JP4144557B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP4144557B2
JP4144557B2 JP2004127168A JP2004127168A JP4144557B2 JP 4144557 B2 JP4144557 B2 JP 4144557B2 JP 2004127168 A JP2004127168 A JP 2004127168A JP 2004127168 A JP2004127168 A JP 2004127168A JP 4144557 B2 JP4144557 B2 JP 4144557B2
Authority
JP
Japan
Prior art keywords
filter
internal combustion
combustion engine
amount
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004127168A
Other languages
Japanese (ja)
Other versions
JP2005307887A (en
Inventor
知由 小郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004127168A priority Critical patent/JP4144557B2/en
Priority to FR0503704A priority patent/FR2869354B1/en
Priority to DE102005018575A priority patent/DE102005018575B4/en
Publication of JP2005307887A publication Critical patent/JP2005307887A/en
Application granted granted Critical
Publication of JP4144557B2 publication Critical patent/JP4144557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/476Regeneration of particle filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、ハイブリッドシステムに用いられる排気浄化装置に関し、特に、フィルタを有し当該フィルタに堆積した微粒子量を推定する技術に関する。   The present invention relates to an exhaust emission control device used in a hybrid system, and more particularly, to a technique for estimating the amount of fine particles accumulated in a filter having a filter.

一般に、自動車等に搭載される内燃機関(エンジン)、特にディーゼルエンジンでは、排気中に含まれる煤などの微粒子(Particulate Matter、以下、「PM」という場合もある。)を除去することが要求されており、このような要求に対し、パティキュレートフィルタ(以下、「フィルタ」という場合もある。)をエンジンの排気通路に配置する方法が提案されている。   Generally, in an internal combustion engine (engine) mounted on an automobile or the like, particularly a diesel engine, it is required to remove particulates such as soot contained in exhaust gas (hereinafter also referred to as “PM”). In response to such demands, a method of arranging a particulate filter (hereinafter sometimes referred to as “filter”) in the exhaust passage of the engine has been proposed.

フィルタは、複数の細孔を有する多孔質の基材で構成され、排気が細孔を通過する際に排気中のPMを捕集するものである。しかし、フィルタに捕集されたPMが堆積していくと、フィルタ内の排気流路が狭くなり、排気抵抗が増加する。そして、フィルタにPMが過度に堆積すると、排圧が上昇し、エンジンの出力低下を生じさせてしまう。そのため、適宜のタイミングでフィルタに堆積したPMを酸化・除去させフィルタのPM捕集能力を再生するPM再生処理を行うことが必要である。   The filter is composed of a porous base material having a plurality of pores, and collects PM in the exhaust gas when the exhaust gas passes through the pores. However, as PM collected by the filter accumulates, the exhaust flow path in the filter becomes narrower and the exhaust resistance increases. And if PM accumulates excessively on a filter, exhaust pressure will rise and it will cause engine output fall. Therefore, it is necessary to perform PM regeneration processing for oxidizing and removing PM deposited on the filter at an appropriate timing to regenerate the PM collection ability of the filter.

PM再生処理を実行する方法としては、PMが酸化可能な温度である500℃〜700℃までフィルタを昇温させつつフィルタ内を酸化雰囲気(すなわち、酸素過剰な雰囲気)とすることにより、PMを酸化及び除去する方法が一般的である。そして、フィルタの上流側と下流側の圧力の差(差圧)を検出し、当該検出値が所定値を超えたときに、PM再生処理を行うべき量のPMが堆積したと推定し、PM再生処理を実行開始することが知られている。   As a method of executing the PM regeneration process, the temperature of the filter is raised to 500 ° C. to 700 ° C., which is the temperature at which PM can be oxidized, and the inside of the filter is made an oxidizing atmosphere (that is, an oxygen-excess atmosphere). A method of oxidation and removal is common. Then, the pressure difference (differential pressure) between the upstream side and the downstream side of the filter is detected, and when the detected value exceeds a predetermined value, it is estimated that the amount of PM to be subjected to PM regeneration processing has accumulated, and PM It is known to start executing the reproduction process.

しかし、フィルタの上流側と下流側の差圧の検出値のみを用いてPM堆積量を推定しPM再生処理を実行開始する方法では、差圧を正確に検出できるのは定常運転時等のフィルタを通過する排気量が変動しない運転条件に限られることから、その他の運転状態が長期間継続すると、フィルタの差圧を正確に検出できないため、PM再生処理が長期間実行されないまま過度のPMが堆積するおそれがある。また、PMが過度に堆積した状態でPM再生処理を行うと、多量のPMが酸化除去されることによりフィルタが過熱し、破損してしまうおそれがある。   However, in the method in which the PM regeneration amount is estimated by using only the detected value of the differential pressure between the upstream side and the downstream side of the filter and the execution of the PM regeneration process is started, the differential pressure can be accurately detected by a filter during steady operation or the like. Therefore, if the other operating conditions continue for a long period of time, the differential pressure of the filter cannot be accurately detected when the other operating state continues for a long period of time. May accumulate. Further, when the PM regeneration process is performed in a state where PM is excessively accumulated, a large amount of PM is oxidized and removed, so that the filter may be overheated and damaged.

これに対して、差圧と吸入空気量を検出し、検出された差圧を検出された吸入空気量で除することにより、運転状態の変化に起因した変動分を除去し、加減速等フィルタを通過する排気の量が変動する運転条件においても、フィルタの詰まり度合い(PM堆積量)を精度よく推定する技術が提案されている(例えば、特許文献1参照。)。
特開2003−254041号公報 特開2003−120263号公報 特開2001−164959号公報 特開2004−52642号公報
On the other hand, the differential pressure and the intake air amount are detected, and the detected differential pressure is divided by the detected intake air amount, so that the fluctuation due to the change in the operating state is removed, and the acceleration / deceleration filter There has been proposed a technique for accurately estimating the degree of filter clogging (PM accumulation amount) even under operating conditions in which the amount of exhaust gas passing through the engine fluctuates (see, for example, Patent Document 1).
JP 2003-254041 A JP 2003-120263 A JP 2001-164959 A JP 2004-52642 A

しかしながら、フィルタの上流側と下流側の差圧と吸入空気量を検出し、検出された差圧を検出された吸入空気量で除する方法では、差圧の検出値自体が小さいあるいは排気通路における排気脈動の影響が顕著に表れる等の理由により、フィルタを通過する排気の量
が少ない運転条件においては、フィルタの上流側と下流側の差圧を正確に検出することができずにPM堆積量を精度よく推定することができないおそれがある。
However, in the method of detecting the differential pressure and the intake air amount between the upstream side and the downstream side of the filter and dividing the detected differential pressure by the detected intake air amount, the detected value of the differential pressure itself is small or in the exhaust passage. Under the operating conditions where the amount of exhaust gas passing through the filter is small due to the significant influence of exhaust pulsation, the differential pressure between the upstream side and downstream side of the filter cannot be accurately detected, and the amount of accumulated PM May not be accurately estimated.

本発明は、上記した問題点に鑑みてなされたものであり、その目的とするところは、フィルタの上流側と下流側の圧力の差を正確に検出し、以てフィルタに堆積したPM量を精度よく推定することができる排気浄化装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to accurately detect the difference in pressure between the upstream side and the downstream side of the filter, and thereby to determine the amount of PM deposited on the filter. An object of the present invention is to provide an exhaust purification device that can be estimated with high accuracy.

上記目的を達成するために、本発明に係る排気浄化装置にあっては、内燃機関と、電動機と、を有し、前記内燃機関が出力する動力と前記電動機が出力する動力とを1の出力軸から同時に出力可能なハイブリッドシステムに用いられる排気浄化装置であって、前記内燃機関の排気通路に配置され排気に含まれる微粒子を捕集するパティキュレートフィルタと、当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、前記内燃機関が前記フィルタを通過する排気の量が所定範囲を超えて変動する運転状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気の量の変動が所定範囲内となるように内燃機関の運転状態を変更し、当該内燃機関の運転状態の変更に伴い変動する当該内燃機関が前記出力軸に出力する動力を打ち消すように前記電動機が前記出力軸に出力する動力を制御する制御手段と、を備えることを特徴とする。   In order to achieve the above object, an exhaust emission control apparatus according to the present invention includes an internal combustion engine and an electric motor, and outputs one motive power output from the internal combustion engine and motive power output from the electric motor. An exhaust emission control device used in a hybrid system capable of simultaneously outputting from a shaft, the particulate filter being disposed in an exhaust passage of the internal combustion engine and collecting particulates contained in the exhaust, an upstream side and a downstream side of the filter Differential pressure detection means for detecting a difference in the pressure of the exhaust, fine particle accumulation amount estimation means for estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means, and the internal combustion engine includes the filter When the particulate accumulation amount estimation means tries to estimate the amount of particulates deposited on the filter in an operating state in which the amount of exhaust gas passing through the filter fluctuates beyond a predetermined range, The operating state of the internal combustion engine is changed so that the fluctuation of the amount of exhaust gas passing through the engine falls within a predetermined range, and the power output by the internal combustion engine that changes with the change of the operating state of the internal combustion engine is output to the output shaft. Control means for controlling the power output from the electric motor to the output shaft so as to cancel.

差圧検出手段が検出したフィルタの上流側と下流側の排気の圧力の差(差圧)に基づいてフィルタに堆積した微粒子量を推定する場合に、フィルタを通過する排気の量が大きく変動する場合には、差圧検出手段がフィルタに堆積した微粒子に起因する差圧を正確に検出し難いことから、フィルタに堆積した微粒子量を精度よく推定することができないおそれがある。   When estimating the amount of particulates accumulated in the filter based on the difference (differential pressure) between the upstream and downstream exhaust pressures detected by the differential pressure detecting means, the amount of exhaust passing through the filter varies greatly. In this case, it is difficult for the differential pressure detection means to accurately detect the differential pressure caused by the fine particles accumulated on the filter, and thus there is a possibility that the amount of fine particles accumulated on the filter cannot be estimated with high accuracy.

これに対して、本発明に係る排気浄化装置にあっては、制御手段が、内燃機関がフィルタを通過する排気の量が所定範囲を超えて変動する運転状態のときに微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気の量の変動が前記所定範囲内となるように内燃機関の運転状態を強制的に変更する。これにより、差圧検出手段がより正確に差圧を検出することができ、以てフィルタに堆積した微粒子量をより精度よく推定することができる。   On the other hand, in the exhaust emission control device according to the present invention, the control means includes the particulate accumulation amount estimation means when the internal combustion engine is in an operating state in which the amount of exhaust passing through the filter fluctuates beyond a predetermined range. When trying to estimate the amount of fine particles accumulated on the filter, the operating state of the internal combustion engine is forcibly changed so that the fluctuation of the amount of exhaust gas passing through the filter is within the predetermined range. As a result, the differential pressure detection means can detect the differential pressure more accurately, and hence the amount of fine particles deposited on the filter can be estimated more accurately.

ただし、フィルタを通過する排気が前記所定範囲内となるように内燃機関の運転状態を強制的に変更するということは、内燃機関の出力もある範囲内のみでしか変動しないということである。それゆえ、ハイブリッドシステムに要求される出力に応えるべく、内燃機関が出力する動力と電動機が出力する動力とを1の出力軸から同時に出力している場合に、内燃機関の運転状態のみを強制的に変更すると、ハイブリッドシステムに要求される出力に追従するような出力を出力軸から出力することができ難くなる。   However, forcibly changing the operating state of the internal combustion engine so that the exhaust gas passing through the filter falls within the predetermined range means that the output of the internal combustion engine also varies only within a certain range. Therefore, in order to meet the output required for the hybrid system, when the power output from the internal combustion engine and the power output from the electric motor are simultaneously output from one output shaft, only the operating state of the internal combustion engine is forcibly limited. If it is changed to, it becomes difficult to output from the output shaft so as to follow the output required for the hybrid system.

そこで、前記制御手段は、内燃機関の運転状態を変更すると同時に、内燃機関の運転状態の変更に伴い変動する内燃機関が出力軸に出力する動力を打ち消すように電動機が出力軸に出力する動力を制御する。これにより、ハイブリッドシステムに要求される出力に適切に応えつつ、フィルタに堆積した微粒子量をより精度よく推定することができる。   Therefore, the control means changes the operating state of the internal combustion engine, and simultaneously, the power output from the electric motor to the output shaft so as to cancel the power output from the internal combustion engine, which fluctuates with the change in the operating state of the internal combustion engine, to the output shaft. Control. Thereby, it is possible to estimate the amount of fine particles deposited on the filter more accurately while appropriately responding to the output required for the hybrid system.

また、本発明に係る排気浄化装置にあっては、内燃機関と、電動機と、当該内燃機関が出力する動力を利用して発電を行う発電機と、を有し、前記内燃機関が出力する動力と前記電動機が出力する動力とを1の出力軸から同時に出力可能なハイブリッドシステムに用いられる排気浄化装置であって、前記内燃機関の排気通路に配置され排気に含まれる微粒
子を捕集するパティキュレートフィルタと、当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、前記内燃機関が前記フィルタを通過する排気が所定量より少ない運転状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気が前記所定量以上となるように内燃機関の運転状態を変更し、当該内燃機関の運転状態の変更に伴い増加する分の動力を発電に利用するように前記発電機を制御する制御手段と、を備えることを特徴とする。
The exhaust emission control apparatus according to the present invention includes an internal combustion engine, an electric motor, and a generator that generates electric power using power output from the internal combustion engine, and the power output from the internal combustion engine. And exhaust power purifier for use in a hybrid system capable of simultaneously outputting the power output from the motor from one output shaft, the particulates disposed in the exhaust passage of the internal combustion engine and collecting particulates contained in the exhaust A filter, differential pressure detecting means for detecting a difference in pressure between the upstream side and downstream side of the filter, and fine particles for estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detecting means And a deposit amount estimating means for estimating the amount of particulate accumulated on the filter when the internal combustion engine is in an operating state in which the exhaust gas passing through the filter is less than a predetermined amount. In such a case, the operating state of the internal combustion engine is changed so that the exhaust gas passing through the filter becomes equal to or greater than the predetermined amount, and the power that increases with the change in the operating state of the internal combustion engine is used for power generation. And a control means for controlling the generator.

差圧検出手段が検出した差圧に基づいてフィルタに堆積した微粒子量を推定する場合に、フィルタを通過する排気の量が少ない場合には、差圧検出手段がフィルタに堆積した微粒子に起因する差圧を正確に検出し難いことから、精度よくフィルタに堆積した微粒子量を推定することができないおそれがある。   When estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means, if the amount of exhaust gas passing through the filter is small, the differential pressure detection means is caused by the fine particles accumulated on the filter. Since it is difficult to accurately detect the differential pressure, the amount of fine particles deposited on the filter may not be estimated with high accuracy.

これに対して、本発明に係る排気浄化装置にあっては、制御手段が、内燃機関がフィルタを通過する排気が所定量より少ない運転状態のときに微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気が前記所定量以上となるように内燃機関の運転状態を強制的に変更する。これにより、差圧検出手段が差圧をより正確に検出することができ、以てフィルタに堆積した微粒子量をより精度よく推定することができる。   On the other hand, in the exhaust emission control device according to the present invention, the control unit is configured to have the particulate accumulation amount estimation unit deposited on the filter when the internal combustion engine is in an operation state where the exhaust gas passing through the filter is less than a predetermined amount. When the amount is to be estimated, the operating state of the internal combustion engine is forcibly changed so that the exhaust gas passing through the filter becomes equal to or greater than the predetermined amount. As a result, the differential pressure detection means can detect the differential pressure more accurately, and thus the amount of fine particles deposited on the filter can be estimated with higher accuracy.

ただし、フィルタを通過する排気が前記所定量以上となるように内燃機関の運転状態を強制的に変更するということは、内燃機関が出力する動力も増加することから、内燃機関に要求される動力を超えた動力が発生することとなる。それゆえ、ハイブリッドシステムに要求される出力に応えるべく、内燃機関が出力する動力と電動機が出力する動力とを1の出力軸から同時に出力している場合に、内燃機関の運転状態のみを強制的に変更すると、内燃機関が出力する動力が増加するので、要求される出力を超えた出力を出力軸から出力することとなる。   However, forcibly changing the operating state of the internal combustion engine so that the exhaust gas passing through the filter becomes equal to or greater than the predetermined amount means that the power output from the internal combustion engine also increases, and therefore the power required for the internal combustion engine. Power exceeding the limit will be generated. Therefore, in order to meet the output required for the hybrid system, when the power output from the internal combustion engine and the power output from the electric motor are simultaneously output from one output shaft, only the operating state of the internal combustion engine is forcibly limited. Since the power output from the internal combustion engine increases, the output exceeding the required output is output from the output shaft.

そこで、前記制御手段は、内燃機関の運転状態を変更すると同時に、当該内燃機関の運転状態の変更に伴い増加する分の動力を発電に利用するように発電機を制御する。これにより、ハイブリッドシステムに要求される出力に適切に応えつつ、フィルタに堆積した微粒子量をより精度よく推定することができる。   Therefore, the control means controls the generator so as to change the operating state of the internal combustion engine and at the same time use the power increased by the change in the operating state of the internal combustion engine for power generation. Thereby, it is possible to estimate the amount of fine particles deposited on the filter more accurately while appropriately responding to the output required for the hybrid system.

なお、前記電動機と前記発電機は、動力を出力する電動機としての機能と前記内燃機関が出力する動力を利用して発電を行う発電機としての機能とを併せ持つモータジェネレータとして構成されていてもよい。   The electric motor and the generator may be configured as a motor generator having both a function as an electric motor that outputs power and a function as a generator that generates electric power using the power output from the internal combustion engine. .

また、本発明に係る排気浄化装置にあっては、内燃機関と、当該内燃機関のクランクシャフトを回転可能な電動機と、を備えたハイブリッドシステムに用いられる排気浄化装置であって、前記内燃機関の排気通路に配置され排気に含まれる微粒子を捕集するパティキュレートフィルタと、当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、前記内燃機関が非燃焼状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、非燃焼状態のまま内燃機関のクランクシャフトを回転するように前記電動機を制御する制御手段と、を備えることを特徴とする。   An exhaust emission control device according to the present invention is an exhaust emission control device used in a hybrid system including an internal combustion engine and an electric motor capable of rotating a crankshaft of the internal combustion engine. A particulate filter that is disposed in the exhaust passage and collects particulates contained in the exhaust, a differential pressure detecting means that detects a difference in pressure between the upstream side and the downstream side of the filter, and the differential pressure detecting means Particulate deposition amount estimation means for estimating the amount of particulates deposited on the filter based on the differential pressure, and the particulate deposition amount estimation means tries to estimate the amount of particulates deposited on the filter when the internal combustion engine is in a non-combustion state. In this case, it is characterized by comprising control means for controlling the electric motor so as to rotate the crankshaft of the internal combustion engine in a non-combustion state.

差圧検出手段が検出した差圧に基づいてフィルタに堆積した微粒子量を推定する場合に、内燃機関が非燃焼状態にあり排気がフィルタを通過しない場合には、差圧検出手段がフ
ィルタに堆積した微粒子に起因する差圧を検出できないことから、フィルタに堆積した微粒子量を推定することができない。
When estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means, if the internal combustion engine is in a non-combustion state and the exhaust gas does not pass through the filter, the differential pressure detection means accumulates on the filter. Since the differential pressure due to the fine particles cannot be detected, the amount of fine particles deposited on the filter cannot be estimated.

これに対して、本発明に係る排気浄化装置にあっては、制御手段が、内燃機関が非燃焼状態のときに微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、非燃焼状態のまま内燃機関のクランクシャフトを回転するように電動機を制御する。これにより、内燃機関の気筒内から排出された空気が排気通路を流通するので、フィルタを排気が通過することとなり、内燃機関が非燃焼状態であっても、差圧検出手段がフィルタに堆積した微粒子に起因する差圧を検出することができ、以てフィルタに堆積した微粒子量を推定することができるようになる。   On the other hand, in the exhaust emission control device according to the present invention, when the control means tries to estimate the amount of fine particles accumulated on the filter when the internal combustion engine is in a non-combustion state. The electric motor is controlled so as to rotate the crankshaft of the internal combustion engine in the non-combustion state. As a result, the air discharged from the cylinder of the internal combustion engine flows through the exhaust passage, so that the exhaust passes through the filter, and even if the internal combustion engine is in a non-combustion state, the differential pressure detection means is deposited on the filter. The differential pressure caused by the fine particles can be detected, and the amount of fine particles deposited on the filter can be estimated.

上述したように、これらの本発明に係る排気浄化装置における制御手段は、微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合に、内燃機関の運転状態あるいは電動機が出力する動力を変更するので、あまり頻繁に微粒子堆積量推定手段が推定しようとすると、それに合わせて内燃機関の運転状態あるいは電動機が出力する動力を変更しなければならなくなり、当該排気浄化装置が用いられるハイブリッドシステムを搭載した車両のユーザビリティの観点からは好ましくない。   As described above, the control means in the exhaust emission control apparatus according to the present invention provides the operating state of the internal combustion engine or the power output from the electric motor when the fine particle accumulation amount estimation means tries to estimate the fine particle amount accumulated on the filter. Therefore, if the particulate accumulation amount estimation means tries to estimate too frequently, the operating state of the internal combustion engine or the power output from the motor must be changed accordingly, and the hybrid system in which the exhaust emission control device is used From the viewpoint of the usability of the vehicle equipped with the is not preferable.

そこで、前記微粒子堆積量推定手段にてフィルタに堆積した微粒子量を推定すべきか否かを判定する判定手段を更に備え、前記微粒子堆積量推定手段は、前記判定手段がフィルタに堆積した微粒子量を推定すべきと判定した場合にフィルタに堆積した微粒子量を推定しようとすることが好適である。   Therefore, the image forming apparatus further includes a determining unit that determines whether or not the particle amount accumulated on the filter should be estimated by the particle accumulation amount estimating unit, and the particle accumulation amount estimating unit determines the amount of particles accumulated on the filter by the determining unit. It is preferable to estimate the amount of fine particles accumulated on the filter when it is determined that the estimation should be performed.

例えば、前記微粒子堆積量推定手段にて推定したフィルタに堆積した微粒子量が第1の所定量以上である場合に当該フィルタに堆積した微粒子を酸化除去させてフィルタの微粒子捕集能力を再生させる処理を行う再生処理手段と、前記フィルタに堆積した微粒子量が前記第1の所定量より少ない第2の所定量以上であるか否かを推定するサブ微粒子堆積量推定手段と、を更に備え、前記判定手段は、サブ微粒子堆積量推定手段がフィルタに堆積した微粒子量が前記第2の所定量以上であると判定した場合に、前記微粒子堆積量推定手段にてフィルタに堆積した微粒子量を推定すべきであると判定することが好適である。   For example, when the amount of fine particles accumulated on the filter estimated by the fine particle accumulation amount estimation means is greater than or equal to a first predetermined amount, the fine particles accumulated on the filter are oxidized and removed to regenerate the fine particle collecting ability of the filter. Regenerating processing means for performing the above, and sub-particle accumulation amount estimation means for estimating whether or not the amount of particles deposited on the filter is equal to or greater than a second predetermined amount that is less than the first predetermined amount, The determining means estimates the amount of fine particles accumulated on the filter by the fine particle accumulated amount estimating means when the sub fine particle accumulated amount estimating means determines that the amount of fine particles accumulated on the filter is not less than the second predetermined amount. It is preferable to determine that it should be.

ここで、第1の所定量とは、微粒子がフィルタに堆積することによりフィルタの目詰まりを起こし、この目詰まりが排気抵抗の増加を生じさせ、内燃機関の出力低下を生じさせてしまう限界微粒子堆積量よりもやや少なめに設定される量である。   Here, the first predetermined amount is a limit fine particle that causes clogging of the filter due to accumulation of fine particles on the filter, and this clogging causes an increase in exhaust resistance and a decrease in output of the internal combustion engine. This amount is set slightly less than the amount deposited.

ゆえに、内燃機関の出力低下を生じさせてしまわないようにするには、フィルタに微粒子が第1の所定量以上堆積しているか否かを精度よく推定することが重要である。ただ、微粒子はフィルタに徐々に堆積していくものであるため、第1の所定量の微粒子が堆積するまでにはある程度の期間要する。   Therefore, in order not to cause a decrease in the output of the internal combustion engine, it is important to accurately estimate whether or not fine particles are accumulated in the filter over the first predetermined amount. However, since the fine particles are gradually deposited on the filter, it takes a certain period of time to deposit the first predetermined amount of fine particles.

そこで、先ず、サブ微粒子堆積量推定手段がフィルタに堆積した微粒子量が第1の所定量より少ない第2の所定量以上であるか否かを推定する。そして、第2の所定量以上であると判定した場合に、微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定するようにすることが好適である。   Therefore, first, the sub-particle accumulation amount estimation means estimates whether or not the amount of particles accumulated on the filter is equal to or larger than a second predetermined amount that is smaller than the first predetermined amount. When it is determined that the amount is greater than or equal to the second predetermined amount, it is preferable that the particle accumulation amount estimation unit estimates the amount of particles accumulated on the filter.

なお、サブ微粒子堆積量推定手段は、再生処理手段による前回の再生処理の終了時からの燃料噴射量の積算値が所定量以上である場合にフィルタに堆積した微粒子量が第2の所定量以上であると推定するものであることを例示することができる。   The sub-particulate deposition amount estimation means is configured such that when the integrated value of the fuel injection amount from the end of the previous regeneration processing by the regeneration processing means is a predetermined amount or more, the amount of particulate deposited on the filter is a second predetermined amount or more. It is possible to exemplify that it is estimated to be.

また、サブ微粒子堆積量推定手段は、差圧検出手段が検出した差圧が所定圧以上である
場合にフィルタに堆積した微粒子量が第2の所定量以上であると推定するものであることを例示することができる。ただし、サブ微粒子堆積量推定手段は前記第1の所定量より少ない第2の所定量以上であるかを推定するものであるので、サブ微粒子堆積量推定手段にて微粒子堆積量を推定しようとする場合には、前記制御手段は内燃機関の運転状態あるいは電動機が出力する動力を変更する必要はない。
The sub-particulate deposition amount estimation means estimates that the amount of particulates deposited on the filter is greater than or equal to a second predetermined amount when the differential pressure detected by the differential pressure detection means is greater than or equal to a predetermined pressure. It can be illustrated. However, since the sub-particle deposition amount estimation means estimates whether or not the second predetermined amount is less than the first predetermined amount, the sub-particle deposition amount estimation means tries to estimate the particulate deposition amount. In this case, the control means need not change the operating state of the internal combustion engine or the power output by the electric motor.

以上説明したように、本発明に係る排気浄化装置によれば、フィルタの上流側と下流側の圧力の差を正確に検出し、以てフィルタに堆積した微粒子(PM)量を精度よく推定することができる。   As described above, according to the exhaust gas purification apparatus of the present invention, the difference in pressure between the upstream side and the downstream side of the filter is accurately detected, and the amount of particulate (PM) accumulated on the filter is accurately estimated. be able to.

以下に図面を参照して、この発明を実施するための最良の形態を車載用ハイブリッドシステムに適用した以下の実施例に基づいて例示的に詳しく説明する。ただし、実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Exemplary embodiments of the present invention will be described below in detail with reference to the drawings based on the following examples in which the best mode for carrying out the invention is applied to an in-vehicle hybrid system. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to those unless otherwise specified.

図1に示すように、ハイブリッドシステム1は、内燃機関(エンジン)20、モータジェネレータ(以下、「M/G」という。)30、動力切替機構40、減速機50、インバータ60、バッテリ70等を構成要素として含む。   As shown in FIG. 1, the hybrid system 1 includes an internal combustion engine (engine) 20, a motor generator (hereinafter referred to as "M / G") 30, a power switching mechanism 40, a speed reducer 50, an inverter 60, a battery 70, and the like. Include as a component.

エンジン20は、4つの気筒2を有する水冷式の4サイクル・ディーゼルエンジンである。エンジン20には、吸気通路21が接続されており、この吸気通路21はエアクリーナボックス(図示省略)に接続されている。そして、エアクリーナボックスより下流の吸気通路21には、当該吸気通路21内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ21aが取り付けられている。また、エアフローメータ21aより下流の吸気通路21には、吸気の流量(吸気量)を制御するための吸気絞り弁21bが備えられている。   The engine 20 is a water-cooled four-cycle diesel engine having four cylinders 2. An intake passage 21 is connected to the engine 20, and the intake passage 21 is connected to an air cleaner box (not shown). An air flow meter 21 a that outputs an electrical signal corresponding to the mass of the intake air flowing through the intake passage 21 is attached to the intake passage 21 downstream of the air cleaner box. The intake passage 21 downstream of the air flow meter 21a is provided with an intake throttle valve 21b for controlling the flow rate (intake amount) of intake air.

一方、エンジン20には、排気通路22が接続されており、この排気通路22途中には、複数の細孔を有する多孔質の基材で構成され、排気が細孔を通過する際に排気中の微粒子(PM)を捕集するパティキュレートフィルタ(以下、「フィルタ」という。)23が備えられている。そして、フィルタ23の上流側と下流側の排気通路内の圧力の差に対応した電気信号を出力する差圧センサ24が取り付けられており、排気がフィルタ23を通過する場合には差圧センサ24でフィルタ23の上流側と下流側の排気の圧力の差を検出できる。また、排気通路22内を流通する排気の空燃比に対応した電気信号を出力する空燃比センサ25がフィルタ23上流の排気通路22に備えられている。   On the other hand, an exhaust passage 22 is connected to the engine 20, and the exhaust passage 22 is formed of a porous base material having a plurality of pores in the middle of the exhaust passage 22, and is exhausted when the exhaust passes through the pores. A particulate filter (hereinafter referred to as “filter”) 23 for collecting the fine particles (PM) is provided. A differential pressure sensor 24 that outputs an electrical signal corresponding to the pressure difference between the upstream and downstream exhaust passages of the filter 23 is attached. When the exhaust gas passes through the filter 23, the differential pressure sensor 24 is attached. Thus, the difference in pressure between the upstream side and the downstream side of the filter 23 can be detected. In addition, an air-fuel ratio sensor 25 that outputs an electric signal corresponding to the air-fuel ratio of the exhaust gas flowing in the exhaust passage 22 is provided in the exhaust passage 22 upstream of the filter 23.

動力切替機構40は、図2に示すように、リングギヤ42,プラネタリーキャリア43、サンギヤ44からなるダブルピニオン遊星歯車41と、リングギヤ42を固定するブレーキ45、C1クラッチ46及びC2クラッチ47で構成されている。そして、エンジン20はサンギヤ44と、M/G30はプラネタリーキャリア43と直結されている。また、プラネタリーキャリア43はC1クラッチ46を介して、リングギヤ42はC2クラッチ47を介して減速機50へ動力が伝達される。   As shown in FIG. 2, the power switching mechanism 40 includes a double pinion planetary gear 41 including a ring gear 42, a planetary carrier 43, and a sun gear 44, a brake 45 that fixes the ring gear 42, a C1 clutch 46, and a C2 clutch 47. ing. The engine 20 is directly connected to the sun gear 44, and the M / G 30 is directly connected to the planetary carrier 43. Power is transmitted to the speed reducer 50 via the C1 clutch 46 for the planetary carrier 43 and via the C2 clutch 47 for the ring gear 42.

本実施例に係るハイブリッドシステム1では、このように構成された動力切替機構40を採用することにより以下に説明する特性を得ることができる。なお、以下の説明において、M/G30の回転方向は、当該ハイブリッドシステム1を搭載した車両の前進方向を正回転とする。   In the hybrid system 1 according to the present embodiment, the characteristics described below can be obtained by employing the power switching mechanism 40 configured as described above. In the following description, the rotation direction of the M / G 30 is the forward rotation direction of the vehicle on which the hybrid system 1 is mounted.

例えば、エンジン20が停止した状態で、ブレーキ45を係合してリングギヤ42を固定し、M/G30を逆回転することにより、非燃焼状態にあるエンジン20のクランクシャフト20aを回転し、機関燃焼を開始することができる。主に、イグニッションキースイッチによるハイブリッドシステム始動時のエンジン始動に使用するものである。   For example, when the engine 20 is stopped, the brake 45 is engaged to fix the ring gear 42, and the M / G 30 is rotated in the reverse direction to rotate the crankshaft 20a of the engine 20 in the non-combustion state. Can start. It is mainly used to start the engine when starting a hybrid system with an ignition key switch.

また、ブレーキ45を係合してリングギヤ42を固定し、内燃機関20を運転させることによって、内燃機関20が出力する動力でM/G30を駆動し発電させることができる。主に、車両停止時(パーキングレンジ)のバッテリ容量低下時に使用するものである。   Further, by engaging the brake 45 and fixing the ring gear 42 and operating the internal combustion engine 20, the M / G 30 can be driven by the power output from the internal combustion engine 20 to generate electric power. It is mainly used when the battery capacity is low when the vehicle is stopped (parking range).

また、例えば、C1クラッチ46を係合してM/G30を正回転することにより、M/G30が出力する動力を、減速機50を介して駆動輪9,10の回転軸9a,10aに伝達させ、エンジン20を運転停止させたまま車両を前進させることができる。主に車両の発進時,軽負荷走行時に使用するものである。   Further, for example, by engaging the C1 clutch 46 and rotating the M / G 30 forward, the power output from the M / G 30 is transmitted to the rotating shafts 9 a and 10 a of the drive wheels 9 and 10 via the speed reducer 50. Thus, the vehicle can be advanced with the engine 20 stopped. It is mainly used when the vehicle starts and when it is lightly loaded.

また、例えば、C1クラッチ46及びC2クラッチ47を係合してエンジン20を運転させることにより、エンジン20が出力する動力のみで車両を前進させることができる(エンジン走行)。主に、低車速以上の中負荷時に使用するものである。   Further, for example, by operating the engine 20 by engaging the C1 clutch 46 and the C2 clutch 47, the vehicle can be advanced only by the power output from the engine 20 (engine running). Mainly used for medium loads over low vehicle speeds.

また、C1クラッチ46及びC2クラッチ47を係合して、エンジン20を運転させるとともにM/G30を正回転させることにより、上述したエンジン走行に対してM/G30のトルクも加算されて車両の加速性能向上を図ることができる。主に、低車速以上の高負荷時に使用するものである(エンジン+モータ走行)。   Further, by engaging the C1 clutch 46 and the C2 clutch 47 to drive the engine 20 and to rotate the M / G 30 in the forward direction, the torque of the M / G 30 is also added to the above-described engine travel, thereby accelerating the vehicle. The performance can be improved. It is mainly used at high loads over low vehicle speeds (engine + motor travel).

さらに、C1クラッチ46及びC2クラッチ47を係合してエンジン20を運転させることにより、エンジン20が出力する動力の一部で車両を前進させるとともに残りの動力でM/G30を駆動し発電させることができる。主に、低車速以上のバッテリ容量低下時に使用するものである。   Further, by engaging the C1 clutch 46 and the C2 clutch 47 and operating the engine 20, the vehicle is advanced with a part of the power output from the engine 20, and the M / G 30 is driven with the remaining power to generate power. Can do. It is mainly used when the battery capacity is lower than the low vehicle speed.

また、C1クラッチ46及びC2クラッチ47を係合してM/G30を正回転させ、エンジン20を非燃焼状態(気筒内への燃料供給なし)にすることにより、M/G30が出力する動力を、減速機50を介して駆動輪9,10の回転軸9a,10aに伝達させて車両を前進させるとともに、非燃焼状態にあるエンジン20のクランクシャフト20aを非燃焼状態にしたまま正回転(空転)させることができる。   Further, by engaging the C1 clutch 46 and the C2 clutch 47 and rotating the M / G 30 in the forward direction to bring the engine 20 into a non-combustion state (no fuel supply into the cylinder), the power output by the M / G 30 is increased. In addition, the vehicle is advanced by being transmitted to the rotating shafts 9a and 10a of the drive wheels 9 and 10 through the speed reducer 50, and the crankshaft 20a of the engine 20 in the non-combustion state is rotated in the forward direction (idle) while being in the non-combustion state. ).

なお、M/G30を駆動する電気的なエネルギはバッテリ70から供給される。このバッテリは、充放電可能な二次電池であり、M/G30が発電機として運転される回生モードでは、余剰の電力により充電することも可能である。   Electric energy for driving the M / G 30 is supplied from the battery 70. This battery is a rechargeable secondary battery, and can be charged with surplus power in the regeneration mode in which the M / G 30 is operated as a generator.

以上述べたように構成されたハイブリッドシステム1には、該ハイブリッドシステム1を制御するための手段である電子制御ユニット(ECU:Electronic Control Unit)80が併設されている。このECU80は、ハイブリッドコントロールコンピュータ(以下、「HVCC」という。)とエンジンコントロールコンピュータ(以下、「ECC」という。)を有し、各々は、CPU、ROM、RAM、バックアップRAMなどからなる算術論理演算回路である。   The hybrid system 1 configured as described above is provided with an electronic control unit (ECU) 80 which is a means for controlling the hybrid system 1. The ECU 80 includes a hybrid control computer (hereinafter referred to as “HVCC”) and an engine control computer (hereinafter referred to as “ECC”), each of which includes arithmetic logic operations including a CPU, ROM, RAM, backup RAM, and the like. Circuit.

HVCCは、アクセルポジションセンサ、シフトポジションセンサ等の各種センサの検出値に基づいて必要なエンジン出力、モータトルク等を求め、ECC等に要求値を出し、駆動力を制御する。   The HVCC obtains necessary engine output, motor torque, and the like based on detection values of various sensors such as an accelerator position sensor and a shift position sensor, outputs a required value to the ECC, and controls the driving force.

ECCは、一定時間毎に実行すべき基本ルーチンにおいて、エアフローメータ21a等各種センサの出力信号の入力、機関回転数の演算、HVCCからのエンジン出力要求値に応じるように燃料噴射量の演算、燃料噴射時期の演算などを実行する。基本ルーチンにおいてECCが入力した各種信号やECCが演算して得られた各種制御値は、ECCのRAMに一時的に記憶される。   ECC is a basic routine that should be executed at regular intervals. Input of output signals from various sensors such as the air flow meter 21a, calculation of engine speed, calculation of fuel injection amount in accordance with an engine output request value from HVCC, fuel The injection timing is calculated. Various signals input by the ECC in the basic routine and various control values obtained by calculating the ECC are temporarily stored in the ECC RAM.

そして、ECU80内のECCは、各種のセンサやスイッチからの信号の入力、一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理において、RAMから各種制御値を読み出し、それら制御値に従って燃料噴射弁等を制御する。   The ECC in the ECU 80 reads various control values from the RAM in an interrupt process triggered by the input of signals from various sensors and switches, the passage of a fixed time, or the input of a pulse signal from the crank position sensor. Then, the fuel injection valve and the like are controlled according to these control values.

また、ECU80には、バッテリ70に併設されてバッテリ70の充電状態の監視を行うバッテリコンピュータから、バッテリ残量が入力される。   In addition, the remaining battery level is input to the ECU 80 from a battery computer that is attached to the battery 70 and monitors the state of charge of the battery 70.

[PM再生処理]
フィルタ23にPMが堆積していくと、フィルタ内の排気流路が狭くなり、排気抵抗が増加してしまう。そして、フィルタ23にPMが過度に堆積すると、排圧が上昇し、内燃機関の出力低下を生じさせてしまう。そのため、適宜のタイミングでフィルタ23に堆積したPMを酸化・除去してフィルタの捕集能力を再生するPM再生処理を実行することが必要である。そのため、ECU80は、以下に述べるようなPM再生処理制御を実行する。
[PM regeneration processing]
As PM accumulates on the filter 23, the exhaust flow path in the filter becomes narrow, and the exhaust resistance increases. If PM accumulates excessively on the filter 23, the exhaust pressure rises, causing a reduction in the output of the internal combustion engine. For this reason, it is necessary to execute PM regeneration processing for regenerating the collection ability of the filter by oxidizing and removing PM deposited on the filter 23 at an appropriate timing. Therefore, the ECU 80 executes PM regeneration processing control as described below.

概略としては、ECU80は、以下に述べるようなPM堆積量推定制御を実行し、PM堆積量を推定する。そして、推定されたPM堆積量が第1の所定量以上である場合に、PM再生処理を実行する。当該第1の所定量は、PMがフィルタに堆積することによりフィルタの目詰まりを起こし、この目詰まりが排気抵抗の増加を生じさせ、エンジンの出力低下を生じさせてしまう限界PM堆積量よりもやや少なめに設定される量である。   As an outline, the ECU 80 executes PM accumulation amount estimation control as described below to estimate the PM accumulation amount. Then, when the estimated PM accumulation amount is equal to or greater than the first predetermined amount, the PM regeneration process is executed. The first predetermined amount is higher than the limit PM accumulation amount that causes clogging of the filter due to PM accumulating on the filter, and this clogging causes an increase in exhaust resistance and a decrease in engine output. This is a slightly smaller amount.

PM再生処理は、ECU80が、フィルタ23の温度を500℃〜700℃程度の高温域まで昇温させるための昇温処理を実行するとともに、フィルタ23へ流入する排気を酸素過剰な雰囲気とするための空燃比処理を行うものである。   In the PM regeneration process, the ECU 80 performs a temperature raising process for raising the temperature of the filter 23 to a high temperature range of about 500 ° C. to 700 ° C., and makes the exhaust gas flowing into the filter 23 an oxygen-excess atmosphere. The air-fuel ratio process is performed.

昇温処理の実行方法としては、エンジン20の圧縮上死点近傍での燃料噴射弁による通常の主燃料噴射に加えて、排気行程中もしくは膨張行程中に気筒内に燃料を副次的に噴射するポスト噴射又は吸気行程もしくは排気行程の上死点近傍で気筒内に燃料を噴射するビゴム噴射等の副噴射を行い、未燃燃料成分をフィルタ23近傍に設けられた酸化能を有する触媒において酸化させ、酸化の際に発生する熱によってフィルタ23の温度を高めるものである。   As a method of executing the temperature raising process, in addition to the normal main fuel injection by the fuel injection valve near the compression top dead center of the engine 20, fuel is injected into the cylinder during the exhaust stroke or the expansion stroke. Post-injection to be performed, or sub-injection such as bi-rubber injection for injecting fuel into the cylinder in the vicinity of the top dead center of the intake stroke or exhaust stroke, and oxidizing the unburned fuel component in a catalyst having oxidation ability provided in the vicinity of the filter The temperature of the filter 23 is increased by heat generated during oxidation.

また、上述の副噴射の代わりにあるいは副噴射とともに、排気通路22を流通している排気中に還元剤たる燃料を添加させることにより、それらの未燃燃料成分をフィルタ23近傍に設けられた酸化能を有する触媒において酸化させ、酸化の際に発生する熱によってフィルタ23の温度を高めるようにしてもよい。   In addition to the above-described sub-injection or together with the sub-injection, by adding fuel as a reducing agent into the exhaust gas flowing through the exhaust passage 22, these unburned fuel components are oxidized in the vicinity of the filter 23. The temperature of the filter 23 may be increased by heat generated during the oxidation in a catalyst having a function.

空燃比処理は、前述した昇温処理の実行方法として、燃料噴射弁にて気筒内へ副噴射させる方法、又は、排気中へ燃料を添加させる方法が採用された場合に、空燃比センサ25の出力信号値がリーン空燃比に相当する値となるように、燃料噴射弁から副噴射される燃料量又は排気中へ添加される燃料量を調整する制御である。   In the air-fuel ratio process, when the method of performing the temperature increase process described above is adopted, a method in which the fuel injection valve performs sub-injection into the cylinder or a method in which fuel is added to the exhaust gas is employed. In this control, the amount of fuel sub-injected from the fuel injection valve or the amount of fuel added to the exhaust gas is adjusted so that the output signal value becomes a value corresponding to the lean air-fuel ratio.

そして、このようにPM再生処理が実行されると、フィルタ23に堆積したPMが酸化
され、フィルタ23からPMが除去されることになる。そして、PM再生処理終了条件が成立した場合にPM再生処理を終了する。
When the PM regeneration process is executed in this way, the PM accumulated on the filter 23 is oxidized and the PM is removed from the filter 23. When the PM regeneration process end condition is satisfied, the PM regeneration process is terminated.

PM再生処理終了条件としては、PM再生処理の実行時間が予め定められた所定時間以上経過したこと、あるいは、差圧センサ24の検出値に基づいて算出されたフィルタ23の上流側と下流側の排気通路の圧力(排気圧力)の差が所定圧以下であることを例示することができる。なお、前記所定時間は、例えば、フィルタのPM捕集容量に応じて決定される時間であり、フィルタのPM捕集容量が多くなるほど長く設定される時間である。また、前記所定圧は、フィルタにPMが堆積していないときの差圧に相当する圧力である。   The PM regeneration process end condition is that the execution time of the PM regeneration process has exceeded a predetermined time or the upstream side and downstream side of the filter 23 calculated based on the detection value of the differential pressure sensor 24. It can be exemplified that the difference in the pressure of the exhaust passage (exhaust pressure) is not more than a predetermined pressure. The predetermined time is, for example, a time determined according to the PM collection capacity of the filter, and is a time set longer as the PM collection capacity of the filter increases. The predetermined pressure is a pressure corresponding to a differential pressure when PM is not deposited on the filter.

[PM堆積量推定制御]
差圧センサ24の検出値に基づいて算出されたフィルタ23の上流側と下流側の排気の圧力の差(差圧)がある圧力以上である場合に、PM堆積量が前記第1の所定量以上であることを推定することができる。
[PM deposition amount estimation control]
When the difference (differential pressure) between the upstream and downstream exhaust pressures of the filter 23 calculated based on the detection value of the differential pressure sensor 24 is equal to or higher than a certain pressure, the PM accumulation amount is the first predetermined amount. It can be estimated that this is the case.

しかし、差圧センサ24の検出値に基づいてPM堆積量を推定する場合、エンジン20の運転状態が加減速運転等の過渡時である場合には、フィルタ23の上流側と下流側の差圧を正確に検出し難くなる。また、差圧の検出値自体が小さいあるいは排気通路における排気脈動の影響が顕著に表れる等の理由により、エンジンから排出されフィルタ23を通過する排気の量が少ない運転状態においても正確に検出し難くなる。そして、フィルタ23の上流側と下流側の差圧を正確に検出できない場合には、推定したPM堆積量に誤差が生じるおそれがある。   However, when estimating the PM accumulation amount based on the detection value of the differential pressure sensor 24, when the operating state of the engine 20 is in a transient state such as acceleration / deceleration operation, the differential pressure between the upstream side and the downstream side of the filter 23. Is difficult to detect accurately. In addition, it is difficult to detect accurately even in an operating state where the amount of exhaust discharged from the engine and passing through the filter 23 is small because the detection value of the differential pressure itself is small or the influence of exhaust pulsation in the exhaust passage appears remarkably. Become. If the differential pressure between the upstream side and the downstream side of the filter 23 cannot be accurately detected, an error may occur in the estimated PM accumulation amount.

そして、推定したPM堆積量に誤差が生じると、実際には前記第1の所定量以上にPMが堆積しているにもかかわらず、PM再生処理が行われなくなり、過度にPMが堆積し、エンジンの出力が低下してしまう。また、前記第1の所定量以上にPMが堆積した状態でPM再生処理を実行すると多量のPMが酸化除去されることによりフィルタが過熱し破損してしまうおそれがある。また、上述したようにPM再生処理を所定時間実行したら終了する場合においては、PM再生処理を実行したにもかかわらず全てのPMが酸化除去されずに堆積したままとなるおそれがある。   Then, if an error occurs in the estimated amount of PM deposition, PM regeneration processing is not performed even though PM is actually deposited in excess of the first predetermined amount, PM is excessively deposited, Engine output will decrease. Further, if the PM regeneration process is performed in a state where PM is accumulated in excess of the first predetermined amount, a large amount of PM may be oxidized and removed, so that the filter may be overheated and damaged. In addition, as described above, when the PM regeneration process is terminated for a predetermined time, the PM regeneration process may be terminated, but all the PM may remain deposited without being oxidized even though the PM regeneration process is performed.

したがって、フィルタ23の上流側と下流側の差圧を正確に検出するには、エンジン20の運転状態が、定常運転時等のフィルタを通過する排気の量が変動しない運転状態であって、フィルタ23を通過する排気の量がある程度多い運転状態であることが好ましい。   Therefore, in order to accurately detect the differential pressure between the upstream side and the downstream side of the filter 23, the operating state of the engine 20 is an operating state in which the amount of exhaust gas passing through the filter does not vary, such as during steady operation, It is preferable that the engine is in an operating state in which the amount of exhaust gas passing through the engine 23 is somewhat large.

そこで、本実施例においては、ECU80が、以下に述べるようなPM堆積量推定制御を実行して、PM堆積量を推定する。   Therefore, in this embodiment, the ECU 80 executes the PM accumulation amount estimation control as described below to estimate the PM accumulation amount.

以下、具体的に、図3に示すフローチャートを用いて本実施例に係るPM堆積量推定制御について説明する。この制御ルーチンは、予めECU80のROMに記憶されているルーチンであり、ECU80が、後述する所定の場合に実行するルーチンである。   Hereinafter, the PM accumulation amount estimation control according to the present embodiment will be specifically described with reference to the flowchart shown in FIG. This control routine is a routine stored in advance in the ROM of the ECU 80, and is a routine executed by the ECU 80 in a predetermined case described later.

本ルーチンでは、ECU80は、先ず、ステップ(以下、単に「S」という。)101において、エンジンが停止しているか、つまり非燃焼状態であるか否かを判定する。そして、否定判定された場合は、エンジンが燃焼状態にあることからS102へ進み後述するエンジン運転時PM堆積量推定制御を実行してPM堆積量を推定する。   In this routine, the ECU 80 first determines in step (hereinafter simply referred to as “S”) 101 whether or not the engine is stopped, that is, in a non-combustion state. If a negative determination is made, the process proceeds to S102 because the engine is in a combustion state, and the PM accumulation amount estimation control during engine operation described later is executed to estimate the PM accumulation amount.

一方、S101で肯定判定された場合はS103へ進み、バッテリ残量が十分であるか否かを判定する。そして、否定判定された場合は、バッテリ残量が十分ではないことから、S104へ進みエンジンを駆動させ、その後S102へ進みエンジン運転時PM堆積量
推定制御を実行してPM堆積量を推定する。
On the other hand, if an affirmative determination is made in S101, the process proceeds to S103 to determine whether or not the remaining battery capacity is sufficient. If a negative determination is made, the remaining battery level is not sufficient, so the process proceeds to S104 to drive the engine, and then the process proceeds to S102 to execute the engine operation PM accumulation amount estimation control to estimate the PM accumulation amount.

S103にて肯定判定された場合は、S105へ進み、車両がアイドル状態、つまりM/G30が作動しているがC1クラッチ46及びC2クラッチ47が係合されていないためそのトルクが減速機50を介して駆動輪9,10の回転軸9a,10aに伝達されずに車両が停止しているか否かを判定する。   If an affirmative determination is made in S103, the process proceeds to S105, where the vehicle is in an idle state, that is, the M / G 30 is operating but the C1 clutch 46 and the C2 clutch 47 are not engaged, so that the torque is applied to the speed reducer 50. It is determined whether the vehicle is stopped without being transmitted to the rotating shafts 9a, 10a of the drive wheels 9, 10.

そして、肯定判定された場合は、S106へ進み、エンジンのクランクシャフト20aを正回転させるべく、ブレーキ45を係合してリングギヤ42を固定し、M/G30を逆回転させる。その際、エンジンの気筒内に燃料を供給せずに非燃焼状態のままとする。また、エンジンの回転数が、差圧センサ24にてフィルタ23の上流側と下流側の差圧を正確に検出できるように予め定められた所定回転数となるように、M/G30の回転数を制御する。   If an affirmative determination is made, the process proceeds to S106, and the brake 45 is engaged to fix the ring gear 42 and the M / G 30 is rotated in the reverse direction in order to rotate the crankshaft 20a of the engine in the forward direction. At that time, the fuel is not supplied into the cylinders of the engine and remains in a non-combustion state. Further, the rotational speed of the M / G 30 is set so that the rotational speed of the engine becomes a predetermined rotational speed that can be accurately detected by the differential pressure sensor 24 between the upstream side and the downstream side of the filter 23. To control.

一方、S105で否定判定された場合は、エンジン20を運転停止させたままM/G30が出力する動力により車両が前進させられている、つまりC1クラッチ46のみ係合されM/G30が正回転している。それゆえ、S107へ進み、さらに、C2クラッチ47をも係合させて、エンジン20のクランクシャフト20aを非燃焼状態にしたまま正回転(空転)させる。その際、エンジンの回転数が前記所定回転数となるように、M/G30の回転数を制御する。   On the other hand, if a negative determination is made in S105, the vehicle is advanced by the power output from the M / G 30 while the engine 20 is stopped, that is, only the C1 clutch 46 is engaged and the M / G 30 rotates forward. ing. Therefore, the process proceeds to S107, and further, the C2 clutch 47 is also engaged, and the crankshaft 20a of the engine 20 is rotated forward (idle) while being in a non-combustion state. At that time, the rotational speed of the M / G 30 is controlled so that the rotational speed of the engine becomes the predetermined rotational speed.

その後S108へ進み、差圧センサ24でフィルタ23の上流側と下流側の差圧を検出する。その後S109へ進み、S108で検出した差圧に基づいてPM堆積量を推定する。これは、差圧とフィルタ23に堆積したPM量との相関関係を予め実験等により導き出しマップとしてECU80内のROMに記憶しておき、当該マップにS108で検出した差圧を代入して推定するものである。このように、S109がPM(微粒子)堆積量推定手段として機能する。   Thereafter, the process proceeds to S108, and the differential pressure sensor 24 detects the differential pressure between the upstream side and the downstream side of the filter 23. Thereafter, the process proceeds to S109, and the PM deposition amount is estimated based on the differential pressure detected in S108. This is estimated by preliminarily storing the correlation between the differential pressure and the amount of PM deposited on the filter 23 in a ROM in the ECU 80 as a map, and substituting the differential pressure detected in S108 into the map. Is. In this way, S109 functions as a PM (fine particle) accumulation amount estimation means.

次に、図4に示すフローチャートを用いてS102で実行されるエンジン運転時PM堆積量推定制御について説明する。この制御ルーチンは、予めECU80のROMに記憶されているルーチンである。なお、S208及びS209は、図3に示すフローチャートのS108及びS109と同一であるのでその詳細な説明は省略する。   Next, the engine operating PM accumulation amount estimation control executed in S102 will be described using the flowchart shown in FIG. This control routine is a routine stored in the ROM of the ECU 80 in advance. Since S208 and S209 are the same as S108 and S109 in the flowchart shown in FIG. 3, detailed description thereof is omitted.

本ルーチンでは、ECU80は、先ず、S201において、エンジン20が、加減速運転状態等のフィルタ23を通過する排気の量の変動が所定範囲を超えて変動する過渡的な運転状態であるか否かを判定する。フィルタ23を通過する排気の量と吸入空気量(Ga)は比例関係にあるので、かかる運転状態であるか否かは、吸入空気量(Ga)の変動に基づいて判定する。つまり、ECU80内のECCが実行する基本ルーチンにおいて入力し、RAMに記憶されたエアフローメータ21aの検出値に基づいて判定するものである。そして、エアフローメータ21aの検出値の変動が大きい、つまり吸入空気量(Ga)の変動がフィルタ23を通過する排気の量の変動の前記所定範囲内に相当する基準範囲内であれば否定判定し、S202へ進む。一方、基準範囲を超えて変動していると判定された場合はS203へ進む。   In this routine, first, in S201, the ECU 80 determines whether or not the engine 20 is in a transient operation state in which the fluctuation of the amount of exhaust gas passing through the filter 23 such as the acceleration / deceleration operation state fluctuates beyond a predetermined range. Determine. Since the amount of exhaust gas passing through the filter 23 and the intake air amount (Ga) are in a proportional relationship, it is determined whether or not this operation state is in effect based on fluctuations in the intake air amount (Ga). That is, it is determined based on the detection value of the air flow meter 21a that is input in a basic routine executed by the ECC in the ECU 80 and stored in the RAM. If the detected value of the air flow meter 21a is large, that is, if the variation of the intake air amount (Ga) is within the reference range corresponding to the predetermined range of the variation of the amount of exhaust gas passing through the filter 23, a negative determination is made. , Go to S202. On the other hand, if it is determined that the fluctuation has exceeded the reference range, the process proceeds to S203.

S203においては、駆動力を最適制御する。S201で肯定判定された場合は、ECU80内のHVCCからECCへ出力されるエンジン出力要求値が変動していると考えられるから、HVCCは、エンジン出力が一定となるようにECCへ要求値を出力し、過不足する分をM/G30が出力する動力で補正するようにする。つまり、要求される車両駆動トルクに追従させるようにM/G30のトルクを増減させ、エンジン20は定常運転となるように制御する。   In S203, the driving force is optimally controlled. If an affirmative determination is made in S201, it is considered that the engine output request value output from the HVCC to the ECC in the ECU 80 is fluctuating, so the HVCC outputs the request value to the ECC so that the engine output becomes constant. Then, the excess / deficiency is corrected by the power output by the M / G 30. That is, the torque of the M / G 30 is increased or decreased so as to follow the required vehicle driving torque, and the engine 20 is controlled so as to be in steady operation.

その後S204へ進み、吸入空気量(Ga)の変動が小さくなったか否か、つまり吸入空気量の変動が前記基準範囲内となったか否かを判定する。これは、S201と同様に、エアフローメータ21aの検出値に基づき吸入空気量の変動が前記基準範囲内となったか否かを判定するものである。そして、否定判定された場合は、吸入空気量の変動が前記基準範囲内となるまでS203以降の処理を再度実行する。一方、肯定判定された場合はS208へ進み、差圧を検出する。   Thereafter, the process proceeds to S204, in which it is determined whether or not the variation in the intake air amount (Ga) has become small, that is, whether or not the variation in the intake air amount has fallen within the reference range. This is to determine whether or not the variation in the intake air amount is within the reference range based on the detection value of the air flow meter 21a, as in S201. And when negative determination is carried out, the process after S203 is performed again until the fluctuation | variation of intake air amount becomes in the said reference range. On the other hand, if a positive determination is made, the process proceeds to S208 to detect a differential pressure.

一方、S201にて否定判定された場合、つまり吸入空気量が基準範囲内であると判定された場合はS202に進むが、本ステップにおいては、フィルタ23を通過する排気の量が所定量より少ないか否か、つまり、吸入空気量が、フィルタ23を通過する排気の量の前記所定量に相当する基準量より少ないか否かを判定する。これは、エアフローメータ21aの検出値に基づいて判定するものである。なお、基準量は差圧センサ24で差圧を正確に検出できる吸入空気量として予め定められるものである。そして、肯定判定された場合はS205へ進み、否定判定された場合は、吸入空気量が基準量以上であることからS208へ進み、差圧を検出する。   On the other hand, if a negative determination is made in S201, that is, if the intake air amount is determined to be within the reference range, the process proceeds to S202, but in this step, the amount of exhaust gas passing through the filter 23 is less than a predetermined amount. Whether the intake air amount is less than a reference amount corresponding to the predetermined amount of the exhaust gas passing through the filter 23. This is determined based on the detection value of the air flow meter 21a. The reference amount is determined in advance as an intake air amount with which the differential pressure sensor 24 can accurately detect the differential pressure. If an affirmative determination is made, the process proceeds to S205. If a negative determination is made, the process proceeds to S208 because the intake air amount is greater than or equal to the reference amount, and a differential pressure is detected.

S205においては、エンジン回転数が前記所定回転数となるようにエンジン回転数を上昇させる。その後S206へ進み、エンジン回転数が上昇して、要求される車両駆動トルクに対して増加した動力をM/G30で発電させて吸収するようにする。   In S205, the engine speed is increased so that the engine speed becomes the predetermined speed. Thereafter, the process proceeds to S206, where the engine speed is increased, and the power increased with respect to the required vehicle drive torque is generated by the M / G 30 and absorbed.

その後、S207へ進み、吸入空気量が前記基準量以上となったか否かを判定する。これは、S202で説明したのと同様にエアフローメータ21aの検出値に基づいて判定するものである。そして、否定判定された場合は、吸入空気量が基準量以上となるまでS205以降の処理を再度実行する。一方、肯定判定された場合はS208へ進み差圧を検出する。   Thereafter, the process proceeds to S207, in which it is determined whether or not the intake air amount has exceeded the reference amount. This is determined based on the detection value of the air flow meter 21a as described in S202. And when negative determination is carried out, the process after S205 is performed again until the amount of intake air becomes more than a reference amount. On the other hand, if a positive determination is made, the process proceeds to S208 to detect a differential pressure.

このようにして、PM堆積量推定制御を実行することにより、エンジン20が過渡的な運転状態あるいはフィルタ23を通過する排気の量が少ない運転状態であっても、M/G30を適切に制御することにより、エンジンを定常かつフィルタ23を通過する排気の量が多い運転状態に維持することが可能となるため、差圧を正確に検出することができ、以てPM堆積量を精度よく推定することができる。また、エンジンの運転状態にかかわらず差圧を正確に検出することができるため、差圧を検出する領域を拡大することができる。   In this way, by executing the PM accumulation amount estimation control, the M / G 30 is appropriately controlled even when the engine 20 is in a transient operation state or an operation state in which the amount of exhaust gas passing through the filter 23 is small. This makes it possible to maintain the engine in an operating state that is steady and has a large amount of exhaust gas that passes through the filter 23, so that the differential pressure can be accurately detected, and the PM accumulation amount is accurately estimated. be able to. Moreover, since the differential pressure can be accurately detected regardless of the operating state of the engine, the area for detecting the differential pressure can be expanded.

また、エンジン20が非燃焼状態であっても、エンジン20をM/G30で駆動させてフィルタ23に適切な空気量を送り込むことで、差圧を正確に検出することができる。また、エンジン20が燃焼状態であるかにかかわらず差圧を正確に検出することができるため、差圧を検出する領域を拡大することができる。また、PM堆積量推定のためにエンジン20を運転させる必要がないため、燃費悪化を抑制することができる。   Even if the engine 20 is in a non-combustion state, the differential pressure can be accurately detected by driving the engine 20 with the M / G 30 and feeding an appropriate amount of air into the filter 23. In addition, since the differential pressure can be accurately detected regardless of whether the engine 20 is in the combustion state, the region for detecting the differential pressure can be expanded. Further, since it is not necessary to operate the engine 20 for estimating the PM accumulation amount, fuel consumption deterioration can be suppressed.

次に、具体的に、図5に示すフローチャートを用いて本実施例に係るPM再生処理制御について説明する。この制御ルーチンは、予めECU80のROMに記憶されているルーチンであり、ECU80が、一定時間の経過、あるいはクランクポジションセンサからのパルス信号の入力などをトリガとした割り込み処理として実行するものである。   Next, the PM regeneration processing control according to the present embodiment will be specifically described with reference to the flowchart shown in FIG. This control routine is a routine that is stored in advance in the ROM of the ECU 80, and is executed by the ECU 80 as an interrupt process triggered by the passage of a fixed time or the input of a pulse signal from the crank position sensor.

最終的には上述したPM堆積量推定制御を実行することによりPM堆積量を精度よく推定するが、差圧センサ24にて差圧を検出するにあたって、M/G30のトルクやエンジン20の出力を増加させる場合があるので、頻繁にこの制御を実行すると車両の振動が増大する等ユーザビリティの観点からは好ましくない。   Finally, the PM accumulation amount is accurately estimated by executing the above-described PM accumulation amount estimation control. However, when the differential pressure is detected by the differential pressure sensor 24, the torque of the M / G 30 and the output of the engine 20 are determined. Since this may be increased, frequent execution of this control is not preferable from the viewpoint of usability such as an increase in vehicle vibration.

そのため、本ルーチンでは、先ず、S301において、上述したPM堆積量推定制御を実行すべき条件が成立したか否かを判定する。PM堆積量推定制御を実行すべき条件としては、差圧センサ24にて検出されたフィルタ23の上流側と下流側の差圧が所定圧以上である、あるいは、前回のPM再生処理終了時からの燃料噴射量の積算値が所定量以上である、等を例示することができる。なお、当該差圧の所定圧及び燃料噴射量の積算値の所定量は、PM堆積量が前記第1の所定量より少ない第2の所定量に相当する値となるように予め定められるものである。このように本ステップが判定手段として機能する。そして、本ステップで肯定判定された場合はS302へ進み、上述したPM堆積量推定制御を実行する。一方、否定判定された場合は本ルーチンの実行を終了する。   Therefore, in this routine, first, in S301, it is determined whether or not the conditions for executing the PM accumulation amount estimation control described above are satisfied. As a condition for executing the PM accumulation amount estimation control, the differential pressure between the upstream side and the downstream side of the filter 23 detected by the differential pressure sensor 24 is equal to or higher than a predetermined pressure, or since the end of the previous PM regeneration process. For example, the integrated value of the fuel injection amount is not less than a predetermined amount. The predetermined amount of the predetermined pressure of the differential pressure and the integrated value of the fuel injection amount are determined in advance so that the PM accumulation amount becomes a value corresponding to a second predetermined amount smaller than the first predetermined amount. is there. Thus, this step functions as a determination unit. If an affirmative determination is made in this step, the process proceeds to S302, and the above-described PM accumulation amount estimation control is executed. On the other hand, if a negative determination is made, the execution of this routine is terminated.

なお、PM堆積量推定制御を実行すべき条件を、差圧センサ24にて検出されたフィルタ23の上流側と下流側の差圧が所定圧以上であることとする場合には、ECU80が、差圧センサ24にて検出されたフィルタ23の上流側と下流側の差圧が所定圧以上であるか否かでPM堆積量が前記第1の所定量より少ない第2の所定量以上であるか否かを推定するサブPM堆積量推定手段を備えるようにする。そして、当該サブPM堆積量推定手段が第2の所定量以上であると判定した場合にS301で肯定判定するようにする。   When the condition for executing the PM accumulation amount estimation control is that the differential pressure between the upstream side and the downstream side of the filter 23 detected by the differential pressure sensor 24 is equal to or higher than a predetermined pressure, the ECU 80 Depending on whether or not the differential pressure upstream and downstream of the filter 23 detected by the differential pressure sensor 24 is greater than or equal to a predetermined pressure, the PM accumulation amount is greater than or equal to a second predetermined amount that is less than the first predetermined amount. Sub PM deposition amount estimation means for estimating whether or not is provided. Then, when the sub PM accumulation amount estimation means determines that it is greater than or equal to the second predetermined amount, an affirmative determination is made in S301.

ただし、サブPM堆積量推定手段は前記第1の所定量より少ない第2の所定量以上であるかを推定するものであるので、サブPM堆積量推定手段にてPM堆積量を推定しようとする場合には、上述したPM堆積量推定制御を実行する必要はない。   However, since the sub PM accumulation amount estimation means estimates whether or not the second predetermined amount is less than the first predetermined amount, the sub PM accumulation amount estimation means tries to estimate the PM accumulation amount. In this case, it is not necessary to execute the PM accumulation amount estimation control described above.

S303においては、PM堆積量推定制御を実行することにより推定されたPM堆積量が前記第1の所定量以上であるか否かを判定する。そして、肯定判定された場合はS304へ進み、上述したPM再生処理を実行する。一方、否定判定された場合は本ルーチンの実行を終了する。   In S303, it is determined whether the PM accumulation amount estimated by executing the PM accumulation amount estimation control is equal to or greater than the first predetermined amount. If a positive determination is made, the process proceeds to S304, and the above-described PM regeneration process is executed. On the other hand, if a negative determination is made, the execution of this routine is terminated.

S305においては、上述したPM再生処理終了条件が成立したか否かを判定する。そして、否定判定された場合は再度S304以降の処理を再度実行する。一方、肯定判定された場合はS306へ進みPM再生処理を終了する。   In S305, it is determined whether or not the above-described PM regeneration process end condition is satisfied. And when negative determination is carried out, the process after S304 is performed again. On the other hand, if a positive determination is made, the process proceeds to S306 and the PM regeneration process is terminated.

このようなPM再生処理制御を実行することにより、PM堆積量が第2の所定量になるまでは、上述したPM堆積量推定制御を実行することなくPM再生処理を実行すべきか否かを判定することができる。これにより、PM堆積量推定制御を実行することに起因してユーザビリティが悪化するのを抑制することができる。   By executing such PM regeneration process control, it is determined whether or not the PM regeneration process should be executed without executing the PM accumulation amount estimation control described above until the PM accumulation amount reaches the second predetermined amount. can do. Thereby, it can suppress that usability deteriorates resulting from performing PM deposition amount estimation control.

実施例に係るハイブリッドシステムとそのエンジンの吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the hybrid system which concerns on an Example, and the intake / exhaust system of the engine. 実施例に係る動力切替機構の概略図である。It is the schematic of the power switching mechanism which concerns on an Example. 実施例に係るPM堆積量推定制御のフローチャート図である。It is a flowchart figure of PM deposition amount estimation control which concerns on an Example. 実施例に係るエンジン運転時PM堆積量推定制御のフローチャート図である。It is a flowchart figure of PM accumulation amount estimation control at the time of engine operation concerning an example. 実施例に係るPM再生処理制御のフローチャート図である。It is a flowchart figure of PM reproduction | regeneration processing control which concerns on an Example.

符号の説明Explanation of symbols

1 ハイブリッドシステム
9,10 駆動輪
9a,9a 回転軸
20 エンジン
20a クランクシャフト
21 吸気通路
21a エアフローメータ
21b 吸気絞り弁
22 排気通路
23 パティキュレートフィルタ
24 差圧センサ
25 空燃比センサ
30 モータジェネレータ
40 動力切替機構
50 減速機
60 インバータ
70 バッテリ
80 ECU
DESCRIPTION OF SYMBOLS 1 Hybrid system 9,10 Drive wheel 9a, 9a Rotating shaft 20 Engine 20a Crankshaft 21 Intake passage 21a Air flow meter 21b Intake throttle valve 22 Exhaust passage 23 Particulate filter 24 Differential pressure sensor 25 Air-fuel ratio sensor 30 Motor generator 40 Power switching mechanism 50 Reducer 60 Inverter 70 Battery 80 ECU

Claims (4)

内燃機関と、電動機と、を有し、前記内燃機関が出力する動力と前記電動機が出力する動力とを1の出力軸から同時に出力可能なハイブリッドシステムに用いられる排気浄化装置であって、
前記内燃機関の排気通路に配置され排気に含まれる微粒子を捕集するパティキュレートフィルタと、
当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、
当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、
前記内燃機関が前記フィルタを通過する排気の量が所定範囲を超えて変動する運転状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気の量の変動が所定範囲内となるように内燃機関の運転状態を変更し、当該内燃機関の運転状態の変更に伴い変動する当該内燃機関が前記出力軸に出力する動力を打ち消すように前記電動機が前記出力軸に出力する動力を制御する制御手段と、
を備えることを特徴とする排気浄化装置。
An exhaust emission control device used in a hybrid system having an internal combustion engine and an electric motor and capable of simultaneously outputting power output from the internal combustion engine and power output from the electric motor from one output shaft,
A particulate filter disposed in the exhaust passage of the internal combustion engine for collecting particulates contained in the exhaust;
Differential pressure detection means for detecting a difference in pressure between the upstream side and the downstream side of the filter;
Fine particle accumulation amount estimation means for estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means;
When the internal combustion engine is in an operating state in which the amount of exhaust gas that passes through the filter fluctuates beyond a predetermined range, the particulate matter accumulation amount estimation means tries to estimate the amount of particulate matter that has accumulated on the filter. The operating state of the internal combustion engine is changed so that the fluctuation of the amount of exhaust gas to be within a predetermined range, and the power output from the internal combustion engine that fluctuates with the change of the operating state of the internal combustion engine is canceled out Control means for controlling the power output by the electric motor to the output shaft;
An exhaust emission control device comprising:
内燃機関と、電動機と、当該内燃機関が出力する動力を利用して発電を行う発電機と、を有し、前記内燃機関が出力する動力と前記電動機が出力する動力とを1の出力軸から同時に出力可能なハイブリッドシステムに用いられる排気浄化装置であって、
前記内燃機関の排気通路に配置され排気に含まれる微粒子を捕集するパティキュレートフィルタと、
当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、
当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、
前記内燃機関が前記フィルタを通過する排気が所定量より少ない運転状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、フィルタを通過する排気が前記所定量以上となるように内燃機関の運転状態を変更し、当該内燃機関の運転状態の変更に伴い増加する分の動力を発電に利用するように前記発電機を制御する制御手段と、
を備えることを特徴とする排気浄化装置。
An internal combustion engine, an electric motor, and a generator that generates electric power using the power output from the internal combustion engine. The power output from the internal combustion engine and the power output from the motor are output from one output shaft. An exhaust purification device used in a hybrid system capable of outputting simultaneously,
A particulate filter disposed in the exhaust passage of the internal combustion engine for collecting particulates contained in the exhaust;
Differential pressure detection means for detecting a difference in pressure between the upstream side and the downstream side of the filter;
Fine particle accumulation amount estimation means for estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means;
When the internal combustion engine is in an operation state in which the exhaust gas passing through the filter is less than a predetermined amount, the exhaust gas passing through the filter is the place where the exhaust gas passing through the filter is Control means for controlling the generator to change the operating state of the internal combustion engine to be equal to or more than a fixed amount, and to use the power for the power generation that increases with the change of the operating state of the internal combustion engine;
An exhaust emission control device comprising:
前記電動機と前記発電機は、動力を出力する電動機としての機能と前記内燃機関が出力する動力を利用して発電を行う発電機としての機能とを併せ持つモータジェネレータとして構成されていることを特徴とする請求項2に記載の排気浄化装置。   The electric motor and the generator are configured as a motor generator that has both a function as an electric motor that outputs power and a function as a generator that generates electric power using the power output from the internal combustion engine. The exhaust emission control device according to claim 2. 内燃機関と、当該内燃機関のクランクシャフトを回転可能な電動機と、を備えたハイブリッドシステムに用いられる排気浄化装置であって、
前記内燃機関の排気通路に配置され排気に含まれる微粒子を捕集するパティキュレートフィルタと、
当該フィルタの上流側と下流側の排気の圧力の差を検出する差圧検出手段と、
当該差圧検出手段が検出した差圧に基づいて当該フィルタに堆積した微粒子量を推定する微粒子堆積量推定手段と、
前記内燃機関が非燃焼状態のときに前記微粒子堆積量推定手段がフィルタに堆積した微粒子量を推定しようとする場合には、非燃焼状態のまま内燃機関のクランクシャフトを回転するように前記電動機を制御する制御手段と、
を備えることを特徴とする排気浄化装置。
An exhaust purification device used in a hybrid system comprising an internal combustion engine and an electric motor capable of rotating a crankshaft of the internal combustion engine,
A particulate filter disposed in the exhaust passage of the internal combustion engine for collecting particulates contained in the exhaust;
Differential pressure detection means for detecting a difference in pressure between the upstream side and the downstream side of the filter;
Fine particle accumulation amount estimation means for estimating the amount of fine particles accumulated on the filter based on the differential pressure detected by the differential pressure detection means;
When the internal combustion engine is in a non-combustion state and the particulate accumulation amount estimation means tries to estimate the amount of particulates deposited on the filter, the electric motor is rotated so as to rotate the crankshaft of the internal combustion engine in the non-combustion state. Control means for controlling;
An exhaust emission control device comprising:
JP2004127168A 2004-04-22 2004-04-22 Exhaust purification device Expired - Fee Related JP4144557B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004127168A JP4144557B2 (en) 2004-04-22 2004-04-22 Exhaust purification device
FR0503704A FR2869354B1 (en) 2004-04-22 2005-04-13 EXHAUST GAS CONTROL DEVICE AND EXHAUST GAS CONTROL METHOD
DE102005018575A DE102005018575B4 (en) 2004-04-22 2005-04-21 Exhaust gas control device and exhaust gas control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127168A JP4144557B2 (en) 2004-04-22 2004-04-22 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2005307887A JP2005307887A (en) 2005-11-04
JP4144557B2 true JP4144557B2 (en) 2008-09-03

Family

ID=35169478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127168A Expired - Fee Related JP4144557B2 (en) 2004-04-22 2004-04-22 Exhaust purification device

Country Status (3)

Country Link
JP (1) JP4144557B2 (en)
DE (1) DE102005018575B4 (en)
FR (1) FR2869354B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211570A1 (en) * 2015-06-23 2016-12-29 Ford Global Technologies, Llc Regeneration of particulate filters in a hybrid powertrain
JP6424843B2 (en) * 2016-01-26 2018-11-21 トヨタ自動車株式会社 Hybrid car
DE102017208635B4 (en) 2017-05-22 2020-01-23 Audi Ag Exhaust control for a hybrid vehicle with a particle filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164959A (en) * 1999-12-10 2001-06-19 Mitsubishi Motors Corp Engine control device for hybrid car having exhaust emission control device
US6422001B1 (en) * 2000-10-10 2002-07-23 Bae Systems Controls Inc. Regeneration control of particulate filter, particularly in a hybrid electric vehicle
JP2003120263A (en) * 2001-10-10 2003-04-23 Toyota Motor Corp Exhaust emission control device and exhaust emission control method
JP4032774B2 (en) * 2002-02-28 2008-01-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2004052642A (en) * 2002-07-18 2004-02-19 Bosch Automotive Systems Corp Diesel exhaust gas aftertreatment method and device
US7357822B2 (en) * 2002-08-13 2008-04-15 Bosch Automotive Systems Corporation Filter control apparatus

Also Published As

Publication number Publication date
FR2869354A1 (en) 2005-10-28
DE102005018575B4 (en) 2007-12-20
JP2005307887A (en) 2005-11-04
FR2869354B1 (en) 2006-12-01
DE102005018575A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4103813B2 (en) Exhaust gas purification device for internal combustion engine
JP4513629B2 (en) Vehicle control device
KR100652109B1 (en) Apparatus and Method for Purifying Exhaust Gas from Internal Combustion Engine
JP4103753B2 (en) Engine exhaust purification system
WO2009139283A1 (en) Device and method for controlling vehicle
JP4591389B2 (en) Exhaust purification device for internal combustion engine
JP6952655B2 (en) Hybrid vehicle
JP4314135B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP4479676B2 (en) Diesel hybrid vehicle exhaust purification system
JP2009036183A (en) Exhaust emission control device of engine and exhaust emission control device of hybrid vehicle using the same
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP4320586B2 (en) Exhaust gas purification device for internal combustion engine
JP5110327B2 (en) Engine exhaust purification system
JP4269927B2 (en) Exhaust gas purification system for internal combustion engine
JP4193778B2 (en) Exhaust gas purification device for internal combustion engine
JP2007154732A (en) Control system of internal combustion engine
JP3925472B2 (en) Control device for hybrid vehicle
JP4144557B2 (en) Exhaust purification device
JP4254664B2 (en) Exhaust gas purification device for internal combustion engine
JP2010077919A (en) Engine control device
JP2004285947A (en) Exhaust emission control device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP3719393B2 (en) Control device for hybrid system
JP2013096246A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R151 Written notification of patent or utility model registration

Ref document number: 4144557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees