JP4141262B2 - Differential amplifier - Google Patents

Differential amplifier Download PDF

Info

Publication number
JP4141262B2
JP4141262B2 JP2003009112A JP2003009112A JP4141262B2 JP 4141262 B2 JP4141262 B2 JP 4141262B2 JP 2003009112 A JP2003009112 A JP 2003009112A JP 2003009112 A JP2003009112 A JP 2003009112A JP 4141262 B2 JP4141262 B2 JP 4141262B2
Authority
JP
Japan
Prior art keywords
input stage
differential input
electrode
constant current
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003009112A
Other languages
Japanese (ja)
Other versions
JP2004222104A (en
Inventor
宰 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2003009112A priority Critical patent/JP4141262B2/en
Publication of JP2004222104A publication Critical patent/JP2004222104A/en
Application granted granted Critical
Publication of JP4141262B2 publication Critical patent/JP4141262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は差動増幅器に関し、特に駆動能力を高めた差動増幅器に関する。
【0002】
【従来の技術】
増幅器は電源から供給される電力により増幅素子を駆動して入力信号を増幅し出力するもので、抵抗負荷の場合、出力信号の最大振幅は電源電圧と増幅素子の内部抵抗などによって制限され、図3実線で示すように出力信号Sは電源電圧Vddと接地電圧Vssの中間の電圧範囲Vmax〜Vminで波形を描く。一方、電池駆動される可搬型電子回路機器、例えば携帯電話などでは低い電源電圧で大電力動作させ電源の利用効率を高めるため出力信号の最大振幅を可及的に電源電圧に近づけるようにしている。増幅器の電力利用効率は((Vmax−Vmin)/(Vdd−Vss))で表され、仮にVddを5V、Vssを0Vとし、出力信号SのVmaxが4.6V、Vminが0.3Vであるとき電力利用効率は約74%であるが、図示点線で示すように最大振幅を拡大し、Vmaxを4.8V、Vminを0.1Vとし振幅を0.4V拡大するだけで電力利用効率は約88%となり約14%改善でき、電池駆動機器を長時間動作させることができる。
【0003】
そのような増幅器の一例を図4に示す。図において、1A、1Bは一対の一導電型(nチャンネル)MOSFETで、各制御電極(ゲート電極)は一対の入力端子2A、2Bに接続され、接地側主電極(ソース電極)は共通接続されて、nチャンネルMOSFET3を介して接地ライン4に接続されて、第1の差動入力段5を構成している。6A、6Bは一対の他導電型(pチャンネル)MOSFETで、各制御電極(ゲート電極)は一対の入力端子2A、2Bに接続され、電源側主電極(ソース電極)は共通接続されて、pチャンネルMOSFET7を介して電源ライン8に接続され、第2の差動入力段9を構成している。10は電源ライン8と接地ライン4の間に接続された第1の定電流回路で、2つの定電流源11、12間にバイアス素子、図示例では抵抗13を直列接続している。14は第1の定電流回路10と同様に電源ライン8と接地ライン4の間に接続された第2の定電流回路で、2つの定電流源15、16間にバイアス素子としての抵抗17を直列接続している。第1の差動入力段5の一方のMOSFET1Aの他の主電極(ドレイン電極)は第1の定電流回路10の定電流源11と抵抗13の接続点に、第1の差動入力段5の他のMOSFET1Bの他の主電極(ドレイン電極)は第2の定電流回路14の定電流源15と抵抗17の接続点にそれぞれ接続され、第2の差動入力段9の一方のMOSFET6Aの他の主電極(ドレイン電極)は第1の定電流回路10の定電流源12と抵抗13の接続点に、第2の差動入力段9の他のMOSFET6Bの他の主電極(ドレイン電極)は第2の定電流回路14の定電流源16と抵抗17の接続点にそれぞれ接続されている。18はpチャンネルMOSFET19とnチャンネルMOSFET20を相補接続した出力段で、pチャンネルMOSFETのソース電極は電源ライン8に接続され、そのドレイン電極はnチャンネルMOSFET20のドレイン電極に共通接続されて、さらに出力端子21に接続され、nチャンネルMOSFET20のソース電極は接地ライン4に接続されている。また各MOSFET19、20の制御電極(ゲート電極)は第2の定電流回路14の抵抗17の両端に接続されている。これに類似した差動増幅器は例えば特許文献1や特許文献2に開示されている。
【0004】
この増幅器は共通の一対の入力端子2A、2Bに相補的に動作するnチャンネルとpチャンネルの各一対のMOSFET1A、1Bと6A、6Bによって出力段18のバイアスを制御する。例えば入力端子2Aの入力信号レベルが低下すると、第1の差動入力段5の一方のnチャンネルMOSFET1Aのドレイン電圧は上昇し、他のMOSFET1Bのドレイン電圧は低下する。同時に第2の差動入力段9の一方のpチャンネルMOSFET6Aのドレイン電圧は上昇し、他のMOSFET6Bのドレイン電圧は低下する。
【0005】
第1差動入力段5の他のMOSFET1Bのドレイン電極と第2の差動入力段9の他のMOSFET6Bのドレイン電極はそれぞれ定電流回路14の抵抗17の両端に接続されており、抵抗17の端子間電圧を保った状態で抵抗17の両端の電圧を同時に変化させて出力段18の電源ライン8に接続されたpチャンネルMOSFET19及び接地ライン4に接続されたnチャンネルMOSFET20を制御することができる。
【0006】
入力端子2Aの入力信号レベルが増大する場合は、上記とは逆に、抵抗17の端子間電圧を保った状態で抵抗17の両端の電圧を同時に引き上げ、出力段18の電源ライン8に接続されたpチャンネルMOSFET19の遮断性を高め、接地ライン4に接続されたnチャンネルMOSFET20の導通性を高めることができる。このようにして図4に示す増幅器は図3にて出力信号Sの最大振幅を図示実線状態から図示点線状態に拡大でき電源の利用効率を高めることができる。
【0007】
【特許文献1】
特開平6−326529号公報(第4〜6頁、図1)
【特許文献2】
特開平7−15249号公報(第3〜4頁、図3)
【0008】
【発明が解決しようとする課題】
ところで、図4に示す差動増幅器は、入力信号レベルが電源電圧の高電圧側の電圧Vddに近づくと第2の差動入力段9のpチャンネルMOSFET6A、6Bがカットオフし、入力信号レベルが低電圧側のゼロ又は負の電圧Vssに近づくと第1の差動入力段5のnチャンネルMOSFET1A、1Bがカットオフする。そのため入力端子2Aからみた相互コンダクタンスgmは、図5に示すように横軸を入力信号レベル(電圧)、縦軸を相互コンダクタンス(電流/電圧)とすると、nチャンネルMOSFET1Aを用いた第1の差動入力段5は、入力信号レベルを低電圧(0V)から高電圧(例えば9V)に向かって電圧変化させると、その相互コンダクタンスgm(n)は低電圧側ではゼロで、1V前後で急上昇し、1Vをわずかに超えた部分から高電圧側にむかって単調減少する。
