JP4146249B2 - Switchgear - Google Patents

Switchgear Download PDF

Info

Publication number
JP4146249B2
JP4146249B2 JP2003005162A JP2003005162A JP4146249B2 JP 4146249 B2 JP4146249 B2 JP 4146249B2 JP 2003005162 A JP2003005162 A JP 2003005162A JP 2003005162 A JP2003005162 A JP 2003005162A JP 4146249 B2 JP4146249 B2 JP 4146249B2
Authority
JP
Japan
Prior art keywords
insulating cylinder
bus
axial direction
tank
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003005162A
Other languages
Japanese (ja)
Other versions
JP2004222381A (en
Inventor
崇夫 釣本
健一 小山
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003005162A priority Critical patent/JP4146249B2/en
Priority to TW092128366A priority patent/TWI228339B/en
Priority to US10/684,555 priority patent/US6865072B2/en
Priority to KR1020030077318A priority patent/KR100561113B1/en
Priority to FR0350781A priority patent/FR2846802B1/en
Priority to CNB2003101141456A priority patent/CN1322646C/en
Priority to DE10351766A priority patent/DE10351766B4/en
Publication of JP2004222381A publication Critical patent/JP2004222381A/en
Application granted granted Critical
Publication of JP4146249B2 publication Critical patent/JP4146249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Landscapes

  • Patch Boards (AREA)
  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、真空バルブを用いたスイッチギヤに関するものである。
【0002】
【従来の技術】
従来の真空バルブを用いたスイッチギヤでは、絶縁ガスを密封したタンク内壁に母線側導体を固定するために、タンク内壁に支持碍子などの取付部材が設置されていた(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平11−185577号公報(第6頁、図3)
【0004】
【発明が解決しようとする課題】
このような従来のスイッチギヤにおいては、タンク内壁に支持碍子などの取付部材を設置していることにより、絶縁物沿面が存在し、絶縁耐力が、単なるガスギャップよりも低下するため、それを補うためにガスギャップよりも大きな絶縁距離を設ける必要が生じ、装置をさらに小型化することが困難であるという課題があった。
【0005】
この発明は、母線側導体をタンクに固定するための支持碍子の設置を不要にし、タンクを一層コンパクトにすることができるスイッチギヤを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
この発明にかかるスイッチギヤは、絶縁ガスを充填するタンクの内部に収容され軸方向一端部が該タンクに固定された絶縁筒と、この絶縁筒の内部に略同軸に配設され可動側通電軸が上記絶縁筒の一端部方向に向けられた真空バルブと、上記絶縁筒の他端部近傍に該絶縁筒の軸方向と交差する方向に設けられ母線側導体を絶縁支持する母線固定部とを備えるようにしたものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1および図2は、この発明の実施の形態1によるスイッチギヤを概略的に示すもので、図1は側面断面図、図2は図1の矢視II−II線における要部断面図である。スイッチギヤを構成する筐体1は、図の左側が前面部、右側が後方部として用いられてなり、後方(奥側)上方部に絶縁ガスが充填されるタンク2、前方上方部に制御室3、その下部の前方中央部に操作機構室4、および最下部にケーブル室5がそれぞれ設けられ、内部が区画されている。
【0008】
上記タンク2内の下部には、真空バルブ7を各相別にそれぞれ収容した3つの絶縁筒8が水平方向に並設され、各絶縁筒8は、一端部である前方(図の左方)側端部に設けられたフランジ様の取付部8aで、操作機構室4との仕切りを兼ねる取付部としての取付板6に固定されている。上記絶縁筒8は、例えばエポキシ樹脂などの固体絶縁物で作られており、他端部である後方(図の右方)側端部近傍には該絶縁筒8の中心軸と交差する方向に突設された母線固定部8bが一体的に形成されている。また、軸方向略中央部に貫通孔8cが設けられ、さらにその貫通孔8c近傍の外周部にブレード支持部8dが一体的に形成されている。
【0009】
上記真空バルブ7は、真空容器の内部に、詳細図示を省略している固定電極と可動電極が収容されてなり、固定電極には固定側通電軸7aが、可動電極には可動側通電軸7bがそれぞれ接続され、真空バルブ端板7cから軸方向の互いに反対側に突出されている。そして、上記絶縁筒8の他端部である後方(図の右方)側に固定側通電軸7aを、一端部、即ちタンク2内への絶縁筒8の固定部(図の左方)側に可動側通電軸7bを向けて収容され、固定側通電軸7aは絶縁筒8の他端部に固定された負荷側導体9に電気的、物理的に接続固定されている。
【0010】
また、可動側通電軸7bは、取付板6を貫通する真空バルブ操作部材10に対し、絶縁ロッド11を介して連結されている。さらに、真空バルブ7の中心軸方向に延びている上記絶縁筒8の略中央部より前方(図の左方)の部分は、真空バルブ7と取付板6との絶縁距離を確保するために役立っている。
【0011】
次に、この実施の形態1の断路器・接地開閉器部分の構成について説明する。絶縁筒8の略中央外周部に設けられたブレード支持部8dには、ブレード支持部材20が固着されている。例えば、注型時に埋金として直接埋め込み、あるいは図示を省略しているナット部材を埋め込み、そのナット部材に対してねじ締結するなどして固定されており、ブレード12はこのブレード支持部材20に回動可能に枢支されている。また、該ブレード12は、絶縁筒8に設けられた貫通孔8cを挿通して設けられた可撓性の接続導体13によって真空バルブ7の可動側通電軸7bと電気的に接続されている。
【0012】
また、絶縁筒8の他端部側に設けられた母線固定部8bは、負荷側導体9と母線側導体14との沿面絶縁距離を確保するために、図の上下方向に所定長突き出すようにして形成されており、その先端部に母線側導体14の下端部が固定されている。
【0013】
上記母線側導体14の所定部には、通電時にブレード12と接触する母線端子14aが設けられ、また、取付板6のタンク2の内側所定部には接地時にブレード12と接触する接地端子15が設けられている。そしてブレード12は絶縁ロッドからなるブレード操作部材16により、タンク2前方の操作機構室4から破線で示すように回動操作され、図1の実線で示すように先端部が母線端子14aと接触している位置では通電時の状態となり、また、ブレード12の先端部が破線Aで示す接地端子15と接触している位置では接地の状態であり、上記通電位置と接地位置の中間の破線Bで示す位置に保持したときは断路の状態となる。
【0014】
なお、上記のように真空バルブ7、絶縁筒8、ブレード12などを用いて構成された断路器と接地開閉器の一体機構は、各相とも同様に構成され、3相分で1セットとなっており、一括操作される。また、真空バルブ7を固定している負荷側導体9はブッシング18を介してケーブル19と接続されている。また、母線側導体14は母線17と接続されている。
【0015】
次に上記のように構成された実施の形態1の動作について説明する。スイッチギヤでは、断路器と接地開閉器を兼ねるように構成されたブレード12と母線端子14aとの接触点は、短絡電流通電時に接触点が電磁力反発力により離れることを防止するため、図示しないバネにより十分な接点接圧が与えられている。そのため断路器の開閉時には接点の摩擦力により母線端子14aおよび母線側導体14に相当の力がかかる。
【0016】
また、短絡電流通電時には母線側導体14や断路・接地に用いるブレード12に大きな電磁力が発生するため、母線側導体14やブレード12の固定が不十分な場合、これらを変形させる要因となる。しかし、この実施の形態になるスイッチギヤでは、母線側導体14は絶縁筒8に直接固定されているので、以上のような機械力、電磁力に対しても十分耐えることが出来る。
【0017】
また、従来のように支持碍子を用いて母線側導体14と母線端子14aをタンク2の内壁に固定した場合には、支持碍子を用いることにより沿面絶縁物が導体とタンク内壁との間に入ることとなり絶縁耐力が低下するため、絶縁距離を大きく取る必要があったが、この発明によるスイッチギヤ構成では支持碍子を用いていないので、母線側導体14とタンク2の距離を小さくすることができる。
【0018】
上記説明したように、実施の形態1によれば、真空バルブを収納する絶縁筒に断路器・母線側導体・負荷側導体を配置することにより、電界が高い真空バルブ端部における部分放電や絶縁破壊を絶縁筒の放電バリア効果で抑制し、また断路器の機能をコンパクトに配置してスイッチギヤのコンパクト化を可能にするとともに、母線側導体14や母線端子14aをタンク1に固定するための支持碍子無しでも断路器の挿抜力や通電電流による電磁力に耐える母線側導体の支持方法を得ることが出来るため、部品点数の削減ができるほか、絶縁距離縮小によるスイッチギヤのコンパクト化が出来、さらに、低コスト化もできるという効果が得られる。
【0019】
実施の形態2.
図3および図4は、実施の形態2になるスイッチギヤを概略的に説明する図であり、図3はタンク内部の主要構成部材を示す側面断面図、図4は図3のIV−IV線における矢視断面図である。この実施の形態2においては、絶縁筒81は、その内径が一端部であるタンク2内部への取付部8a側(図の左方)から、他端部である反取付部側(図の右方)に向けて徐々に小さくなるように内壁が傾斜して形成されている。その他の構成は上記実施の形態1と同様であるので説明を省略する。
【0020】
上記絶縁筒81は、例えばエポキシ樹脂などの熱硬化性樹脂を注型することにより製造される。エポキシ樹脂の場合について説明すると、エポキシ樹脂は主剤と硬化剤を混合して一定温度以上にすると、化学反応により液体から固体へと変わる。この硬化反応ではエポキシ樹脂は硬化収縮する。また、注型の際は樹脂の初期の流動性を高くするとともに硬化反応を促進するため、金型温度を例えば摂氏100度以上に加熱するが、注型品を金型から取り出す作業時には温度が若干低下するためエポキシ樹脂は熱収縮する。
【0021】
このような注型時の硬化収縮や、温度が低下する際の熱収縮によって、絶縁筒81をくり抜く金型面を樹脂が締め付ける方向に応力が発生する。そのため絶縁筒81の内径が軸方向に一様な場合、金型から注型物が外れにくいが、この実施の形態2では、絶縁筒8の内壁が軸方向一端部から他端部方向に向けて傾斜し、内径が徐々に小さくなることから、製造時に金型から外し易い。
【0022】
上記のように、実施の形態2によれば、図示したように、絶縁筒81の内壁を、一端部である取付部8a側から他端部である反取付部側に向けて、内径が徐々に小さくなるように傾斜を設け、金型を内径が大径側の方向に抜くようにすることによって、絶縁筒の固体絶縁物材料が、製造時に硬化収縮や熱収縮を生じても金型から外れやすくなり、製造時の作業性が向上し、製造コストを削減することが出来る効果が得られる。また、取付部8a部分における上下方向のスパンを大きく出来ることから、取付状態での強度的にも有利である。
【0023】
実施の形態3.
図5および図6は、この発明の実施の形態3になるスイッチギヤを説明するもので、図5は真空バルブと接地・断路器の部分を拡大して示す要部側面断面図、図6は図5のVI−VI線における矢視断面図である。図に示すように、この実施の形態3では、真空バルブ7を固定する固体絶縁物である絶縁筒82は、内径が軸方向の中央部で最も小さく、両端部方向に向けて内径がそれぞれ徐々に大きくなるように形成されている。その他の構成は上記実施の形態1と同様であるので説明を省略する。
【0024】
金属製のタンク内に真空バルブ7を絶縁筒82に固定し、水平方向に3相配置した構成の本スイッチギヤでは、タンク内壁に近接する真空バルブ7の端板7cがタンク2内壁と対向する部位、および隣接する真空バルブ端板7c同士の対向する部位の電界が最も高くなる。絶縁筒82は真空バルブ端板7cの電界集中部が基点となる絶縁破壊を抑制するバリア絶縁の効果を有するが、真空バルブ端板7c表面の局部電界は絶縁筒82の内壁が真空バルブ端板7cに接近するにつれて上昇するため、絶縁筒82の内壁と真空バルブ端板7cの間には一定距離以上の空隙を設ける必要がある。
【0025】
図3、図4に示す実施の形態2の絶縁筒81では、真空バルブ固定側(図の右方側)端部の内径が最も小さいため、真空バルブ7の固定端と絶縁筒81後方側の内壁との間が最も近接し、絶縁筒81の内径は一端部側(取付部8a側)に行くに従い大きくなるため、絶縁筒81の径方向の寸法は後方端側の最小内径と内壁の傾斜角度および軸方向寸法で決まる。一方、図5および図6に示す実施の形態3になる絶縁筒82では、中央部の内径が最も小さいため、真空バルブ7の可動端と絶縁筒82の内壁との間が最も接近し、絶縁筒82の内径は両端に行くに従い大きくなる。
【0026】
そのため絶縁筒82の径方向の寸法は中央部の最小内径と内壁の傾斜角度および軸方向の半分の寸法で決まる。以上のことから、耐電圧性能が同等でも、図5および図6に示す絶縁筒82の形状にすると径方向の寸法が小さくなり、これを水平に盤幅方向に3相分並べるスイッチギヤの構成では、絶縁筒82製造の作業性を確保した上に、盤幅Wをコンパクトにすることが可能となる。
【0027】
また、絶縁筒82は真空バルブ7を支持するとともに、隣接相の真空バルブ7同士や真空バルブ7と図示を省略しているタンク内壁との間の絶縁耐力を高くする絶縁バリアとして働くが、真空バルブと近接しすぎると局所電界が高くなり絶縁耐力が低下するため、絶縁筒の内径の縮小には限界がある。一方、絶縁筒の内壁に傾斜を付けることにより、絶縁筒の最大径が大きくなり、スイッチギヤのコンパクト化が困難となる。そこで、絶縁筒の最小内径の位置を軸方向の略中央部にすることにより、側壁の傾斜形状とコンパクト化の両方を実現できる。
【0028】
上記説明したように、この実施の形態3によれば、絶縁筒製造時の作業性を向上させるとともに絶縁筒の径方向寸法を縮小し、従って盤幅Wを縮小化し、スイッチギヤを一層コンパクトにすることが出来る。
【0029】
ところで、上記実施の形態の説明では、母線固定部8bを絶縁筒8の軸方向に略直交する方向に設けた場合を図示したが、必ずしも直角に限定されるものではない。また、母線固定部8bを絶縁筒8と一体注型する場合について説明したが、必ずしも一体でなくても差し支えない。また、注型樹脂についても特にエポキシ樹脂に限定させず、同様の他の絶縁樹脂を特別な制限なく用いることが出来る。さらに、絶縁筒8の取付部8aの形状、ブレード12と可動側通電軸7bとの接続方法など、種々の変形や変更が可能であることは言うまでもない。
【0030】
【発明の効果】
この発明は以上説明したように、真空バルブを収容する絶縁筒の他端部近傍に該絶縁筒の軸方向と交差する方向に突出して設けられた母線側導体を上記タンクに対して絶縁支持する母線固定部を備えるようにしたことにより、絶縁耐力を保持しつつ母線固定部によって母線側導体を確実に絶縁支持して、母線側導体をタンクに固定するための支持碍子の設置を不要にし、一層コンパクトに構成できるととともに、短絡電流通電時における母線側導体等に働く電磁力に対する耐力を確保できるスイッチギヤを提供できる効果が得られる。
【図面の簡単な説明】
【図1】 実施の形態1によるスイッチギヤを概略的に示す要部側面断面図である。
【図2】 図1のII−II線における矢視断面図である。
【図3】 実施の形態2によるスイッチギヤの要部であるタンク内部の主要構成部材を示す側面断面図である。
【図4】 図3のIV−IV線における矢視断面図である。
【図5】 実施の形態3によるスイッチギヤの真空バルブと接地・断路器の部分を拡大して示す要部側面断面図である。
【図6】 図5のVI−VI線における矢視断面図である。
【符号の説明】
1 筐体、 2 タンク、 4 操作機構室、 6 取付部(取付板)、 7 真空バルブ、 7a 固定側通電軸、 7b 可動側通電軸、 7c 真空バルブ端板、 8、81、82 絶縁筒、 8a 取付部、 8b 母線固定部、 8d ブレード支持部、 9 負荷側導体、 10 真空バルブ操作部材、 12 ブレード、 20 ブレード支持部材、 13 接続導体、 14 母線側導体、 14a 母線端子、 15 接地端子、 16 ブレード操作部材、 17 母線、 20 ブレード支持部材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switch gear using a vacuum valve.
[0002]
[Prior art]
In a conventional switchgear using a vacuum valve, a mounting member such as a support insulator is installed on the inner wall of the tank in order to fix the bus-side conductor to the inner wall of the tank sealed with insulating gas (see, for example, Patent Document 1). ).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-185577 (page 6, FIG. 3)
[0004]
[Problems to be solved by the invention]
In such a conventional switchgear, an installation member such as a support insulator is provided on the inner wall of the tank, so that there is creepage on the insulator, and the dielectric strength is lower than a simple gas gap. Therefore, it is necessary to provide an insulation distance larger than the gas gap, and there is a problem that it is difficult to further downsize the apparatus.
[0005]
An object of the present invention is to provide a switchgear that can eliminate the need for a support insulator for fixing the bus-side conductor to the tank, and can further reduce the size of the tank.
[0006]
[Means for Solving the Problems]
A switchgear according to the present invention includes an insulating cylinder housed in a tank filled with an insulating gas and having one axial end fixed to the tank, and a movable side energizing shaft disposed substantially coaxially within the insulating cylinder. A vacuum valve oriented in the direction of one end of the insulating cylinder, and a busbar fixing portion provided in the direction intersecting the axial direction of the insulating cylinder in the vicinity of the other end of the insulating cylinder and insulatingly supporting the busbar-side conductor. It is intended to provide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 and 2 schematically show a switchgear according to Embodiment 1 of the present invention. FIG. 1 is a side sectional view, and FIG. 2 is a sectional view taken along the line II-II in FIG. is there. The casing 1 constituting the switchgear is configured such that the left side of the figure is used as a front part and the right side as a rear part, a tank 2 in which an insulating gas is filled in a rear (back side) upper part, and a control chamber in a front upper part. 3, an operation mechanism chamber 4 is provided at the front center portion of the lower portion, and a cable chamber 5 is provided at the lowermost portion, and the inside is partitioned.
[0008]
In the lower part of the tank 2, three insulating cylinders 8 each housing a vacuum valve 7 for each phase are juxtaposed in the horizontal direction, and each insulating cylinder 8 is on the front (left side in the figure) side which is one end. A flange-like mounting portion 8 a provided at the end is fixed to a mounting plate 6 as a mounting portion that also serves as a partition with the operation mechanism chamber 4. The insulating cylinder 8 is made of, for example, a solid insulator such as an epoxy resin, and in the direction intersecting with the central axis of the insulating cylinder 8 in the vicinity of the rear (right side in the drawing) side end which is the other end. The protruding busbar fixing portion 8b is integrally formed. In addition, a through hole 8c is provided at a substantially central portion in the axial direction, and a blade support portion 8d is integrally formed on an outer peripheral portion near the through hole 8c.
[0009]
The vacuum valve 7 includes a fixed electrode and a movable electrode (not shown in detail) housed in a vacuum vessel. The fixed electrode has a fixed energizing shaft 7a, and the movable electrode has a movable energizing shaft 7b. Are connected to each other and protrude from the vacuum valve end plate 7c to opposite sides in the axial direction. Then, the fixed-side energizing shaft 7a is arranged on the rear (right side in the figure) side which is the other end of the insulating cylinder 8, and the one end, that is, the fixed part (left side in the figure) side of the insulating cylinder 8 in the tank 2. The stationary energizing shaft 7a is electrically and physically connected and fixed to the load side conductor 9 fixed to the other end of the insulating cylinder 8.
[0010]
The movable side energizing shaft 7 b is connected to a vacuum valve operating member 10 penetrating the mounting plate 6 via an insulating rod 11. Further, a portion in front of the substantially central portion of the insulating tube 8 extending in the direction of the central axis of the vacuum valve 7 (leftward in the drawing) serves to secure an insulation distance between the vacuum valve 7 and the mounting plate 6. ing.
[0011]
Next, the structure of the disconnector / ground switch part of the first embodiment will be described. A blade support member 20 is fixed to the blade support portion 8d provided at the substantially outer peripheral portion of the insulating cylinder 8. For example, the blade 12 is fixed to the blade support member 20 by directly embedding it as a buried metal during casting or by embedding a nut member (not shown) and screwing the nut member. It is pivotally supported. Further, the blade 12 is electrically connected to the movable side energizing shaft 7b of the vacuum valve 7 by a flexible connecting conductor 13 provided through a through hole 8c provided in the insulating cylinder 8.
[0012]
In addition, the bus bar fixing portion 8b provided on the other end side of the insulating cylinder 8 protrudes a predetermined length in the vertical direction in the drawing in order to secure a creeping insulation distance between the load side conductor 9 and the bus side conductor 14. The lower end portion of the bus-side conductor 14 is fixed to the tip portion.
[0013]
A predetermined portion of the bus-side conductor 14 is provided with a bus terminal 14a that comes into contact with the blade 12 when energized, and a predetermined terminal inside the tank 2 of the mounting plate 6 has a ground terminal 15 that contacts the blade 12 when grounded. Is provided. The blade 12 is rotated by a blade operation member 16 made of an insulating rod from the operation mechanism chamber 4 in front of the tank 2 as indicated by a broken line, and the tip portion contacts the bus terminal 14a as indicated by a solid line in FIG. At the position where the current is energized, and at the position where the tip of the blade 12 is in contact with the ground terminal 15 indicated by the broken line A, the ground is in the grounded state. When it is held at the position shown, it becomes a disconnected state.
[0014]
In addition, the integrated mechanism of the disconnecting switch and the earthing switch configured by using the vacuum valve 7, the insulating cylinder 8, the blade 12, and the like as described above is configured in the same manner for each phase, and one set for three phases. Are operated in a batch. The load-side conductor 9 that fixes the vacuum valve 7 is connected to a cable 19 via a bushing 18. The bus bar side conductor 14 is connected to the bus bar 17.
[0015]
Next, the operation of the first embodiment configured as described above will be described. In the switchgear, the contact point between the blade 12 configured to serve as both a disconnector and a ground switch and the bus terminal 14a is not shown in order to prevent the contact point from being separated by an electromagnetic force repulsive force when a short-circuit current is applied. Sufficient contact pressure is applied by the spring. Therefore, when the disconnector is opened and closed, a considerable force is applied to the bus terminal 14a and the bus-side conductor 14 by the frictional force of the contacts.
[0016]
Further, since a large electromagnetic force is generated in the bus-side conductor 14 and the blade 12 used for disconnection / grounding when the short-circuit current is energized, if the fixing of the bus-side conductor 14 and the blade 12 is insufficient, these cause deformation. However, in the switchgear according to this embodiment, since the bus-side conductor 14 is directly fixed to the insulating cylinder 8, it can sufficiently withstand the mechanical force and electromagnetic force as described above.
[0017]
Further, when the bus bar side conductor 14 and the bus bar terminal 14a are fixed to the inner wall of the tank 2 using a support insulator as in the prior art, the creeping insulator enters between the conductor and the tank inner wall by using the support insulator. Since the dielectric strength is reduced, it is necessary to increase the insulation distance. However, in the switchgear configuration according to the present invention, since the support insulator is not used, the distance between the bus-side conductor 14 and the tank 2 can be reduced. .
[0018]
As described above, according to the first embodiment, by disposing the disconnector, bus-side conductor, and load-side conductor in the insulating cylinder that houses the vacuum bulb, partial discharge and insulation at the end of the vacuum bulb where the electric field is high Breaking is suppressed by the discharge barrier effect of the insulating cylinder, and the function of the disconnector is compactly arranged to make the switch gear compact and to fix the bus side conductor 14 and the bus terminal 14a to the tank 1 Since it is possible to obtain a bus-side conductor support method that can withstand the electromagnetic force due to the insertion / extraction force of the disconnector and energizing current without a support insulator, the number of parts can be reduced and the switchgear can be made compact by reducing the insulation distance. Furthermore, the effect that the cost can be reduced can be obtained.
[0019]
Embodiment 2. FIG.
3 and 4 are diagrams schematically illustrating the switch gear according to the second embodiment. FIG. 3 is a side cross-sectional view showing main components inside the tank. FIG. 4 is a line IV-IV in FIG. FIG. In the second embodiment, the insulating cylinder 81 has an inner diameter from the mounting portion 8a side to the inside of the tank 2 which is one end portion (left side in the figure) to the opposite mounting portion side which is the other end portion (right side in the figure). The inner wall is inclined so as to gradually become smaller toward the direction. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
[0020]
The insulating cylinder 81 is manufactured by casting a thermosetting resin such as an epoxy resin. Explaining the case of an epoxy resin, the epoxy resin changes from a liquid to a solid by a chemical reaction when the main agent and the curing agent are mixed to a certain temperature or higher. In this curing reaction, the epoxy resin is cured and contracted. Also, during casting, in order to increase the initial fluidity of the resin and promote the curing reaction, the mold temperature is heated to, for example, 100 degrees Celsius or more. The epoxy resin undergoes thermal shrinkage because of a slight decrease.
[0021]
Due to such curing shrinkage during casting and thermal shrinkage when the temperature decreases, stress is generated in the direction in which the resin clamps the mold surface that cuts out the insulating cylinder 81. Therefore, when the inner diameter of the insulating cylinder 81 is uniform in the axial direction, it is difficult for the casting to come off from the mold. However, in the second embodiment, the inner wall of the insulating cylinder 8 is directed from one axial end to the other end. Since the inner diameter gradually decreases, it is easy to remove it from the mold during manufacturing.
[0022]
As described above, according to the second embodiment, as shown in the drawing, the inner diameter of the insulating cylinder 81 gradually increases from the attachment portion 8a side as one end portion to the opposite attachment portion side as the other end portion. By providing an inclination so that the inner diameter of the insulating cylinder is pulled out in the direction of the larger diameter, the solid insulation material of the insulating cylinder can be removed from the mold even if it undergoes curing shrinkage or heat shrinkage during manufacturing. It becomes easy to come off, the workability at the time of manufacture improves, and the effect that the manufacturing cost can be reduced is obtained. Further, since the vertical span in the mounting portion 8a can be increased, it is advantageous in terms of strength in the mounted state.
