JP4145632B2 - Annual cooling type air conditioner - Google Patents

Annual cooling type air conditioner Download PDF

Info

Publication number
JP4145632B2
JP4145632B2 JP2002333442A JP2002333442A JP4145632B2 JP 4145632 B2 JP4145632 B2 JP 4145632B2 JP 2002333442 A JP2002333442 A JP 2002333442A JP 2002333442 A JP2002333442 A JP 2002333442A JP 4145632 B2 JP4145632 B2 JP 4145632B2
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
cooling cycle
air
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002333442A
Other languages
Japanese (ja)
Other versions
JP2004169941A (en
Inventor
正秀 柳
至誠 藁谷
常雄 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2002333442A priority Critical patent/JP4145632B2/en
Publication of JP2004169941A publication Critical patent/JP2004169941A/en
Application granted granted Critical
Publication of JP4145632B2 publication Critical patent/JP4145632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、外気温度が低い時も冷房が必要な高発熱機器用の空調機に関するものであり、詳しくは、外気温度が高い時は圧縮式冷房サイクルによる冷房を行い、外気温度が低い時は外気温度を積極的に利用して室内の冷房を行う年間冷房型空調機に関する。
【0002】
【従来の技術】
この種の年間冷房型空調機においては、外気温度が高い時は圧縮式冷房サイクルを利用した冷房が行われる。すなわち、圧縮機によりガス冷媒を加圧して高温高圧ガスとして凝縮器に送り、凝縮器では外気と熱交換して冷媒が液化する。液冷媒は膨張弁で減圧されて、蒸発器に至り、蒸発器において室内空気を冷却することで冷媒がガス化し、圧縮機に戻る。以下、このサイクルを繰り返すことで室内の熱を蒸発器および凝縮器を介して大気中に放出することで室内の冷房を行う。
【0003】
一方、外気温度が低い場合には、圧縮機を運転せずに、冷媒圧送手段によって冷媒を循環させるだけで冷房運転を行う。この方法による冷房は、外気で一旦冷媒を冷やし、その冷えた冷媒で室内を冷房するので間接外器冷房と呼ばれる。循環媒体として水を使用する場合もあるが、冷媒を使うことで相変化を利用することができ、循環量を削減することで圧送手段動力を削減することができる。間接外気冷房での冷房サイクルを以下に説明する。
【0004】
蒸発器を出たガス冷媒はそのまま凝縮器に送られ、凝縮器において低温外気で冷やされて液化し、冷媒圧送手段に送られる。冷媒圧送手段で液冷媒が加圧され、蒸発器に導かれる。蒸発器では室内空気を冷却することで冷媒がガス化し、再び凝縮器に戻る。以下このサイクルを繰り返し、室内の熱を蒸発器および凝縮器を介して大気中に放出することで室内の冷房を行う。
【0005】
一般的に、外気温度が高い場合には最初に説明した圧縮サイクルで運転し、外気温度が低い場合には上述した間接外気冷房サイクルで運転する。このサイクル切替のタイミングは、外気温度または外気温度と冷房能力、あるいは外気温度と圧縮機周波数の設定値により決定される。なお、従来のこの種の年間冷房型空調機を開示する文献として、特許文献1〜3が知られている。
【0006】
【特許文献1】
特開平10−82566号
【特許文献2】
特開2000−193327号
【特許文献3】
特開2001−248925号
【0007】
【発明が解決しようとする課題】
ところで、間接外気冷房サイクルにおける冷房運転中において、室内外温度差が十分とれなくなった場合、凝縮器において冷媒が必要最低限液化されないため冷媒圧送手段の手前もしくはその内部において冷媒が気化し、キャビテーションが発生する恐れがある。また、凝縮器能力が急激に増加した場合においても、圧力は瞬時に冷媒循環系全体に伝わるのに対し、温度は冷媒循環により順次伝わるため、この時間差によって冷媒圧送手段内において冷媒が飽和することで気化し、キャビテーションが発生する恐れがある。ここで、キャビテーションとは、流動する液体中に気体が発生して空洞を作る現象である。
【0008】
キャビテーションが発生すると、冷媒が気液混合状態となり循環量が低下、もしくは非常に不安定になる。これにより間接外気冷房サイクルでは、十分な冷房能力を発揮できなくなる。さらにキャビテーション発生による圧力変動や湿潤不良により冷媒圧送手段を破壊する恐れがある。
【0009】
この発明は、このような事情を考慮してなされたもので、その目的は、キャビテーションの発生を防止することができる年間冷房型空調機を提供することにある。
【0010】
【課題を解決するための手段】
この発明は上記の課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、前記間接外気冷房サイクルによる運転中において前記冷媒圧送手段から送出された液冷媒の流量を測定する冷媒流量測定手段と、前記間接外気冷房サイクルによる運転中において前記冷媒流量測定手段の測定結果が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段とを備え、前記制御手段は、前記冷媒流量測定手段の測定結果が予め設定された一定値以下になった回数が所定時間内に所定回数を越えたとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機である。
【0011】
請求項2に記載の発明は、圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、前記間接外気冷房サイクルによる運転中において前記凝縮器から出力された液冷媒の液面の高さを検出する液面検知手段と、前記間接外気冷房サイクルによる運転中において前記液面検知手段の検出結果が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段とを備え、前記制御手段は、前記液面検知手段の検出結果が予め設定された一定値以下になった状態が所定時間以上継続したとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機である。
【0012】
請求項3に記載の発明は、圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、前記間接外気冷房サイクルによる運転中において前記凝縮器から出力された液冷媒の温度および圧力を各々検出する温度検知手段および圧力検知手段と、前記間接外気冷房サイクルによる運転中において前記温度検知手段の出力および圧力検知手段の出力に基づいて演算された過冷却度が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段と、前記制御手段は、前記過冷却度が予め設定された一定値以下になった状態が所定時間以上継続したとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機である。
【0016】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の第1の実施形態による年間冷房型空調機の構成を示す概略構成図である。この図に示す年間冷房型空調機は、主に、蒸発器(室内熱交換器)1、室内側送風機2、室外側送風機風量制御装置3、室内温度センサ4、圧縮機5、圧縮機用インバータ6、圧縮機バイパス弁7、凝縮器(室外熱交換器)8、室外側送風機9、室外側送風機風量制御装置10、冷媒圧送手段11、冷媒圧送手段用制御装置12、冷媒圧送手段バイパス弁13、外気温度センサ14、冷媒流量検知手段15、膨張弁16、膨張弁制御装置17、膨張弁バイパス弁18、演算部19より構成される。
【0017】
圧縮サイクルで運転する場合には、冷媒圧送手段バイパス弁13を開き、圧縮機バイパス弁7および膨張弁バイパス弁18を閉じる。圧縮サイクルは以下のように動作する。圧縮機5によりガス冷媒を加圧して高温高圧ガスとして凝縮器8に送り、凝縮器8では外気と熱交換して冷媒が液化する。液冷媒は膨張弁16で減圧されて、蒸発器1に至り、蒸発器1において室内空気を冷却することで冷媒がガス化し、圧縮機5に戻る。以下このサイクルを繰り返すことで、室内の熱を蒸発器1および凝縮器8を介して大気中に放出することで室内の冷房を行う。
【0018】
一方、間接外気冷房サイクルによって運転する場合は、冷媒圧送手段バイパス弁13を閉じ、圧縮機バイパス弁7および膨張弁バイパス弁18を開く。間接外気冷房サイクルは以下のように動作する。蒸発器1を出たガス冷媒はそのまま凝縮器8に送られ、凝縮器8において低温外気で冷やされて液化し、冷媒圧送手段11に送られる。冷媒圧送手段11で液冷媒が加圧され、蒸発器1に導かれる。蒸発器1では室内空気を冷却することで冷媒がガス化し、再び凝縮器8に戻る。以下このサイクルを繰り返し、室内の熱を蒸発器1および凝縮器8を介して大気中に放出することで室内の冷房を行う。
【0019】
なお、冷媒圧送手段11の一例は、機械的エネルギーにより液体に圧力と速度を与える装置、いわゆる機械式ポンプなどであるが、冷媒が圧送できれはどのような手段でもよい。例えば、熱ポンプ等でもよい。また、冷媒圧送手段バイパス弁13は電磁弁の代わりに逆止弁でもかまわないが、この場合弁の開閉操作が不要となる。さらに冷媒流量検知手段15は、流量計ではなく、しきい値を設定したフロースイッチでもかまわない。
【0020】
次に、上記実施形態において行われるキャビテーション防止動作を説明する。図2はキャビテーション防止動作を示すフローチャートである。まず、間接外気冷房サイクル運転中(ステップSa1)、絶えず冷媒循環量を冷媒流量検知手段15により検知する(ステップSa2)。検知した結果、設定流量A以下の状態がT1時間以上継続すれば(ステップSa2の判断がYES)、キャビテーション発生直前と判断し、カウンターに「1」を加算する(ステップSa3)。次に、冷媒圧送手段11の入力を0とし冷媒圧送手段11を停止させ、次いで室内外送風機2,9を最大風量とする。そして、所定の時間T2経過後、再び冷媒圧送手段11を起動する(ステップSa5)。そしてステップSa2の処理へ戻る。
【0021】
再び、間接外気冷房サイクル運転中に、ステップSa2においてキャビテーション発生直前と判断され、かつ、カウンターからキャビテーション発生直前検知が所定の時間T3の間に所定の回数B回に達した場合(ステップSa4の判断がYES)、冷媒圧送手段11の入力を0として停止させ、圧縮サイクルに移行する(ステップSa6)。圧縮サイクルにおいて所定の時間T4時間経通後、室内外温度差が設定値C以下の場合は(ステップSa7の判断がNO)、引き続き圧縮機5を運転し(ステップSa8)、設定値Cより大きい場合は(ステップSa7の判断がYES)、キャビテーション発生直前検知カウンターをリセットし、再度、間接外気冷房サイクル運転を実施する(ステップSa9)。
【0022】
次に、この発明の第2の実施形態について説明する。図3は同実施形態による年間冷房型空調機の構成を示す概略構成図であり、この図に示す年間冷房型空調機が図1に示すものと異なる点は、冷媒流量検知手段15の代わりに、凝縮器8と冷媒圧送手段11の間に液面高さを検出する液面検知手段21が設置されることである。また図3では凝縮器8と冷媒圧送手段11の間に液タンク22が存在する例であるが、存在しない場合でも液面検知手段21は有効に作用する。
【0023】
以下、この実施形態におけるキャビテーション防止動作を図4に示すフローチャートを参照して説明する。まず、間接外気冷房サイクル運転中(ステップSb1)、絶えず冷媒液面高さを液面検知手段21により検知する。検知した結果、設定流量D以下になった場合(ステップSb2の判断がNO)、キャビテーション発生直前と判断し冷媒圧送手段11の入力を0にし、室内外送風機2,9の風量を最大にする(ステップSb3)。この状態で絶えず冷媒液面高さを液面検知手段21により検知する。検知した結果、液面高さD+E以上の液面が確保できていれば、再び冷媒圧送手段11を起動する(ステップSb5)。時間T5が経過しても液面検知手段21によりD+Eの液面が確保できなければ(ステップSb6の判断がYES)、圧縮サイクルに移行する。圧縮サイクルが所定の時間T6時間経過後(ステップSb7)、室内外温度差が設定値F以下の場合は(ステップSb8の判断がNO)、引き続き圧縮機5を運転し(ステップSb9)、室内外温度差が設定値Fより大きい場合は(ステップSb8の判断がYES)、再度、間接外気冷房サイクル運転を実施する(ステップSb1)。
【0024】
次に、この発明の第3の実施形態について説明する。図5は同実施形態による年間冷房型空調機の構成を示す概略構成図であり、この図に示す年間冷房型空調機が図1に示すものと異なる点は、冷媒流量検知手段15の代わりに、凝縮器8と冷媒圧送手段11の間に冷媒温度検知手段24と冷媒圧力検知手段25が設置されていることである。
【0025】
以下、この実施形態におけるキャビテーション防止動作を図6に示すフローチャートを参照して説明する。まず、間接外気冷房サイクル運転中(ステップSc1)、絶えず冷媒圧送手段11の手前の冷媒の温度と圧力を検知手段24,25により検知し、演算部19に入力して過冷却度を算出する。ここで、過冷却度は、圧力検知手段25によって検出された圧力に基づいて決まる液冷媒の飽和温度と温度検出手段24の測定温度との差として算出される。そして、算出された冷媒圧送手段11の手前の冷媒の過冷却度が設定過冷却度G以下になった場合(ステップSc2の判断がNO)、キャビテーション発生直前と判断し、冷媒圧送手段11の入力を0にし、また、室内外送風機2,9の風量を最大にする(ステップSc3)。
【0026】
この状態で絶えず冷媒圧送手段11の手前の冷媒過冷却度を温度検知手段24および圧力検知手段25の出力に基づいて検知した結果、冷媒圧送手段11の手前の冷媒過冷却度が設定過冷却度G+Hより大きくなったと判断されれば(ステップSc4の判断がYES)、再び冷媒圧送手段11を起動する(ステップSc5)。時間T7経っても冷媒圧送手段11の手前の冷媒過冷却度が設定過冷却度G+Hより大きいと判断されなければ(ステップSc6の判断がYES)、圧縮サイクルに移行する。圧縮サイクルが所定の時間T8時間経過後(ステップSc7)、室内外温度差が設定値C以下の場合は(ステップSc8の判断がNO)、引き続き圧縮機を運転し(ステップSc9)、設定値Cより大きい場合は(ステップSc8の判断がYES)、再度、間接外気冷房サイクル運転を実施する(ステップSc1)。
【0027】
なお、上記第1〜第3の実施形態においては、キャビテーション発生の恐れがある時、冷媒圧送手段11の入力量を0とすると共に、室内外側送風機2,9を最大送風量としたが、冷媒圧送手段11の入力量、室内側送風機2の風量、室外側送風機9の風量、膨張弁16の開度の少なくとも一つを操作するようにしてもよい。
【0028】
【発明の効果】
以上説明したように、この発明によれば、キャビテーションの発生を防止することにより、高発熱機器を収容する部屋に対して、低温外気を利用した冷媒圧送手段による冷房運転が円滑に行えるようになり、従来の圧縮機を利用した冷房装置と比べて、消費電力を削減することができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施形態による年間冷房型空調機の構成を示すブロック図である。
【図2】 同実施形態の動作を説明するためのフローチャートである。
【図3】 この発明の第2の実施形態による年間冷房型空調機の構成を示すブロック図である。
【図4】 同実施形態の動作を説明するためのフローチャートである。
【図5】 この発明の第3の実施形態による年間冷房型空調機の構成を示すブロック図である。
【図6】 同実施形態の動作を説明するためのフローチャートである。
【符号の説明】
1…蒸発器
2…室内側送風機
5…圧縮機
7…圧縮機バイパス弁
8…凝縮器
9…室外側送風機
11…冷媒圧送手段
12…冷媒圧送手段制御装置
13…冷媒圧送手段バイパス弁
15…冷媒流量検知手段
16…膨張弁
18…膨張弁バイパス弁
19…演算部
21…液面検知手段
24…温度検知手段
25…圧力検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner for a high heat generating device that requires cooling even when the outside air temperature is low. Specifically, when the outside air temperature is high, cooling is performed by a compression-type cooling cycle, and when the outside air temperature is low. The present invention relates to an annual cooling type air conditioner that actively cools an indoor air temperature.
[0002]
[Prior art]
In this type of annual cooling type air conditioner, when the outside air temperature is high, cooling using a compression type cooling cycle is performed. That is, the gas refrigerant is pressurized by the compressor and sent to the condenser as a high-temperature and high-pressure gas, and the refrigerant liquefies by exchanging heat with the outside air. The liquid refrigerant is decompressed by the expansion valve, reaches the evaporator, and the refrigerant is gasified by cooling the indoor air in the evaporator and returns to the compressor. Hereinafter, by repeating this cycle, the indoor heat is released into the atmosphere through the evaporator and the condenser to cool the room.
[0003]
On the other hand, when the outside air temperature is low, the cooling operation is performed only by circulating the refrigerant by the refrigerant pressure feeding means without operating the compressor. Cooling by this method is called indirect external unit cooling because the refrigerant is once cooled by the outside air and the room is cooled by the cooled refrigerant. Although water may be used as the circulation medium, phase change can be used by using a refrigerant, and the power of the pumping means can be reduced by reducing the circulation amount. The cooling cycle in indirect outside air cooling will be described below.
[0004]
The gas refrigerant exiting the evaporator is sent to the condenser as it is, cooled in the condenser by the low temperature outside air, liquefied, and sent to the refrigerant pressure sending means. The liquid refrigerant is pressurized by the refrigerant pressure feeding means and guided to the evaporator. In the evaporator, the indoor air is cooled to gasify the refrigerant and return to the condenser again. Thereafter, this cycle is repeated to cool the room by releasing the heat of the room into the atmosphere through the evaporator and the condenser.
[0005]
In general, when the outside air temperature is high, the operation is performed in the compression cycle described first, and when the outside air temperature is low, the operation is performed in the indirect outside air cooling cycle described above. The cycle switching timing is determined by the outside air temperature, the outside air temperature and the cooling capacity, or the set value of the outside air temperature and the compressor frequency. Note that Patent Documents 1 to 3 are known as documents disclosing such conventional annual cooling type air conditioners.
[0006]
[Patent Document 1]
JP-A-10-82566 [Patent Document 2]
JP 2000-193327 A [Patent Document 3]
JP 2001-248925 A
[Problems to be solved by the invention]
By the way, during the cooling operation in the indirect outdoor air cooling cycle, when the indoor / outdoor temperature difference is not sufficient, the refrigerant is not liquefied in the condenser, so the refrigerant vaporizes in front of or inside the refrigerant pumping means, and cavitation occurs. May occur. Also, even when the condenser capacity increases rapidly, the pressure is instantaneously transmitted to the entire refrigerant circulation system, whereas the temperature is sequentially transmitted by the refrigerant circulation, so that the refrigerant saturates in the refrigerant pumping means due to this time difference. Vaporization may cause cavitation. Here, cavitation is a phenomenon in which a gas is generated in a flowing liquid to create a cavity.
[0008]
When cavitation occurs, the refrigerant is in a gas-liquid mixed state and the circulation rate is reduced or becomes very unstable. As a result, in the indirect outdoor air cooling cycle, sufficient cooling capacity cannot be exhibited. Furthermore, there is a risk of destroying the refrigerant pumping means due to pressure fluctuations due to cavitation and poor wetting.
[0009]
The present invention has been made in consideration of such circumstances, and an object thereof is to provide an annual cooling type air conditioner capable of preventing the occurrence of cavitation.
[0010]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is configured such that a compressor, a condenser provided outdoors, an expansion valve, and an evaporator provided indoors are connected by piping. A vapor compression cooling circuit that circulates the refrigerant, an outdoor fan that sends air to the condenser, an indoor fan that sends air to the evaporator, and a pipe between the condenser and the expansion valve. The refrigerant pressure feeding means, the refrigerant pressure feeding means is inoperative, the cooling function by a vapor compression type cooling cycle for cooling the room with the compressor in an operating state, the refrigerant pressure feeding means is operated, and the compressor is Measures the flow rate of the liquid refrigerant sent from the refrigerant pumping means during operation by the indirect outside air cooling cycle in an annual cooling type air conditioner having a cooling function by an indirect outside air cooling cycle that cools the room as an inoperative state That the refrigerant flow rate measuring means, when the measurement result of the refrigerant flow rate measuring means during the operation by the indirect outdoor air cooling cycle is below a preset constant value, the input amount of the refrigerant pumping means, the indoor blower Control means for controlling at least one of an air volume, an air volume of the outdoor blower, and a valve opening degree of the expansion valve, wherein the control means has a measurement result of the refrigerant flow rate measuring means equal to or less than a predetermined value set in advance. When the number of times exceeds the predetermined number within a predetermined time, the cooling cycle is changed from the indirect outside air cooling cycle to the vapor compression cooling cycle .
[0011]
According to a second aspect of the present invention, there is provided a compressor, a condenser provided outside the room, an expansion valve, a vapor compression cooling circuit that circulates a refrigerant by connecting an evaporator provided inside the pipe, and the condenser. An outdoor blower for sending wind, an indoor blower for sending wind to the evaporator, and a refrigerant pressure feeding means provided in a pipe between the condenser and the expansion valve, and the refrigerant pressure feeding means is inoperative , A cooling function by a vapor compression cooling cycle that cools the room with the compressor in an operating state, and a cooling function by an indirect outside air cooling cycle that operates the refrigerant pressure feeding unit and cools the room with the compressor inoperative in annual cooling-type air conditioner having bets, and the liquid level detecting means for detecting the height of the liquid level of the liquid refrigerant outputted from the condenser during operation by the indirect outdoor air cooling cycle, luck by the indirect outdoor air cooling cycle When the detection result of the liquid level sensing means is below a preset constant value in the middle, the input amount of the refrigerant pumping means, the air volume of the indoor blower, the air volume of the chamber outer blower valve of the expansion valve Control means for controlling at least one of the opening degrees, the control means , when a state in which the detection result of the liquid level detection means has become a predetermined value or less has been continued for a predetermined time or more, cooling cycle Is changed from the indirect outdoor air cooling cycle to the vapor compression type cooling cycle .
[0012]
The invention described in claim 3 includes a compressor, a condenser provided outside the room, an expansion valve, a vapor compression cooling circuit that circulates a refrigerant by connecting an evaporator provided inside the pipe, and the condenser. An outdoor blower for sending wind, an indoor blower for sending wind to the evaporator, and a refrigerant pressure feeding means provided in a pipe between the condenser and the expansion valve, and the refrigerant pressure feeding means is inoperative , A cooling function by a vapor compression cooling cycle that cools the room with the compressor in an operating state, and a cooling function by an indirect outside air cooling cycle that operates the refrigerant pressure feeding unit and cools the room with the compressor inoperative in annual cooling-type air conditioner having bets, and the temperature sensing means and pressure sensing means for detecting respectively the temperature and pressure of the liquid refrigerant outputted from the condenser during operation by the indirect outdoor air cooling cycle, the inter When supercooling degree which is calculated based on the output of the output and the pressure detecting means of said temperature detecting means during the operation by the outdoor air cooling cycle is below a preset constant value, the input amount of the refrigerant pumping means, said The control means for controlling at least one of the air volume of the indoor fan, the air volume of the outdoor fan, and the opening degree of the expansion valve, and the control means has the supercooling degree equal to or less than a predetermined value set in advance. When the state has continued for a predetermined time or longer, the cooling cycle is changed from the indirect outside air cooling cycle to the vapor compression cooling cycle .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing the configuration of an annual cooling type air conditioner according to the first embodiment of the present invention. The annual cooling type air conditioner shown in this figure mainly includes an evaporator (indoor heat exchanger) 1, an indoor fan 2, an outdoor fan air volume control device 3, an indoor temperature sensor 4, a compressor 5, and an inverter for the compressor. 6, compressor bypass valve 7, condenser (outdoor heat exchanger) 8, outdoor blower 9, outdoor blower air volume control device 10, refrigerant pressure feeding means 11, refrigerant pressure feeding means control device 12, refrigerant pressure feeding means bypass valve 13 , An outside air temperature sensor 14, a refrigerant flow rate detection means 15, an expansion valve 16, an expansion valve control device 17, an expansion valve bypass valve 18, and a calculation unit 19.
[0017]
When operating in the compression cycle, the refrigerant pressure feeding means bypass valve 13 is opened, and the compressor bypass valve 7 and the expansion valve bypass valve 18 are closed. The compression cycle operates as follows. The gas refrigerant is pressurized by the compressor 5 and sent to the condenser 8 as a high-temperature and high-pressure gas. The condenser 8 exchanges heat with the outside air and liquefies the refrigerant. The liquid refrigerant is decompressed by the expansion valve 16 and reaches the evaporator 1, and the refrigerant is gasified by cooling the indoor air in the evaporator 1, and returns to the compressor 5. Hereinafter, by repeating this cycle, indoor heat is released by releasing indoor heat into the atmosphere via the evaporator 1 and the condenser 8.
[0018]
On the other hand, when operating by an indirect outside air cooling cycle, the refrigerant pressure feed unit bypass valve 13 is closed, and the compressor bypass valve 7 and the expansion valve bypass valve 18 are opened. The indirect outdoor air cooling cycle operates as follows. The gas refrigerant exiting the evaporator 1 is sent to the condenser 8 as it is, cooled in the condenser 8 with low temperature outside air, liquefied, and sent to the refrigerant pressure sending means 11. The liquid refrigerant is pressurized by the refrigerant pressure feeding means 11 and guided to the evaporator 1. In the evaporator 1, the refrigerant is gasified by cooling the indoor air and returns to the condenser 8 again. Thereafter, this cycle is repeated, and indoor heat is released by releasing indoor heat into the atmosphere via the evaporator 1 and the condenser 8.
[0019]
An example of the refrigerant pumping means 11 is a device that applies pressure and speed to the liquid by mechanical energy, a so-called mechanical pump, or the like, but any means that can pump the refrigerant can be used. For example, a heat pump or the like may be used. Further, the refrigerant pressure feeding means bypass valve 13 may be a check valve instead of the solenoid valve, but in this case, the valve opening / closing operation is not required. Further, the refrigerant flow rate detection means 15 may be a flow switch in which a threshold value is set instead of a flow meter.
[0020]
Next, the cavitation prevention operation performed in the above embodiment will be described. FIG. 2 is a flowchart showing the cavitation prevention operation. First, during the indirect outdoor air cooling cycle operation (step Sa1), the refrigerant circulation amount is constantly detected by the refrigerant flow rate detection means 15 (step Sa2). As a result of the detection, if the state equal to or lower than the set flow rate A continues for T1 hours or more (determination in step Sa2 is YES), it is determined that cavitation is just occurring and “1” is added to the counter (step Sa3). Next, the input of the refrigerant pressure feeding means 11 is set to 0, the refrigerant pressure feeding means 11 is stopped, and then the indoor / outdoor blowers 2 and 9 are set to the maximum air volume. And after predetermined time T2 progress, the refrigerant | coolant pressure sending means 11 is started again (step Sa5). Then, the process returns to step Sa2.
[0021]
Again, during the indirect outside air cooling cycle operation, if it is determined in step Sa2 that the cavitation has just occurred, and the detection immediately before the occurrence of cavitation has reached a predetermined number of times B during the predetermined time T3 (determination in step Sa4). Is YES), the input of the refrigerant pressure sending means 11 is stopped as 0, and the process proceeds to the compression cycle (step Sa6). After the passage of the predetermined time T4 in the compression cycle, when the indoor / outdoor temperature difference is equal to or smaller than the set value C (NO at Step Sa7), the compressor 5 is continuously operated (Step Sa8) and is larger than the set value C. If this is the case (YES at step Sa7), the detection counter immediately before the occurrence of cavitation is reset, and the indirect outside air cooling cycle operation is performed again (step Sa9).
[0022]
Next explained is the second embodiment of the invention. FIG. 3 is a schematic configuration diagram showing the configuration of the annual cooling type air conditioner according to the embodiment. The annual cooling type air conditioner shown in this figure is different from that shown in FIG. The liquid level detecting means 21 for detecting the liquid level height is installed between the condenser 8 and the refrigerant pressure sending means 11. FIG. 3 shows an example in which the liquid tank 22 exists between the condenser 8 and the refrigerant pressure sending means 11, but the liquid level detection means 21 works effectively even when it does not exist.
[0023]
Hereinafter, the cavitation prevention operation in this embodiment will be described with reference to the flowchart shown in FIG. First, during the indirect outdoor air cooling cycle operation (step Sb1), the coolant level is constantly detected by the level detection means 21. As a result of the detection, if the flow rate is equal to or lower than the set flow rate D (NO in step Sb2), it is determined that cavitation has just occurred, the input of the refrigerant pressure sending means 11 is set to 0, and the air volume of the indoor / outdoor fans 2 and 9 is maximized ( Step Sb3). In this state, the liquid level height is constantly detected by the liquid level detecting means 21. As a result of the detection, if a liquid level equal to or higher than the liquid level D + E is secured, the refrigerant pressure feeding means 11 is activated again (step Sb5). If the D + E liquid level cannot be secured by the liquid level detection means 21 even after the time T5 has elapsed (YES in step Sb6), the process proceeds to the compression cycle. After the predetermined time T6 has elapsed (step Sb7), when the indoor / outdoor temperature difference is equal to or smaller than the set value F (NO in step Sb8), the compressor 5 is continuously operated (step Sb9). When the temperature difference is larger than the set value F (Yes in step Sb8), the indirect outside air cooling cycle operation is performed again (step Sb1).
[0024]
Next explained is the third embodiment of the invention. FIG. 5 is a schematic configuration diagram showing the configuration of the annual cooling type air conditioner according to the embodiment. The annual cooling type air conditioner shown in this figure is different from that shown in FIG. The refrigerant temperature detecting means 24 and the refrigerant pressure detecting means 25 are installed between the condenser 8 and the refrigerant pressure sending means 11.
[0025]
Hereinafter, the cavitation prevention operation in this embodiment will be described with reference to the flowchart shown in FIG. First, during the indirect outdoor air cooling cycle operation (step Sc1), the temperature and pressure of the refrigerant immediately before the refrigerant pressure feeding means 11 are constantly detected by the detection means 24 and 25, and are input to the calculation unit 19 to calculate the degree of supercooling. Here, the degree of supercooling is calculated as the difference between the saturation temperature of the liquid refrigerant determined based on the pressure detected by the pressure detection means 25 and the temperature measured by the temperature detection means 24. When the calculated degree of subcooling of the refrigerant before the refrigerant pressure sending means 11 is equal to or lower than the set supercooling degree G (NO in Step Sc2), it is judged that the cavitation has just occurred, and the refrigerant pressure sending means 11 is input. Is set to 0, and the air volumes of the indoor and outdoor fans 2 and 9 are maximized (step Sc3).
[0026]
In this state, the refrigerant supercooling degree immediately before the refrigerant pressure feeding means 11 is detected based on the outputs of the temperature detecting means 24 and the pressure detecting means 25. As a result, the refrigerant subcooling degree before the refrigerant pressure feeding means 11 is set as the set supercooling degree. If it is determined that the value is larger than G + H (YES in step Sc4), the refrigerant pressure feeding means 11 is activated again (step Sc5). If it is not determined that the refrigerant supercooling degree before the refrigerant pressure sending means 11 is greater than the set supercooling degree G + H even after the time T7 has elapsed (YES in step Sc6), the process proceeds to the compression cycle. After the predetermined time T8 has elapsed (step Sc7), if the indoor / outdoor temperature difference is equal to or less than the set value C (NO in step Sc8), the compressor is continuously operated (step Sc9), and the set value C If larger (YES at Step Sc8), the indirect outside air cooling cycle operation is performed again (Step Sc1).
[0027]
In the first to third embodiments, when there is a possibility of occurrence of cavitation, the input amount of the refrigerant pressure sending means 11 is set to 0 and the indoor / outdoor blowers 2 and 9 are set to the maximum air flow rate. You may make it operate at least one of the input amount of the pressure sending means 11, the air volume of the indoor side fan 2, the air volume of the outdoor side fan 9, and the opening degree of the expansion valve 16.
[0028]
【The invention's effect】
As described above, according to the present invention, by preventing the occurrence of cavitation, it becomes possible to smoothly perform the cooling operation by the refrigerant pressure feeding means using the low temperature outside air in the room containing the high heat generating device. As compared with a cooling device using a conventional compressor, power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an annual cooling type air conditioner according to a first embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation of the embodiment;
FIG. 3 is a block diagram showing a configuration of an annual cooling type air conditioner according to a second embodiment of the present invention.
FIG. 4 is a flowchart for explaining the operation of the embodiment;
FIG. 5 is a block diagram showing a configuration of an annual cooling type air conditioner according to a third embodiment of the present invention.
FIG. 6 is a flowchart for explaining the operation of the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Evaporator 2 ... Indoor fan 5 ... Compressor 7 ... Compressor bypass valve 8 ... Condenser 9 ... Outdoor fan 11 ... Refrigerant pressure feed means 12 ... Refrigerant pressure feed means control device 13 ... Refrigerant pressure feed means bypass valve 15 ... Refrigerant Flow rate detection means 16 ... expansion valve 18 ... expansion valve bypass valve 19 ... calculation unit 21 ... liquid level detection means 24 ... temperature detection means 25 ... pressure detection means

Claims (3)

圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、
前記間接外気冷房サイクルによる運転中において前記冷媒圧送手段から送出された液冷媒の流量を測定する冷媒流量測定手段と、
前記間接外気冷房サイクルによる運転中において前記冷媒流量測定手段の測定結果が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段とを備え、
前記制御手段は、前記冷媒流量測定手段の測定結果が予め設定された一定値以下になった回数が所定時間内に所定回数を越えたとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機。
A compressor, a condenser provided outside the room, an expansion valve, a vapor compression cooling circuit that circulates the refrigerant by pipe connection of the evaporator provided inside the room, an outdoor fan that sends air to the condenser, and An indoor fan that sends air to the evaporator, and refrigerant pressure feeding means provided in a pipe between the condenser and the expansion valve, the refrigerant pressure feeding means being inactive, and the compressor being in an operating state In an annual cooling type air conditioner having a cooling function by a vapor compression type cooling cycle for performing cooling of the air and a cooling function by an indirect outside air cooling cycle for operating the refrigerant pressure-feeding means and cooling the room with the compressor in an inoperative state ,
Refrigerant flow rate measuring means for measuring the flow rate of the liquid refrigerant sent from the refrigerant pressure sending means during operation by the indirect outside air cooling cycle;
When the measurement result of the refrigerant flow rate measurement means becomes equal to or less than a preset constant value during the operation by the indirect outside air cooling cycle, the input amount of the refrigerant pressure supply means, the air volume of the indoor fan, and the outdoor fan Control means for controlling at least one of the air volume and the valve opening of the expansion valve,
The control means, when the number of times the measurement result of the refrigerant flow rate measurement means becomes equal to or less than a predetermined value set in advance exceeds a predetermined number within a predetermined time, the cooling cycle is changed from the indirect outside air cooling cycle to the vapor compression type. Annual cooling type air conditioner characterized by changing to a cooling cycle .
圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、
前記間接外気冷房サイクルによる運転中において前記凝縮器から出力された液冷媒の液面の高さを検出する液面検知手段と、
前記間接外気冷房サイクルによる運転中において前記液面検知手段の検出結果が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段とを備え、
前記制御手段は、前記液面検知手段の検出結果が予め設定された一定値以下になった状態が所定時間以上継続したとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機。
A compressor, a condenser provided outside the room, an expansion valve, a vapor compression cooling circuit that circulates the refrigerant by pipe connection of the evaporator provided inside the room, an outdoor fan that sends air to the condenser, and An indoor fan that sends air to the evaporator, and refrigerant pressure feeding means provided in a pipe between the condenser and the expansion valve, the refrigerant pressure feeding means being inactive, and the compressor being in an operating state In an annual cooling type air conditioner having a cooling function by a vapor compression type cooling cycle for performing cooling of the air and a cooling function by an indirect outside air cooling cycle for operating the refrigerant pressure-feeding means and cooling the room with the compressor in an inoperative state ,
A liquid level detection means for detecting a liquid level height of the liquid refrigerant output from the condenser during operation by the indirect outside air cooling cycle;
When the detection result of the liquid level detection means becomes equal to or less than a preset constant value during operation by the indirect outside air cooling cycle, the input amount of the refrigerant pressure feeding means, the air volume of the indoor blower, and the outdoor blower Control means for controlling at least one of the air volume and the valve opening of the expansion valve,
The control means changes the cooling cycle from the indirect outside air cooling cycle to the vapor compression cooling cycle when a state in which the detection result of the liquid level detection means is not more than a predetermined constant value continues for a predetermined time or longer. year cooling-type air conditioner which is characterized in that.
圧縮機、室外に設けられた凝縮器、膨張弁、室内に設けられた蒸発器を配管接続して冷媒を循環させる蒸気圧縮式冷却回路と、前記凝縮器に風を送る室外側送風機と、前記蒸発器に風を送る室内側送風機と、前記凝縮器と膨張弁との間の配管に設けられた冷媒圧送手段とを具備し、前記冷媒圧送手段を不動作、前記圧縮機を動作状態として室内の冷房を行う蒸気圧縮式冷房サイクルによる冷房機能と、前記冷媒圧送手段を動作、前記圧縮機を不動作状態として室内の冷房を行う間接外気冷房サイクルによる冷房機能とを有する年間冷房型空調機において、
前記間接外気冷房サイクルによる運転中において前記凝縮器から出力された液冷媒の温度および圧力を各々検出する温度検知手段および圧力検知手段と、
前記間接外気冷房サイクルによる運転中において前記温度検知手段の出力および圧力検知手段の出力に基づいて演算された過冷却度が予め設定された一定値以下になったとき、前記冷媒圧送手段の入力量、前記室内側送風機の風量、前記室外側送風機の風量、前記膨張弁の弁開度の少なくとも1つを制御する制御手段と、
前記制御手段は、前記過冷却度が予め設定された一定値以下になった状態が所定時間以上継続したとき、冷房サイクルを前記間接外気冷房サイクルから前記蒸気圧縮式冷房サイクルに変更することを特徴とする年間冷房型空調機。
A compressor, a condenser provided outside the room, an expansion valve, a vapor compression cooling circuit that circulates the refrigerant by pipe connection of the evaporator provided inside the room, an outdoor fan that sends air to the condenser, and An indoor fan that sends air to the evaporator, and refrigerant pressure feeding means provided in a pipe between the condenser and the expansion valve, the refrigerant pressure feeding means being inactive, and the compressor being in an operating state In an annual cooling type air conditioner having a cooling function by a vapor compression type cooling cycle for performing cooling of the air and a cooling function by an indirect outside air cooling cycle for operating the refrigerant pressure-feeding means and cooling the room with the compressor in an inoperative state ,
Temperature detection means and pressure detection means for detecting the temperature and pressure of the liquid refrigerant output from the condenser during operation by the indirect outside air cooling cycle, respectively;
When supercooling degree which is calculated based on the output of the output and the pressure detecting means of said temperature detecting means during the operation by the indirect outdoor air cooling cycle is below a preset constant value, the input amount of the refrigerant pumping means Control means for controlling at least one of the air volume of the indoor fan, the air volume of the outdoor fan, and the valve opening of the expansion valve;
The control means changes the cooling cycle from the indirect outside air cooling cycle to the vapor compression cooling cycle when the state in which the degree of supercooling is equal to or less than a preset constant value continues for a predetermined time or more. Annual cooling type air conditioner.
JP2002333442A 2002-11-18 2002-11-18 Annual cooling type air conditioner Expired - Lifetime JP4145632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333442A JP4145632B2 (en) 2002-11-18 2002-11-18 Annual cooling type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333442A JP4145632B2 (en) 2002-11-18 2002-11-18 Annual cooling type air conditioner

Publications (2)

Publication Number Publication Date
JP2004169941A JP2004169941A (en) 2004-06-17
JP4145632B2 true JP4145632B2 (en) 2008-09-03

Family

ID=32698152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333442A Expired - Lifetime JP4145632B2 (en) 2002-11-18 2002-11-18 Annual cooling type air conditioner

Country Status (1)

Country Link
JP (1) JP4145632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175890A1 (en) * 2012-05-24 2013-11-28 富士電機株式会社 Air-conditioning system, integrated air-conditioning system, and control device
US9810463B2 (en) 2012-02-22 2017-11-07 Fuji Electric Co., Ltd. Integrated air conditioning system and control device thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506620B2 (en) * 2010-09-22 2014-05-28 株式会社Nttファシリティーズ Air conditioner operation control method
JP2012145261A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Air conditioning system and method for operating the same
JP5667956B2 (en) * 2011-09-30 2015-02-12 日立アプライアンス株式会社 Air conditioner
JP5806581B2 (en) * 2011-10-18 2015-11-10 株式会社日立製作所 Cooling system and cooling method
JP6295121B2 (en) * 2014-03-26 2018-03-14 荏原冷熱システム株式会社 Turbo refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318169A (en) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp Refrigerating apparatus
JP3995825B2 (en) * 1999-03-19 2007-10-24 株式会社Nttファシリティーズ air conditioner
JP2001182971A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Air conditioning system and its control method
JP3584276B2 (en) * 2000-06-30 2004-11-04 株式会社日立製作所 Air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810463B2 (en) 2012-02-22 2017-11-07 Fuji Electric Co., Ltd. Integrated air conditioning system and control device thereof
WO2013175890A1 (en) * 2012-05-24 2013-11-28 富士電機株式会社 Air-conditioning system, integrated air-conditioning system, and control device

Also Published As

Publication number Publication date
JP2004169941A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP5228023B2 (en) Refrigeration cycle equipment
JP2006250479A (en) Air conditioner
US8171747B2 (en) Refrigeration device
CN103562660B (en) Conditioner
US20060150648A1 (en) Air conditioner
JP2008064436A (en) Refrigerating device
WO2021044547A1 (en) Compressor unit and refrigeration device
CN103733005A (en) Air-conditioning device
JPWO2011099074A1 (en) Refrigeration cycle equipment
JP4145632B2 (en) Annual cooling type air conditioner
EP3109566A1 (en) Air conditioning device
US20220205671A1 (en) Air conditioner
JP2006017427A (en) Cooling system
JP2009243832A (en) Air conditioner
JP2008304134A (en) Heat pump device
JP2008175402A (en) Operating method of refrigerating cycle device
WO2021044548A1 (en) Compressor unit and refrigeration device
JP5056794B2 (en) Air conditioner
JP6698312B2 (en) Control device, control method, and heat source system
JP2000283568A (en) Refrigerating device and control method therefor
JP7241880B2 (en) air conditioner
JP2008175430A (en) Air conditioner
JP6978242B2 (en) Refrigerant circuit equipment
JP7438397B2 (en) Refrigeration cycle equipment
KR100544707B1 (en) Water Cooling Type Air Conditioner And Method Of Controlling The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Ref document number: 4145632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term