【0009】
またpチャンネルMOSFET1Aを用いた第2の差動入力段9は、入力信号レベルを高電圧(9V)から低電圧(0V)に向かって変化させると、その相互コンダクタンスgm(p)は高電圧(9V)側ではゼロで、8V前後で急上昇し、8Vをわずかに下回った電圧から低電圧側にむかって単調減少する。
【0010】
そのため入力端子2Bからみた相互コンダクタンスgm(n+p)はgm(n)とgm(p)を合成した略凸字状の曲線となり、入力信号レベルの中間領域では高gmであるのに対して、高低両端部では低gmとなり負荷駆動能力が低下し、入力信号レベルに対して相互コンダクタンスの変動が大きいという問題があった。各差動入力段5、9の相互コンダクタンスgm(n)、gm(p)の大きさは各差動入力段5、9の電流を制御するトランジスタ3、7のバイアス設定により変更可能であるが、入力信号レベルの高低両端部で生じる低gmを解消することはできなかった。
【0011】
【課題を解決するための手段】
本発明は上記課題の解決を目的として提案されたもので、一対の一導電型トランジスタの一主電極を共通接続し各トランジスタの制御電極を一対の入力端子に接続した第1の差動入力段と、一対の他導電型トランジスタの一主電極を共通接続し各トランジスタの制御電極を前記入力端子に共通接続した第2の差動入力段と、中間にバイアス素子を含む第1、第2の定電流回路と、一対の相補型トランジスタよりなる出力段とを含み、第1の差動入力段の各トランジスタの他の主電極を第1、第2の定電流回路のバイアス素子の一端側にそれぞれ接続し、第2の差動入力段の各トランジスタの他の主電極を第1、第2の定電流回路のバイアス素子の他端側にそれぞれ接続し、出力段の相補型トランジスタの各制御電極を第2の定電流回路のバイアス素子の両端に接続した差動増幅器において、電源ライン側と接地ライン側に第1、第2のカレントミラー回路を配置し、各カレントミラー回路の2つの電流経路に第1、第2の駆動トランジスタを挿入し、第1の駆動トランジスタの電源ライン側電極を第2の差動入力段の共通接続された主電極に、第2の駆動トランジスタの接地ライン側電極を第1の差動入力段の共通接続された主電極に、第1の駆動トランジスタの制御電極を第2の定電流回路のバイアス素子の電源ライン側端部に、第2の駆動トランジスタの制御電極を第2の定電流回路のバイアス素子の接地ライン側端部に、それぞれ接続したことを特徴とする差動増幅器を提供する。
【0012】
【発明の実施の形態】
本発明による差動増幅器は、第1、第2のカレントミラー回路と第1、第2の駆動トランジスタで構成される差動入力段駆動回路を付加することにより、第1、第2の差動入力段の入力信号レベル領域で不動状態をなくし、入力信号レベルの全領域で相互コンダクタンスgmを高く維持できる。第1の差動入力段のトランジスタをnチャンネルMOSFETにて、第2の差動入力段のトランジスタをpチャンネルMOSFETにて構成した場合、電源ライン側の第1のカレントミラー回路と第1の駆動トランジスタをpチャンネルMOSFETにて、接地ライン側の第2のカレントミラー回路と第2の駆動トランジスタをnチャンネルMOSFETにて構成することができる。また第1、第2のカレントミラー回路の2つの電流経路を流れる電流を異ならせることにより相互コンダクタンスgmの大きさを調整できる。
【0013】
【実施例】
以下に本発明の実施例を図1から説明する。図において、図4と同一部分には同一符号を付し重複する説明を省略する。即ち、nチャンネルMOSFET1A、1Bからなる第1の差動入力段5は一主電極(ソース電極)が共通接続され、nチャンネルMOSFET3を介して接地ライン4に接続されている。またpチャンネルMOSFET6A、6Bからなる第2の差動入力段9は一主電極(ソース電極)が共通接続され、pチャンネルMOSFET7を介して電源ライン8に接続されている。各差動入力段5、9の各MOSFET1A、6Aと1B、6Bのそれぞれの制御電極(ゲート電極)は一対の入力端子2Aと2Bに接続されている。電源ライン8と接地ライン4の間には、第1、第2の定電流回路10、14が接続されている。第1の定電流回路10は定電流源11、バイアス素子(抵抗)13、定電流源12を、第2の定電流回路14は定電流源15、バイアス素子(抵抗)17、定電流源16を、それぞれ直列的に接続したもので、定電流源11と抵抗13の接続部には第1の差動入力段5のnチャンネルMOSFET1Aの他の主電極(ドレイン電極)が、抵抗13と定電流源12の接続部には第2の差動入力段9のpチャンネルMOSFET6Aの他の主電極(ドレイン電極)が接続されている。また第2の定電流回路14の定電流源15と抵抗17の接続部には第1の差動入力段5のnチャンネルMOSFET1Bの他の主電極(ドレイン電極)が、抵抗17と定電流源16の接続部には第2の差動入力段9のpチャンネルMOSFET6Bの他の主電極(ドレイン電極)が接続されている。そして第2の定電流回路14の抵抗17の両端は出力段18の相補トランジスタ19、20の各制御電極(ゲート電極)が接続されている。
【0014】
本発明による差動増幅器は図4と同一の上記回路に、符号22を付し図示点線で囲まれる差動入力段駆動回路を付加したことを特徴とする。この差動入力段駆動回路22は、2つのカレントミラー回路23、24を電源ライン8側と接地ライン4側に配置し、各カレントミラー回路23、24の2つの電流経路にそれぞれ第1、第2の駆動トランジスタ25、26を挿入したもので、第1の駆動トランジスタ25は制御電極(ゲート電極)が第1の差動入力段5のnMOSFET1Bのドレイン電極(抵抗17の電源ライン側端部、出力段18のpMOSFET19のゲート電極)に接続され、第1の駆動トランジスタ25の電源ライン側の主電極(ソース電極)は第2の差動入力段9の共通接続されたソース電極に接続されている。また第2の駆動トランジスタ26は制御電極(ゲート電極)が第2の差動入力段9のpMOSFET6Bのドレイン電極(抵抗17の接地ライン側端部、出力段18のnMOSFET20のゲート電極)に接続され、第2の駆動トランジスタ26の接地ライン側主電極(ソース電極)は第1の差動入力段5の共通接続されたソース電極に接続されている。
【0015】
以下にこの差動増幅器の動作を説明する。この増幅器の差動入力段駆動回路22を除く部分の動作は図4回路と同じであるため省略する。この増幅器は差動入力段駆動回路22を構成するカレントミラー回路23、24の2つの電流経路には第1、第2の駆動トランジスタ25、26が挿入され、第1の駆動トランジスタ25は第1の差動入力段5のnMOSFET1Bのドレイン電圧を検出して開閉され、第2の駆動トランジスタ26は第2の差動入力段9のpMOSFET6Bのドレイン電圧を検出して開閉される。
【0016】
先ず入力端子2Bに接地ライン電圧近傍領域の低電圧レベル(Lレベル)の信号を供給した場合、第1の差動入力段5のnMOSFET1Bは遮断し、第2の差動入力段9のpMOSFET6Bは導通する。nMOSFET1Bが遮断することによりそのドレイン電圧は電源ライン電圧近傍の高電圧レベル(Hレベル)となるため、第1の駆動トランジスタ25は遮断する。そのため第1のカレントミラー回路23から供給される電流は第2の差動入力段9のソース電極に送り込まれ、ソース電極に送り込まれた電流はドレイン電極へ出力される。一方、第2の駆動トランジスタ26のゲート電極には第2の差動入力段9のHレベルのドレイン電圧が供給されるため導通し第1のカレントミラー回路23から第2の差動入力段9に供給される電流値を決定する。このように入力端子2BにLレベルの信号が供給された場合には第1の差動入力段5のnMOSFET1Bは遮断状態となり、このとき第2の差動入力段9のpMOSFET6Bの相互コンダクタンスgmは差動入力段駆動回路22がない場合に比して増大する。
【0017】
次に入力端子2Bに電源ライン電圧近傍領域のHレベルの信号を供給した場合、第2の差動入力段9のpMOSFET6Bは遮断し、第1の差動入力段5のnMOSFET1Bは導通する。pMOSFET6Bが遮断することによりそのドレイン電圧は接地ライン電圧近傍のLレベルとなるため、第1の駆動トランジスタ26は遮断する。そのため第1の差動入力段5のソース電極から吐出される電流は、ソース電極に接続されたトランジスタ3と第2のカレントミラー回路24に分岐し、nMOSFET1Bから吐出されるドレイン電流を増大させる。一方、第1の駆動トランジスタ25のゲート電極には第1の差動入力段5のLレベルのドレイン電圧が供給されるため導通し第2のカレントミラー回路24に流れる電流値を決定する。このようにして入力端子2BにHレベルの信号が供給されると第2の差動入力段9のpMOSFET6Bが遮断状態となり、このとき第1の差動入力段5のnMOSFET1Bの相互コンダクタンスgmは差動入力段駆動回路22がない場合に比して増大する。
【0018】
前記LレベルとHレベルの中間レベルの信号が入力端子2Bに供給された場合、第1、第2の駆動トランジスタ25、26は遮断状態と飽和導通状態の中間の導通状態となってカレントミラー回路23、24間に電流を流すが、駆動トランジスタ25、26の導通状態によって流れる電流値が制限されるため、第2の差動入力段9に流入し、第1の差動入力段5から吐出される電流値が制限され、相互コンダクタンスgmには大きな影響を与えない。
【0019】
入力端子2Bに供給する入力信号レベルに対する第1、第2の差動入力段5、9の各MOSFET1B、6Bの相互コンダクタンスgmを図2に示す。図中、一点鎖線で示すgm(n)は第1差動入力段5のnMOSFET1Bの相互コンダクタンス、ニ点鎖線で示すgm(p)は第2差動入力段9のpMOSFET6Bの相互コンダクタンス、実線で示すgm(n+p)は各MOSFET1B、6Bの合成相互コンダクタンスを示す。
【0020】
第1差動入力段5の相互コンダクタンスgm(n)は入力信号レベルが0から約1.0Vまではゼロで、1.0Vを超えると急激に増大し、約1.5Vで極大(n1・μA/V)となり、入力信号レベルが1.5V〜7.5Vの間では漸減し、n2・μA/Vまで低下し、入力信号レベルが約7.5Vから約8.0Vの間で急増し、入力信号レベル8Vで再度極大(n3・μA/V)となり、8V〜9Vではほぼ一定(n3・μA/V)となる。このように相互コンダクタンスgm(n)は入力信号レベルが0から9Vの間で、3つの概略平坦部を持った上り階段状の軌跡を描く。
【0021】
次に第2差動入力段9の相互コンダクタンスgm(p)は入力信号レベルが0では極大状態のp1・μA/Vで、入力信号レベルが約1Vまではあまり変化せずp2・μA/Vとなる。入力信号レベルが1〜1.5Vの間は急減してp3・μA/Vとなるが、入力信号レベルが1.5〜約7.5Vの間は漸増して再度極大(p4・μA/V)となり、その後入力信号レベルが8Vまでの間に急減して、入力信号レベル8〜9Vでは相互コンダクタンスは0となる。このように相互コンダクタンスgm(p)は入力信号レベルが0から9Vの間で3つの概略平坦部を有する下り昇階段状の軌跡を描く。
【0022】
上記各差動入力段5、9に供給される入力信号レベルによって、差動入力段を構成する各MOSFET1、6の一方のFETが遮断状態となり、相互コンダクタンスが0の領域となっても、他のFETの相互コンダクタンスは中間入力信号レベル領域の相互コンダクタンス値より大きい再極大領域にあるため、各相互コンダクタンスgm(n)、gm(p)を合成した合成相互コンダクタンスgm(n+p)は、入力信号レベルの全領域で高gmにでき、しかも平坦なgm特性を実現でき、これにより入力信号レベルの高レベル領域や低レベル領域での負荷駆動能力が向上し、高速スイッチング、高スルーレートの差動増幅器を実現できる。
【0023】
尚、本発明は上記実施例にのみ限定されることなく、例えば、第1、第2の定電流回路10、14のバイアス素子13、17として抵抗だけでなく半導体素子に置換することもできる。また、第1、第2のカレントミラー回路23、24のをそれぞれ構成する一対のトランジスタは電流容量を等しくするだけでなく、異なる電流容量とすることもできる。
【0024】
【発明の効果】
以上のように本発明によれば、差動入力段の相互コンダクタンスを入力信号の入力信号レベル全域にわたって高く平坦にできるため、負荷駆動能力が向上し、これによりスイッチング速度を高速化でき高スルーレートの差動増幅器を実現できる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す差動増幅器の回路図
【図2】 本発明による差動入力段の入力信号レベルに対する相互コンダクタンスを示す図面
【図3】 増幅器の出力信号波形図
【図4】 本発明の前提となる差動増幅器の回路図
【図5】 図5回路の差動入力段の入力信号レベルに対する相互コンダクタンスを示す図面
【符号の説明】
1A、1B nMOSFET
2A、2B 入力端子
4 接地ライン
5、9 差動入力段
6A、6B pMOSFET
8 電源ライン
10、14 定電流回路
13、17 バイアス素子(抵抗)
18 出力段
19、20 相補トランジスタ
22 差動入力段駆動回路
23、24 カレントミラー回路
25、26 駆動トランジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a differential amplifier, and more particularly to a differential amplifier with improved driving capability.
[0002]
[Prior art]
The amplifier amplifies the input signal by driving the amplifying element with the power supplied from the power source and outputs it. In the case of a resistive load, the maximum amplitude of the output signal is limited by the power supply voltage and the internal resistance of the amplifying element. As shown by the three solid lines, the output signal S draws a waveform in a voltage range Vmax to Vmin intermediate between the power supply voltage Vdd and the ground voltage Vss. On the other hand, in portable electronic circuit devices driven by batteries, such as mobile phones, the maximum amplitude of the output signal is made as close as possible to the power supply voltage in order to increase the power use efficiency by operating at a high power with a low power supply voltage. . The power use efficiency of the amplifier is represented by ((Vmax−Vmin) / (Vdd−Vss)) 2 , suppose Vdd is 5V, Vss is 0V, Vmax of the output signal S is 4.6V, and Vmin is 0.3V. In some cases, the power usage efficiency is about 74%. However, as shown by the dotted line in the figure, the maximum amplitude is increased, and the power usage efficiency is increased by increasing Vmax to 4.8 V, Vmin to 0.1 V, and the amplitude to 0.4 V. This is about 88% and can be improved by about 14%, and the battery-driven device can be operated for a long time.
[0003]
An example of such an amplifier is shown in FIG. In the figure, 1A and 1B are a pair of one conductivity type (n-channel) MOSFETs, each control electrode (gate electrode) is connected to a pair of input terminals 2A and 2B, and the ground side main electrode (source electrode) is commonly connected. The first differential input stage 5 is configured by being connected to the ground line 4 through the n-channel MOSFET 3. 6A and 6B are a pair of other conductivity type (p-channel) MOSFETs, each control electrode (gate electrode) is connected to a pair of input terminals 2A and 2B, and the power source side main electrode (source electrode) is connected in common. The second differential input stage 9 is configured by being connected to the power supply line 8 via the channel MOSFET 7. Reference numeral 10 denotes a first constant current circuit connected between the power supply line 8 and the ground line 4, and a bias element, in the illustrated example, a resistor 13 is connected in series between the two constant current sources 11 and 12. 14 is a second constant current circuit connected between the power supply line 8 and the ground line 4 in the same manner as the first constant current circuit 10, and a resistor 17 as a bias element is provided between the two constant current sources 15 and 16. Connected in series. The other main electrode (drain electrode) of one MOSFET 1A of the first differential input stage 5 is connected to the constant current source 11 of the first constant current circuit 10 and the resistor 13 at the first differential input stage 5. The other main electrode (drain electrode) of the other MOSFET 1B is connected to the connection point between the constant current source 15 of the second constant current circuit 14 and the resistor 17, respectively, and the one MOSFET 6A of the second differential input stage 9 is connected. The other main electrode (drain electrode) is connected to the constant current source 12 of the first constant current circuit 10 and the resistor 13, and the other main electrode (drain electrode) of the other MOSFET 6 </ b> B of the second differential input stage 9. Are connected to the connection point of the constant current source 16 and the resistor 17 of the second constant current circuit 14, respectively. Reference numeral 18 denotes an output stage in which a p-channel MOSFET 19 and an n-channel MOSFET 20 are complementarily connected. The source electrode of the p-channel MOSFET is connected to the power supply line 8, the drain electrode is commonly connected to the drain electrode of the n-channel MOSFET 20, and an output terminal. The source electrode of the n-channel MOSFET 20 is connected to the ground line 4. The control electrodes (gate electrodes) of the MOSFETs 19 and 20 are connected to both ends of the resistor 17 of the second constant current circuit 14. Similar differential amplifiers are disclosed in Patent Document 1 and Patent Document 2, for example.
[0004]
This amplifier controls the bias of the output stage 18 by a pair of n-channel and p-channel MOSFETs 1A, 1B and 6A, 6B that operate complementarily to a common pair of input terminals 2A, 2B. For example, when the input signal level at the input terminal 2A decreases, the drain voltage of one n-channel MOSFET 1A of the first differential input stage 5 increases and the drain voltage of the other MOSFET 1B decreases. At the same time, the drain voltage of one p-channel MOSFET 6A of the second differential input stage 9 rises and the drain voltage of the other MOSFET 6B falls.
[0005]
The drain electrode of the other MOSFET 1B of the first differential input stage 5 and the drain electrode of the other MOSFET 6B of the second differential input stage 9 are connected to both ends of the resistor 17 of the constant current circuit 14, respectively. The p-channel MOSFET 19 connected to the power supply line 8 of the output stage 18 and the n-channel MOSFET 20 connected to the ground line 4 can be controlled by simultaneously changing the voltage across the resistor 17 while maintaining the voltage between the terminals. .
[0006]
When the input signal level at the input terminal 2A increases, contrary to the above, the voltage across the resistor 17 is simultaneously raised while the voltage across the resistor 17 is maintained, and is connected to the power supply line 8 of the output stage 18. In addition, the blocking property of the p-channel MOSFET 19 can be improved, and the conductivity of the n-channel MOSFET 20 connected to the ground line 4 can be improved. In this way, the amplifier shown in FIG. 4 can increase the maximum amplitude of the output signal S from the solid line state shown in FIG. 3 to the dotted line state shown in FIG.
[0007]
[Patent Document 1]
JP-A-6-326529 (pages 4-6, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 7-15249 (pages 3 to 4, FIG. 3)
[0008]
[Problems to be solved by the invention]
In the differential amplifier shown in FIG. 4, when the input signal level approaches the voltage Vdd on the high voltage side of the power supply voltage, the p-channel MOSFETs 6A and 6B of the second differential input stage 9 are cut off, and the input signal level is When approaching zero or negative voltage Vss on the low voltage side, the n-channel MOSFETs 1A and 1B of the first differential input stage 5 are cut off. Therefore, the mutual conductance gm viewed from the input terminal 2A is the first difference using the n-channel MOSFET 1A, where the horizontal axis is the input signal level (voltage) and the vertical axis is the mutual conductance (current / voltage) as shown in FIG. When the input signal level is changed from a low voltage (0V) to a high voltage (for example, 9V), the dynamic input stage 5 has a mutual conductance gm (n) of zero on the low voltage side and rapidly increasing around 1V. It monotonously decreases from the portion slightly exceeding 1 V toward the high voltage side.
[0009]
In addition, when the second differential input stage 9 using the p-channel MOSFET 1A changes the input signal level from the high voltage (9V) to the low voltage (0V), the mutual conductance gm (p) becomes a high voltage ( 9V) is zero, suddenly rises around 8V, and monotonically decreases from a voltage slightly below 8V toward the low voltage side.
[0010]
Therefore, the mutual conductance gm (n + p) viewed from the input terminal 2B is a substantially convex curve obtained by combining gm (n) and gm (p), and is high and low in the middle region of the input signal level. At both ends, there is a problem that the gm is low, the load driving capability is lowered, and the variation in mutual conductance is large with respect to the input signal level. The magnitudes of the mutual conductances gm (n) and gm (p) of the differential input stages 5 and 9 can be changed by setting the bias of the transistors 3 and 7 that control the currents of the differential input stages 5 and 9. The low gm generated at both the high and low ends of the input signal level could not be eliminated.
[0011]
[Means for Solving the Problems]
The present invention has been proposed for the purpose of solving the above-mentioned problems. A first differential input stage in which one main electrode of a pair of one-conductivity type transistors is commonly connected and a control electrode of each transistor is connected to a pair of input terminals. A second differential input stage in which one main electrode of a pair of other conductivity type transistors is commonly connected and a control electrode of each transistor is commonly connected to the input terminal, and a first and a second Including a constant current circuit and an output stage composed of a pair of complementary transistors, the other main electrode of each transistor of the first differential input stage is connected to one end of the bias element of the first and second constant current circuits The other main electrodes of the transistors of the second differential input stage are connected to the other ends of the bias elements of the first and second constant current circuits, respectively, and the complementary transistors of the output stage are controlled. The electrode is connected to the second constant current circuit. In the differential amplifier connected to both ends of the current element, the first and second current mirror circuits are arranged on the power supply line side and the ground line side, and the first and second drives are provided in the two current paths of each current mirror circuit. A transistor is inserted, the power supply line side electrode of the first drive transistor is connected to the main electrode connected in common to the second differential input stage, and the ground line side electrode of the second drive transistor is connected to the first differential input stage. The control electrode of the first drive transistor at the power line side end of the bias element of the second constant current circuit, and the control electrode of the second drive transistor at the second constant current circuit. There is provided a differential amplifier characterized by being connected to each end of the bias element on the ground line side.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The differential amplifier according to the present invention includes the first and second differential circuits by adding a differential input stage driving circuit including first and second current mirror circuits and first and second driving transistors. The immobile state is eliminated in the input signal level region of the input stage, and the mutual conductance gm can be maintained high in the entire region of the input signal level. When the transistor of the first differential input stage is configured by an n-channel MOSFET and the transistor of the second differential input stage is configured by a p-channel MOSFET, the first current mirror circuit on the power supply line side and the first drive The transistor can be constituted by a p-channel MOSFET, and the second current mirror circuit on the ground line side and the second drive transistor can be constituted by an n-channel MOSFET. The magnitude of the mutual conductance gm can be adjusted by making the currents flowing through the two current paths of the first and second current mirror circuits different.
[0013]
【Example】
An embodiment of the present invention will be described below with reference to FIG. In the figure, the same parts as those in FIG. That is, the first differential input stage 5 including the n-channel MOSFETs 1A and 1B has one main electrode (source electrode) connected in common, and is connected to the ground line 4 via the n-channel MOSFET 3. The second differential input stage 9 composed of p-channel MOSFETs 6A and 6B has one main electrode (source electrode) connected in common and is connected to the power supply line 8 via the p-channel MOSFET 7. The control electrodes (gate electrodes) of the MOSFETs 1A, 6A and 1B and 6B of the differential input stages 5 and 9 are connected to a pair of input terminals 2A and 2B. The first and second constant current circuits 10 and 14 are connected between the power supply line 8 and the ground line 4. The first constant current circuit 10 includes a constant current source 11, a bias element (resistance) 13, and a constant current source 12. The second constant current circuit 14 includes a constant current source 15, a bias element (resistance) 17, and a constant current source 16. Are connected in series, and the other main electrode (drain electrode) of the n-channel MOSFET 1A of the first differential input stage 5 is connected to the resistor 13 and the constant current source 11 and the resistor 13. The other main electrode (drain electrode) of the p-channel MOSFET 6A of the second differential input stage 9 is connected to the connection portion of the current source 12. Further, the other main electrode (drain electrode) of the n-channel MOSFET 1B of the first differential input stage 5 is connected to the constant current source 15 of the second constant current circuit 14 and the resistor 17, and the resistor 17 and the constant current source. The other main electrode (drain electrode) of the p-channel MOSFET 6B of the second differential input stage 9 is connected to the connection portion 16. The control electrodes (gate electrodes) of the complementary transistors 19 and 20 of the output stage 18 are connected to both ends of the resistor 17 of the second constant current circuit 14.
[0014]
The differential amplifier according to the present invention is characterized in that a differential input stage drive circuit denoted by reference numeral 22 and surrounded by a dotted line in the figure is added to the same circuit as that shown in FIG. The differential input stage drive circuit 22 includes two current mirror circuits 23 and 24 arranged on the power supply line 8 side and the ground line 4 side, and the first and second current paths of the current mirror circuits 23 and 24 are respectively connected to the first and second current paths. 2 drive transistors 25 and 26 are inserted, and the first drive transistor 25 has a control electrode (gate electrode) whose drain electrode of the nMOSFET 1B of the first differential input stage 5 (the end portion of the resistor 17 on the power supply line side, The main electrode (source electrode) on the power supply line side of the first drive transistor 25 is connected to the commonly connected source electrode of the second differential input stage 9. Yes. The control electrode (gate electrode) of the second drive transistor 26 is connected to the drain electrode of the pMOSFET 6B of the second differential input stage 9 (the end on the ground line side of the resistor 17 and the gate electrode of the nMOSFET 20 of the output stage 18). The main electrode (source electrode) on the ground line side of the second drive transistor 26 is connected to the commonly connected source electrode of the first differential input stage 5.
[0015]
The operation of this differential amplifier will be described below. Since the operation of the amplifier other than the differential input stage drive circuit 22 is the same as that of the circuit of FIG. In this amplifier, first and second drive transistors 25 and 26 are inserted into two current paths of current mirror circuits 23 and 24 constituting the differential input stage drive circuit 22, and the first drive transistor 25 is the first drive transistor 25. The second drive transistor 26 is opened and closed by detecting the drain voltage of the pMOSFET 6B in the second differential input stage 9 by detecting the drain voltage of the nMOSFET 1B in the differential input stage 5.
[0016]
First, when a low voltage level (L level) signal in the vicinity of the ground line voltage is supplied to the input terminal 2B, the nMOSFET 1B of the first differential input stage 5 is cut off and the pMOSFET 6B of the second differential input stage 9 is turned off. Conduct. When the nMOSFET 1B is cut off, the drain voltage becomes a high voltage level (H level) in the vicinity of the power supply line voltage, so that the first drive transistor 25 is cut off. Therefore, the current supplied from the first current mirror circuit 23 is sent to the source electrode of the second differential input stage 9, and the current sent to the source electrode is output to the drain electrode. On the other hand, since the H-level drain voltage of the second differential input stage 9 is supplied to the gate electrode of the second drive transistor 26, the second differential input stage 9 is turned on from the first current mirror circuit 23. The current value to be supplied to is determined. In this way, when an L level signal is supplied to the input terminal 2B, the nMOSFET 1B of the first differential input stage 5 is cut off. At this time, the mutual conductance gm of the pMOSFET 6B of the second differential input stage 9 is It increases compared with the case where there is no differential input stage drive circuit 22.
[0017]
Next, when an H level signal in the vicinity of the power supply line voltage is supplied to the input terminal 2B, the pMOSFET 6B of the second differential input stage 9 is cut off and the nMOSFET 1B of the first differential input stage 5 is turned on. When the pMOSFET 6B is cut off, the drain voltage becomes L level in the vicinity of the ground line voltage, so that the first drive transistor 26 is cut off. Therefore, the current discharged from the source electrode of the first differential input stage 5 branches to the transistor 3 and the second current mirror circuit 24 connected to the source electrode, and the drain current discharged from the nMOSFET 1B is increased. On the other hand, since the drain voltage of the L level of the first differential input stage 5 is supplied to the gate electrode of the first driving transistor 25, the current value flowing through the second current mirror circuit 24 is determined. When the H level signal is supplied to the input terminal 2B in this way, the pMOSFET 6B of the second differential input stage 9 is cut off. At this time, the mutual conductance gm of the nMOSFET 1B of the first differential input stage 5 is different. It increases compared with the case where there is no dynamic input stage drive circuit 22.
[0018]
When the signal of the intermediate level between the L level and the H level is supplied to the input terminal 2B, the first and second drive transistors 25 and 26 are in a conductive state intermediate between the cutoff state and the saturation conductive state, and thereby become a current mirror circuit. Although the current flows between 23 and 24, the value of the current that flows is limited by the conduction state of the drive transistors 25 and 26. Therefore, the current flows into the second differential input stage 9 and is discharged from the first differential input stage 5. Current value is limited, and the mutual conductance gm is not greatly affected.
[0019]
FIG. 2 shows the mutual conductance gm of the MOSFETs 1B and 6B of the first and second differential input stages 5 and 9 with respect to the input signal level supplied to the input terminal 2B. In the figure, gm (n) indicated by a one-dot chain line is a mutual conductance of the nMOSFET 1B of the first differential input stage 5, gm (p) indicated by a two-dot chain line is a mutual conductance of the pMOSFET 6B of the second differential input stage 9, and a solid line. “Gm (n + p)” indicates the combined mutual conductance of the MOSFETs 1B and 6B.
[0020]
The transconductance gm (n) of the first differential input stage 5 is zero when the input signal level is from 0 to about 1.0 V, increases rapidly when it exceeds 1.0 V, and reaches a maximum at about 1.5 V (n1 · μA / V), the input signal level gradually decreases between 1.5V and 7.5V, decreases to n2 · μA / V, and the input signal level rapidly increases between about 7.5V and about 8.0V. When the input signal level is 8V, the maximum value is again reached (n3 · μA / V), and from 8V to 9V, it becomes almost constant (n3 · μA / V). As described above, the mutual conductance gm (n) draws an up-step-like trajectory having three substantially flat portions when the input signal level is between 0 and 9V.
[0021]
Next, the mutual conductance gm (p) of the second differential input stage 9 is p1 · μA / V which is a maximum state when the input signal level is 0, and does not change much until the input signal level is about 1V, and p2 · μA / V. It becomes. When the input signal level is 1 to 1.5V, it suddenly decreases to p3 · μA / V, but when the input signal level is 1.5 to about 7.5V, it gradually increases and becomes maximum again (p4 · μA / V). After that, the input signal level rapidly decreases to 8V, and the transconductance becomes 0 at the input signal level of 8-9V. Thus, the mutual conductance gm (p) draws a descending step-like trajectory having three substantially flat portions when the input signal level is between 0 and 9V.
[0022]
Depending on the input signal level supplied to each of the differential input stages 5 and 9, one FET of the MOSFETs 1 and 6 constituting the differential input stage is cut off and the mutual conductance is in the zero region. The mutual conductance gm (n + p) obtained by synthesizing the mutual conductances gm (n) and gm (p) is the input signal of High gm can be achieved in all levels, and flat gm characteristics can be realized. This improves load drive capability in high and low levels of the input signal level. High-speed switching and high slew rate differential An amplifier can be realized.
[0023]
Note that the present invention is not limited to the above-described embodiment. For example, the bias elements 13 and 17 of the first and second constant current circuits 10 and 14 can be replaced with semiconductor elements as well as resistors. In addition, the pair of transistors constituting the first and second current mirror circuits 23 and 24 can have not only the same current capacity but also different current capacities.
[0024]
【The invention's effect】
As described above, according to the present invention, the transconductance of the differential input stage can be made high and flat over the entire input signal level of the input signal, so that the load driving capability is improved, thereby increasing the switching speed and the high slew rate. The differential amplifier can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a differential amplifier showing an embodiment of the present invention. FIG. 2 is a diagram showing transconductance with respect to an input signal level of a differential input stage according to the present invention. 4] A circuit diagram of a differential amplifier as a premise of the present invention. [FIG. 5] FIG. 5 is a diagram showing a transconductance with respect to an input signal level of a differential input stage of the circuit.
1A, 1B nMOSFET
2A, 2B Input terminal 4 Ground line 5, 9 Differential input stage 6A, 6B pMOSFET
8 Power supply line 10, 14 Constant current circuit 13, 17 Bias element (resistance)
18 Output stage 19, 20 Complementary transistor 22 Differential input stage drive circuit 23, 24 Current mirror circuit 25, 26 Drive transistor

Claims (4)

一対の一導電型トランジスタの一主電極を共通接続し各トランジスタの制御電極を一対の入力端子に接続した第1の差動入力段と、一対の他導電型トランジスタの一主電極を共通接続し各トランジスタの制御電極を前記入力端子に共通接続した第2の差動入力段と、中間にバイアス素子を含む第1、第2の定電流回路と、一対の相補型トランジスタよりなる出力段とを含み、第1の差動入力段の各トランジスタの他の主電極を第1、第2の定電流回路のバイアス素子の一端側にそれぞれ接続し、第2の差動入力段の各トランジスタの他の主電極を第1、第2の定電流回路のバイアス素子の他端側にそれぞれ接続し、出力段の相補型トランジスタの各制御電極を第2の定電流回路のバイアス素子の両端に接続した差動増幅器において、
電源ライン側と接地ライン側に第1、第2のカレントミラー回路を配置し、各カレントミラー回路の2つの電流経路に第1、第2の駆動トランジスタを挿入し、第1の駆動トランジスタの電源ライン側電極を第2の差動入力段の共通接続された主電極に、第2の駆動トランジスタの接地ライン側電極を第1の差動入力段の共通接続された主電極に、第1の駆動トランジスタの制御電極を第2の定電流回路のバイアス素子の電源ライン側端部に、第2の駆動トランジスタの制御電極を第2の定電流回路のバイアス素子の接地ライン側端部に、それぞれ接続したことを特徴とする差動増幅器。
A first differential input stage in which a main electrode of a pair of one conductivity type transistors is connected in common and a control electrode of each transistor is connected to a pair of input terminals, and a main electrode of a pair of other conductivity type transistors are connected in common. A second differential input stage having a control electrode of each transistor commonly connected to the input terminal; first and second constant current circuits including a bias element in the middle; and an output stage comprising a pair of complementary transistors In addition, other main electrodes of the transistors of the first differential input stage are respectively connected to one ends of the bias elements of the first and second constant current circuits, and other transistors of the second differential input stage are connected. Are connected to the other ends of the bias elements of the first and second constant current circuits, and the control electrodes of the complementary transistors in the output stage are connected to both ends of the bias elements of the second constant current circuit. In the differential amplifier,
The first and second current mirror circuits are arranged on the power supply line side and the ground line side, and the first and second drive transistors are inserted into the two current paths of each current mirror circuit. The line side electrode is connected to the commonly connected main electrode of the second differential input stage, the ground line side electrode of the second drive transistor is connected to the commonly connected main electrode of the first differential input stage, and the first The control electrode of the driving transistor is on the power line end of the bias element of the second constant current circuit, and the control electrode of the second driving transistor is on the ground line side end of the bias element of the second constant current circuit, respectively. A differential amplifier characterized by being connected.
第1の差動入力段のトランジスタがnチャンネルMOSFETからなり、第2の差動入力段のトランジスタがpチャンネルMOSFETからなることを特徴とする請求項1に記載の差動増幅器。2. The differential amplifier according to claim 1, wherein the first differential input stage transistor is an n-channel MOSFET, and the second differential input stage transistor is a p-channel MOSFET. 電源ライン側の第1のカレントミラー回路と第1の駆動トランジスタがpチャンネルMOSFETからなり、接地ライン側の第2のカレントミラー回路と第2の駆動トランジスタがnチャンネルMOSFETからなることを特徴とする請求項2に記載の差動増幅器。The first current mirror circuit and the first drive transistor on the power supply line side are each composed of a p-channel MOSFET, and the second current mirror circuit and the second drive transistor on the ground line side are each composed of an n-channel MOSFET. The differential amplifier according to claim 2. 第1、第2のカレントミラー回路の2つの電流経路を流れる電流を異ならせたことを特徴とする請求項1に記載の差動増幅器。2. The differential amplifier according to claim 1, wherein currents flowing through the two current paths of the first and second current mirror circuits are made different.
JP2003009112A 2003-01-17 2003-01-17 Differential amplifier Expired - Fee Related JP4141262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009112A JP4141262B2 (en) 2003-01-17 2003-01-17 Differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009112A JP4141262B2 (en) 2003-01-17 2003-01-17 Differential amplifier

Publications (2)

Publication Number Publication Date
JP2004222104A JP2004222104A (en) 2004-08-05
JP4141262B2 true JP4141262B2 (en) 2008-08-27

Family

ID=32898695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009112A Expired - Fee Related JP4141262B2 (en) 2003-01-17 2003-01-17 Differential amplifier

Country Status (1)

Country Link
JP (1) JP4141262B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555673A (en) * 1984-04-19 1985-11-26 Signetics Corporation Differential amplifier with rail-to-rail input capability and controlled transconductance
EP0569102B1 (en) * 1992-05-08 1997-11-19 Koninklijke Philips Electronics N.V. Differential amplifier having rail-to-rail input capability and square-root current control
JPH0878966A (en) * 1994-09-06 1996-03-22 Toshiba Corp Rail-to-rail type operational amplifier circuit
FR2728743B1 (en) * 1994-12-21 1997-03-14 Sgs Thomson Microelectronics AMPLIFIER WITH LARGE EXCURSION OF COMMON MODE AND CONSTANT TRANSCONDUCTANCE
US5631607A (en) * 1995-09-06 1997-05-20 Philips Electronics North America Corporation Compact GM-control for CMOS rail-to-rail input stages by regulating the sum of the gate-source voltages constant

Also Published As

Publication number Publication date
JP2004222104A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US6281753B1 (en) MOSFET single-pair differential amplifier having an adaptive biasing scheme for rail-to-rail input capability
US6356153B1 (en) Rail-to-rail input/output operational amplifier and method
US6657495B2 (en) Operational amplifier output stage and method
JP4407881B2 (en) Buffer circuit and driver IC
US8410854B2 (en) Semiconductor integrated circuit device
US20020089351A1 (en) Integrated circuit and method of controlling output impedance
US7557648B2 (en) Operational amplifier, integrating circuit, feedback amplifier, and controlling method of the feedback amplifier
US20080024340A1 (en) Current driven D/A converter and its bias circuit
US7605656B2 (en) Operational amplifier with rail-to-rail common-mode input and output range
US8193861B2 (en) Differential amplifier
TWI354449B (en) Current steering dac and voltage booster for curre
US7382160B2 (en) Differential output circuit with reduced differential output variation
US7330056B1 (en) Low power CMOS LVDS driver
JP2012070181A (en) Semiconductor switch
US20070109052A1 (en) Class ab enhanced transconductance source follower
US7049890B2 (en) Operational amplifier with self control circuit for realizing high slew rate throughout full operating range
US6741130B2 (en) High-speed output transconductance amplifier capable of operating at different voltage levels
US8723593B2 (en) Bias voltage generation circuit and differential circuit
JP3948621B2 (en) Interface circuit
US6429685B1 (en) Integrated circuit and method of controlling output impedance
JP4141262B2 (en) Differential amplifier
US6043690A (en) Bidirectional follower for driving a capacitive load
KR100935513B1 (en) Current shutdown circuit for active bias circuit having process variation compensation
CN111721986B (en) Wide input common mode voltage range current detection amplifier circuit
US7102414B2 (en) Muting circuit for audio amplifier

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees