JP4142616B2 - Preparation method of surface treatment liquid - Google Patents

Preparation method of surface treatment liquid Download PDF

Info

Publication number
JP4142616B2
JP4142616B2 JP2004206030A JP2004206030A JP4142616B2 JP 4142616 B2 JP4142616 B2 JP 4142616B2 JP 2004206030 A JP2004206030 A JP 2004206030A JP 2004206030 A JP2004206030 A JP 2004206030A JP 4142616 B2 JP4142616 B2 JP 4142616B2
Authority
JP
Japan
Prior art keywords
ions
hexavalent chromium
surface treatment
reducing agent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004206030A
Other languages
Japanese (ja)
Other versions
JP2006028547A (en
Inventor
明生 板東
敏一 関川
亜紀 松村
Original Assignee
株式会社三原産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三原産業 filed Critical 株式会社三原産業
Priority to JP2004206030A priority Critical patent/JP4142616B2/en
Publication of JP2006028547A publication Critical patent/JP2006028547A/en
Application granted granted Critical
Publication of JP4142616B2 publication Critical patent/JP4142616B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、金属系材料(金属、合金、またはめっきより成る材料を示す。前記めっきより成る材料としては、特に亜鉛めっきまたは亜鉛合金めっきが挙げられる。)に対して皮膜を形成するために用いられる表面処理液調製方法に関するものである。 The present invention shows a material made of a metal-based material (metal, alloy, or plating. Examples of the material made of plating include zinc plating and zinc alloy plating). It is related with the preparation method of the surface treatment liquid obtained.

亜鉛めっきまたは亜鉛合金めっき(以下、亜鉛系めっきという。)は、亜鉛の犠牲防食を利用して金属系材料の表面処理方法として広く利用されている。この亜鉛系めっきは良好な防食性を有するが、比較的短期間に皮膜が溶解して耐食性が劣化するという短所を有しており、耐食性が長期間に亘って維持できるように、亜鉛系めっき後にクロメート処理を施すのが一般的である。
クロメート処理には塗布型、反応型および電解型などが知られているが、いずれも6価クロムイオンの還元によるクロメート皮膜の修復を利用して、良好な耐食性を維持しており、クロメート皮膜中には可溶性の6価クロムが含まれる。
Zinc plating or zinc alloy plating (hereinafter referred to as zinc-based plating) is widely used as a surface treatment method for metal-based materials using sacrificial corrosion protection of zinc. This zinc-based plating has good anticorrosion properties, but has the disadvantage that the coating dissolves in a relatively short period of time and the corrosion resistance deteriorates, so that the corrosion resistance can be maintained over a long period of time. Generally, chromate treatment is performed later.
The coating type, reaction type, and electrolytic type are known for chromate treatment, and all of them use the repair of the chromate film by reducing hexavalent chromium ions to maintain good corrosion resistance. Includes soluble hexavalent chromium.

6価クロムは、クロメート皮膜の自己修復性に不可欠なものではあるが、その毒性から自然環境に対する環境汚染を引き起こす可能性を有している。例えば、水質汚濁防止法における環境基準値も0.05ppmと非常に低く定められており、可能な限り6価クロムを皮膜中から排除することが好ましいとされている。また、6価クロムは発ガン性を有するため、人体に関する影響を考えると6価クロムの溶出は少なければ少ない程良い。
これらのことから、従来のクロメート皮膜の有する防錆能を損なうことなく、6価クロムを用いない皮膜形成方法として、3価クロムクロメート法が提案されている。
Hexavalent chromium is indispensable for the self-healing property of the chromate film, but has the potential to cause environmental pollution to the natural environment due to its toxicity. For example, the environmental standard value in the Water Pollution Control Law is also set as very low as 0.05 ppm, and it is considered preferable to eliminate hexavalent chromium from the film as much as possible. Moreover, since hexavalent chromium has carcinogenicity, the smaller the elution of hexavalent chromium, the better.
For these reasons, a trivalent chromium chromate method has been proposed as a film forming method that does not use hexavalent chromium without impairing the rust preventive ability of conventional chromate films.

特許文献1では、フルオロ錯体の配位子置換速度より早いアニオンを有する有機酸をキレート剤として添加した3価クロムクロメート液が提案されている。特許文献1のクロメート液は、6価クロムを用いずに、3価クロムのみから成るクロメート液に用いており、従来の3価クロムクロメート皮膜に比べて良好な防錆能を有する皮膜の形成を可能としている。
特開2004−3019号公報
Patent Document 1 proposes a trivalent chromium chromate solution in which an organic acid having an anion faster than the ligand substitution rate of a fluoro complex is added as a chelating agent. The chromate liquid of Patent Document 1 is used for a chromate liquid composed only of trivalent chromium without using hexavalent chromium, and can form a film having a better rust preventive ability than conventional trivalent chromium chromate films. It is possible.
JP 2004-3019 A

特許文献1の3価クロクロメート液は、建浴時に6価クロムの試薬を添加していない。しかし、3価クロム化合物は添加されており、3価クロム化合物には製薬段階で必ず不純物として6価クロムイオンが混入する。特に、工業用薬品は試験用試薬に比べて不純物を多く含む傾向があり、試験用試薬でも3価クロム化合物には6価クロムイオンが微量に含まれている。従って、特許文献1の3価クロムクロメート液を用いて形成される表面処理皮膜の中にも6価クロムが混入している可能性がある。
表面処理皮膜に含有される6価クロムは水に可溶であることから、水溶性の6価クロムイオンとして膜外に溶出する可能性が高い。6価クロムイオンは自然環境や人体に影響を及ぼす可能性があり、皮膜からの溶出量をより低濃度にしたいというニーズが以前よりあった。
Trivalent chromium chromate solution in Patent Document 1, without the addition of reagents hexavalent chromium during vatting. However, a trivalent chromium compound is added, and hexavalent chromium ions are always mixed in the trivalent chromium compound as impurities at the pharmaceutical stage. In particular, industrial chemicals tend to contain more impurities than test reagents, and even in test reagents, trivalent chromium compounds contain trace amounts of hexavalent chromium ions. Therefore, there is a possibility that hexavalent chromium is also mixed in the surface treatment film formed using the trivalent chromium chromate solution of Patent Document 1.
Since hexavalent chromium contained in the surface treatment film is soluble in water, there is a high possibility of elution out of the film as water-soluble hexavalent chromium ions. Hexavalent chromium ions may affect the natural environment and the human body, and there has been a need for a lower concentration of elution from the film than before.

本発明は、このような問題点を解決し得る表面処理液調整方法を提供することを目的とする。
発明は、建浴段階で6価クロムイオンを3価クロムイオンに還元する還元剤を加えることにより、従来の3価クロムクロメート液の調整方法に比べて6価クロムイオン濃度が低い表面処理液を得ることができる表面処理液の調製方法を提供することを目的とする。
An object of this invention is to provide the adjustment method of the surface treatment liquid which can solve such a problem.
The present invention provides a surface treatment solution having a hexavalent chromium ion concentration lower than that of a conventional method for preparing a trivalent chromium chromate solution by adding a reducing agent that reduces hexavalent chromium ions to trivalent chromium ions in the building bath stage. It is an object of the present invention to provide a method for preparing a surface treatment solution capable of obtaining the above.

前記目的を達成するため、本発明は表面処理液調整方法に対して次の手段を講じた。即ち、
不純物として6価クロムイオンを21.5〜121ppm含む3価クロム化合物の水溶液に、Li、Be、Na、Mg、K、Ca、Al、Si、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Nb、Mo、Pd、Ag、Sn、Ba、Ta、W、Pt、Au、Bi、Ceの各価数の金属イオンまたはアンモニウムイオンから選ばれる1種以上のカチオンと、ハロゲンイオン、硫酸イオン、硝酸イオン、リン酸イオン、カルボン酸イオン、ジカルボン酸イオンまたはオキシカルボン酸イオンから選ばれる1種以上のアニオンとで成る支持塩の添加の前後に分けて、この6価クロムイオンを3価クロムイオンに還元するものであって、重亜硫酸ナトリウム、亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、二酸化硫黄または亜リン酸から選ばれる1種以上の硫黄酸化物またはリン酸化物より成る還元剤を添加して、前記還元剤の添加後に表面処理液の温度を60〜90℃とし、前記還元剤の総添加量が、反応が100%生じたと仮定した場合に理論的に必要とされる6価クロムイオン濃度に対して2.0倍の濃度になるように加えて還元反応を行い、6価クロムイオン濃度を10ppm以下に低減す
これによって、従来の3価クロムクロメート液の調製方法に比べて6価クロムイオン濃度が低い表面処理液を得ることができる。また、他の還元剤を用いた場合に比べて、表面処理液に含まれる6価クロムイオンの濃度を低くすることができる。
In order to achieve the above object, the present invention takes the following means for the method of adjusting the surface treatment liquid. That is,
To an aqueous solution of a trivalent chromium compound containing 21.5 to 121 ppm of hexavalent chromium ions as impurities, Li, Be, Na, Mg, K, Ca, Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu Zn, Sr, Zr, Nb, Mo, Pd, Ag, Sn, Ba, Ta, W, Pt, Au, Bi, Ce one or more cations selected from metal ions or ammonium ions, This hexavalent chromium is divided before and after the addition of a supporting salt composed of one or more anions selected from halogen ions, sulfate ions, nitrate ions, phosphate ions, carboxylate ions, dicarboxylate ions or oxycarboxylate ions. Ions are reduced to trivalent chromium ions, sodium bisulfite, sodium sulfite, sodium metabisulfite, sulfur dioxide or phosphorous acid A reducing agent composed of one or more sulfur oxides or phosphorous oxides selected from the above, the temperature of the surface treatment liquid is set to 60 to 90 ° C. after the addition of the reducing agent, and the total amount of the reducing agent added is When it is assumed that the reaction has occurred 100%, a reduction reaction is carried out by adding 2.0 times the theoretically required hexavalent chromium ion concentration, and the hexavalent chromium ion concentration is 10 ppm or less. This you reduced, it is possible to hexavalent chromium ion concentration compared to the process for the preparation of conventional trivalent chromium chromate solution to obtain a low surface treatment liquid. Moreover, compared with the case where other reducing agents are used, the concentration of hexavalent chromium ions contained in the surface treatment liquid can be lowered.

発明の表面処理液の調整方法により、従来の3価クロムクロメート液の調整方法に比べて6価クロムイオン濃度が低い表面処理液を得ることができる。 By the method for adjusting a surface treatment liquid of the present invention, a surface treatment liquid having a lower hexavalent chromium ion concentration than that of a conventional method for adjusting a trivalent chromium chromate liquid can be obtained.

本発明の表面処理液は、3価クロム化合物が水溶して生じる3価クロムイオンと、この3価クロム化合物の不純物として微量に含まれる6価クロムイオンと、クロム以外の金属を主に含む支持塩とを含む水溶液であり、金属系材料の表面に防食性の高い表面処理皮膜(いわゆるクロメート皮膜)を形成する為に用いられる。
前記金属系材料には鉄鋼材、亜鉛、ニッケル、アルミ、銅、錫などの金属もしくはステンレス、真鍮など合金材料またはこれらの金属材料に施されためっき膜が挙げられる。めっき膜としては、その耐食性を長時間に亘って安定させられるため、特に亜鉛または亜鉛系合金めっき膜の表面に好適に用いられる。
The surface treatment liquid of the present invention is a support mainly containing trivalent chromium ions generated by water-soluble trivalent chromium compounds, hexavalent chromium ions contained in trace amounts as impurities of the trivalent chromium compounds, and metals other than chromium. It is an aqueous solution containing a salt and is used to form a surface treatment film (so-called chromate film) having a high anticorrosion property on the surface of a metal-based material.
Examples of the metallic material include steel materials, metals such as zinc, nickel, aluminum, copper, and tin, alloy materials such as stainless steel and brass, and plating films applied to these metal materials. Since the corrosion resistance of the plating film can be stabilized for a long time, it is particularly suitable for the surface of zinc or zinc-based alloy plating film.

前記3価クロム化合物は、前記表面処理液中に可溶な塩であって、強い鉱酸イオンをアニオンとするクロム化合物であり、特に塩化クロム(III)、硫酸クロム(III)、硝酸クロム(III)が好ましく用いられる。前記3価クロム化合物は、水溶液中で3価クロムイオン濃度が0.1〜20g/l、好ましくは1〜10g/lとなるように添加される。3価クロムイオン濃度を0.1〜20g/lとすることで、前記表面処理皮膜を良好な造膜速度で形成させることができる。
前記6価クロムイオンは、前記3価クロム化合物に不純物として含まれており、3価クロム化合物の水溶液またはこの水溶液を用いて調整された表面処理液にイオン化して存在しており、その濃度はキャピラリー電気泳動法等を用いて測定すると300ppm程度となる。前記6価クロムイオンは、建浴段階で還元剤を加えて6価クロムイオンから3価クロムイオンに還元され、これによって皮膜中に取り込まれる6価クロムイオン量を低減でき、皮膜から溶出する6価クロムイオンが自然環境や人体に及ぼす影響を低減できる。また、前記還元剤を建浴段階で加えることで、酸化力の強い6価クロムイオンを選択的に還元でき、6価クロムイオン濃度を優先的に下げることができる。
The trivalent chromium compound is a salt that is soluble in the surface treatment solution and has strong mineral acid ions as anions. In particular, chromium (III) chloride, chromium (III) sulfate, chromium nitrate ( III) is preferably used. The trivalent chromium compound is added in an aqueous solution so that the trivalent chromium ion concentration is 0.1 to 20 g / l, preferably 1 to 10 g / l. By setting the trivalent chromium ion concentration to 0.1 to 20 g / l, the surface treatment film can be formed at a good film forming speed.
The hexavalent chromium ion is contained as an impurity in the trivalent chromium compound, and is ionized and present in an aqueous solution of the trivalent chromium compound or a surface treatment liquid prepared using the aqueous solution. When measured using capillary electrophoresis or the like, it becomes about 300 ppm. The hexavalent chromium ions are reduced from hexavalent chromium ions to trivalent chromium ions by adding a reducing agent in the building bath stage, whereby the amount of hexavalent chromium ions taken into the film can be reduced and eluted from the film. The effect of valent chromium ions on the natural environment and human body can be reduced. Moreover, by adding the reducing agent at the building bath stage, hexavalent chromium ions having strong oxidizing power can be selectively reduced, and the concentration of hexavalent chromium ions can be reduced preferentially.

前記6価クロムイオンは、建浴段階の還元剤添加により、濃度が20ppm以下、好ましくは10ppm以下に制限される。濃度を20ppm以下に抑えることで、表面処理皮膜中に取り込まれる6価クロムイオン量を従来の3価クロムクロメート方法に比べて低減できる。
前記還元剤は、重亜硫酸ナトリウム、亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、二酸化硫黄、亜リン酸などの硫黄酸化物またはリン酸化物を用いることができ、特に重亜硫酸ナトリウム、亜硫酸ナトリウム、メタ重亜硫酸ナトリウムを好適に用いることができる。重亜硫酸ナトリウム、亜硫酸ナトリウム、メタ重亜硫酸ナトリウムを用いることで、前記表面処理液中に微量(300ppm程度)含まれる6価クロムイオンを3価クロムイオンに高収率で還元することができ、表面処理液中の6価クロムイオン濃度を他の還元剤に比べてより低濃度に低減できる。
The concentration of the hexavalent chromium ion is limited to 20 ppm or less, preferably 10 ppm or less, by the addition of a reducing agent in the building bath stage. By suppressing the concentration to 20 ppm or less, the amount of hexavalent chromium ions taken into the surface treatment film can be reduced as compared with the conventional trivalent chromium chromate method.
The reducing agent may be a sulfur oxide or phosphorous oxide such as sodium bisulfite, sodium sulfite, sodium metabisulfite, sulfur dioxide, phosphorous acid, etc., particularly sodium bisulfite, sodium sulfite, sodium metabisulfite. Can be suitably used. By using sodium bisulfite, sodium sulfite, or sodium metabisulfite, hexavalent chromium ions contained in a small amount (about 300 ppm) in the surface treatment solution can be reduced to trivalent chromium ions in a high yield. The hexavalent chromium ion concentration in the treatment liquid can be reduced to a lower concentration than other reducing agents.

前記支持塩は、主に金属イオンを主とするカチオンと、無機酸や有機酸などの酸が解離して生じたアニオンから構成されており、複数種の支持塩を併用することもできる。
前記カチオンにはLi、Be、Na、Mg、K、Ca、Al、Si、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Nb、Mo、Pd、Ag、Sn、Ba、Ta、W、Pt、Au、BiもしくはCeの各価数の金属イオンまたはアンモニウムイオンから選ばれる1種以上を用いることができ、前記カチオンは全カチオン添加量で100g/l以下、好ましくは50g/l以下の範囲で添加される。なお、前記カチオンは添加された方が好ましいが、前記カチオンを添加しない場合も考えられる。前記カチオンを100g/l以下の範囲で添加することで、下地金属(金属系材料がめっきの場合であって、めっき膜が形成されているベースの金属を示す。)の腐食生成物を安定化したり、皮膜を緻密化することができ、耐食効果の持続性を上げることができる。
The support salt is mainly composed of a cation mainly composed of metal ions and an anion generated by dissociation of an acid such as an inorganic acid or an organic acid, and a plurality of types of support salts can be used in combination.
The cations include Li, Be, Na, Mg, K, Ca, Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Mo, Pd, Ag, Sn, One or more selected from metal ions or ammonium ions of each valence of Ba, Ta, W, Pt, Au, Bi or Ce can be used, and the cation is added in a total cation addition amount of 100 g / l or less, preferably It is added in the range of 50 g / l or less. In addition, although it is more preferable to add the said cation, the case where the said cation is not added is also considered. By adding the cation in the range of 100 g / l or less, the corrosion product of the base metal (in the case where the metal-based material is plating and the base metal on which the plating film is formed) is stabilized. Or the film can be densified, and the durability of the corrosion resistance can be increased.

また、前記アニオンは無機酸イオンまたは有機酸イオンであって、これらの1種以上を全アニオン添加量で300g/l以下、好ましくは100g/l以下の範囲で添加する。
前記無機酸イオンとしては、塩素イオン、フッ素イオン、臭素イオンなどのハロゲンイオン、塩素酸イオン、過塩素酸イオン、亜塩素酸イオン、次亜塩素酸イオン、硫酸イオン、亜硫酸イオン、硝酸イオン、亜硝酸イオン、リン酸イオン(オルトリン酸イオン)、ポリリン酸イオン、メタリン酸イオン、ピロリン酸イオンもしくはウルトラリン酸イオンなどが挙げられ、特にハロゲンイオン、硫酸イオン、硝酸イオンまたはリン酸イオン(オルトリン酸イオン)が好適に用いられる。
The anion is an inorganic acid ion or an organic acid ion, and one or more of these anions are added in a total anion addition amount of 300 g / l or less, preferably 100 g / l or less.
Examples of the inorganic acid ions include halogen ions such as chlorine ions, fluorine ions, bromine ions, chlorate ions, perchlorate ions, chlorite ions, hypochlorite ions, sulfate ions, sulfite ions, nitrate ions, Examples include nitrate ion, phosphate ion (orthophosphate ion), polyphosphate ion, metaphosphate ion, pyrophosphate ion or ultraphosphate ion, especially halogen ion, sulfate ion, nitrate ion or phosphate ion (orthophosphate ion) ) Is preferably used.

また、有機酸イオンとしては、酢酸イオンなどのモノカルボン酸イオン、酒石酸イオンなどのジカルボン酸イオン、トリカルボン酸イオン、ヒドロキシカルボン酸イオンが上げられ、特にシュウ酸イオン、マロン酸イオン、コハク酸イオン、グルタル酸イオン、アジピン酸イオン、ピメリン酸イオン、スベリン酸イオン、アゼライン酸イオン、セバシン酸イオン、マレイン酸イオン、フタル酸イオン、テレフタル酸イオン、酒石酸イオン、クエン酸イオン、リンゴ酸イオン、アスコルビン酸イオンなどを好適に用いることができる。
これらの支持塩は配位子(リガンド)として機能して水溶液中のクロムイオンと錯体を形成し、材料表面への3価クロムの反応性を高める効果を有している。
Examples of organic acid ions include monocarboxylic acid ions such as acetate ions, dicarboxylic acid ions such as tartrate ions, tricarboxylic acid ions, and hydroxycarboxylic acid ions. Particularly, oxalate ions, malonate ions, succinate ions, Glutarate ion, adipate ion, pimelate ion, suberate ion, azelate ion, sebacate ion, maleate ion, phthalate ion, terephthalate ion, tartaric acid ion, citrate ion, malate ion, ascorbate ion Etc. can be used suitably.
These supporting salts function as a ligand (ligand) to form a complex with chromium ions in an aqueous solution, and have an effect of increasing the reactivity of trivalent chromium on the material surface.

本発明の表面処理液は、表面処理時に希釈または混合し、濃度調整を行って使用することもできる。希釈または混合を行うことにより、液の安定性が向上し長期保存が可能となり、軽量化による輸送コストの低減や低容積化による保管スペースの削減も可能となる。
本発明の表面処理液を用いた表面処理方法は、図1に示すように、前処理工程で前記金属系材料の被処理物の表面に洗浄または感受性化などを行い、調製工程でそれぞれの薬品を調合して表面処理液を所定の液組成、pH、浴温に設定し、化成工程で前記表面処理液を用いて表面処理皮膜を形成させ、次いで洗浄や乾燥を行って表面処理皮膜を得るものである。
The surface treatment liquid of the present invention can be used by diluting or mixing at the time of surface treatment and adjusting the concentration. By diluting or mixing, the stability of the liquid is improved and long-term storage is possible, and the transportation cost can be reduced by weight reduction and the storage space can be reduced by reducing the volume.
As shown in FIG. 1, the surface treatment method using the surface treatment liquid of the present invention cleans or sensitizes the surface of the metal-based material to be treated in the pretreatment step, and each chemical in the preparation step. The surface treatment liquid is set to a predetermined liquid composition, pH, and bath temperature, a surface treatment film is formed using the surface treatment liquid in the chemical conversion step, and then the surface treatment film is obtained by washing and drying. Is.

前記前処理工程は、水洗、酸洗浄処理、加熱処理、フラッシュ処理、活性化処理から構成される工程であり、被処理物の表面状態や材質に合わせてこれらの処理を組み合わせて用いることができる。
前記酸洗浄処理は、硝酸、塩酸、硫酸、リン酸もしくはカルボン酸またはこれらの酸を組み合わした処理液を用いて、被処理物の表面に付着するコンタミなどの汚れや油脂などを取り除く処理であり、表面清浄度の低い被処理物に用いるのが好ましく、また前記加熱処理は、金属系材料やめっき膜に含まれる水素ガスなどのガス成分を取り除く工程であり、特にめっき膜を有する被処理物に用いるのが好ましい。
The pretreatment step is a step composed of water washing, acid washing treatment, heat treatment, flash treatment, and activation treatment, and these treatments can be used in combination according to the surface state and material of the object to be treated. .
The acid cleaning treatment is a treatment for removing dirt such as contaminants and oils and fats adhering to the surface of an object to be treated using a treatment liquid in which nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid or carboxylic acid or a combination of these acids is combined. The heat treatment is preferably a process for removing a gas component such as hydrogen gas contained in a metal-based material or a plating film, and particularly the object to be processed having a plating film. It is preferable to use for.

さらに、前記フラッシュ処理はアルカリ系溶液による洗浄処理であって、下地との密着性を向上させるために行われ、前記活性化処理は硝酸、塩酸、硫酸、リン酸もしくはカルボン酸またはこれらの酸を組み合わした処理液を用いて、被処理物の表面に形成される金属酸化物などを取り除き、表面処理皮膜の良好な形成を促すと共に、良好な密着性を得るために行われる。
前記前処理工程は、被処理物の表面状態や材質によって施す処理の組み合わせを変更できる。例えば、表面に加工油やコンタミなどを有さない清浄表面を有する被処理物は、水洗のみでも良いが、アルミなどの不働態が生じやすい被処理物に対しては前記活性化処理を施すのが好ましい。
Further, the flash treatment is a washing treatment with an alkaline solution, and is performed to improve the adhesion with the base, and the activation treatment is performed with nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid or carboxylic acid or these acids. Using the combined treatment liquid, metal oxides and the like formed on the surface of the object to be treated are removed to promote good formation of the surface treatment film and to obtain good adhesion.
In the pretreatment step, a combination of treatments to be performed can be changed depending on the surface state and material of the workpiece. For example, an object to be processed having a clean surface that does not have processing oil or contamination on the surface may be washed only with water, but the activation treatment is applied to an object to be processed such as aluminum that is likely to be in a passive state. Is preferred.

本発明の表面処理液の調整方法は、前記調製工程の建浴段階において、前記3価クロム化合物が解離して生じる3価クロムイオンと6価クロムイオンとを含む3価クロム化合物の水溶液に、溶存している6価クロムイオンを3価クロムイオンに還元する前記還元剤を添加し、溶存する6価クロムイオン濃度を下げるものであり、次いで行われる支持塩添加やpH、浴温の調整を含めた調製工程の一部である。
前記表面処理液の調整方法には、前記還元剤の還元反応が用いられており、この還元反応は発熱反応であるため、反応率向上をするために前記3価クロム化合物の水溶液に冷却を加えながら還元させるのが好ましいが、低温過ぎると反応収率が低下するため、還元剤を添加した浴温は60〜90℃にするのが好ましい。浴温を60〜90℃に維持することで、効率よく6価クロムイオン濃度を下げることが可能となる。
In the preparation method of the surface treatment liquid of the present invention, an aqueous solution of a trivalent chromium compound containing trivalent chromium ions and hexavalent chromium ions generated by dissociation of the trivalent chromium compound in the preparation bath stage of the preparation step, The reducing agent that reduces dissolved hexavalent chromium ions to trivalent chromium ions is added to lower the concentration of dissolved hexavalent chromium ions, and then the addition of supporting salt and adjustment of pH and bath temperature are performed. Part of the preparation process included.
In the method for preparing the surface treatment liquid, a reduction reaction of the reducing agent is used. Since this reduction reaction is an exothermic reaction, cooling is performed on the aqueous solution of the trivalent chromium compound in order to improve the reaction rate. However, since the reaction yield decreases when the temperature is too low, the bath temperature to which the reducing agent is added is preferably 60 to 90 ° C. By maintaining the bath temperature at 60 to 90 ° C., it is possible to efficiently reduce the hexavalent chromium ion concentration.

また、前記還元剤は反応が100%生じたと仮定した場合、理論的に必要とされる6価クロムイオン濃度に対して、還元剤を1.0〜2.0倍の濃度になるように加えるのが好ましい。還元剤を1.0〜2.0倍の濃度になるように加えることで、使用する還元剤を最小限に留めることが可能となり、未反応の6価クロムの濃度を下げることができるようになる。
さらに、前記還元剤は急激な発熱を避けるため一度に多量添加せず、少量を連続的に加え、発熱量と冷却による吸熱量との均衡を取るように還元剤を添加するのが好ましいが、還元剤の添加に時間をかけすぎると生産性が悪化するため、前記支持塩の添加の前後に分けてそれぞれ還元剤を添加するのが好ましい。このように還元剤を分けて添加することで、発熱による反応速度低下を防止でき、支持塩に含まれる可能性のある6価クロムイオンをも還元して低濃度化できる。
Further, when it is assumed that the reaction has occurred 100%, the reducing agent is added so that the concentration of the reducing agent is 1.0 to 2.0 times the theoretically required hexavalent chromium ion concentration. Is preferred. By adding the reducing agent to a concentration of 1.0 to 2.0 times, it is possible to minimize the reducing agent to be used, and to reduce the concentration of unreacted hexavalent chromium. Become.
Furthermore, it is preferable not to add a large amount of the reducing agent at a time in order to avoid sudden heat generation, but to add a small amount continuously, and to add a reducing agent so as to balance the heat generation amount and the heat absorption amount by cooling, If too much time is added to the addition of the reducing agent, the productivity deteriorates. Therefore, it is preferable to add the reducing agent separately before and after the addition of the supporting salt. By adding the reducing agent separately in this way, it is possible to prevent a decrease in the reaction rate due to heat generation, and it is possible to reduce hexavalent chromium ions that may be contained in the supporting salt and reduce the concentration.

次いで、前記支持塩を3価クロム化合物の水溶液に添加し、pH0.5〜5.0、好ましくは1.5〜3.5の酸性になるように塩酸、硝酸、硫酸などの無機酸もしくは酢酸などの有機酸またはこれらの塩を適宜加えて調整し、浴温10〜70℃、好ましくは20〜50℃として表面処理液を得る。
前記化成工程は、被処理物に表面処理皮膜を造膜させる工程であり、被処理物を5〜120秒、好ましくは10〜90秒浸漬して、表面処理皮膜を形成する。
なお、表面処理皮膜を形成させた後に、前記表面処理皮膜上にシリコンまたはシリコン系樹脂を含む液体組成物を塗布したり、ポリテトラフルオロエチレンなどの微粒子を含む樹脂、ワックスまたはこれらの樹脂を含むコート剤などの液体組成物を塗布して、表面に耐摩耗性や撥水性を有する表面保護皮膜を形成しても良い。また顔料または染料を塗布して、着色したり、耐食性をさらに向上させても良い。これによって、装飾性や耐摩耗性を有する保護皮膜を得ることができる。
Next, the supporting salt is added to an aqueous solution of a trivalent chromium compound, and an inorganic acid or acetic acid such as hydrochloric acid, nitric acid, sulfuric acid or the like is used so that the pH becomes 0.5 to 5.0, preferably 1.5 to 3.5. A surface treatment solution is obtained by appropriately adding an organic acid or a salt thereof such as a bath temperature of 10 to 70 ° C., preferably 20 to 50 ° C.
The chemical conversion step is a step of forming a surface treatment film on the object to be treated. The surface treatment film is formed by immersing the object to be treated for 5 to 120 seconds, preferably 10 to 90 seconds.
In addition, after forming the surface treatment film, a liquid composition containing silicon or a silicon-based resin is applied on the surface treatment film, or a resin containing a fine particle such as polytetrafluoroethylene, wax, or these resins are included. A liquid composition such as a coating agent may be applied to form a surface protective film having wear resistance and water repellency on the surface. Further, a pigment or a dye may be applied to be colored or the corrosion resistance may be further improved. As a result, a protective film having decorativeness and wear resistance can be obtained.

前記保護皮膜は、前記表面処理皮膜、または表面処理皮膜とその表面に形成された表面保護皮膜とから成っており、前記表面処理皮膜は3価クロム化合物が水溶して生じる3価クロムイオンと、支持塩と、前記3価クロム化合物に不純物として含まれる6価クロムイオンと、この6価クロムイオンを3価クロムイオンに還元する還元剤とを含む表面処理液に金属系材料の表面を接触させることで形成されている。
前記表面処理皮膜は、前記表面処理液を用いて化成工程で造膜することで、皮膜の総重量に対して含有される6価クロムの濃度が0.2ppm以下に抑えられ、溶出する6価クロムイオン濃度を低濃度にすることができ、人体や自然環境への負担を軽減できる。
The protective film is composed of the surface-treated film, or a surface-treated film and a surface protective film formed on the surface, and the surface-treated film is formed by trivalent chromium ions generated by water-soluble trivalent chromium compounds; The surface of the metallic material is brought into contact with a surface treatment solution containing a supporting salt, hexavalent chromium ions contained as impurities in the trivalent chromium compound, and a reducing agent that reduces the hexavalent chromium ions to trivalent chromium ions. It is formed by that.
The surface treatment film is formed in the chemical conversion step using the surface treatment solution, so that the concentration of hexavalent chromium contained in the total weight of the film is suppressed to 0.2 ppm or less, and the hexavalent that is eluted. The chromium ion concentration can be lowered, and the burden on the human body and the natural environment can be reduced.

また、前記表面処理皮膜は、前記表面処理液を用いることで皮膜中に含まれる6価クロムの濃度分布にばらつきが生じず、皮膜中での6価クロムの濃度分布が深さ方向に垂直ないずれの面分布に対しても0.2μg/cm2以下の面濃度を有する均一な皮膜が得られる。これによって、溶出する6価クロムイオン濃度を安定して低濃度を維持することができる。
本発明を実施例および比較例により更に詳細に説明するが、本発明の内容は実施例に限られるものではない。
Further, the surface treatment film does not vary in the concentration distribution of hexavalent chromium contained in the film by using the surface treatment solution, and the concentration distribution of hexavalent chromium in the film is perpendicular to the depth direction. A uniform film having a surface concentration of 0.2 μg / cm 2 or less can be obtained for any surface distribution. Thereby, the hexavalent chromium ion concentration to elute can be stably maintained at a low concentration.
The present invention will be described in more detail with reference to examples and comparative examples, but the contents of the present invention are not limited to the examples.

本発明の表面処理液の調整方法が表面処理液中の6価クロムイオン濃度の低減に及ぼす効果を示すために、表1に示すように、3価クロム化合物、支持塩、染料、安定剤などが異なる7種類の表面処理液を、還元剤を添加せずに調製すると共に、前記7種類の表面処理液と同組成でありながら、還元剤添加による調製は実施している7種類の表面処理液も用意した。得られた表面処理液の溶存6価クロムイオン濃度を分析して、液組成が異なるそれぞれ表面処理液において、本発明の調整方法が6価クロムイオン濃度をどの程度低減するかを分析した。なお、6価クロムイオン濃度の分析は、3価クロムイオンを沈殿濾過して取り除いた濾液をキャピラリー電気泳動法、ICPまたはジフェニルカルバジド等を用いた吸光光度法で測定して行った。また、表1の調製に用いられる試薬は全て3価クロムの化合物の試薬である。   In order to show the effect of the preparation method of the surface treatment liquid of the present invention on the reduction of the hexavalent chromium ion concentration in the surface treatment liquid, as shown in Table 1, a trivalent chromium compound, a supporting salt, a dye, a stabilizer, etc. 7 types of surface treatment liquids that are prepared without adding a reducing agent, and 7 types of surface treatments that have the same composition as the 7 types of surface treatment liquids but are prepared by addition of a reducing agent A liquid was also prepared. The dissolved hexavalent chromium ion concentration of the obtained surface treatment liquid was analyzed, and to what extent the adjustment method of the present invention reduced the hexavalent chromium ion concentration in each surface treatment liquid having different liquid compositions. The hexavalent chromium ion concentration was analyzed by measuring the filtrate from which trivalent chromium ions were removed by precipitation filtration by capillary electrophoresis, absorptiometry using ICP, diphenylcarbazide or the like. The reagents used in the preparation of Table 1 are all trivalent chromium compound reagents.

Figure 0004142616
Figure 0004142616

液組成No.1〜7と、液組成No.8〜14を比較すると、還元剤の添加を調製段階で実施することにより、3価クロムイオンの濃度の低下に比べて、6価クロムイオン濃度の低下は大きく、選択的に6価クロムイオンが3価クロムイオンに還元されていることが分かる。また、支持塩などを添加していない液組成No.1〜4およびNo.8〜11と、支持塩などを添加している液組成No.5〜7およびNo.12〜14とを比べると、どちらも6価クロムイオン濃度が同様に低減しており、支持塩を添加しても還元剤の調製段階での添加による6価クロムイオン低減効果は阻害されないことが分かる。   Liquid composition No. 1-7 and liquid composition No.1. Comparing 8-14, the reduction of the hexavalent chromium ion concentration is larger than the reduction of the trivalent chromium ion concentration by adding the reducing agent at the preparation stage. It turns out that it is reduce | restored to trivalent chromium ion. Moreover, liquid composition No. to which no supporting salt or the like is added. 1-4 and No.1. No. 8-11 and liquid composition No. to which supporting salt etc. are added. 5-7 and no. Compared with 12-14, both have reduced hexavalent chromium ion concentration, and even if the supporting salt is added, the effect of reducing hexavalent chromium ions by the addition in the reducing agent preparation stage is not hindered. I understand.

次に、A〜Jの基本液組成に基づき、調製段階での還元剤添加を行ったものを表2に実施例1〜10として、調製段階での還元剤添加を行っていないものを表3に比較例1〜10として示した。また、表2は還元剤として重亜酸ナトリウムを用いたものを実施例1〜10として示している。なお、前記基本液組成は、3価クロム化合物や支持塩の種類を変えて調整しており、表面処理液中で得られる錯イオンなどが異なるように調整されている。
また、これらの液組成を有する表面処理液を用いて、亜鉛めっき品を被処理品として表2および表3に示す各処理条件で皮膜を形成し、この皮膜の耐食性、外観、皮膜含有の6価クロム濃度を測定して、性能評価を行った。なお、耐食性はJISに規定されるSST(塩水噴霧)試験において白色の腐食生成物が最初に生じるまでの時間である。また、皮膜中の6価クロム濃度は前記濾液のICP等を用いて求めた。
Next, based on the basic liquid composition of A to J, those in which the reducing agent was added in the preparation stage are shown in Table 2 as Examples 1 to 10, and those in which the reducing agent was not added in the preparation stage are shown in Table 3. Are shown as Comparative Examples 1-10. Further, Table 2 shows that using a sodium nitrite sulfate as the reducing agent as Examples 1-10. The basic liquid composition is adjusted by changing the kind of the trivalent chromium compound and the supporting salt, and is adjusted so that complex ions obtained in the surface treatment liquid are different.
Moreover, using the surface treatment liquid having these liquid compositions, a film was formed under the various treatment conditions shown in Tables 2 and 3 with the galvanized product as the product to be treated. The valence chromium concentration was measured to evaluate the performance. Incidentally, the corrosion resistance is the time until a white corrosion product is first formed in an SST (salt spray) test specified in JIS. The hexavalent chromium concentration in the film was determined using ICP of the filtrate.

Figure 0004142616
Figure 0004142616

Figure 0004142616
Figure 0004142616

実施例1は基本液組成Aに重亜硫酸ナトリウムを加えて還元処理を行ったものであり、同様に基本液組成Aを用いた比較例1に比べて、6価クロム濃度が32.5ppmから5.5ppmに低減している。pHを2.2、浴温を30℃とした表面処理液に20秒浸漬して皮膜形成を行った結果、皮膜の外観および耐食性は比較例1と同等であるが、皮膜中の6価クロム濃度は0.220ppmから0.045ppmまで低減している。   In Example 1, sodium bisulfite was added to the basic liquid composition A for reduction treatment. Similarly, compared with Comparative Example 1 using the basic liquid composition A, the hexavalent chromium concentration was 32.5 ppm to 5%. Reduced to 5 ppm. As a result of film formation by immersing in a surface treatment solution having a pH of 2.2 and a bath temperature of 30 ° C. for 20 seconds, the appearance and corrosion resistance of the film are the same as in Comparative Example 1, but hexavalent chromium in the film The concentration is reduced from 0.220 ppm to 0.045 ppm.

実施例2〜10は基本液組成B〜Jに重亜硫酸ナトリウムを加えて還元処理を行ったものであり、同様な液組成を用いた比較例2〜10に比べて、それぞれ6価クロム濃度が大幅に低減されている。皮膜形成を行った結果は、外観および耐食性は比較例2〜10と同等であるが、皮膜中の6価クロム濃度は低減している。
前記実施例1〜10と比較例1〜10を比較すると、還元剤を調成段階で加えた各実施例は、外観や耐食性を損なわずに、表面処理液中の6価クロムイオン濃度を低減でき、形成された皮膜に取り込まれる6価クロム濃度を低減できることが分かる。
In Examples 2 to 10, sodium bisulfite was added to the basic liquid compositions B to J for reduction treatment. Compared to Comparative Examples 2 to 10 using the same liquid composition, the hexavalent chromium concentrations were respectively lower. It is greatly reduced. As a result of film formation, the appearance and corrosion resistance are equivalent to those of Comparative Examples 2 to 10, but the hexavalent chromium concentration in the film is reduced.
When comparing Examples 1 to 10 and Comparative Examples 1 to 10, each example in which a reducing agent was added at the preparation stage reduced the hexavalent chromium ion concentration in the surface treatment solution without losing the appearance and corrosion resistance. It can be seen that the hexavalent chromium concentration taken into the formed film can be reduced.

比較例Comparative example

較例1〜10は、基本液組成A〜Jを還元処理なしに調製して表面処理液に用いたものであり、実施例1〜10と比べると耐食性や外観は同等であるが、表面処理液中の6価クロム濃度および皮膜中の6価クロム濃度が高い。 The ratio Comparative Examples 1 to 10 are those used in the surface treatment liquid to prepare a basic liquid composition A~J without reduction, although the corrosion resistance and appearance as compared with Examples 1 to 10 equivalent, surface The hexavalent chromium concentration in the treatment liquid and the hexavalent chromium concentration in the film are high.

本発明の表面処理工程を示すブロック図である。It is a block diagram which shows the surface treatment process of this invention.

Claims (1)

不純物として6価クロムイオンを21.5〜121ppm含む3価クロム化合物の水溶液に、Li、Be、Na、Mg、K、Ca、Al、Si、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Sr、Zr、Nb、Mo、Pd、Ag、Sn、Ba、Ta、W、Pt、Au、Bi、Ceの各価数の金属イオンまたはアンモニウムイオンから選ばれる1種以上のカチオンと、ハロゲンイオン、硫酸イオン、硝酸イオン、リン酸イオン、カルボン酸イオン、ジカルボン酸イオンまたはオキシカルボン酸イオンから選ばれる1種以上のアニオンとで成る支持塩の添加の前後に分けて、この6価クロムイオンを3価クロムイオンに還元するものであって、重亜硫酸ナトリウム、亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、二酸化硫黄または亜リン酸から選ばれる1種以上の硫黄酸化物またはリン酸化物より成る還元剤を添加して、前記還元剤の添加後に表面処理液の温度を60〜90℃とし、前記還元剤の総添加量が、反応が100%生じたと仮定した場合に理論的に必要とされる6価クロムイオン濃度に対して2.0倍の濃度になるように加えて還元反応を行い、6価クロムイオン濃度を10ppm以下に低減することを特徴とする表面処理液の調製方法。 To an aqueous solution of a trivalent chromium compound containing 21.5 to 121 ppm of hexavalent chromium ions as impurities, Li, Be, Na, Mg, K, Ca, Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu Zn, Sr, Zr, Nb, Mo, Pd, Ag, Sn, Ba, Ta, W, Pt, Au, Bi, Ce one or more cations selected from metal ions or ammonium ions, This hexavalent chromium is divided before and after the addition of a supporting salt composed of one or more anions selected from halogen ions, sulfate ions, nitrate ions, phosphate ions, carboxylate ions, dicarboxylate ions or oxycarboxylate ions. Ions are reduced to trivalent chromium ions, sodium bisulfite, sodium sulfite, sodium metabisulfite, sulfur dioxide or phosphorous acid A reducing agent composed of one or more sulfur oxides or phosphorous oxides selected from the above, the temperature of the surface treatment liquid is set to 60 to 90 ° C. after the addition of the reducing agent, and the total amount of the reducing agent added is When it is assumed that the reaction has occurred 100%, a reduction reaction is carried out by adding 2.0 times the theoretically required hexavalent chromium ion concentration, and the hexavalent chromium ion concentration is 10 ppm or less. process for the preparation of the surface treatment liquid to reduce to said Rukoto to.
JP2004206030A 2004-07-13 2004-07-13 Preparation method of surface treatment liquid Active JP4142616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206030A JP4142616B2 (en) 2004-07-13 2004-07-13 Preparation method of surface treatment liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206030A JP4142616B2 (en) 2004-07-13 2004-07-13 Preparation method of surface treatment liquid

Publications (2)

Publication Number Publication Date
JP2006028547A JP2006028547A (en) 2006-02-02
JP4142616B2 true JP4142616B2 (en) 2008-09-03

Family

ID=35895256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206030A Active JP4142616B2 (en) 2004-07-13 2004-07-13 Preparation method of surface treatment liquid

Country Status (1)

Country Link
JP (1) JP4142616B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029953A1 (en) 2006-09-07 2008-03-13 Nippon Steel Corporation AQUEOUS TREATMENT LIQUID FOR Sn-PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND COATING ADHESION, AND METHOD FOR PRODUCING SURFACE-TREATED STEEL SHEET
JP5914949B2 (en) * 2007-08-03 2016-05-11 ディップソール株式会社 Trivalent chromium corrosion-resistant chemical conversion coating and trivalent chromium chemical conversion treatment solution
JP4568863B2 (en) * 2007-09-03 2010-10-27 ユケン工業株式会社 Composition for chemical conversion treatment and member having chemical conversion film formed by the treatment
WO2010087442A1 (en) 2009-01-30 2010-08-05 ユケン工業株式会社 Composition for chemical conversion coating, and member equipped with chemical conversion coating film comprising the composition
JP5470286B2 (en) * 2011-01-24 2014-04-16 京セラドキュメントソリューションズ株式会社 Developing device and image forming apparatus
JP5880510B2 (en) * 2013-09-27 2016-03-09 豊田合成株式会社 Regeneration apparatus for trivalent chromium plating solution, trivalent chromium plating system equipped with the regeneration apparatus, and method for regenerating trivalent chromium plating solution

Also Published As

Publication number Publication date
JP2006028547A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US3986970A (en) Solution for chemical dissolution treatment of tin or alloys thereof
US6773516B2 (en) Process and solution for providing a conversion coating on a metallic surface I
KR102258540B1 (en) Electrolytic passivation method thereof for increasing the corrosion resistance of outermost chromium or outermost chromium alloy layers
US20090032145A1 (en) Method of forming a multilayer, corrosion-resistant finish
JP5279811B2 (en) Agent that forms an anti-corrosion layer on metal surfaces
JP2010509499A (en) Zirconium / titanium-containing phosphoric acid solution for passivation of metal composite surfaces
JP4429214B2 (en) Surface treatment liquid and method for forming chemical conversion film
US5873953A (en) Non-chromated oxide coating for aluminum substrates
JP2009525398A (en) Aqueous reaction solution and method for passivating workpieces with zinc or zinc alloy surfaces
JP2006274321A (en) Surface treatment film
DE60015229T2 (en) Process for pickling stainless steels without nitric acid and in the presence of chloride ions
JP4142616B2 (en) Preparation method of surface treatment liquid
JP4233565B2 (en) Method for coating a metal surface
JP6910543B2 (en) A surface treatment agent, an aluminum or aluminum alloy material having a surface treatment film, and a method for manufacturing the same.
JP2014159627A (en) Acidic composition for reaction-type chemical conversion treatment, and manufacturing method of member having chemical conversion coating on the surface
KR102492021B1 (en) Method of increasing corrosion resistance of a substrate comprising an outermost chromium alloy layer
JP2005126796A (en) Method of forming hexavalent chromium-free corrosion resistant film on zinc-nickel alloy plating, and activation liquid for zinc-nickel alloy plating used for the method
JP4436885B1 (en) Chemical conversion treatment liquid and chemical film forming method
US6168674B1 (en) Process of phosphatizing metal surfaces
JP6501280B2 (en) Chromium plating solution, electroplating method and manufacturing method of chromium plating solution
US20210032757A1 (en) Method for passivating metallic substances
WO2023119827A1 (en) Chemical treatment liquid and method for chemical treatment of target metal material
JP2005146411A (en) Surface treatment agent for electroless nickel plating film, protective film, product having the protective film, and their production method
WO2023119826A1 (en) Chemical treatment liquid and method for chemical treatment of target metal material
AU773837B2 (en) Process and solution for providing a conversion coating on metallic surface

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250