[0023]
Embodiment 3 FIG.
FIGS. 5 and 6 illustrate a switchgear according to Embodiment 3 of the present invention. FIG. 5 is an enlarged side sectional view showing a main part of a vacuum valve and a grounding / disconnector, and FIG. It is arrow sectional drawing in the VI-VI line of FIG. As shown in the figure, in the third embodiment, the insulating cylinder 82, which is a solid insulator for fixing the vacuum valve 7, has the smallest inner diameter in the central portion in the axial direction, and the inner diameter gradually increases toward both ends. It is formed to be large. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
[0024]
In this switchgear having a configuration in which the vacuum valve 7 is fixed to the insulating cylinder 82 in a metal tank and arranged in three phases in the horizontal direction, the end plate 7c of the vacuum valve 7 adjacent to the tank inner wall faces the inner wall of the tank 2. The electric field of the part and the part where the adjacent vacuum valve end plates 7c face each other is the highest. The insulating cylinder 82 has an effect of barrier insulation that suppresses dielectric breakdown where the electric field concentration portion of the vacuum valve end plate 7c is a base point. Since it rises as it approaches 7c, it is necessary to provide a gap of a certain distance or more between the inner wall of the insulating cylinder 82 and the vacuum valve end plate 7c.
[0025]
In the insulating cylinder 81 of the second embodiment shown in FIGS. 3 and 4, the inner diameter of the end portion of the vacuum valve fixed side (right side in the figure) is the smallest, so the fixed end of the vacuum valve 7 and the rear side of the insulating cylinder 81 Since the inner wall is closest to the inner wall and the inner diameter of the insulating cylinder 81 increases toward one end (the mounting portion 8a side), the radial dimension of the insulating cylinder 81 is the minimum inner diameter on the rear end side and the inclination of the inner wall. Determined by angle and axial dimensions. On the other hand, in the insulating cylinder 82 according to the third embodiment shown in FIGS. 5 and 6, since the inner diameter of the central portion is the smallest, the movable end of the vacuum valve 7 and the inner wall of the insulating cylinder 82 are closest to each other to insulate The inner diameter of the cylinder 82 increases as it goes to both ends.
[0026]
Therefore, the dimension in the radial direction of the insulating cylinder 82 is determined by the minimum inner diameter at the center, the inclination angle of the inner wall, and the half dimension in the axial direction. In view of the above, even if the withstand voltage performance is the same, the shape of the insulating cylinder 82 shown in FIGS. 5 and 6 reduces the radial dimension, and the switchgear configuration is arranged horizontally for three phases in the panel width direction. Then, it is possible to secure the workability of manufacturing the insulating cylinder 82 and to make the panel width W compact.
[0027]
The insulating cylinder 82 supports the vacuum valve 7 and functions as an insulating barrier that increases the dielectric strength between the adjacent vacuum valves 7 and between the vacuum valve 7 and the tank inner wall (not shown). If it is too close to the bulb, the local electric field increases and the dielectric strength decreases, so there is a limit to reducing the inner diameter of the insulating cylinder. On the other hand, by inclining the inner wall of the insulating cylinder, the maximum diameter of the insulating cylinder becomes large, and it becomes difficult to make the switch gear compact. Therefore, by setting the position of the minimum inner diameter of the insulating cylinder to the substantially central portion in the axial direction, both the inclined shape of the side wall and the compactness can be realized.
[0028]
As described above, according to the third embodiment, the workability at the time of manufacturing the insulating cylinder is improved and the radial dimension of the insulating cylinder is reduced, so that the panel width W is reduced and the switch gear is made more compact. I can do it.
[0029]
By the way, in the description of the above embodiment, the case where the busbar fixing portion 8b is provided in a direction substantially orthogonal to the axial direction of the insulating cylinder 8 is illustrated, but it is not necessarily limited to a right angle. Moreover, although the case where the bus-bar fixing part 8b is cast integrally with the insulating cylinder 8 has been described, it does not necessarily have to be integrated. Also, the casting resin is not particularly limited to the epoxy resin, and other similar insulating resins can be used without any particular limitation. Furthermore, it goes without saying that various modifications and changes such as the shape of the mounting portion 8a of the insulating cylinder 8 and the connection method between the blade 12 and the movable-side conductive shaft 7b are possible.
[0030]
【The invention's effect】
As described above, the present invention insulates and supports the bus-side conductor provided in the vicinity of the other end portion of the insulating cylinder accommodating the vacuum valve in a direction intersecting the axial direction of the insulating cylinder with respect to the tank. by which is adapted comprises a bus fixing portion, and reliably insulated supports the bus side conductor by bus fixing portion while maintaining the dielectric strength, eliminating the need for installation of the support insulator for fixing the bus side conductor to the tank, In addition to being able to be configured more compactly, it is possible to provide an effect that can provide a switchgear that can ensure resistance to electromagnetic force acting on a bus-side conductor or the like when a short-circuit current is applied.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an essential part schematically showing a switchgear according to a first embodiment.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a side sectional view showing main constituent members inside a tank, which is a main part of a switchgear according to a second embodiment.
4 is a cross-sectional view taken along the line IV-IV in FIG. 3;
FIG. 5 is a side cross-sectional view of an essential part showing, in an enlarged manner, portions of a vacuum valve and a ground / disconnector of a switchgear according to a third embodiment.
6 is a cross-sectional view taken along line VI-VI in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Case, 2 Tank, 4 Operation mechanism room, 6 Mounting part (mounting plate), 7 Vacuum valve, 7a Fixed side energizing shaft, 7b Movable side energizing shaft, 7c Vacuum valve end plate, 8, 81, 82 Insulating cylinder, 8a mounting portion, 8b busbar fixing portion, 8d blade support portion, 9 load side conductor, 10 vacuum valve operation member, 12 blade, 20 blade support member, 13 connection conductor, 14 busbar side conductor, 14a busbar terminal, 15 ground terminal, 16 blade operation member, 17 busbar, 20 blade support member.

Claims (3)

絶縁ガスを充填するタンクの内部に収容され軸方向一端部が該タンクに固定された絶縁筒と、この絶縁筒の内部に略同軸に配設され可動側通電軸が上記絶縁筒の一端部方向に向けられた真空バルブと、一端は上記絶縁筒の他端部に軸方向が該絶縁筒の軸方向と交差する方向に固定され、上記真空バルブ固定側通電軸と電気的、物理的に接続固定され、もう一端は上記タンクを貫通するブッシングに固定された負荷側導体と、上記絶縁筒の他端部近傍に該絶縁筒の軸方向と交差する方向に所定長突き出すように形成された母線固定部と、この母線固定部に軸方向が該絶縁筒の軸方向と交差する方向に固定されて絶縁支持された母線側導体を備え、上記絶縁筒は、上記母線固定部と一体的に形成されてなるとともに、軸方向中央部外周にブレード支持部材を設けてなり、かつ、上記母線側導体の所定部に設けられた母線端子と、上記タンク内部の所定部に設けられた接地端子と、上記ブレード支持部材に回動自在に枢支され通電時には上記母線端子に接触し、接地時には上記接地端子に接触し、断路時には上記母線端子と接地端子との間の位置に保持されるように設けられたブレードとを備えたことを特徴とするスイッチギヤ。An insulating cylinder housed in a tank filled with insulating gas and having one end in the axial direction fixed to the tank, and a movable energizing shaft disposed substantially coaxially inside the insulating cylinder is directed toward one end of the insulating cylinder. One end is fixed to the other end of the insulating cylinder in a direction in which the axial direction intersects the axial direction of the insulating cylinder, and is electrically and physically connected to the vacuum valve fixed side energizing shaft. A load-side conductor fixed to a bushing penetrating the tank, and a bus bar formed so as to protrude a predetermined length in the direction intersecting the axial direction of the insulating cylinder in the vicinity of the other end of the insulating cylinder A fixed portion and a bus-side conductor that is insulated and supported by the bus-bar-fixed portion fixed in a direction in which the axial direction intersects the axial direction of the insulating tube And the blade on the outer periphery of the axial center A holding member, and a bus terminal provided in a predetermined portion of the bus side conductor, a ground terminal provided in a predetermined portion inside the tank, and a blade support member that is pivotally supported by the blade support member. A blade provided to contact the bus terminal when energized, to contact the ground terminal when grounded, and to be held at a position between the bus terminal and the ground terminal when disconnected. Switch gear. 絶縁ガスを充填するタンクの内部に収容され軸方向一端部が該タンクに固定された絶縁筒と、この絶縁筒の内部に略同軸に配設され可動側通電軸が上記絶縁筒の一端部方向に向けられた真空バルブと、上記絶縁筒の他端部近傍に該絶縁筒の軸方向と交差する方向に設けられ母線側導体を絶縁支持する母線固定部とを備え、上記絶縁筒は、上記真空バルブとの間にギャップを有し、軸方向略中央部内径が最も狭く、両端部に近づくにつれて内径がそれよりそれぞれ広くなるようにその内壁が傾斜して形成されてなることを特徴とするスイッチギヤ。An insulating cylinder housed in a tank filled with insulating gas and having one end in the axial direction fixed to the tank, and a movable energizing shaft disposed substantially coaxially inside the insulating cylinder is directed toward one end of the insulating cylinder. comprising a vacuum valve which is directed, and a bus fixing portion for insulating support provided bus side conductor in a direction crossing the axial direction of the insulating cylinder to the vicinity of the other end of the insulating cylinder, the said insulating cylinder, said It has a gap between the vacuum valve, the inner diameter of the central portion in the axial direction is the narrowest, and the inner wall is inclined so that the inner diameter becomes wider as it approaches both ends. Switch gear. 絶縁ガスを充填するタンクの内部に収容され軸方向一端部が該タンクに固定された絶縁筒と、この絶縁筒の内部に略同軸に配設され可動側通電軸が上記絶縁筒の一端部方向に向けられた真空バルブと、上記絶縁筒の他端部近傍に該絶縁筒の軸方向と交差する方向に設けられ母線側導体を絶縁支持する母線固定部とを備え、上記絶縁筒は、上記母線固定部と一体的に形成されてなるとともに、軸方向中央部外周にブレード支持部材を設けてなり、かつ、上記母線側導体の所定部に設けられた母線端子と、上記タンク内部の所定部に設けられた接地端子と、上記ブレード支持部材に回動自在に枢支され通電時には上記母線端子に接触し、接地時には上記接地端子に接触し、断路時には上記母線端子と接地端子との間の位置に保持されるように設けられたブレードとを備え、しかも、上記絶縁筒は、上記真空バルブとの間にギャップを有し、軸方向略中央部内径が最も狭く、両端部に近づくにつれて内径がそれよりそれぞれ広くなるようにその内壁が傾斜して形成されてなることを特徴とするスイッチギヤ。An insulating cylinder housed in a tank filled with insulating gas and having one end in the axial direction fixed to the tank, and a movable energizing shaft disposed substantially coaxially inside the insulating cylinder is directed toward one end of the insulating cylinder. And a busbar fixing portion provided in the direction intersecting the axial direction of the insulating cylinder in the vicinity of the other end portion of the insulating cylinder and insulatingly supporting the busbar-side conductor. It is formed integrally with the busbar fixing portion, and a blade support member is provided on the outer periphery of the central portion in the axial direction, and a busbar terminal provided at a predetermined portion of the busbar side conductor, and a predetermined portion inside the tank A grounding terminal provided on the blade support member and pivotally supported by the blade support member so as to contact the bus terminal when energized, contact the ground terminal when grounded, and between the bus terminal and the ground terminal when disconnected. Provided to be held in position And a blade, moreover, the insulating cylinder has a gap between the vacuum valve, the most narrow substantially axial central portion inner diameter, such that each wider internal diameter than closer to both end portions A switchgear characterized in that its inner wall is inclined.
JP2003005162A 2002-11-06 2003-01-14 Switchgear Expired - Lifetime JP4146249B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003005162A JP4146249B2 (en) 2003-01-14 2003-01-14 Switchgear
TW092128366A TWI228339B (en) 2002-11-06 2003-10-14 Metal-enclosed switchgear
US10/684,555 US6865072B2 (en) 2002-11-06 2003-10-15 Metal-enclosed switchgear
KR1020030077318A KR100561113B1 (en) 2002-11-06 2003-11-03 Metal-enclosed switchgear
FR0350781A FR2846802B1 (en) 2002-11-06 2003-11-04 METALLIC ENVELOPE APPARATUS
CNB2003101141456A CN1322646C (en) 2002-11-06 2003-11-05 Metallic locking shutter
DE10351766A DE10351766B4 (en) 2002-11-06 2003-11-06 Metal-enclosed switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005162A JP4146249B2 (en) 2003-01-14 2003-01-14 Switchgear

Publications (2)

Publication Number Publication Date
JP2004222381A JP2004222381A (en) 2004-08-05
JP4146249B2 true JP4146249B2 (en) 2008-09-10

Family

ID=32895888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005162A Expired - Lifetime JP4146249B2 (en) 2002-11-06 2003-01-14 Switchgear

Country Status (1)

Country Link
JP (1) JP4146249B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578344B2 (en) * 2005-07-19 2010-11-10 三菱電機株式会社 Gas insulated switchgear
JP4876469B2 (en) * 2005-07-27 2012-02-15 富士電機株式会社 switchboard
KR100811682B1 (en) 2006-10-25 2008-03-11 한국전기연구원 Contactor's member of disconnecting switch for electric power
EP2034501A1 (en) * 2007-09-07 2009-03-11 Eaton Electric B.V. Quickly exchangeable switching device in fixed type medium voltage switchgear system
KR101153478B1 (en) 2008-04-07 2012-06-11 미쓰비시덴키 가부시키가이샤 Vacuum breaker and gas insulated switchgear using the same
JP5090276B2 (en) * 2008-07-14 2012-12-05 三菱電機株式会社 Switchgear
DE102010004919A1 (en) * 2009-11-06 2011-05-12 Areva Energietechnik Gmbh Single or double pole electrical switchgear, especially medium voltage switchgear
WO2012171570A1 (en) * 2011-06-16 2012-12-20 Abb Technology Ag A switching device and a switchgear
CN113594993B (en) * 2021-06-03 2023-02-28 平高集团有限公司 Female link fitting of slope pipe and female connected system of pipe
CN114665285B (en) * 2022-02-22 2024-06-07 平高集团有限公司 Valve tower connecting fitting for converter station

Also Published As

Publication number Publication date
JP2004222381A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100561113B1 (en) Metal-enclosed switchgear
KR100984306B1 (en) Vacuum insulated switch gear
EP2287874A2 (en) Switchgear and method for operating switchgear
JP4762802B2 (en) Vacuum switchgear
KR100692731B1 (en) Gas-insulated switchgear
JP4146249B2 (en) Switchgear
US20070119818A1 (en) Compressed-gas-insulated switch-disconnector module and bushing configuration
JPH04123733A (en) Gas-blast circuit breaker
EP2645378B1 (en) Electric device with insulators
CN110998773B (en) Circuit breaker for gas-insulated switchgear
KR100474173B1 (en) Insulated Switchgear
CN110945613B (en) Isolating switch pole for gas-insulated switchgear
JP2000197221A (en) Closed type gas insulated three-phase switchgear
JP4040954B2 (en) Vacuum switchgear
JP2009164001A (en) Switching device
JP2007274823A (en) Gas insulated bus
EP3893261B1 (en) A pole contact arm for an electric pole unit
JP3906608B2 (en) Switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term