JP4143207B2 - Fiber reinforced cement molding - Google Patents

Fiber reinforced cement molding Download PDF

Info

Publication number
JP4143207B2
JP4143207B2 JP06653499A JP6653499A JP4143207B2 JP 4143207 B2 JP4143207 B2 JP 4143207B2 JP 06653499 A JP06653499 A JP 06653499A JP 6653499 A JP6653499 A JP 6653499A JP 4143207 B2 JP4143207 B2 JP 4143207B2
Authority
JP
Japan
Prior art keywords
weight
molded body
fiber
cement
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06653499A
Other languages
Japanese (ja)
Other versions
JP2000264707A (en
Inventor
雅宏 小野
丈尚 加藤
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
A&A Material Corp
Original Assignee
Taiheiyo Cement Corp
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, A&A Material Corp filed Critical Taiheiyo Cement Corp
Priority to JP06653499A priority Critical patent/JP4143207B2/en
Publication of JP2000264707A publication Critical patent/JP2000264707A/en
Application granted granted Critical
Publication of JP4143207B2 publication Critical patent/JP4143207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【発明の属する技術分野】
本発明は、強度と耐久性に優れた繊維補強セメント成形体に関する。
【0002】
【従来の技術】
現在の代表的繊維補強セメント成形体としては、一般内外装用石綿スレート、波形スレート、住宅屋根用化粧スレート等が挙げられる。これらの製品はほとんどが石綿を含有するものであるが、近年環境重視の社会的要求から無石綿化が進む傾向にある。しかし、石綿を使用せずに高強度のセメント成形体を得ることは難しく、また冬季寒冷地において凍結・融解が繰り返されることによる劣化への耐性いわゆる耐凍害性等といった耐久面での性能低下も指摘されている。
【0003】
これらのうち、石綿を使用せずに高強度の成形体を得る方法の一つとして、特開平5−70194号公報には微細なフライアッシュの添加が有効であることが開示されている。しかしこの方法だけでは耐凍害性を中心とした耐久性の向上という面には効果が小さい。耐久性向上については各種充填材の添加による補強や吸水率を低下させる方法等が検討されている。その一つとして雲母を添加する方法も検討されているが、いくつかの問題点がある。従来、雲母はある程度鱗片の大きいものの方がフィラーとして有効であると考えられているが、鱗片の大きな雲母は抄造法で積層シートを成形した場合に層間密着力を低下させる原因となるので少量しか添加できない。また、成形体表面に化粧を施す場合にも塗膜密着性に悪影響を与えるため、十分な補強効果を得るための量を添加できないのが現状である。
【0004】
一方、無石綿化の影響は物性面だけにとどまらず成形体の製造段階にもおよんでおり、従来からある石綿の性質に頼った製造方式では対応が難しいことも多い。例えば抄造法における積層シートの成形、更に波形状を賦与する工程においては、無石綿化することで成形した積層シートの柔軟性と層間密着力が低下し、波形状を賦形する段階でクラックや層間剥離が発生し易くなり、不良原因の一つとなっている。このため、仮成形した積層シートに水をかけて含水量を多くすることで柔らかくする方法等がとられているが、無石綿化によって積層シートの保水力が低下しているため思った程効果が出ていないのが実情である。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、補強繊維として石綿を用いなくとも建築用の内装又は外装材料として十分な強度と耐久性を有し、且つ低コストで製造時の賦形性にも優れた繊維補強セメント成形体を提供することにある。
【0006】
【課題を解決するための手段】
斯かる実情に鑑み本発明者は鋭意研究を行った結果、平均粒径30〜100μm、アスペクト比20以上の雲母とフライアッシュとを一定量組合せて配合すれば、耐凍害性に優れた高強度の繊維補強セメント成形体が得られ、かつ、製造段階において保水力が高く柔軟性に富んでいるので賦形性が良好なシート状の成形体とすることができることを見出し本発明を完成した。
【0007】
すなわち本発明は、セメント50〜60重量%、フライアッシュ2530重量%、補強繊維1〜10重量%及び平均粒径30〜100μmでアスペクト比20以上の雲母2〜15重量%を含有する繊維補強セメント成形体を提供するものである。なお、「重量%」は固形分原料の総量に対しての重量%を示す。
【0008】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。
本発明の繊維補強セメント成形体において、必須原料として用いられるものは、セメント、フライアッシュ、雲母及び補強繊維である。これらの必須原料を順次説明する。
【0009】
本発明に用いるセメントは特に限定されないが、普通ポルトランドセメント及び早強セメントのいずれか一方、又は両方を適当な割合で混合したセメントが好ましい。セメントの配合量は固形分原料の総量の40〜60重量%、特に好ましくは50〜60重量%である。セメントの割合が40重量%未満では初期強度の発現が鈍く、養生段階でのハンドリング性が悪くなる。また、セメントの割合が60重量%を越えて過剰であると、他の材料との複合による本発明の効果を十分に得ることが出来ない。
【0010】
フライアッシュは、石炭火力発電所の微粉炭燃焼炉に取り付けられた集塵機によって採取される微粉炭灰をいう。フライアッシュはその成分中に多量の二酸化珪素(SiO2)を含み、それ自身は水硬性を示さないがセメントの水和反応によって生じる水酸化カルシウム(Ca(OH)2)と反応して水和物を生成する、いわゆるポゾラン物質の一つである。通常、集塵機で採取されたままのフライアッシュは粒径の分布が1〜100μmと広く、その形状は球状粒子である。本発明では、これをそのまま用いてもよいが、更に粉砕又は分級処理して平均粒径を30μm以下としたものを使用することが好ましい。これは微細なものほど反応性が高く、緻密な結合を作るので強度発現への寄与が大きいためである。また、成形した積層シートを波形状に仮成形又は成形する際、球状粒子のベアリング効果によって賦形を容易にする効果がある。よってこの点からは球状粒子の破壊が少ない分級処理によって微細フライアッシュを得る方法がより好ましい。フライアッシュの配合量は固形分原料の総量に対し15〜40重量%、好ましくは15〜30重量%である。添加の割合が15重量%未満では十分な強度発現が得られず、また40重量%を超えて過剰に加えても強度が低下するので好ましくない。
【0011】
補強繊維は、特に限定されないが得られる成形体の曲げ強度及び衝撃強度の向上と成形におけるプロセスファイバーとしての役割から、木質パルプを使用することが好ましい。木質パルプの種類は特に限定されないが、補強効果の大きさから見ると針葉樹パルプを使用するのが好ましい。また、必要に応じ解繊処理を行ってパルプの濾水性を調整して使用することもできる。補強繊維の配合割合は固形分原料の総量に対し1〜10重量%、好ましくは2〜6重量%である。補強繊維を添加する割合が1重量%未満では十分な補強効果が得られずまた10重量%を超えて過剰に添加すると繊維が耐火性能を低下させるので好ましくない。
【0012】
前記木質パルプに加え、補強繊維として更にポリビニルアルコール繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維などの有機系繊維あるいはカーボンファイバー、耐アルカリガラス繊維などの無機系繊維を添加して補強効果の増強を図ることができる。これらの補強繊維の添加割合は固形分原料の総量に対し0.3〜3重量%とするのが好ましい。添加する割合が0.3重量%未満では十分な補強効果が得られず、また3重量%を超えて過剰に添加すると繊維が分散不良をおこして成形体の強度を低下させるので好ましくない。
【0013】
本発明においては、雲母を添加することにより、成形体の強度、寸法安定性、耐凍害性を向上させることができる。更に雲母は他の無機充填材に比べ抄造後のシート状の成形体の保水性を損ないにくく、また鱗片形状の効果により賦形する際に生ずる歪みに対し緩衝効果もある。フライアッシュと組合せて使用することによりその効果は更に顕著となり、シート状の成形体の柔軟性が増して賦形の際に発生する層間剥離やクラックを防止することができる。本発明において使用できる雲母としては、白雲母(マスコバイト)、金雲母(フロゴバイト)黒雲母、パラゴナイト、レピドナイト等が挙げられる。雲母は平均粒径30〜100μm、好ましくは平均粒径40〜80μmのものを使用する。雲母の鱗片形状の指標となるアスペクト比の値は20以上であることが好ましく、40以上であると更に好ましい。雲母を添加する割合は固形分原料の総量に対し2〜12重量%、好ましくは4〜8重量%の範囲である。添加の割合が2重量%未満では十分な補強効果が得られず、また12重量%を超えて過剰に加えると成形体の層間密着性や成形体表面に化粧を施す場合の塗膜密着性等に悪影響を与えるため好ましくない。
【0014】
本発明においては、更に雲母以外の無機充填材を配合してもよい。このような無機充填材としては、ウォラストナイト、炭酸カルシウム、珪砂等の従来から用いられているものが挙げられる。
雲母と他の無機充填材を組合せて使用する場合においては、合算した無機充填材の添加量が固形分原料の総量に対し5〜30重量%(すなわち、雲母以外の無機充填材は0〜15重量%)の割合とするのが好ましい。添加の割合が5重量%未満では十分な補強効果が得られず、また30重量%を超えて過剰に加えると成形段階での賦形性が悪くなるうえ、原料コストが高くなりすぎて実用的でない。
【0015】
本発明の繊維補強セメントの成形体は、例えば、セメント及び補強繊維を含む原料を水と混合し、得られたスラリーを例えば抄造法によりシート状の成形体に成形し、これを、凸部に吸引孔を有する凸形吸引部が間隔をおいて複数設けられた吸引装置に吸引することにより吸着させ、次いで該凸形吸引部の間隔を縮めつつ吸引を行い波形状に仮成形した後、加圧成形し、養生することにより製造することができる(図1)。以下、各工程について順次説明する。
【0016】
原料と水を混練するには攪拌機能を有する容器を用意し、この容器の中へ先ず必要量の水を投入し、攪拌を行いながら補強繊維、雲母等の無機充填材を順次投入してこれらを均一に分散させる。その後、フライアッシュを投入し、最後にセメントを投入するのが好ましい。セメント投入後、所定時間攪拌して均一な混練物を得る。この混練に使用する水の量は固形分原料の総量に対し3〜12倍が好ましく、スラリー状の混練物となるようにする。混練に用いる容器としては、容器の底部に羽根を有し、この羽根が高速で回転して原料を水中で混合することができる、いわゆるパルパーを用いるのが好ましい。
【0017】
次に、上記混練によって得られたスラリー状混練物を好ましくは抄造法によって所望の厚さのシート状の成形体に成形する。抄造工程は従来公知の石綿スレート製造方法をそのまま採用できる。抄造時には前記スラリー状混練物に割り水を加えて固形分濃度を調整することができる。また、必要に応じて市販の凝集剤や消泡剤を若干量添加するなど、良好なシート状の成形体を成形できるようスラリー状混練物の微調整をすることができる。シート状の成形体の厚さは、後工程で加圧成形することを考慮して、希望の製品厚さに対し1.1〜1.3倍程度となるよう設定することが好ましい。
【0018】
抄造により得られたシート状の成形体は、セメントが硬化する前に直ちにシート断面が波形状となるよう仮成形してプレス機により加圧成形する。仮成形する方法は特に限定されるものではなく、上記シート状の成形体に無理な応力が加わらないように希望する波形状に賦形できる方法であればよい。
【0019】
特に好ましい方法としては、波形の波の尾根に直交する方向に伸縮可能な機構を備えたサクションボックス(凸部に吸引孔を有する凸形吸引部)が間隔をおいて複数設けられた吸引装置、すなわちサクションコルゲーターを用い、この凸形吸引部の間隔を広げた状態でシート状の成形体を吸着し(図2、▲2▼上)、該凸形吸引部の間隔を、しわをよせるように縮めつつ吸引を行ない(図2、▲2▼下)、波形状に仮成形する方法が挙げられる。このとき、必要に応じ仮成形前のシート状の成形体に水を散布し、柔軟性を増加させてから仮成形してもよい。
【0020】
こうしておおよその波形状を仮成形した成形体を型板上に移し取り(図2、▲3▼)、プレス機に設置したモールドにセットして加圧成形を行う。加圧により所望の形状通りに成形され、また余分な水が搾り出されるので成形体の密度が上がり、養生後の強度が高くなる。モールドにセットする際使用する型板には、加圧により搾り出された余剰水が排出されやすいようあらかじめ直径3mm程度の孔を多数設けておくことが望ましく、必要に応じ金網や樹脂ネットなどを仮成形体との間に挟んで加圧すると更に好ましい。また、モールドの下型にもあらかじめ排水用の溝を設けておくことが好ましい。加圧力は、面圧10〜20MPaの範囲で任意に設定することが好ましい。設定圧力が10MPaより低いと得られる成形体の比重が小さすぎて強度が不足するうえ、耐凍害性も十分でなくなる。逆に20MPaを超えて過剰な圧力を加えても、得られる成形体の強度に効果的に寄与しないので、エネルギー的にも生産性の面から実用的ではない。
【0021】
加圧成形後、乾燥しない雰囲気を確保した状態で室温のまま自然養生を行い、セメントの硬化によって型板からはずして積み替えられるだけの強度を発現するまで放置する。自然養生に必要な時間は室温に影響されるが、最低でも6時間以上、好ましくは24時間程度確保することが好ましい。自然養生後、成形体を70℃以上100℃未満、好ましくは80〜90℃の湿り蒸気中で8時間〜24時間加熱養生すれば、硬化反応が促進し、強固な成形体が得られる。養生する温度が低いか、あるいは養生時間が短すぎると硬化反応が不十分となり、高強度の成形体を得ることが困難となる。また、養生温度が高すぎると硬化組織が緻密で強固となり初期強度が高くなる反面、成形体の内部空隙が大きくなるので吸水率が高くなり、結果として耐凍害性などの耐久性能が低下することがある。更に100℃以上の蒸気で養生するにはオートクレーブが必要となるため設備が大がかりとなり、製造コストの面からも好ましくない。一方、養生時間を24時間より長くしても、得られる成形体の強度に効果的寄与は見られず、エネルギー的にも生産性の面からも実用的ではない。
養生後の成形体は必要に応じて乾燥処理を行い、又は表面に化粧を施して製品とすることができる。
【0022】
以上によって得られた繊維補強セメント成形体は優れた強度と耐久性を持つことから、建築用材料として好適に用いられる。
【0023】
【実施例】
以下、本発明の実施例について説明する。
【0024】
実施例1〜3
表1に示した各種原料を、表1に示した配合割合で秤取し、水、補強繊維、白雲母、無機充填材、フライアッシュ、セメントの順でパルパーに投入し、固形分原料に対し約7倍量の水と混練することにより、スラリー状混練物を得た。
得られたスラリー状混練物を丸網抄造機を用いた抄造により成形し、幅750mm、長さ1500mm、厚さ約7mmのシート状の成形体を得た。抄造条件の概略は以下の通りであった。
【0025】
<抄造条件>
フェルトスピード:10m/分
抄造スラリー濃度(バット内):10%
成形圧力(メーキングロール):1.5MPa
【0026】
抄造後直ちにこのシート状成形体に対し、山の高さ45mm、山のピッチ180mmの連続した波形状をサクションコルゲーター(図2)を用いて仮成形し、その後プレス機にセットされたモールドに移して面圧15MPa、保持時間8秒の条件で加圧成形した。
【0027】
加圧成形した成形体を室温で24時間自然養生し、その後80℃(実施例2については95℃)の湿り蒸気内で8時間養生してから室内で7日間放置乾燥して所望の繊維補強セメント成形体を得た。このとき、得られた成形体の平均厚さは、約6mmであった。
【0028】
比較例1〜4
表1に示した各種原料を、表1に示した配合割合で秤取し、以下実施例と同様な操作により繊維補強セメント成形体を得た。
比較例1は実施例1に対しフライアッシュを添加せず、セメントに置き換えた配合割合になっている。比較例2及び比較例3は実施例1と同様の配合割合であるが、比較例2は平均粒径13μmの細かい雲母を用い、また、比較例3は平均粒径150μmのやや粗い雲母を使用した。比較例4は実施例2に対し雲母を使用せず、その相当分を針状珪灰石で置き換えた配合割合とした。
【0029】
<評価方法>
シート状の成形体に波形状を仮成形した際に表面クラック及び層間剥離の発生がないか目視観察した。また、養生後に得られた繊維補強セメント成形体については幅40mm、長さ160mmの試験片を切り出して物性を評価した。
曲げ試験は105℃乾燥機中で24時間乾燥させた後、スパン120mmで3点曲げを実施した。また、寸法変化率は水中に24時間浸漬したときの基線間長さを測定し、その後105℃乾燥機中で24時間乾燥した後の基線間長さを測定して求めた。
【0030】
耐凍害性はJIS A 1435「水中凍結水中融解法」に準拠し、飽水状態の厚さを測定してからサイクル試験を行った。100サイクル経過後に取り出した時点での厚さを測定し、サイクル試験前の値と比較して厚さ変化率を求めた。その後、105℃の乾燥機中で24時間乾燥させてから曲げ試験を行い、サイクル試験未実施の曲げ強度と比較して保持率を求めた。
評価結果を以下の表1に示す。
【0031】
【表1】

Figure 0004143207
【0032】
表1の評価結果から次のことが判明した。
▲1▼比較例1はフライアッシュを添加していないため寸法変化率が大きく又、仮成形の際クラックが生じた。また比重も大きめなので実施例に比べ製品重量が重くなった(軽量である方が施工性や建家の耐震性の面からも有利であり好ましい)。
▲2▼比較例2は使用した雲母が細かすぎたために骨材効果が不十分で、実施例よりも強度が低く、寸法変化率も大きい。
▲3▼比較例3及び4は養生前の成形性に問題があり外観も良くない。実施例に比べ層間密着が弱いことが結果的に耐凍害性の悪さにも影響していると思われる。
以上のことから明らかなように、本発明の成形体は養生前の成形性、寸法安定性、耐凍害性の全てをバランス良く満たしていることが判る。
【0033】
【発明の効果】
本発明の繊維補強セメント成形体は、無石綿でありながら高強度で耐久性に富んだ繊維補強セメント成形体であり、製造時に波形状などの賦形が容易であることから意匠性のある無石綿建築用材料として多大なる有用性をもたらすものである。
【図面の簡単な説明】
【図1】本発明の繊維補強セメント成形体の製造工程を示す図である。
【図2】本発明の繊維補強セメント成形体の製造工程の一部を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber-reinforced cement molded body excellent in strength and durability.
[0002]
[Prior art]
Current typical fiber reinforced cement molded bodies include asbestos slate for general interior and exterior, corrugated slate, decorative slate for residential roof, and the like. Most of these products contain asbestos, but in recent years there has been a trend toward non-asbestos due to environmentally-oriented social demands. However, it is difficult to obtain a high-strength cement molded product without using asbestos, and the durability performance degradation such as resistance to deterioration due to repeated freezing and thawing in cold winter areas is also reduced. It has been pointed out.
[0003]
Among these, as one method for obtaining a high-strength molded product without using asbestos, JP-A-5-70194 discloses that addition of fine fly ash is effective. However, this method alone has little effect on the improvement of durability centering on frost resistance. In order to improve durability, methods such as reinforcement by adding various fillers and a method of reducing the water absorption rate have been studied. As one of them, a method of adding mica has been studied, but there are some problems. Conventionally, it has been considered that mica with some scale is more effective as a filler.However, mica with large scale has a small amount because it causes a decrease in interlayer adhesion when a laminated sheet is formed by papermaking. Cannot be added. In addition, even when applying makeup to the surface of the molded body, the coating film adhesion is adversely affected, so that it is impossible to add an amount for obtaining a sufficient reinforcing effect.
[0004]
On the other hand, the effect of asbestos is not limited to physical properties, but extends to the manufacturing stage of molded products, and it is often difficult to cope with the conventional manufacturing method that relies on the properties of asbestos. For example, in the process of forming a laminated sheet in a papermaking method, and further imparting a wave shape, the flexibility and interlayer adhesion of the laminated sheet formed by making asbestos are reduced, and cracks and Delamination tends to occur, which is one of the causes of defects. For this reason, methods such as softening by increasing the water content by applying water to the temporarily formed laminated sheet are taken, but the effect as expected because the water retention capacity of the laminated sheet is reduced by making asbestos-free It is the actual situation that has not come out.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a fiber reinforcement that has sufficient strength and durability as an interior or exterior material for construction without using asbestos as a reinforcing fiber, and is excellent in formability at low cost. The object is to provide a cement molded body.
[0006]
[Means for Solving the Problems]
In view of such circumstances, the present inventors have conducted intensive research. As a result, if a certain amount of mica having an average particle size of 30 to 100 μm and an aspect ratio of 20 or more and fly ash are combined in combination, high strength with excellent frost resistance is obtained. The present invention was completed by finding that a fiber-reinforced cement molded body was obtained and that it was possible to obtain a sheet-shaped molded body having good formability because of its high water retention and high flexibility in the production stage.
[0007]
That is, the present invention is a fiber containing 50 to 60% by weight of cement, 25 to 30 % by weight of fly ash, 1 to 10% by weight of reinforcing fibers, and 2 to 15% by weight of mica having an average particle size of 30 to 100 μm and an aspect ratio of 20 or more. A reinforced cement molded body is provided. In addition, "weight%" shows weight% with respect to the total amount of a solid content raw material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the fiber-reinforced cement molded body of the present invention, those used as essential raw materials are cement, fly ash, mica and reinforcing fibers. These essential raw materials will be described sequentially.
[0009]
The cement used in the present invention is not particularly limited, but a cement obtained by mixing one or both of ordinary Portland cement and early-strength cement at an appropriate ratio is preferable. The blending amount of the cement is 40 to 60% by weight, particularly preferably 50 to 60% by weight, based on the total amount of the solid material. When the proportion of the cement is less than 40% by weight, the initial strength is not sufficiently developed, and the handling property at the curing stage is deteriorated. On the other hand, if the proportion of cement exceeds 60% by weight, the effect of the present invention due to the combination with other materials cannot be sufficiently obtained.
[0010]
Fly ash refers to pulverized coal ash collected by a dust collector attached to a pulverized coal combustion furnace of a coal-fired power plant. Fly ash contains a large amount of silicon dioxide (SiO 2 ) in its components and does not exhibit hydraulic properties, but it reacts with calcium hydroxide (Ca (OH) 2 ) generated by the hydration reaction of cement to hydrate. It is one of the so-called pozzolanic substances that produce products. Usually, fly ash collected by a dust collector has a wide particle size distribution of 1 to 100 μm, and its shape is spherical. In the present invention, this may be used as it is, but it is preferable to use one having an average particle size of 30 μm or less by further pulverization or classification. This is because the finer the material, the higher the reactivity and the greater the contribution to strength development because it forms dense bonds. Moreover, when the molded laminated sheet is temporarily formed or formed into a wave shape, there is an effect of facilitating shaping by the bearing effect of spherical particles. Therefore, from this point, a method of obtaining fine fly ash by classification treatment with less spherical particle destruction is more preferable. The amount of fly ash blended is 15 to 40% by weight, preferably 15 to 30% by weight, based on the total amount of the solid material. If the ratio of addition is less than 15% by weight, sufficient strength development cannot be obtained, and if it exceeds 40% by weight, excessive addition is not preferable because the strength decreases.
[0011]
Although the reinforcing fiber is not particularly limited, it is preferable to use wood pulp from the viewpoint of improving the bending strength and impact strength of the resulting molded body and serving as a process fiber in molding. The kind of wood pulp is not particularly limited, but it is preferable to use conifer pulp from the viewpoint of the reinforcing effect. Moreover, it can also be used by adjusting the drainage of the pulp by performing a defibrating treatment if necessary. The blending ratio of the reinforcing fibers is 1 to 10% by weight, preferably 2 to 6% by weight, based on the total amount of the solid material. If the ratio of the reinforcing fiber added is less than 1% by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 10% by weight, the fiber deteriorates the fire resistance, which is not preferable.
[0012]
In addition to the above-mentioned wood pulp, organic fiber such as polyvinyl alcohol fiber, polypropylene fiber and polyacrylonitrile fiber or inorganic fiber such as carbon fiber and alkali glass fiber can be added as a reinforcing fiber to enhance the reinforcing effect. it can. The addition ratio of these reinforcing fibers is preferably 0.3 to 3% by weight with respect to the total amount of the solid content raw material. If the ratio of addition is less than 0.3% by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 3% by weight, the fiber is poorly dispersed and the strength of the molded product is lowered.
[0013]
In the present invention, by adding mica, the strength, dimensional stability, and frost damage resistance of the molded body can be improved. Furthermore, the mica is less likely to impair the water retention of the sheet-like molded body after the paper making than other inorganic fillers, and also has a buffering effect against distortion generated when shaping due to the scale-shaped effect. By using it in combination with fly ash, the effect becomes even more remarkable, and the flexibility of the sheet-like molded body is increased, and delamination and cracks that occur during shaping can be prevented. Examples of mica that can be used in the present invention include muscovite (mascobite), phlogopite (phlogopite) biotite, paragonite, and lepidite. Mica having an average particle diameter of 30 to 100 μm, preferably an average particle diameter of 40 to 80 μm is used. The value of the aspect ratio that serves as an indicator of the mica scale shape is preferably 20 or more, and more preferably 40 or more. The ratio of adding mica is 2 to 12% by weight, preferably 4 to 8% by weight, based on the total amount of the solid material. If the ratio of addition is less than 2% by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 12% by weight, the adhesion between the layers of the molded body or the adhesion of the coating film when applying makeup to the surface of the molded body, etc. This is undesirable because it adversely affects
[0014]
In the present invention, an inorganic filler other than mica may be further blended. Examples of such inorganic fillers include those conventionally used such as wollastonite, calcium carbonate, and silica sand.
In the case of using a combination of mica and other inorganic fillers, the total amount of added inorganic fillers is 5 to 30% by weight based on the total amount of the solid material (that is, inorganic fillers other than mica are 0 to 15%). % By weight) is preferred. If the addition ratio is less than 5% by weight, a sufficient reinforcing effect cannot be obtained, and if it exceeds 30% by weight, the formability at the molding stage deteriorates and the raw material cost becomes too high, which is practical. Not.
[0015]
The molded article of the fiber reinforced cement of the present invention is obtained by, for example, mixing a raw material containing cement and reinforcing fibers with water, and molding the obtained slurry into a sheet-like molded article by, for example, a papermaking method. A plurality of convex suction parts having suction holes are sucked by suction with a plurality of suction devices provided at intervals, and then suction is performed while the distance between the convex suction parts is reduced to temporarily form a wave shape. It can be manufactured by compacting and curing (FIG. 1). Hereinafter, each process will be described sequentially.
[0016]
In order to knead the raw material and water, prepare a container with a stirring function. First, add the required amount of water into this container, and sequentially add inorganic fillers such as reinforcing fibers and mica while stirring. Is uniformly dispersed. Then, it is preferable to introduce fly ash and finally cement. After the cement is added, the mixture is stirred for a predetermined time to obtain a uniform kneaded product. The amount of water used for the kneading is preferably 3 to 12 times the total amount of the solid material, so that a slurry-like kneaded product is obtained. As a container used for kneading, it is preferable to use a so-called pulper having a blade at the bottom of the container and capable of rotating the blade at high speed to mix the raw materials in water.
[0017]
Next, the slurry-like kneaded product obtained by the kneading is preferably formed into a sheet-like molded body having a desired thickness by a papermaking method. In the paper making process, a conventionally known asbestos slate manufacturing method can be employed as it is. At the time of papermaking, split water can be added to the slurry-like kneaded product to adjust the solid content concentration. In addition, the slurry-like kneaded product can be finely adjusted so that a good sheet-like molded body can be formed, for example, by adding a slight amount of a commercially available flocculant or antifoaming agent. The thickness of the sheet-like molded body is preferably set to be about 1.1 to 1.3 times the desired product thickness in consideration of pressure molding in a subsequent process.
[0018]
The sheet-like molded body obtained by papermaking is temporarily formed so that the sheet cross-section is corrugated immediately before the cement is hardened, and then press-molded with a press. The method of temporary forming is not particularly limited as long as it is a method capable of forming a desired wave shape so that excessive stress is not applied to the sheet-like formed body.
[0019]
As a particularly preferred method, a suction device provided with a plurality of suction boxes (convex suction portions having suction holes in the convex portions) provided with a mechanism capable of expanding and contracting in a direction perpendicular to the ridge of the corrugated wave, In other words, a suction corrugator is used to adsorb the sheet-like molded body with the distance between the convex suction parts widened (FIG. 2, (2) top) so that the distance between the convex suction parts is wrinkled. There is a method in which suction is performed while shrinking (FIG. 2, (2) bottom), and the film is temporarily formed into a wave shape. At this time, if necessary, temporary molding may be performed after water is sprayed on the sheet-like molded body before temporary molding to increase flexibility.
[0020]
In this way, the molded body in which an approximate wave shape is temporarily formed is transferred onto a template (FIG. 2, (3)), and is set in a mold installed in a press machine to perform pressure molding. Since it is molded according to the desired shape by pressing and excess water is squeezed out, the density of the molded body is increased and the strength after curing is increased. It is desirable to provide a large number of holes with a diameter of about 3mm in advance so that excess water squeezed out by pressurization can be easily drained. More preferably, the pressure is sandwiched between the temporary molded body. Moreover, it is preferable to provide a draining groove in advance in the lower mold of the mold. The applied pressure is preferably set arbitrarily within the range of a surface pressure of 10 to 20 MPa. When the set pressure is lower than 10 MPa, the specific gravity of the obtained molded product is too small, the strength is insufficient, and the frost damage resistance is not sufficient. Conversely, even if an excessive pressure exceeding 20 MPa is applied, it does not contribute effectively to the strength of the resulting molded product, so that it is not practical from the viewpoint of energy and productivity.
[0021]
After the pressure molding, natural curing is performed at room temperature in a state where an atmosphere that does not dry is ensured, and the mixture is allowed to stand until it is strong enough to be removed from the template and reloaded by hardening of the cement. The time required for natural curing is affected by the room temperature, but it is preferable to secure at least 6 hours, preferably about 24 hours. After natural curing, if the molded body is heated and cured in a wet steam at 70 ° C. or higher and less than 100 ° C., preferably 80 to 90 ° C. for 8 to 24 hours, the curing reaction is accelerated and a strong molded body is obtained. If the curing temperature is low or the curing time is too short, the curing reaction becomes insufficient, and it becomes difficult to obtain a high-strength molded product. In addition, if the curing temperature is too high, the hardened structure becomes dense and strong and the initial strength is high, but the internal voids of the molded body are large, so the water absorption is high, and as a result, durability such as frost resistance is reduced. There is. Furthermore, an autoclave is required for curing with steam at 100 ° C. or higher, so that the equipment becomes large, which is not preferable from the viewpoint of production cost. On the other hand, even if the curing time is longer than 24 hours, an effective contribution is not seen in the strength of the obtained molded body, and it is not practical from the viewpoint of energy and productivity.
The molded body after curing can be made into a product by subjecting it to a drying treatment if necessary, or applying a makeup to the surface.
[0022]
The fiber-reinforced cement molded body obtained as described above has excellent strength and durability, and is therefore suitably used as a building material.
[0023]
【Example】
Examples of the present invention will be described below.
[0024]
Examples 1-3
Various raw materials shown in Table 1 are weighed at the blending ratio shown in Table 1, and water, reinforcing fiber, muscovite, inorganic filler, fly ash, and cement are put into the pulper in this order. A slurry-like kneaded product was obtained by kneading with about 7 times the amount of water.
The obtained slurry-like kneaded product was molded by papermaking using a round net papermaking machine to obtain a sheet-like molded body having a width of 750 mm, a length of 1500 mm, and a thickness of about 7 mm. The outline of the papermaking conditions was as follows.
[0025]
<Making conditions>
Felt speed: 10 m / min Papermaking slurry concentration (in vat): 10%
Molding pressure (making roll): 1.5 MPa
[0026]
Immediately after papermaking, a continuous wave shape with a crest height of 45 mm and a crest pitch of 180 mm is temporarily formed on this sheet-shaped product using a suction corrugator (Fig. 2), and then transferred to a mold set in a press machine. The molding was performed under the conditions of a surface pressure of 15 MPa and a holding time of 8 seconds.
[0027]
The compacted body is naturally cured at room temperature for 24 hours, then cured in wet steam at 80 ° C. (95 ° C. for Example 2) for 8 hours, and then left to dry in the room for 7 days to obtain the desired fiber reinforcement. A cement molded body was obtained. At this time, the average thickness of the obtained molded body was about 6 mm.
[0028]
Comparative Examples 1-4
Various raw materials shown in Table 1 were weighed at the blending ratios shown in Table 1, and fiber-reinforced cement molded bodies were obtained by the same operations as in the following examples.
In Comparative Example 1, fly ash was not added to Example 1, but the blending ratio was replaced with cement. Comparative Example 2 and Comparative Example 3 have the same blending ratio as Example 1, but Comparative Example 2 uses fine mica having an average particle diameter of 13 μm, and Comparative Example 3 uses slightly coarse mica having an average particle diameter of 150 μm. did. In Comparative Example 4, mica was not used as in Example 2, but the corresponding proportion was replaced with acicular wollastonite.
[0029]
<Evaluation method>
When the corrugated shape was temporarily formed on the sheet-like molded body, it was visually observed whether surface cracks or delamination occurred. Moreover, about the fiber reinforced cement molded object obtained after curing, the test piece of width 40mm and length 160mm was cut out, and the physical property was evaluated.
The bending test was performed by drying in a dryer at 105 ° C. for 24 hours, and then performing three-point bending with a span of 120 mm. The dimensional change rate was determined by measuring the length between the baselines when immersed in water for 24 hours, and then measuring the length between the baselines after drying in a 105 ° C. dryer for 24 hours.
[0030]
The frost damage resistance was measured in accordance with JIS A 1435 “Underwater Frozen Water Thaw Method”, and the cycle test was conducted after measuring the thickness of the saturated water. The thickness at the time of taking out after the elapse of 100 cycles was measured, and the rate of change in thickness was determined by comparison with the value before the cycle test. Then, after making it dry for 24 hours in 105 degreeC drying machine, the bending test was done and the retention rate was calculated | required compared with the bending strength in which a cycle test was not implemented.
The evaluation results are shown in Table 1 below.
[0031]
[Table 1]
Figure 0004143207
[0032]
The following was found from the evaluation results in Table 1.
{Circle around (1)} Since Comparative Example 1 did not contain fly ash, the rate of dimensional change was large, and cracks occurred during temporary molding. In addition, since the specific gravity is large, the product weight is heavier than that of the example (the lighter is preferable from the viewpoint of workability and the earthquake resistance of the building).
{Circle around (2)} In Comparative Example 2, since the mica used was too fine, the aggregate effect was insufficient, the strength was lower than that of the example, and the dimensional change rate was large.
(3) Comparative Examples 3 and 4 have a problem in moldability before curing and have poor appearance. It seems that the weak adhesion between the layers as compared with the examples also affects the poor frost resistance.
As is apparent from the above, it can be seen that the molded article of the present invention satisfies all of the moldability before curing, dimensional stability, and frost damage resistance in a well-balanced manner.
[0033]
【The invention's effect】
The fiber-reinforced cement molded body of the present invention is a fiber-reinforced cement molded body that is non-asbestos, yet has high strength and high durability, and is easy to form such as a wave shape at the time of manufacture. It brings great utility as an asbestos building material.
[Brief description of the drawings]
FIG. 1 is a diagram showing a production process of a fiber-reinforced cement molded body of the present invention.
FIG. 2 is a diagram showing a part of the manufacturing process of the fiber-reinforced cement molded body of the present invention.

Claims (2)

セメント50〜60重量%、フライアッシュ2530重量%、補強繊維1〜10重量%及び平均粒径30〜100μmでアスペクト比20以上の雲母2〜15重量%を含有する繊維補強セメント成形体。A fiber-reinforced cement molded article containing 50 to 60% by weight of cement, 25 to 30 % by weight of fly ash, 1 to 10% by weight of reinforcing fibers, and 2 to 15% by weight of mica having an average particle size of 30 to 100 μm and an aspect ratio of 20 or more. 更に雲母以外の無機充填材を0〜15重量%含有する請求項1記載の繊維補強セメント成形体。   The fiber-reinforced cement molded article according to claim 1, further comprising 0 to 15% by weight of an inorganic filler other than mica.
JP06653499A 1999-03-12 1999-03-12 Fiber reinforced cement molding Expired - Lifetime JP4143207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06653499A JP4143207B2 (en) 1999-03-12 1999-03-12 Fiber reinforced cement molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06653499A JP4143207B2 (en) 1999-03-12 1999-03-12 Fiber reinforced cement molding

Publications (2)

Publication Number Publication Date
JP2000264707A JP2000264707A (en) 2000-09-26
JP4143207B2 true JP4143207B2 (en) 2008-09-03

Family

ID=13318667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06653499A Expired - Lifetime JP4143207B2 (en) 1999-03-12 1999-03-12 Fiber reinforced cement molding

Country Status (1)

Country Link
JP (1) JP4143207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193269A (en) * 2014-08-27 2014-12-10 成都市容德建筑劳务有限公司 High-strength heat-insulation composite brick
CN108002783A (en) * 2017-12-19 2018-05-08 中山市雅乐思商住电器有限公司 Novel material for reinforcing saline soil foundation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647767B2 (en) * 2000-10-26 2011-03-09 太平洋マテリアル株式会社 Hydraulic composition and its paste, mortar, concrete
JP2002293602A (en) * 2001-03-30 2002-10-09 Kuraray Co Ltd Papermaking process of hydraulic material
CN103011721B (en) * 2012-11-16 2014-10-08 合肥神舟建筑工程有限公司 Modified nano-kieselguhr inorganic thermal-insulation mortar coated with plant ash and preparation method thereof
CN103011719B (en) * 2012-11-16 2014-10-08 合肥神舟建筑工程有限公司 Modified nano-vermiculite powder inorganic thermal-insulation mortar coated with plant ash and preparation method thereof
CN103570315B (en) * 2013-11-01 2016-08-17 中国矿业大学(北京) Three-dimensional steel fiber reinforced flame-resistant concrete material for mines
JP2016037403A (en) * 2014-08-05 2016-03-22 ケイミュー株式会社 Cement molding and method for producing the same
CN106630826A (en) * 2016-12-15 2017-05-10 苏州市世好建材新技术工程有限公司 High-performance mortar for ceramic tile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193269A (en) * 2014-08-27 2014-12-10 成都市容德建筑劳务有限公司 High-strength heat-insulation composite brick
CN104193269B (en) * 2014-08-27 2016-03-23 成都来宝石油设备有限公司 High-strength heat-insulation composite brick
CN108002783A (en) * 2017-12-19 2018-05-08 中山市雅乐思商住电器有限公司 Novel material for reinforcing saline soil foundation

Also Published As

Publication number Publication date
JP2000264707A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
CA1197863A (en) Boards and sheets
US6875503B1 (en) Cementitious product in panel form and manufacturing process
CN101736852B (en) Light decorative plate material with high doping quantity of fly ash
CN111170698B (en) Regenerated glass fiber reinforced plastic anti-crack thermal insulation mortar and preparation and construction methods thereof
CN102503276B (en) Porous perlite sound absorption material
JP4143207B2 (en) Fiber reinforced cement molding
TW201915276A (en) Light weight &amp; high strength non-asbestos corrugated fiber cement roofing sheets manufactured by autoclave method
JP4456688B2 (en) Manufacturing method of fiber reinforced cement molding
CN111620585A (en) Recycling of construction waste brick and concrete prepared from same
RU2617819C2 (en) Gypsum plate and method of its manufacturing
EP3666744A1 (en) Mineral board and production method therefor
JP5079266B2 (en) Method for producing hydraulic composition and humidity control building material
Wang et al. Investigation of the adaptability of paper sludge with wood fiber in cement-based insulation mortar
JP4307703B2 (en) Manufacturing method of humidity control building materials
JP2004217482A (en) Fiber reinforced cement board and its manufacturing method
JP2648257B2 (en) Manufacturing method of fiber reinforced cement board
JP3023054B2 (en) Wood chip cement board and its manufacturing method
JP5091420B2 (en) Ceramic building materials including paint waste and its manufacturing method
Mohammadkazemi et al. Rice husk and old corrugated container cement boards: Performance of nano-SiO2 on strength and dimensional stability
JPH08118330A (en) Production of inorganic panel
CN108790223A (en) A kind of preparation method of sound-insulating haloflex fibrous plate
WO2018065522A1 (en) Methods for comminuting cured fiber cement material
JP4180870B2 (en) Inorganic board and method for producing the same
KR100960955B1 (en) Composite block having clay block with improved water permeability and lightness
CN116476223A (en) Preparation method of composite surface mortar rock wool board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term