an actual measurement of the refractive index of a fiber-type optical device formed at a fictive temperature within 1000 to 1500 ° C. As shown in FIG. 3, there is a relationship in which the refractive index and the virtual temperature rise at the same ratio, and the refractive index changes by 1 × 10 −4 every time the virtual temperature changes by 100 ° C. FIG. 4 is a diagram showing the relationship between the fictive temperature and the refractive index in a Ge-added silica fiber (Ge concentration 4.5%). Like FIG. 3, the refractive index is 1 every time the fictive temperature changes by 100 ° C. It shows that it changes by × 10-4 .

以上、光デバイスとして機能するのに必要な10-4の屈折率変化をさせるには仮想温度の変化が100℃以上必要であり、さらに図2より、本実施の形態の光デバイスの製造方法によれば、屈折率変化が10-4以上の屈折率分布を有するファイバ型光デバイスを製造することができる。 As described above, in order to change the refractive index of 10 −4 necessary for functioning as an optical device, a change in the virtual temperature is required to be 100 ° C. or more. Further, referring to FIG. Accordingly, a fiber-type optical device having a refractive index distribution with a refractive index change of 10 −4 or more can be manufactured.

本実施の形態のガラス製光デバイスの製造方法によれば、光ファイバ形成時の仮想温度差を利用しており、水素添加処理等をせずに十分な屈折率差を得ることができる。また、得られた屈折率差は構造緩和時間から考えて、従来の製造方法で製造したファイバ型光デバイスの屈折率分布が劣化する時間よりも、本実施の形態の製造方法で製造したファイバ型光デバイスの屈折率分布が劣化する時間のほうが長く、室温で劣化することはなく、長期安定性においても優れている。   According to the glass optical device manufacturing method of the present embodiment, a virtual temperature difference at the time of forming an optical fiber is used, and a sufficient refractive index difference can be obtained without performing a hydrogenation process or the like. In addition, the obtained refractive index difference is considered from the structure relaxation time, and the fiber type manufactured by the manufacturing method of this embodiment is shorter than the time when the refractive index distribution of the fiber type optical device manufactured by the conventional manufacturing method deteriorates. The time during which the refractive index distribution of the optical device deteriorates is longer, does not deteriorate at room temperature, and is excellent in long-term stability.

さらに、本実施の形態で製造したファイバ型光デバイスは、濃度4.5%Ge添加シリカファイバを用いたが、他の組成のガラスにも適用でき、好ましくは、濃度10%以下のGe添加シリカファイバ或いは純粋石英コアファイバに適用することができる。   Furthermore, although the fiber type optical device manufactured in this embodiment uses a 4.5% Ge-doped silica fiber, it can also be applied to glass of other compositions, preferably a Ge-doped silica having a concentration of 10% or less. It can be applied to fiber or pure silica core fiber.

本実施の形態では光ファイバに屈折率分布を形成したファイバ型光デバイスの製造方法について説明したが、ファイバ型光デバイスに限らず、他に光導波路型デバイスをも含むガラス製光デバイスについても同様である。光導波路の製造方法において、光導波路の仮想温度を低下させる加熱処理を施し、その光導波路のコアに局所的に加熱処理を施すことで仮想温度を変化させて屈折率分布を形成する製造方法を適用することができる。また、その製造方法によれば、上述のファイバ型光デバイスの製造方法と同様の効果を有する。   In the present embodiment, the fiber type optical device manufacturing method in which the refractive index profile is formed in the optical fiber has been described. However, the present invention is not limited to the fiber type optical device, but also applies to glass optical devices including other optical waveguide type devices. It is. In a manufacturing method of an optical waveguide, a manufacturing method for forming a refractive index distribution by performing a heat treatment for lowering the virtual temperature of the optical waveguide and changing the virtual temperature by locally heating the core of the optical waveguide. Can be applied. Moreover, according to the manufacturing method, it has the same effect as the manufacturing method of the above-mentioned fiber type optical device.

本実施の形態のファイバ型光デバイスの製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the fiber type optical device of this Embodiment. アニール処理のON、OFF時それぞれのコアの仮想温度分布を示す図である。It is a figure which shows the virtual temperature distribution of each core at the time of ON / OFF of annealing treatment. 純粋シリカファイバのコアの仮想温度と屈折率との関係を示す図である。It is a figure which shows the relationship between the fictive temperature and refractive index of the core of a pure silica fiber. Ge添加シリカファイバのコアの仮想温度と屈折率との関係を示す図である。It is a figure which shows the relationship between the fictive temperature and refractive index of the core of Ge addition silica fiber.

符号の説明Explanation of symbols

10 ファイバ型光デバイス製造装置
11 溶融炉
12 アニール炉
15 光ファイバ
18 ファイバ型光デバイス
DESCRIPTION OF SYMBOLS 10 Fiber type optical device manufacturing apparatus 11 Melting furnace 12 Annealing furnace 15 Optical fiber 18 Fiber type optical device

Claims (3)

光ファイバ、或いは光導波路に局所的な屈折率分布を形成するためのガラス製光デバイスの製造方法において、純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバ、或いは光導波路の仮想温度を1400℃以下に低下させる加熱処理をした後、その光ファイバ、或いは光導波路の所定箇所の仮想温度を上記加熱処理後よりも100℃以上上昇させるべく、赤外線レーザ光を照射することにより上記所定箇所を局所的に急速加熱処理することを特徴とするガラス製光デバイスの製造方法。 In a method of manufacturing a glass optical device for forming a local refractive index profile in an optical fiber or an optical waveguide, an optical fiber or optical fiber using pure silica glass or Ge-doped silica glass having a concentration of 10% or less After heat treatment for lowering the fictive temperature of the waveguide to 1400 ° C. or lower, infrared laser light is irradiated so as to raise the fictive temperature of the optical fiber or a predetermined portion of the optical waveguide by 100 ° C. or higher than after the heat treatment. A method for manufacturing a glass optical device, wherein the predetermined portion is subjected to rapid heat treatment locally. 溶融炉で母材を溶融して線引した光ファイバに屈折率分布を形成するファイバ型光デバイスの製造方法において、溶融炉から線引して純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバの仮想温度を1400℃以下に低下させる加熱処理を施した後、光ファイバの所定箇所の仮想温度を上記加熱処理後よりも100℃以上上昇させるべく赤外線レーザ光を照射することにより上記所定箇所を局所的に急速加熱処理して屈折率分布を形成することを特徴とするファイバ型光デバイスの製造方法。 In a fiber-type optical device manufacturing method for forming a refractive index distribution in an optical fiber drawn by melting a base material in a melting furnace, pure silica glass or Ge having a concentration of 10% or less is drawn from the melting furnace After performing heat treatment to lower the fictive temperature of the optical fiber using silica glass to 1400 ° C or lower, irradiate infrared laser light to raise the fictive temperature of the predetermined part of the optical fiber by 100 ° C or higher than after the heat treatment. A method of manufacturing a fiber-type optical device, wherein the refractive index distribution is formed by locally rapidly heating the predetermined portion. 母材を溶融する溶融炉を設け、溶融母材を落下凍結させて純粋シリカガラス、或いは濃度が10%以下のGe添加シリカガラスを使用した光ファイバを線引するラインの溶融炉直下に、仮想温度を1400℃以下に低下させるためのアニール炉を設け、そのアニール炉を通過した光ファイバに、上記仮想温度を上記加熱処理よりも100℃以上上昇させるべく赤外線レーザ光を照射することにより局所的に急速加熱処理して屈折率分布を形成するためのレーザ発振装置を設けたことを特徴とするファイバ型光デバイスの製造装置A melting furnace for melting the base material is provided, and the virtual base material is dropped and frozen to create a virtual fiber directly below the melting furnace in a line for drawing an optical fiber using pure silica glass or Ge-added silica glass having a concentration of 10% or less. An annealing furnace for lowering the temperature to 1400 ° C. or lower is provided, and the optical fiber that has passed through the annealing furnace is locally irradiated with an infrared laser beam to raise the fictive temperature by 100 ° C. or more than the heat treatment. fiber-type optical device manufacturing apparatus characterized in that a laser oscillating apparatus for forming a refractive index distribution and rapid heat treatment.
JP2004059357A 2004-03-03 2004-03-03 Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof Expired - Fee Related JP4146810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059357A JP4146810B2 (en) 2004-03-03 2004-03-03 Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059357A JP4146810B2 (en) 2004-03-03 2004-03-03 Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2005250040A JP2005250040A (en) 2005-09-15
JP4146810B2 true JP4146810B2 (en) 2008-09-10

Family

ID=35030583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059357A Expired - Fee Related JP4146810B2 (en) 2004-03-03 2004-03-03 Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4146810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455350B2 (en) * 2008-10-22 2014-03-26 学校法人トヨタ学園 Fiber for fiber laser, method for manufacturing the same, and fiber laser

Also Published As

Publication number Publication date
JP2005250040A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US5287427A (en) Method of making an article comprising an optical component, and article comprising the component
Qiu et al. Femtosecond laser-induced microfeatures in glasses and their applications
Krol Femtosecond laser modification of glass
US5500031A (en) Method for increasing the index of refraction of a glassy material
Gross et al. Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics
Liu et al. Glass Structure Changes in CO $ _ {2} $-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers
Konstantaki et al. Relief Bragg reflectors inscribed on the capillary walls of solid‐core photonic crystal fibers
JPH07187695A (en) Optical element utilizing refractive index change induced by radiation and its making
Kalachev et al. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses
Qiu Femtosecond laser‐induced microstructures in glasses and applications in micro‐optics
Lai et al. CO 2 laser applications in optical fiber components fabrication and treatment: A review
Kalachev et al. Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm
Qiu et al. Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser
Saliminia et al. Inscription of strong Bragg gratings in pure silica photonic crystal fibers using UV femtosecond laser pulses
JP4146810B2 (en) Manufacturing method of glass optical device, manufacturing method of fiber type optical device and manufacturing apparatus thereof
Itoh et al. Experimental and numerical study of mechanism of glass modification process by continuous-wave laser backside irradiation (CW-LBI)
Kryukov et al. Long-period fibre grating fabrication with femtosecond pulse radiation at different wavelengths
Chisholm et al. Effects of thermal annealing on Bragg fibre gratings in boron/germania co-doped fibre
JP3207041B2 (en) How to increase the refractive index of the glass base material
Ma et al. Thermal stability of fiber Bragg gratings fabricated by 193 nm excimer laser
Ihlemann et al. Pulsed laser-induced formation of silica nanogrids
Shimotsuma et al. Photosensitivity in glasses
O’Regan et al. Long-period grating inscription in hydrogen-free SMF-28 fiber by high-repetition-rate femtosecond UV pulses
Sheridan et al. Channel waveguides in ion-exchanged pyrex by direct UV writing
Mezentsev et al. Micro-fabrication of advanced photonic devices by means of direct point-by-point femtosecond inscription in silica

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees