JP4145504B2 - Friction member for friction hinge - Google Patents

Friction member for friction hinge Download PDF

Info

Publication number
JP4145504B2
JP4145504B2 JP2001137573A JP2001137573A JP4145504B2 JP 4145504 B2 JP4145504 B2 JP 4145504B2 JP 2001137573 A JP2001137573 A JP 2001137573A JP 2001137573 A JP2001137573 A JP 2001137573A JP 4145504 B2 JP4145504 B2 JP 4145504B2
Authority
JP
Japan
Prior art keywords
friction
friction member
powder
lubricant
hinge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001137573A
Other languages
Japanese (ja)
Other versions
JP2002333008A (en
Inventor
元博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001137573A priority Critical patent/JP4145504B2/en
Publication of JP2002333008A publication Critical patent/JP2002333008A/en
Application granted granted Critical
Publication of JP4145504B2 publication Critical patent/JP4145504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pivots And Pivotal Connections (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、本体部と反復開閉する蓋部とを有する小型OA機器、例えばノート型パソコンなどの、キーボート部とディスプレー部を結合し開閉および任意の角度に保持することができるようなフリクションヒンジ等に用いられる摩擦部材に関する。
【0002】
【従来の技術】
この種のヒンジとして、ブラケットに設けた軸受部に回転シャフトを回転自在に挿入し、そのブラケットの両側または片側にワッシャー状の摩擦部材(フリクションプレート)を回転シャフトと共に回転可能に設け、そしてフリクションプレートを皿ばね等の付勢手段によりブラケットに圧接させて、ブラケットと回転シャフトとの間にフリクショントルクを生じさせるようにした構造のものがある。
このようなヒンジは、ブラケットを例えばキーボード部側に固定し、回転シャフトをディスプレー部側に固定して用いれば、所定の回転トルクを与えたときディスプレー部を開閉することができ、また任意の角度に開いた状態て静止させることができる。
このようなフリクションヒンジは、ブラケットは炭素鋼やステンレス鋼製で、相手部材の摩擦部材はブラケットと同じ材料或いはリン青銅で作られ、それらの摺動部にはグリースが塗布されている。
【0003】
【発明が解決しようとする課題】
このような小型OA機器、例えばノート型パソコン等のヒンジは、開閉を繰り返しても各摺動部材の摩耗がなく、回転トルクに変化を生じないことが要求される。摩擦摺動部材の摩耗は摩擦に変化をもたらし、回転トルクが変わることにより、開閉の感触が変わり、或いは、回転トルクが増加した場合は、ディスプレー部を開く際にキーボード部が共に持ち上がるようになったり、回転トルクが減少した場合には、ディスプレー部を所望の角度に保持できない状態が起こる。また、摩耗粉は潤滑グリースやヒンジの周囲を汚染したり、パソコン内にこぼれ落ちた場合は機器を故障させる原因になるおそれがある。
一方、摺動部へのグリース塗布は潤滑のために不可欠であるが、塗布作業が繁雑であり、周囲の余剰なグリースは、機器を構成する樹脂製構造物の変質を助長することになり、また、摺動部のグリースが消費された際、周辺からの補給が不確実であり、長期にわたって潤滑性能を確保できなくなるおそれがある。
この発明は、このような課題を背景とし、長期にわたって、より安定した回転トルクを維持できるヒンジを提供することを目的とする。
【0004】
【課題を解決するための手段】
この発明のフリクションヒンジ用摩擦部材は、金属顕微鏡組織がパーライト組織の鉄合金相と銅相または銅−鉄合金相の混合組織中に固体潤滑剤粒子が分散しており、有効多孔率が5〜25体積%である焼結合金からなり、その気孔に潤滑剤を含浸したものである。
前記固体潤滑剤粒子とは、黒鉛、または黒鉛及び二硫化モリブデンである。焼結合金は、Cu:3〜30質量%、C:1.5〜4質量%を含有している鉄基材料であり、より好ましくはCu:10〜20質量%、C:3〜4質量%、残部が実質的にFeからなる鉄基材料である。
また、前記潤滑剤とは、フッ素オイル、炭化水素系合成油、あるいは極圧ギヤ油等の極圧潤滑剤であるが、後者の極圧潤滑剤が好ましい。
前記極圧潤滑剤(extreme pressure lubricant、 EP lubricant)とは、日本潤滑学会編「潤滑用語集」(1992.3.30、養賢堂発行、p.24)に記載されているように、高い接触圧力により油膜破断の生じるような条件下の潤滑に用いられる潤滑油、グリースなどの総称で、極圧添加剤(extreme pressure agent、 EP agent)を添加して耐荷重能を向上させた極圧ギヤ油(EPギヤ油、 EP gear oil)、酸化防止剤、さび止め剤などを含む添加タービン油に極圧添加剤をさらに添加して極圧潤滑性能を向上させた極圧タービン油(EP turbine oil)、あるいは塩素、硫黄、リン等の極圧添加剤を添加して極圧性をもたせた極圧グリース(EPグリース、 EP grease)、前記極圧ギヤ油とワックスとを混合したワックス等をいう。
【0005】
【発明の実施の形態】
1.焼結合金からなる摩擦部材
この発明の摩擦部材は鉄粉、銅粉または銅箔粉、黒鉛粉、及び二硫化モリブデン粉を原料粉とする。
これらの原料粉を所定の割合で混合し、圧粉成形し、鉄に炭素が拡散し銅が溶融しない温度、すなわち1000℃程度で焼結する。焼結体は平坦度を向上させるためにサイジングすることが好ましい。また、摺動する面を研磨面としたものも、安定した摺動摩擦を示す。
摩擦摺動面となる端面に同心円状或いは放射状の溝を設けておくと、潤滑剤の収容及び摩耗粉の収容をする余地となるので好ましい。
【0006】
焼結合金は、金属顕微鏡組織がパーライト組織の鉄粒子が主体で、その粒子間に銅が分散し、さらに黒鉛、または黒鉛と二硫化モリブデンとが分散したものである。
パーライト組織の鉄粒子は、焼結合金の骨格をなしており、適度の硬さをもっており耐摩耗性があり、相手部材を攻撃し難いという性状に基づいている。
鉄の結合炭素量は、Fe−C系において0.4〜0.8質量%程度とし、特に0.6質量%程度が耐摩耗性に優れ相手材を攻撃し難いので好ましい。炭素の供給源は、原料粉を混合して得られる混合粉に添加する黒鉛粉であり、焼結によって鉄粒子に拡散される。
【0007】
混合粉に添加した黒鉛粉の残余は、焼結合金中に固体潤滑剤粒子として残留し混合組織中に分散される。
焼結合金中の固体潤滑剤粒子としては、黒鉛のみでもよいが、二硫化モリブデン粉も一緒に添加すると耐摩耗性が向上する。二硫化モリブデン粉の量は、コストの点から、黒鉛粉の4分の1程度とすることが好ましい。
また、混合粉に含まれる黒鉛粉または黒鉛粉と二硫化モリブデン粉の量が4質量%を越えると、これらの偏析が起こりやすくなり、混合粉の見掛け密度が低くなり、粉末の流動性が悪くなり、また焼結体の強度が低下するので好ましくない。焼結合金中の固体潤滑剤粒子の量が1質量%より少ないと摩耗しやすくなり、摩擦が不安定になる。このようなことから、固体潤滑剤粒子が黒鉛のみの場合、焼結合金中の結合炭素量と合わせた炭素量は1.5質量%以上とし、前記混合粉中の固体潤滑剤粉末の最大添加量は4質量%の範囲である。
【0008】
焼結合金中のCuの含有量は、3〜30質量%の範囲であり、より好ましくは10〜20質量%である。Cuは、焼結により極わずかに鉄と合金化するが、殆どはCuとして残留し、金属顕微鏡組織は、鉄合金粒子の間に銅粒子が点在した状態となる。Cuは、銅粉、銅箔粉、または銅被覆黒鉛粉の形で添加することができる。
Cuの成分は、合金の強度を高め、相手材とのなじみ性をよくし、耐摩耗性を向上する。
焼結金属のCuの含有量が3質量%に満たないと、相手部材と凝着を起こしやすくなり、摺動量の増加に伴い、摩耗が速くなり、相手部材を摩耗させやすく、摩擦力が上昇して変化が大きくなる。また、Cuの含有量が30質量%を越えた場合も耐摩耗性が悪くなる。
このような焼結合金が良好な摺動摩擦特性を維持できる理由は、前述のパーライト鉄粒子、銅相、及び固体潤滑剤粒子のそれぞれの性質が交互に作用しており、パーライト組織の鉄合金相が強度、耐摩耗性及び適度な摩擦特性をもつ骨格となり、比較的軟質な銅相が点在することにより相手部材とのなじみ性及び適度な摩擦特性を発揮し、かつ固体潤滑剤粒子の分散によって摺動潤滑性及び耐摩耗性が向上するためであると考えられる。
【0009】
このような焼結合金からなる摩擦部材は、油やワックス等が含浸する気孔を有しており、その有効多孔率は5〜25体積%である。有効多孔率が小さいものは含油能が低く、潤滑性が乏しくなり、摩擦力が過度に上昇する原因になる。有効多孔率が大きいものは焼結合金の密度が低く、耐摩耗性が劣る。なお、有効多孔率はより好ましくは15〜20体積%である。
【0010】
2.気孔に含浸する潤滑剤
潤滑剤としては、極圧潤滑剤が摩擦係数の変化が少なく良好な摺動摩擦を示す。その他の潤滑剤としては、フッ素オイルや炭化水素系合成油でもよい。フッ素系オイルとしては、例えばアウジモンド社製の商品名フォンブリンM30が挙げられ、炭化水素系合成油としては、昭和シェル石油(株)製の商品名テラス68が挙げられる。
【0011】
極圧潤滑剤は、前記の極圧添加剤入りのギヤ油やタービン油、これらの潤滑油とワックスとの混合物、極圧添加剤入りのグリースなどである。
いずれの形態の極圧潤滑剤でもよいが、含浸作業性がよく、使用中に摺動面にしみ出しやすい液状の極圧潤滑剤が望ましい。
極圧潤滑剤は、摩擦部材の気孔中に含浸しているため、摩擦面を長期間にわたって潤滑し、安定した摩擦特性を持続する。また、従来のグリースによる潤滑のように、ヒンジ内に余分な潤滑剤を充填する必要がないので、ヒンジの組み立てが容易となり、周囲を汚染するおそれも少なくすることができる。
極圧潤滑剤の含浸は、ギヤ油やタービン油では摩擦部材を油中に浸漬して含浸するか、通常の減圧含浸を行い、ワックスやグリースは極圧潤滑剤を加熱溶融して減圧含浸する。
【0012】
【実施例】
1.好ましい摩擦部材の実施例
(摩擦部材の製作)
下記の原料粉を準備する。
(1)鉄粉 粒度100メッシュ以下
(2)銅粉 粒度200メッシュ以下
(3)黒鉛粉 粒度250メッシュ以下
(4)銅被覆黒鉛粉 Cu:50質量%
(5)二硫化モリブデン粉 粒度250メッシュ以下
(6)銅被覆二硫化モリブデン粉 Cu:50質量%
(7)ステアリン酸亜鉛粉(成形潤滑剤)
これらの原料粉を所定割合で混合する。銅被覆黒鉛粉は、焼結中に鉄粉への浸炭を少なくし、遊離黒鉛を多くすることができる。上記原料粉を一緒に混合する方法でもよいが、鉄粉に微量の低粘度油を加えて混合した後、黒鉛粉を混合して付着させ、その後に銅粉を混合する手順とすることもできる。
鉄粉に、Cuの量が3〜30質量%、黒鉛量または黒鉛と二硫化モリブデン量が1.5〜4質量%となるように、銅粉、黒鉛粉、銅被覆黒鉛粉、二硫化モリブデン粉、銅被覆二硫化モリブデン粉の中から組み合わせて混合する。二硫化モリブデン粉を添加する場合、黒鉛粉の添加量は、鉄のパーライト組織を形成するのに必要な少なくとも約0.5質量%以上とされる。
摩擦部材の特性とコストを考慮した好ましい配合は、質量で鉄粉78.6%、銅粉16%、黒鉛2.4%、銅被覆黒鉛粉3%とし、成形潤滑剤をこれらに対して1%添加する。
【0013】
この混合粉を金型を用いてワッシャー形状に圧縮成形する。成形密度は6.4〜6.8g/cm程度とする。ワッシャー状摩擦部材は、シャフトにはめ込まれる内孔が小判形で、端面に放射状に溝を設ける。これは成形金型にて造形する。
この成形体を還元性ガス雰囲気中で加熱し最高温度約1000℃で焼結する。
焼結体は、前記の好ましい原料配合としたものの場合、組成が、Cu:約17.5質量%、C(全炭素量):約3.8質量%、鉄との結合炭素量が約0.6質量%(全体組成中では約0.47質量%)、及び遊離黒鉛量(フリーカーボン量):約3.3質量%であり、鉄相はパーライト組織であって、銅相が鉄相の約5分の1の面積を占め、鉄相を囲みまたは鉄相に分散した金属顕微鏡組織を呈する。前記の全炭素量は、用いた黒鉛粉の不純物が2.5質量%の場合である。
ついで、焼結体を金型を用いてサイジングし、寸法および形状を整える。
サイジングされた摩擦部材は、密度が6.6g/cmの場合は、有効多孔率が約15体積%である。
摩擦部材の摩擦面を研磨やラッピングを行い、表面気孔量を少なくする工程を加えてもよい。また、後述の潤滑剤を焼結体に予め含浸してサイジングすることもできる。
【0014】
(潤滑剤の含浸)
潤滑剤は、極圧潤滑剤が好ましく、より好ましくは極圧ギヤ油(EP gear oil)である。例えば、温度40℃における粘度460cSt(4.6cm/s)のギヤ油(出光興産(株)製、ダフニー・スーパ・ギヤ460)が一例として挙げられる。これら潤滑剤は真空含浸装置で含浸する。
【0015】
2.ヒンジ試験装置
図1は、本発明の実施例で用いたフリクションヒンジの断面図である。
軸受孔1aがあるブラケット1(オーステナイト系ステンレス鋼、SUS304製)が図示していない基盤に固定されている。可動軸3は、大径部3a、断面が小判形をした軸部3b、ねじ部3cからなっている。摩擦部材2a、2bはブラケット1を挟んで配置され、摩擦部材2bの外側には座金5a、板ばね4及び座金5bを付設し、ナット6により締め付けられ、これらは可動軸3と一体に回転する。板ばね4は摩擦部材2a、2bをブラケット1に圧接させる付勢手段であり、ブラケット1と摩擦部材2a、2bとに所定の摩擦力が生ずる。
可動軸3を角度180度の領域内で往復揺動させ、所定回数揺動させたのちに、ロックトルク(静止トルク)を測定して、その変化量によりロックトルクの安定性を評価する。
試験方法は、ヒンジ装置のナット6を締め付けて、ロックトルク(静止トルク)の初期値を50kgf・mmに設定する。そして、可動軸3を角度180度の範囲内で2万回往復開閉し、千回、5千回、1万回、2万回におけるロックトルクの測定を行いまた摺動部の状態を観察する。
【0016】
3.ヒンジ試験特性
前記の好ましい焼結合金の場合、2万回時のロックトルクは、初期値と殆ど変わりなく、摩擦部材の摩耗量は3μm以下で、ブラケットの摩耗が認められないものとなる。
焼結合金のCu含有量が10質量%程度までは特性値の変化が認められないが、Cu含有量がそれより少ないものは、摩擦部材の摩耗が多くなる傾向があり、Cu含有量が3質量%より少ないものでは、往復揺動回数が増加するにつれロックトルクが低下する。摩擦面の観察から、Cu含有量の少ない摩擦部材は、ブラケットとの凝着が起こりやすくなっているものと思われる。
焼結合金のCu含有量が多いものが、耐摩耗やトルク変動が少なくなる。ただし、Cu含有量が30質量%を越えるものでは、往復揺動回数が増加するにつれロックトルクが低下し、摩耗しやすくなる。摩擦面の観察によると、銅相が塑性流動して鉄相の役割を減少させ、表面の気孔を封孔させるためであると思われる。
黒鉛の一部を二硫化モリブデンに置換した焼結合金は、摩耗、トルク変動共に良好なものとなる。
固体潤滑剤粒子の含有量が多いものほど、安定したロックトルクを維持する。焼結合金の固体潤滑剤粒子の含有量が1質量%程度までは、耐摩耗、トルク変動は少ないが、それより少なくなると、ブラケットとの凝着摩耗が認められるようになり、特性が不安定である。
これらのことから、摩擦部材に適する焼結合金は、Cu含有量が3〜30質量%の範囲内とし、より好ましくは10〜20質量%であり、鉄相はFe−C系における結合炭素量が0.6質量%前後のパーライト組織を呈し、固体潤滑剤粒子としての遊離炭素は1〜3.5質量%程度とし、そのために全炭素量が1.5〜4質量%、より好ましくは3〜4質量%である。
【0017】
従来の例として、摩擦部材2a、2bをステンレス鋼(SUS304)板を切削加工したもの、リン青銅板を切削加工したものをヒンジに組み立て、それぞれ摺動部に極圧グリース(出光興産(株)製ダフニー・モリブデングリース)を塗布したものについて、同様に揺動試験を行う。
これらのヒンジは、揺動回数を重ねると、摺動面のグリース潤滑が悪くなりロックトルクが増加したり、あるいは低下したりして変動が大きくなる。摩擦部材がリン青銅製のものが摩耗が比較的速い。摩耗粉は、グリースを混濁し、潤滑性をさらに劣化させる。
【0018】
【発明の効果】
以上、説明したように、この発明のフリクションヒンジ用摩擦部材を用いれば、ヒンジの開閉感触及びロックトルクの変化が少ないものとなるから、ノート型パソコンなどの小型OA機器に用いれば、長期にわたって初期と同じ機能を維持することができる。
【図面の簡単な説明】
【図1】本発明で用いたフリクションヒンジの断面図である。
【符号の説明】
1 ブラケット
1a 軸受孔
2a 摩擦部材
2b 摩擦部材
3 可動軸
3a 大径部
3b 軸部
3c ねじ部
4 板ばね
5a 座金
5b 座金
6 ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small-sized OA device having a main body portion and a lid portion that repeatedly opens and closes, such as a notebook personal computer, a friction hinge that can be opened / closed and held at an arbitrary angle by connecting a keyboard portion and a display portion. The present invention relates to a friction member used in the above.
[0002]
[Prior art]
As a hinge of this type, a rotating shaft is rotatably inserted into a bearing portion provided on a bracket, and a washer-like friction member (friction plate) is provided on both sides or one side of the bracket so as to be rotatable together with the rotating shaft. There is a structure in which the friction torque is generated between the bracket and the rotating shaft by pressing the plate to the bracket by a biasing means such as a disc spring.
Such a hinge can be used to open and close the display when a predetermined rotational torque is applied, if the bracket is fixed to the keyboard, for example, and the rotary shaft is fixed to the display. It can be opened and stationary.
In such a friction hinge, the bracket is made of carbon steel or stainless steel, the friction member of the mating member is made of the same material as that of the bracket or phosphor bronze, and grease is applied to the sliding portions thereof.
[0003]
[Problems to be solved by the invention]
Such a small OA device, for example, a hinge of a notebook personal computer or the like, is required to have no sliding member wear and no change in rotational torque even when it is repeatedly opened and closed. Wear of the frictional sliding member changes the friction, and when the rotational torque changes, the feeling of opening and closing changes, or when the rotational torque increases, the keyboard part will be lifted together when opening the display part. If the rotational torque decreases, a state in which the display unit cannot be held at a desired angle occurs. Wear powder can contaminate the area around the lubricating grease and hinges, or if it spills into the personal computer, it can cause equipment failure.
On the other hand, grease application to the sliding part is indispensable for lubrication, but the application work is complicated, and the surrounding excess grease promotes the alteration of the resin structure constituting the equipment, Further, when the grease on the sliding portion is consumed, replenishment from the periphery is uncertain, and there is a possibility that the lubrication performance cannot be secured for a long time.
With the background of such a problem, an object of the present invention is to provide a hinge that can maintain a more stable rotational torque over a long period of time.
[0004]
[Means for Solving the Problems]
The friction member for a friction hinge according to the present invention has solid lubricant particles dispersed in a mixed structure of an iron alloy phase of a pearlite structure and a copper phase or a copper-iron alloy phase, and has an effective porosity of 5 to 5. It consists of a sintered alloy of 25% by volume, and its pores are impregnated with a lubricant.
The solid lubricant particles are graphite or graphite and molybdenum disulfide. The sintered alloy is an iron-based material containing Cu: 3 to 30% by mass and C: 1.5 to 4% by mass, more preferably Cu: 10 to 20% by mass, C: 3 to 4% by mass. %, The balance being an iron-based material substantially consisting of Fe.
The lubricant is an extreme pressure lubricant such as fluorine oil, hydrocarbon-based synthetic oil, or extreme pressure gear oil, and the latter extreme pressure lubricant is preferable.
The extreme pressure lubricant (EP lubricant) is a high contact pressure as described in “Lubrication Glossary” edited by the Japan Lubrication Society (March 30, 1992, published by Yokendo, p. 24). Is a general term for lubricating oils and greases used for lubrication under conditions where oil film breakage occurs due to the extreme pressure gear oil with improved load bearing capacity by adding extreme pressure agent (EP agent) (EP gear oil), extreme pressure turbine oil with improved extreme pressure lubrication performance by further adding extreme pressure additives to added turbine oil including antioxidants, rust inhibitors, etc. Or an extreme pressure grease (EP grease) made by adding an extreme pressure additive such as chlorine, sulfur, phosphorus or the like, or a wax mixed with the extreme pressure gear oil and wax.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
1. Friction member made of sintered alloy The friction member of this invention uses iron powder, copper powder or copper foil powder, graphite powder, and molybdenum disulfide powder as raw powder.
These raw material powders are mixed at a predetermined ratio, compacted, and sintered at a temperature at which carbon does not diffuse into iron and copper does not melt, that is, about 1000 ° C. The sintered body is preferably sized in order to improve the flatness. Moreover, the thing which used the sliding surface as the grinding | polishing surface also shows the stable sliding friction.
It is preferable to provide concentric or radial grooves on the end surface which becomes the friction sliding surface because it becomes a room for storing the lubricant and the wear powder.
[0006]
The sintered alloy is mainly composed of iron particles having a pearlite structure in a metal microstructure, copper dispersed between the particles, and graphite or graphite and molybdenum disulfide dispersed.
The iron particles having a pearlite structure form a skeleton of a sintered alloy, have an appropriate hardness, have wear resistance, and are based on the property that it is difficult to attack the mating member.
The amount of bound carbon of iron is about 0.4 to 0.8% by mass in the Fe-C system, and especially about 0.6% by mass is preferable because it has excellent wear resistance and hardly attacks the counterpart material. The carbon supply source is graphite powder added to the mixed powder obtained by mixing the raw material powder, and is diffused into the iron particles by sintering.
[0007]
The remainder of the graphite powder added to the mixed powder remains as solid lubricant particles in the sintered alloy and is dispersed in the mixed structure.
The solid lubricant particles in the sintered alloy may be only graphite, but adding molybdenum disulfide powder together improves the wear resistance. The amount of molybdenum disulfide powder is preferably about a quarter of the graphite powder from the viewpoint of cost.
Further, if the amount of graphite powder or graphite powder and molybdenum disulfide powder contained in the mixed powder exceeds 4% by mass, these segregation tends to occur, the apparent density of the mixed powder becomes low, and the fluidity of the powder is poor. And the strength of the sintered body is lowered, which is not preferable. When the amount of the solid lubricant particles in the sintered alloy is less than 1% by mass, it becomes easy to wear and friction becomes unstable. For this reason, when the solid lubricant particles are only graphite, the amount of carbon combined with the amount of bonded carbon in the sintered alloy is 1.5% by mass or more, and the maximum addition of the solid lubricant powder in the mixed powder is performed. The amount is in the range of 4% by weight.
[0008]
The Cu content in the sintered alloy is in the range of 3 to 30% by mass, more preferably 10 to 20% by mass. Cu is slightly alloyed with iron by sintering, but most remains as Cu, and the metal microstructure is in a state where copper particles are interspersed between iron alloy particles. Cu can be added in the form of copper powder, copper foil powder, or copper-coated graphite powder.
The component of Cu increases the strength of the alloy, improves compatibility with the counterpart material, and improves wear resistance.
If the Cu content of the sintered metal is less than 3% by mass, adhesion to the mating member is likely to occur, and as the sliding amount increases, the wear becomes faster, the mating member tends to wear, and the frictional force increases. And change will increase. In addition, when the Cu content exceeds 30% by mass, the wear resistance also deteriorates.
The reason why such a sintered alloy can maintain good sliding friction characteristics is that the properties of the pearlite iron particles, the copper phase, and the solid lubricant particles described above are acting alternately, and the iron alloy phase of the pearlite structure. Becomes a skeleton with strength, wear resistance, and appropriate friction characteristics, and it exhibits compatibility with the mating member and moderate friction characteristics due to the presence of a relatively soft copper phase, and dispersion of solid lubricant particles This is considered to be because the sliding lubricity and wear resistance are improved.
[0009]
The friction member made of such a sintered alloy has pores impregnated with oil, wax or the like, and its effective porosity is 5 to 25% by volume. Those having a low effective porosity have low oil impregnation ability, poor lubricity, and excessive frictional force. Those having a large effective porosity have a low sintered alloy density and poor wear resistance. The effective porosity is more preferably 15 to 20% by volume.
[0010]
2. As the lubricant lubricant impregnated in the pores, the extreme pressure lubricant exhibits a good sliding friction with little change in the friction coefficient. Other lubricants may be fluorine oil or hydrocarbon synthetic oil. An example of the fluorine-based oil is a brand name Fomblin M30 manufactured by Augmond, and an example of a hydrocarbon-based synthetic oil is a brand name Terrace 68 manufactured by Showa Shell Sekiyu K.K.
[0011]
Examples of the extreme pressure lubricant include gear oil and turbine oil containing the above extreme pressure additive, a mixture of these lubricant and wax, grease containing the extreme pressure additive, and the like.
Any form of the extreme pressure lubricant may be used, but a liquid extreme pressure lubricant that has good impregnation workability and can easily ooze out on the sliding surface during use is desirable.
Since the extreme pressure lubricant is impregnated in the pores of the friction member, the friction surface is lubricated for a long period of time, and stable friction characteristics are maintained. Further, unlike the conventional lubrication with grease, it is not necessary to fill the hinge with extra lubricant, so that the assembly of the hinge is facilitated and the possibility of contamination of the surroundings can be reduced.
For impregnation with extreme pressure lubricant, gear oil or turbine oil is impregnated by immersing the friction member in oil, or normal decompression impregnation is performed, and wax or grease is impregnated under reduced pressure by heating and melting the extreme pressure lubricant. .
[0012]
【Example】
1. Example of preferable friction member (production of friction member)
Prepare the following raw material powder.
(1) Iron powder particle size 100 mesh or less (2) Copper powder particle size 200 mesh or less (3) Graphite powder particle size 250 mesh or less (4) Copper-coated graphite powder Cu: 50% by mass
(5) Molybdenum disulfide powder, particle size 250 mesh or less (6) Copper-coated molybdenum disulfide powder Cu: 50% by mass
(7) Zinc stearate powder (molding lubricant)
These raw material powders are mixed at a predetermined ratio. Copper-coated graphite powder can reduce carburization of iron powder during sintering and increase free graphite. The above raw material powder may be mixed together, but after adding a small amount of low-viscosity oil to iron powder and mixing, graphite powder may be mixed and adhered, and then copper powder may be mixed. .
Copper powder, graphite powder, copper-coated graphite powder, molybdenum disulfide so that the amount of Cu in the iron powder is 3 to 30% by mass, the amount of graphite or the amount of graphite and molybdenum disulfide is 1.5 to 4% by mass. Combine and mix powder and copper-coated molybdenum disulfide powder. In the case of adding molybdenum disulfide powder, the amount of graphite powder added is at least about 0.5% by mass or more necessary to form an iron pearlite structure.
A preferable composition considering the characteristics and cost of the friction member is 78.6% iron powder, 16% copper powder, 2.4% graphite, and 3% copper-coated graphite powder, and the molding lubricant is 1% of these. %Added.
[0013]
This mixed powder is compression molded into a washer shape using a mold. The molding density is about 6.4 to 6.8 g / cm 3 . The washer-like friction member has an oval inner hole fitted into the shaft, and has radial grooves on the end face. This is formed by a molding die.
This molded body is heated in a reducing gas atmosphere and sintered at a maximum temperature of about 1000 ° C.
In the case of the sintered body having the above-mentioned preferred raw material composition, the composition is Cu: about 17.5% by mass, C (total carbon amount): about 3.8% by mass, and the amount of bonded carbon with iron is about 0. 0.6% by mass (about 0.47% by mass in the total composition) and free graphite amount (free carbon amount): about 3.3% by mass, the iron phase has a pearlite structure, and the copper phase has an iron phase. The metal microstructure occupies about one-fifth of the area and surrounds the iron phase or is dispersed in the iron phase. The above-mentioned total carbon amount is when the used graphite powder has an impurity of 2.5% by mass.
Next, the sintered body is sized using a mold, and the size and shape are adjusted.
The sized friction member has an effective porosity of about 15% by volume when the density is 6.6 g / cm 3 .
A step of reducing the amount of surface pores by polishing or lapping the friction surface of the friction member may be added. In addition, the sintered body can be preliminarily impregnated with a lubricant described later and sized.
[0014]
(Impregnation of lubricant)
The lubricant is preferably an extreme pressure lubricant, more preferably an extreme pressure gear oil (EP gear oil). For example, gear oil having a viscosity of 460 cSt (4.6 cm 2 / s) at a temperature of 40 ° C. (Dafney Super Gear 460, manufactured by Idemitsu Kosan Co., Ltd.) is an example. These lubricants are impregnated with a vacuum impregnation apparatus.
[0015]
2. Hinge Test Device FIG. 1 is a sectional view of a friction hinge used in an embodiment of the present invention.
A bracket 1 (austenitic stainless steel, made of SUS304) having a bearing hole 1a is fixed to a base not shown. The movable shaft 3 includes a large-diameter portion 3a, a shaft portion 3b whose cross section is oval, and a screw portion 3c. The friction members 2a and 2b are arranged with the bracket 1 interposed therebetween, and a washer 5a, a leaf spring 4 and a washer 5b are attached to the outside of the friction member 2b, and are tightened by a nut 6, which rotate integrally with the movable shaft 3. . The leaf spring 4 is an urging means that presses the friction members 2a and 2b against the bracket 1, and a predetermined friction force is generated between the bracket 1 and the friction members 2a and 2b.
After the movable shaft 3 is reciprocally swung within a region of an angle of 180 degrees and swung a predetermined number of times, the lock torque (static torque) is measured, and the stability of the lock torque is evaluated based on the amount of change.
In the test method, the nut 6 of the hinge device is tightened, and the initial value of the lock torque (static torque) is set to 50 kgf · mm. Then, the movable shaft 3 is opened and closed 20,000 times within a range of 180 degrees, the lock torque is measured at 1,000 times, 5,000 times, 10,000 times, and 20,000 times, and the state of the sliding portion is observed. .
[0016]
3. Hinge test characteristics In the case of the above-mentioned preferred sintered alloy, the lock torque at the time of 20,000 times is almost the same as the initial value, the wear amount of the friction member is 3 μm or less, and the wear of the bracket is not recognized.
No change in the characteristic value is observed until the Cu content of the sintered alloy is about 10% by mass. However, when the Cu content is less than that, the friction member tends to wear more, and the Cu content is 3%. In the case of less than mass%, the lock torque decreases as the number of reciprocating oscillations increases. From the observation of the friction surface, it is considered that the friction member having a small Cu content is likely to adhere to the bracket.
A sintered alloy having a high Cu content reduces wear resistance and torque fluctuation. However, when the Cu content exceeds 30% by mass, the lock torque decreases as the number of reciprocating oscillations increases, and wear tends to occur. According to the observation of the friction surface, it seems that the copper phase plastically flows to reduce the role of the iron phase and seal the pores on the surface.
A sintered alloy in which a part of graphite is substituted with molybdenum disulfide has good wear and torque fluctuation.
The higher the solid lubricant particle content, the more stable the lock torque is maintained. When the content of solid lubricant particles in the sintered alloy is up to about 1% by mass, wear resistance and torque fluctuation are small, but if it is less than that, adhesive wear with the bracket will be recognized, and the characteristics will be unstable. It is.
From these facts, the sintered alloy suitable for the friction member has a Cu content in the range of 3 to 30% by mass, more preferably 10 to 20% by mass, and the iron phase has an amount of bonded carbon in the Fe-C system. Presents a pearlite structure of about 0.6% by mass, and the free carbon as solid lubricant particles is about 1 to 3.5% by mass, so that the total carbon content is 1.5 to 4% by mass, more preferably 3%. It is -4 mass%.
[0017]
As a conventional example, the friction members 2a and 2b are made by cutting a stainless steel (SUS304) plate and a phosphor bronze plate by assembling them into hinges, and each of the sliding parts is made of extreme pressure grease (Idemitsu Kosan Co., Ltd.) The same rocking test is performed on the product coated with Daphne Molybdenum Grease.
If these hinges are swung more times, the grease lubrication of the sliding surface becomes worse and the lock torque increases or decreases, and the fluctuation increases. A friction member made of phosphor bronze is relatively fast to wear. The abrasion powder turbidizes the grease and further deteriorates the lubricity.
[0018]
【The invention's effect】
As described above, if the friction member for a friction hinge according to the present invention is used, the hinge opening / closing feel and the change in the lock torque are small. Can maintain the same function.
[Brief description of the drawings]
FIG. 1 is a sectional view of a friction hinge used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bracket 1a Bearing hole 2a Friction member 2b Friction member 3 Movable shaft 3a Large diameter part 3b Shaft part 3c Screw part 4 Leaf spring 5a Washer 5b Washer 6 Nut

Claims (3)

ブラケットと、ブラケットの軸受孔に回転自在に装着された回転シャフトと、該回転シャフトが貫通し、かつ共に回転可能な少なくとも1個のワッシャー状摩擦部材と、摩擦部材をブラケットに圧接させる付勢手段を備えたフリクションヒンジにおいて、
記摩擦部材が、パーライト組織の鉄合金相と銅相との混合組織中に黒鉛、または黒鉛及び二硫化モリブデンからなる固体潤滑剤粒子が分散した金属顕微鏡組織を呈し、有効多孔率が5〜25体積%であり、前記混合組織が、前記焼結合金の組成でCu:3〜30質量%、C:0.4〜0.8質量%、残部が実質的にFeからなるとともに、前記固体潤滑剤粒子が、前記焼結合金の組成で1〜4質量%である焼結合金から構成されるとともに、その気孔に潤滑剤を含浸してなることを特徴とするフリクションヒンジ用摩擦部材。
A bracket, a rotating shaft rotatably mounted in a bearing hole of the bracket, at least one washer-like friction member that passes through the rotating shaft and is rotatable together, and a biasing means that presses the friction member against the bracket Oite to friction hinge with a,
Before SL friction member, graphite, or graphite and the metal microstructure of the solid lubricant particles are dispersed consisting of molybdenum disulfide exhibits a mixed structure of iron alloy phase and a copper phase of pearlite structure, the effective porosity 5 Ri 25 vol% der, before Symbol mixed tissue, Cu in the composition of the sintered alloy: 3-30 wt%, C: 0.4 to 0.8 wt%, the balance being substantially Fe, said solid lubricant particles, the sintered together are composed of 1-4% by mass Ru sintered alloy with a composition of sintered alloy, the friction for the friction hinge characterized by being obtained by impregnating a lubricant to the pore Element.
前記潤滑剤が極圧潤滑剤であることを特徴とする請求項1に記載のフリクションヒンジ用摩擦部材。The friction member for a friction hinge according to claim 1, wherein the lubricant is an extreme pressure lubricant. ノート型パソコンのヒンジに用いられることを特徴とする請求項1または2に記載のフリクションヒンジ用摩擦部材。The friction member for a friction hinge according to claim 1 or 2, wherein the friction member is used for a hinge of a notebook computer.
JP2001137573A 2001-05-08 2001-05-08 Friction member for friction hinge Expired - Fee Related JP4145504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137573A JP4145504B2 (en) 2001-05-08 2001-05-08 Friction member for friction hinge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137573A JP4145504B2 (en) 2001-05-08 2001-05-08 Friction member for friction hinge

Publications (2)

Publication Number Publication Date
JP2002333008A JP2002333008A (en) 2002-11-22
JP4145504B2 true JP4145504B2 (en) 2008-09-03

Family

ID=18984666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137573A Expired - Fee Related JP4145504B2 (en) 2001-05-08 2001-05-08 Friction member for friction hinge

Country Status (1)

Country Link
JP (1) JP4145504B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759247B2 (en) * 2004-11-05 2011-08-31 株式会社やまと商社 Torque measuring instrument for friction rotating parts
CN102947526B (en) 2010-05-21 2016-01-27 江森自控科技公司 The articulated mounting of automobile interior assembly
JP6092171B2 (en) * 2014-03-28 2017-03-08 スガツネ工業株式会社 Hinge
CN104948050B (en) * 2014-03-28 2017-07-14 世嘉智尼工业株式会社 Hinge

Also Published As

Publication number Publication date
JP2002333008A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
EP1806512B1 (en) Grease for sliding bearing
US6305847B1 (en) Sliding bearing
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
WO2014065316A1 (en) Sintered bearing
EP1659303A1 (en) Sliding bearing assembly and sliding bearing
JP4749260B2 (en) Sintered oil-impregnated bearing
JP2012506494A (en) Sliding bearing with improved wear resistance and method for manufacturing the same
JP4514416B2 (en) Slide bearing and work machine coupling device using the same
WO2007122798A1 (en) Sliding bearing
US8703660B2 (en) Lead-free sintered lubricating material and sinter powder for manufacture of the same
JP4145504B2 (en) Friction member for friction hinge
JP3622938B2 (en) Sliding bearing and method of using the same
JP2015137660A (en) sintered bearing
GB2333779A (en) Composite metal powder for sintered bearing, and sintered oil-retaining bearing
JP2907999B2 (en) High temperature sintered plain bearings
JP4451276B2 (en) Grease for slide bearing
WO2007114131A1 (en) Torque limiter
JP3436557B2 (en) Low friction coefficient sintered sliding member
JP3835915B2 (en) Copper-based sintered bearing material and manufacturing method thereof
JP2001181668A (en) Lubricating grease and motor with speed-reducing mechanism
JP2000240657A (en) Slide bearing
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture
JP2003184882A (en) Oil-impregnated sintered bearing material
JPH04341503A (en) Production of sintered bearing low in friction coefficient
JP3803947B2 (en) Copper-based sintered bearing material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees