JP4140464B2 - Electron beam irradiation apparatus and electron beam emission tube - Google Patents

Electron beam irradiation apparatus and electron beam emission tube Download PDF

Info

Publication number
JP4140464B2
JP4140464B2 JP2003188478A JP2003188478A JP4140464B2 JP 4140464 B2 JP4140464 B2 JP 4140464B2 JP 2003188478 A JP2003188478 A JP 2003188478A JP 2003188478 A JP2003188478 A JP 2003188478A JP 4140464 B2 JP4140464 B2 JP 4140464B2
Authority
JP
Japan
Prior art keywords
electron beam
hot cathode
grid
tube
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003188478A
Other languages
Japanese (ja)
Other versions
JP2005024343A (en
Inventor
川 哲 也 平
藤 洋 一 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2003188478A priority Critical patent/JP4140464B2/en
Publication of JP2005024343A publication Critical patent/JP2005024343A/en
Application granted granted Critical
Publication of JP4140464B2 publication Critical patent/JP4140464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理物に対して高エネルギーの電子線を照射することにより、インクや樹脂の硬化処理、フィルムやゴムの架橋反応、減菌処理、排煙処理等を行う電子線照射装置と、それに使用する電子線放出管に関する。
【0002】
【従来の技術】
電子線照射装置は、一般に、電子線照射窓を形成した陽極となる照射ヘッドが内部を高真空にした封止管(胴部)の一端側に設けられると共に、電子線を発生させる熱陰極及び一以上のグリッドが胴部内に配された電子線放出管を用い、熱陰極を加熱することにより発生した熱電子をグリッドで抽出し、さらにグリッド−陽極間に30〜100kVの加速電圧を印加することにより電子を高速まで加速して、照射窓から被処理物に対して電子線を照射するように成されている。
【0003】
この場合に、電子線照射処理の処理品質を一定にするためには、照射する電子量を一定に制御することが重要であり、そのためグリッド電圧を調節することにより熱陰極−陽極間に流れるビーム電流を一定に維持している。
【0004】
また、熱陰極に供給される加熱電力は通常装置製作時に電力値が設定され、熱陰極の経時変化やその他の要因で熱陰極の電子放出能力が変化しても十分な電子が供給できるように、余裕のある大きな電力が供給されている。
【0005】
しかしながら、加熱電力として十分に余裕のある電力を供給すると、熱陰極の負担が大きくなり、その分、熱陰極の寿命が短くなるという問題があった。
同様の問題を抱える画像表示装置などに使用される電子線発生部などでは、これを解決するためにグリッド(ビーム引出電極)でのグリッド電流(吸収電子電流)の変化に応じて熱陰極(線陰極)への加熱電力を制御することにより、熱陰極の負担を軽減して寿命を延ばす技術が提案されている(特許文献1参照)。
【0006】
【特許文献1】
特開平8−31345号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前述のように、グリッド電流をモニタして熱陰極への加熱電力を制御しても、グリッド電流はグリッド電圧に依存するので、ビーム電流すなわち電子線の照射強度を一定に維持することができない。
【0008】
この場合に、グリッド電圧を一定に維持していれば、グリッド電流はビーム電流に略比例するので、このグリッド電流に応じて加熱電力を制御することにより、理論的には、ビーム電流を一定に維持することが可能である。
【0009】
しかし実際には、加熱電力の変化に対するグリッド電流(ビーム電流)の応答速度がきわめて遅いため、グリッド電流が一定に維持されるように加熱電力を制御しようとすると、加熱電力の上昇に伴ってグリッド電流(ビーム電流)が設定値に達した時点では加熱電力は過多となっている。
したがって、時間の経過に伴いグリッド電流(ビーム電流)が設定値を超えてオーバーシュートし、これに応じて加熱電力を低下させると、アンダーシュートし、制御不能に陥るという問題があった。
【0010】
また、電子線放出管は、陽極とグリッド間の電位差(加速電圧)が30〜100kVと非常に大きいため、電子線の照射を一時的に停止させようとしてグリッド電圧を0に絞っても、熱陰極で発生した熱電子は加速電圧による電界の影響を受けて陽極へ漏出して漏れビーム電流を生じてしまう。
この漏れビーム電流が、グリッド電圧を最大にしたときのビーム電流の5%を超えると、電子線の漏出による悪影響が懸念される。
【0011】
さらに、電子線放出管から照射される電子線の照射強度は、通常は、熱陰極から照射窓の中央を結ぶ照射軸線上が最も強く、これから離れるにしたがって徐々に弱くなる分布を有しているが、照射域全体にわたって均一な処理を行うため、電子線の照射強度分布はできるだけ均一であることが要求される。
【0012】
このため従来は、電子線照射窓の支持枠に、電子線の照射強度の高い中央部分に開口率の小さな透孔を穿設し、周辺に開口率の大きな透孔を穿設した遮蔽部材を配した電子線照射装置が提案されている(特許文献2参照)。
【0013】
【特許文献2】
特開平9−166700号公報
【0014】
しかしながら、電子線照射窓中央部の開口率を小さくすると、透過できない電子が照射窓の支持枠にぶつかって無駄になる。このときのエネルギーロスは透過できない電子量(電流)と加速電圧との積になり、僅かな電子量のロスでも加速電圧の電圧値が高いことから、通常数Wから数十Wにもなる。
【0015】
そこで本発明は、第一に、加熱電力を極力低く抑えながらビーム電流を安定的に制御して一定に維持できるようにし、第二に、グリッド電圧を0に設定したときの漏れビーム電流を略0とし、第三に、少ないエネルギーロスで電子線の照射強度分布を制御できるようにすることを技術的課題としている。
【0016】
【課題を解決するための手段】
この課題を解決するために、本発明は、電子線照射窓を形成した陽極となる照射ヘッドが胴部の一端側に設けられた電子線放出管が、該電子線放出管に対して電力供給する電子線コントローラに接続された電子線照射装置において、電子線を発生させる熱陰極及び一以上のグリッドが、前記電子線放出管の胴部内に配された断面略円形又は略正多角形のシールド管内に設けられ、
L≧0.18D×lnV
L:シールド管先端から熱陰極先端までの距離(mm)
D:シールド管の内接円直径(mm)
:加速電圧(kV)
の関係を満たすように熱陰極の位置、シールド管の大きさ及び加速電圧が選定され、前記グリッドのうち少なくとも一のグリッドに、照射窓から照射させようとする電子線の照射強度分布に応じて設計された開口率分布で多数の透孔が形成され、前記電子線コントローラには、熱陰極−陽極間に流れるビーム電流が一定に維持されるようにグリッド電圧を調整するグリッド電圧調整手段と、熱陰極の電子放出能力を検出して電子放出能力が下限に達したと判断されたときに熱陰極へ供給される加熱電力を予め設定された値だけ上昇させる加熱電力調整手段を備えたことを特徴とする。
【0017】
本発明によれば、電子線コントローラによりビーム電流が一定に維持されるようにグリッド電圧が調節されて、電子線が照射される。
また、熱陰極が劣化して電子放出能力が低下していく変化は長期的であるが、電子線放出管の使用時間に応じて確実に低下していく。この場合、電子放出能力の低下に伴いビーム電流が低下しないように、グリッド電圧を上昇させる制御が行われるので、グリッド電圧の電圧値は電子放出能力を示す指標となる。
【0018】
そこで、グリッド電圧が予め設定された上限値に達したときに電子放出能力が下限に達したと判断して、熱陰極へ供給される加熱電力を予め設定された値だけ上昇させる。
このとき、加熱電力の変化に対するビーム電流の応答速度は極めて遅いため、ビーム電流がすぐに上昇することはないが徐々に上昇していく。そして、ビーム電流が設定値より高くなったときにはグリッド電圧を下げることによりビーム電流を一定に維持できる。
【0019】
このように、熱陰極が劣化するなどして電子放出能力が下限に達したときに加熱電力を少しずつ上昇させ、ビーム電流が変動したときにはグリッド電圧を調節することによりビーム電流を一定に維持するようにしているので、加熱電力は極力低く抑えられて熱陰極ひいては電子線放出管の寿命が延び、且つ、ビーム電流の制御も安定的に行われる。
【0020】
また、電子線の照射を一時的に停止させようとしてグリッド電圧を0に絞ったときに、漏れビーム電流が、グリッド電圧を最大にしたときのビーム電流の5%以下であれば実用上差し支えない。
そして、発明者の実験によれば、熱陰極及び一以上のグリッドを電子線放出管の胴部内に配された断面略円形又は略正多角形のシールド管内に設けて、
L:シールド管先端から熱陰極先端までの距離(mm)
D:シールド管の内接円直径(mm)
:加速電圧(kV)
としたときに、
L≧0.18D×lnV
の関係を満たすように熱陰極の位置、シールド管の大きさ及び加速電圧を選定すれば良いことが判明した。
電子線放出管では、加速電圧は、定格電圧として予め設定されるものであるので、通常はこの加速電圧に対して、シールド管先端から熱陰極先端までの距離Lと、シールド管の内接円直径Dを決めれば良く、これによりグリッド電圧の調節により確実にビーム電流がコントロールされる。
【0021】
さらに、電子線放出管のグリッドに形成された多数の透孔の開口率分布が一様であれば、電子線は中央部分の照射強度が高く、中央部分から離れるに従って照射強度が徐々に低くなる強度分布で出力される。
このとき、グリッドの透孔を通過した電子のみが陽極へ達し、グリッドに直接衝突した電子は透孔を通過せずにグリッドに流入する電流となる。
したがって、例えば、中央近傍の透孔の開口率を小さく、周囲の透孔の開口率を大きく設計しておけば、中央部分の照射強度が低下するので、全体として略均一なフラットな照射強度分布の電子線が出力される。
【0022】
このとき、グリッドに衝突した電子は、グリッド電流となってエネルギーロスを生ずるが、この場合のエネルギー損失はグリッド電圧×電流で求められる。グリッド電圧は、加速電圧と比して格段に小さくせいぜい数百Vであるので、中央部のグリッド開口率を小さくしたことによるエネルギーロスは通常数十mWに抑えられる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明にかかる電子線照射装置を示す説明図、図2は測定結果を示すグラフ、図3は電子線の照射強度分布のプロフィールを示すグラフ、図4はグリッドの配列が異なる他の実施形態を示す説明図、図5は電子線コントローラの処理手順を示すフローチャート、図6は他の実施形態を示す説明図である。
なお、本実施形態では電子線放出管は真空排気系を持たない封止きり形であるが、別途排気装置によって電子線放出管内を真空引きし、管内を高真空に保ちながら使用する電子線放出管であっても効果は同じである。
【0024】
図1に示す電子線照射装置1は、電子線を照射する電子線放出管2がその照射強度を一定に維持する電子線コントローラ3に接続されている。
電子線放出管2は、電子線照射窓5を形成した陽極6となる照射ヘッド7が封止管(胴部)4の一端側に設けられると共に、その内部に、照射窓5に向う電子線を発生させる熱陰極8及びグリッド9が配され、熱陰極8及びグリッド9は、封止管4内に配された断面略円形又は略正多角形のシールド管10内に設けられている。
そして、陽極6がグランドに接続されると共に、電子線コントローラ3により陽極6−グリッド9間に−30〜100kVの加速電圧Vが印加され、グリッド9−熱陰極8に数十Vのグリッド電圧Vが印加されるようになされている。
【0025】
照射ヘッド7はSUSで形成され、電子線を照射したときに、電子線放出管2の外側に放出される二次X線の線量当量率が0.6μSv/hr(平成12年10月23日科学技術庁告示第5号 第2条参照)以下になるようにその厚さが選定されている。
本例では、ヘッド肉厚が最小部でも10mm以上になるように製作したところ、加速電圧V=60kV、熱陰極8−陽極6間に流れるビーム電流I=1mAで運転したときの二次X線の線量当量率が0.5μSv/hrであった。
【0026】
また、グリッド電圧Vの調節でビーム電流Iを確実にコントロールできるようにするため、発明者が実験・研究を重ねた結果、グリッド電圧V=0に設定したときの漏れビーム電流が、グリッド電圧Vを最大にしたときのビーム電流の5%以下となるような電子線放出管2の設計条件が判明した。
【0027】
実験は、まず、グリッド電圧Vを最大にした状態で熱陰極8−陽極6間に流れる最大ビーム電流maxI=1mAとなる加熱電力Wを熱陰極8に供給しておき、次に、グリッド電圧V=0に落として、シールド管10の内接円直径(断面円形のときはその内径)D、シールド管10先端から熱陰極8先端までの距離L及び加速電圧Vを変化させたときに、ビーム電流Iが最大ビーム電流maxIの5%となる漏れ限界加速電圧Vを測定した。
【0028】
図2はその測定結果を表すもので、縦軸に距離L(mm)、横軸に漏れ限界加速電圧Vの対数軸をとったグラフで表したところ、シールド管10の内接円直径Dが一定であれば、距離Lと漏れ限界加速電圧の対数値lnV (kV)が一次関係にあり、その傾きが内接円直径D(mm)に依存することがわかった。
さらに、この場合、グリッド9の枚数を増やしても漏れ電流の値に影響はなかった。
【0029】
そしてこれを解析したところ、距離L及び内接円直径Dは、漏れ限界加速電圧Vに対して、
L=0.18D×lnV
の関係を有しており、加速電圧Vは漏れ限界加速電圧Vより小さくする必要があるから、電子線放出管2は、
L≧0.18D×lnV
の条件で設計されている。
そして、これにより、漏れビーム電流が、グリッド電圧Vを最大にしたときのビーム電流Iの5%以下に抑えられた。
なお、熱陰極8はシールド管10内に配されているので、距離Lはシールド管10の長さLより短く、L<Lの関係が成り立つ。
【0030】
また、グリッド9には、照射窓5から照射させようとする電子線の照射強度分布に応じて設計された開口率分布の多数の透孔11…が形成されている。
このグリッド9は、例えば、開口率分布が一様の透孔が形成されたグリッドを透過した電子線の基準照射強度分布と、照射窓から照射させようとする電子線の目標照射強度分布に基づき、対応する位置における照射強度分布差に基づいて設計されている。
【0031】
図3(a)は電子線を照射スポットの直径方向に切断したときの強度分布を示すビームプロフィールであって、プロフィールAが基準照射強度分布、プロフィールBが目標照射強度分布である。
そして、被処理物に対してプロフィールBに示すようなフラットな照射強度分布で電子線を照射しようとする場合、プロフィールBの目標照射強度分布からプロフィールAの基準照射強度分布を引いて、図3(b)に示すように対応する位置における照射強度分布差を求め、その差がマイナスの部分はその絶対値に応じて開口率を小さく、プラスの部分はその絶対値に応じて開口率を大きくすることにより、概ねプロフィールBのような照射強度分布が得られた。
【0032】
このとき、熱陰極8で発生し、グリッド電圧により引き付けられてグリッド9に衝突した電子は、グリッド電流Iとなってエネルギーロスを生ずるが、この場合のエネルギー損失はグリッド電圧×電流で求められる。
グリッド電圧Vは、加速電圧Vと比して格段に小さくせいぜい数百Vであるので、グリッド電圧150V、開口率を小さくしたことによる損失電流を0.5mAとしても、損失分は0.075Wに過ぎず、少ないエネルギーロスで電子線の照射強度分布が制御できる。
【0033】
なお、ビームプロフィール成形用のグリッド9は一以上設けられていればその数は任意であり、また、図4に示すように、ビームプロフィール成形用の一以上のグリッド9と、略均一な開口率分布の多数の透孔12…が形成されている一以上のグリッド13を重ねて使用しても良い。
要するに、複数のグリッドのうち少なくとも一がビームプロフィール成形用グリッド9であればよい。
【0034】
また、複数のグリッド9…、13…を重ねて使用する場合、各グリッド9…、13…の透孔11、12の総開口面積が、熱陰極8側から陽極6側に向って徐々に大きくなるように形成すると、電子線の照射効率に優れる。
【0035】
電子線コントローラ3は、熱陰極8−陽極6間に流れるビーム電流Iを一定に維持するようにグリッド電圧Vを調整するグリッド電圧調整手段21と、熱陰極8の電子放出能力を検出して電子放出能力が下限に達したと判断されたときに熱陰極8へ供給される加熱電力W(=フィラメント電圧V×フィラメント電流I)を予め設定された値だけ上昇させる加熱電力調整手段22を備えている。
【0036】
そして、これにより熱陰極8に供給される加熱電力Wを極力低く抑えて、且つ、熱陰極8−陽極6間に流れるビーム電流Iを一定に維持した状態で、電子線放出管2から電子線を照射させることができるようになっている。
【0037】
グリッド電圧調整手段21には、ビーム電流Iをモニタする電流計23が接続され、その検出信号に応じてビーム電流Iが一定の値に維持されるようにグリッド電圧Vを調整するフィードバック制御を行う。
また、加熱電力調整手段22には、前記グリッド電圧調整手段21から出力されるグリッド電圧Vを熱陰極8の電子放出能力の指標としてモニタする電 圧計24が接続され、グリッド電圧Vが予め設定された上限値maxVに達したときに電子放出能力が下限に達したと判断するようになされている。
【0038】
図5は電子線コントローラ3の処理手順を示すフローチャートである。なお、電子コントローラ3には、目標ビーム電流TIが得られる初期加熱電力DW、加速電圧V、初期グリッド電圧DVと、熱陰極8の電子放出能力の下限に対応する最大グリッド電圧maxVが工場出荷時に設定されている。
【0039】
そして、スイッチ(図示せず)がオンされて処理が実行開始されると、まず、ステップSTP1で、加熱電力W=DW、グリッド電圧V=DVと設定し、ステップSTP2で熱陰極8に加熱電力Wを供給し、グリッド9−熱陰極8間及び陽極6−グリッド9間に夫々グリッド電圧V及び加速電圧Vを印加する。
【0040】
次いで、ステップSTP3に移行し、ビーム電流Iが目標ビーム電流TIに一致するか否かをその差ΔI=I−TIにより判断する。
そして、差ΔI=0の場合は、グリッド電圧V及び加熱電力Wが適正であると判断されてステップSTP2へ戻る。
また、差ΔI>0の場合はビーム電流Iを低下させるべくステップSTP4へ移行し、差ΔI<0の場合はビーム電量Iを上昇させるべくステップSTP6へ移行する。
【0041】
ステップSTP4及びステップSTP5では、差ΔI=0となるまでグリッド電圧Vを低下させ、差ΔI=0となった時点でステップSTP2へ戻る。
【0042】
一方、ステップSTP6及びステップSTP7では、差ΔI=0となるまでグリッド電圧Vを上昇させ、差ΔI=0となった時点でSTP8に移行し、グリッド電圧Vが予め設定された最大グリッド電圧maxVに達したか否かが判断される。
そして、グリッド電圧V=maxVとなった時点で熱陰極8の電子放出能力が下限に達したと判断してSTP9に移行し、加熱電力W=W+ΔWと置き換えて予め設定された電力値ΔW分だけ加熱電力を上昇させ、ステップSTP2へ戻る。
【0043】
ここで、ステップSTP4及び5、ステップSTP6及び7の処理がグリッド電圧調整手段21における処理であり、ステップSTP8及び9の処理が加熱電力調整手段22における処理である。
【0044】
以上が本発明の一例であって、次にその作用を説明する。
まず、電子線コントローラ3がオンされると、ビーム電流Iが一定に維持されるようにグリッド電圧Vが調節されて、電子線放出管2から電子線が照射される。
【0045】
これに対して、熱陰極8が劣化して電子放出能力が低下していく変化は長期的であるが、電子線放出管2の使用時間に応じて確実に変化していく。この場合、電子放出能力の低下に伴いビーム電流Iが低下しないように、これに対してグリッド電圧Vを上昇させる制御を行うので、グリッド電圧Vの電圧値は、現在の電子放出能力を示す指標となる。
【0046】
そこで、グリッド電圧V=上限値maxVに達したときに電子放出能力が下限に達したと判断して、熱陰極8へ供給される加熱電力Wを予め設定された値だけ上昇させる。
加熱電力Wの変化に対するビーム電流Iの応答速度は遅いため、ビーム電流Iがすぐに上昇することはないが徐々に上昇していくので、ビーム電流Iが高くなったときには、グリッド電圧Vを下げることによりビーム電流Iを一定に維持できる。
【0047】
このように、熱陰極8が劣化するなどして電子放出能力が下限に達したときに加熱電力Wを少しずつ上昇させ、ビーム電流Iが変動したときにはグリッド電圧Vを調節することによりビーム電流Iを一定に維持するようにしているので、加熱電力Wは極力低く抑えられて熱陰極8ひいては電子線放出管2の寿命が延び、且つ、ビーム電流Iの制御も安定的に行われる。
【0048】
また、電子線放出管2は、
L≧0.18D×lnV
L:シールド管先端から熱陰極先端までの距離(mm)
D:シールド管の内接円直径(mm)
:加速電圧(kV)
の関係を満たすように加速電圧Vに対する熱陰極8の位置及びシールド管10の大きさが選定されている。
これにより、漏れビーム電流が、グリッド電圧Vを最大にしたときのビーム電流Iの5%以下に抑えられ、グリッド電圧Vを絞ることにより一時的に電子線の照射を停止させようとする場合も実用上問題はない。
【0049】
さらに、電子線放出管2のグリッド9には多数の透孔11…が形成され、その透孔11…を通過した電子のみが陽極6へ達し、グリッド9に直接衝突した電子は透孔11…を通過せずにグリッド9に流入する電流となる。
したがって、例えば、中央近傍の透孔11…の開口率を小さく、周囲の透孔11…の開口率を大きく設計しておけば、中央部分の照射強度が低下し、全体として略均一なフラットな照射強度分布の電子線が出力される。
【0050】
このとき、グリッド9に直接衝突した電子は、グリッドに流れ込む電流IGLとなってグリッド電流Iを増加させるが、この場合のエネルギー損失はグリッド電圧V×電流IGLで求められ、グリッド電圧Vは、加速電圧Vと比して格段に小さくせいぜい数百Vであるので、グリッド電圧V=150Vのときに検出されたグリッド電流Iのうち0.5mAが損失分としても、その損失分は75mWに過ぎず、電子線の照射強度分布を制御するためのエネルギーロスは少ない。
【0051】
なお、上述の説明では、熱陰極の電子放出能力としてグリッド電圧Vをモニタする場合について説明したが、図6に示すように、熱陰極8の近傍に別途検出電極14を設けて、熱陰極8に対して所定の電位差を与えておき、その検出電極14に流入する電流値を熱陰極の電子放出能力としてモニタし、その電流値が予め設定された下限値まで低下したときに電子放出能力が下限に達したと判断しても良い。
【0052】
また、電子線の照射強度分布は、フラットにする場合に限らず、よりシャープに尖らせたり、複数のピークを形成するなど、その分布パターンは任意である。
【0053】
【発明の効果】
以上述べたように、本発明によれば、熱陰極の電子放出能力の低下に伴い電子放出能力が低下してビーム電流が変動したときでも、グリッド電圧を調節することによりビーム電流を一定に維持しながら、加熱電力を少しずつ上昇させるようにしているので、ビーム電流の制御を安定的に行うことができると同時に、加熱電力を極力低く抑えて熱陰極の寿命延ばすことができるという大変優れた効果がある。
【0054】
また、グリッド電圧を0に設定したときの漏れビーム電流がグリッド電圧を最大にしたときのビーム電流の5%以下に抑えることができるので、電子線の照射を一時的に停止させる際に、電子線の漏出による影響が実用上問題とならない。
【0055】
さらに、グリッドに形成する多数の透孔を照射窓から照射させようとする電子線の照射強度分布に応じた開口率分布に設計したので、照射窓にそのような開口を設ける場合と異なり、極めて少ないエネルギーロスで電子線の照射強度分布を制御することができるという大変優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかる電子線照射装置を示す説明図。
【図2】測定結果を示すグラフ。
【図3】電子線の照射強度分布のプロフィールを示すグラフ。
【図4】グリッドの配列が異なる他の実施形態を示す説明図。
【図5】電子線コントローラの処理手順を示すフローチャート。
【図6】他の実施形態を示す説明図。
【符号の説明】
1………電子線照射装置
2………電子線放出管
3………電子線コントローラ
4………封止管(胴部)
5………電子線照射窓
6………陽極
7………照射ヘッド
8………熱陰極
9………グリッド
10………シールド管
11………透孔
21………グリッド電圧調整手段
22………加熱電力調整手段
………加速電圧
………グリッド電圧
………ビーム電流
………加熱電力
L………距離
D………内接円直径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam irradiation apparatus that performs a curing treatment of ink or resin, a crosslinking reaction of a film or rubber, a sterilization treatment, a smoke removal treatment, etc. by irradiating a workpiece with a high energy electron beam. relates to that electron-emitting tube be used therewith.
[0002]
[Prior art]
In general, an electron beam irradiation apparatus is provided with an irradiation head serving as an anode in which an electron beam irradiation window is formed on one end side of a sealed tube (body) having a high vacuum inside, and a hot cathode for generating an electron beam and Using an electron beam emission tube in which one or more grids are arranged in the body, the hot electrons generated by heating the hot cathode are extracted by the grid, and an acceleration voltage of 30 to 100 kV is applied between the grid and the anode. Thus, electrons are accelerated to a high speed, and an object is irradiated with an electron beam from an irradiation window.
[0003]
In this case, in order to make the processing quality of the electron beam irradiation processing constant, it is important to control the amount of electrons to be irradiated constant. Therefore, the beam flowing between the hot cathode and the anode by adjusting the grid voltage. The current is kept constant.
[0004]
Also, the heating power supplied to the hot cathode is usually set at the time of manufacturing the device so that sufficient electrons can be supplied even if the hot cathode's electron emission capability changes due to changes in the hot cathode over time or other factors. A large amount of power is available.
[0005]
However, if sufficient power is supplied as the heating power, the burden on the hot cathode is increased, and the life of the hot cathode is shortened accordingly.
In an electron beam generator used in an image display device having the same problem, a hot cathode (wire) is used in response to a change in grid current (absorbed electron current) at the grid (beam extraction electrode) to solve this problem. A technique for reducing the burden on the hot cathode and extending the life by controlling the heating power to the cathode) has been proposed (see Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-31345
[Problems to be solved by the invention]
However, as described above, even if the grid current is monitored and the heating power to the hot cathode is controlled, the grid current depends on the grid voltage, so that the beam current, that is, the electron beam irradiation intensity can be kept constant. Can not.
[0008]
In this case, if the grid voltage is kept constant, the grid current is approximately proportional to the beam current. Therefore, theoretically, the beam current can be kept constant by controlling the heating power according to the grid current. It is possible to maintain.
[0009]
However, in reality, the response speed of the grid current (beam current) to the change in the heating power is extremely slow. Therefore, if the heating power is controlled so that the grid current is maintained constant, the grid increases as the heating power increases. When the current (beam current) reaches the set value, the heating power is excessive.
Therefore, as time elapses, the grid current (beam current) exceeds the set value and overshoots, and if the heating power is reduced accordingly, there is a problem that undershoot occurs and control becomes impossible.
[0010]
Further, since the electron beam emission tube has a very large potential difference (acceleration voltage) between the anode and the grid of 30 to 100 kV, even if the grid voltage is reduced to 0 in order to temporarily stop the electron beam irradiation, The thermoelectrons generated at the cathode are affected by the electric field due to the acceleration voltage, and leak to the anode to generate a leakage beam current.
If this leakage beam current exceeds 5% of the beam current when the grid voltage is maximized, there is a concern about an adverse effect due to leakage of the electron beam.
[0011]
Furthermore, the irradiation intensity of the electron beam irradiated from the electron beam emission tube is normally strongest on the irradiation axis line connecting the center of the irradiation window from the hot cathode, and has a distribution that gradually decreases as the distance from the irradiation axis increases. However, in order to perform uniform processing over the entire irradiation area, the irradiation intensity distribution of the electron beam is required to be as uniform as possible.
[0012]
For this reason, conventionally, a shielding member in which a through hole with a small aperture ratio is drilled in the central portion where the electron beam irradiation intensity is high and a through hole with a large aperture ratio is drilled around the support frame of the electron beam irradiation window. An arranged electron beam irradiation apparatus has been proposed (see Patent Document 2).
[0013]
[Patent Document 2]
JP-A-9-166700 [0014]
However, if the aperture ratio at the central part of the electron beam irradiation window is reduced, electrons that cannot be transmitted collide with the support frame of the irradiation window and are wasted. The energy loss at this time is a product of the amount of electrons (current) that cannot be transmitted and the acceleration voltage, and even a slight loss of the amount of electrons has a high voltage value of the acceleration voltage, and is usually several tens to several tens of watts.
[0015]
In view of this, the present invention firstly enables the beam current to be stably controlled and kept constant while keeping the heating power as low as possible, and secondly, the leakage beam current when the grid voltage is set to 0 is substantially reduced. Third, the technical problem is to be able to control the irradiation intensity distribution of the electron beam with a small energy loss.
[0016]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides an electron beam emission tube in which an irradiation head serving as an anode formed with an electron beam irradiation window is provided on one end side of a body portion, and supplies power to the electron beam emission tube. In an electron beam irradiation apparatus connected to an electron beam controller, a hot cathode for generating an electron beam and one or more grids are shields having a substantially circular or substantially polygonal cross section arranged in the body of the electron beam emitting tube Provided in the pipe,
L ≧ 0.18D × lnV A
L: Distance from the tip of the shield tube to the tip of the hot cathode (mm)
D: Inscribed circle diameter of shield tube (mm)
V A : acceleration voltage (kV)
The position of the hot cathode, the size of the shield tube, and the accelerating voltage are selected so as to satisfy the relationship, and according to the irradiation intensity distribution of the electron beam to be irradiated from the irradiation window to at least one of the grids A grid voltage adjusting unit that adjusts the grid voltage so that a beam current flowing between the hot cathode and the anode is maintained constant, and a plurality of through holes are formed with a designed aperture ratio distribution. A heating power adjustment means is provided for detecting the electron emission capability of the hot cathode and increasing the heating power supplied to the hot cathode by a preset value when it is determined that the electron emission capability has reached the lower limit. Features.
[0017]
According to the present invention, the electron beam is irradiated by adjusting the grid voltage so that the beam current is maintained constant by the electron beam controller.
Moreover, although the change in which the hot cathode is deteriorated and the electron emission capacity is lowered is long-term, it is surely lowered according to the usage time of the electron beam emission tube. In this case, control is performed to increase the grid voltage so that the beam current does not decrease with a decrease in the electron emission capability. Therefore, the voltage value of the grid voltage is an index indicating the electron emission capability.
[0018]
Therefore, when the grid voltage reaches a preset upper limit value, it is determined that the electron emission capability has reached the lower limit, and the heating power supplied to the hot cathode is increased by a preset value.
At this time, since the response speed of the beam current to the change in the heating power is extremely slow, the beam current does not increase immediately but gradually increases. When the beam current becomes higher than the set value, the beam current can be kept constant by lowering the grid voltage.
[0019]
In this way, when the electron emission capacity reaches the lower limit due to deterioration of the hot cathode, etc., the heating power is gradually increased, and when the beam current fluctuates, the grid voltage is adjusted to maintain the beam current constant. As a result, the heating power is kept as low as possible, the life of the hot cathode and thus the electron beam emission tube is extended, and the beam current is also stably controlled.
[0020]
Further, when the grid voltage is reduced to 0 in order to temporarily stop the electron beam irradiation, there is no practical problem if the leakage beam current is 5% or less of the beam current when the grid voltage is maximized. .
And according to the inventors' experiment, the hot cathode and one or more grids are provided in a shield tube having a substantially circular or substantially regular polygonal cross section disposed in the body of the electron beam emission tube,
L: Distance from the tip of the shield tube to the tip of the hot cathode (mm)
D: Inscribed circle diameter of shield tube (mm)
V A : acceleration voltage (kV)
And when
L ≧ 0.18D × lnV A
It was found that the position of the hot cathode, the size of the shield tube, and the acceleration voltage should be selected so as to satisfy the above relationship.
In the electron beam emission tube, the acceleration voltage is preset as the rated voltage. Therefore, the distance L from the tip of the shield tube to the tip of the hot cathode, and the inscribed circle of the shield tube are usually set against the acceleration voltage. The diameter D may be determined, whereby the beam current is reliably controlled by adjusting the grid voltage.
[0021]
Furthermore, if the aperture ratio distribution of a large number of through holes formed in the grid of the electron beam emission tube is uniform, the irradiation intensity of the electron beam is high at the central portion, and the irradiation intensity gradually decreases as the distance from the central portion increases. Output in intensity distribution.
At this time, only electrons that have passed through the through holes of the grid reach the anode, and electrons that have directly collided with the grid become currents that flow into the grid without passing through the through holes.
Therefore, for example, if the aperture ratio of the through hole in the vicinity of the center is small and the aperture ratio of the surrounding through holes is designed to be large, the irradiation intensity at the center portion is reduced, so that the substantially uniform flat irradiation intensity distribution as a whole The electron beam is output.
[0022]
At this time, the electrons colliding with the grid become a grid current and cause an energy loss. In this case, the energy loss is obtained by grid voltage × current. Since the grid voltage is significantly smaller than the acceleration voltage and is several hundred V at most, the energy loss due to the reduction of the grid aperture ratio in the central part is normally suppressed to several tens of mW.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing an electron beam irradiation apparatus according to the present invention, FIG. 2 is a graph showing measurement results, FIG. 3 is a graph showing a profile of irradiation intensity distribution of electron beams, and FIG. FIG. 5 is an explanatory diagram showing an embodiment, FIG. 5 is a flowchart showing a processing procedure of the electron beam controller, and FIG. 6 is an explanatory diagram showing another embodiment.
In this embodiment, the electron beam emission tube has a sealed shape without an evacuation system. However, the electron beam emission tube is used while evacuating the electron beam emission tube with a separate exhaust device and keeping the inside of the tube at a high vacuum. The effect is the same even with a tube.
[0024]
In an electron beam irradiation apparatus 1 shown in FIG. 1, an electron beam emission tube 2 that irradiates an electron beam is connected to an electron beam controller 3 that maintains the irradiation intensity constant.
The electron beam emission tube 2 is provided with an irradiation head 7 serving as an anode 6 on which an electron beam irradiation window 5 is formed on one end side of a sealing tube (body portion) 4, and an electron beam directed toward the irradiation window 5 in the inside thereof. The hot cathode 8 and the grid 9 are provided, and the hot cathode 8 and the grid 9 are provided in a shield tube 10 having a substantially circular or substantially regular polygonal cross section disposed in the sealing tube 4.
Then, the anode 6 is connected to the ground, the acceleration voltage V A of -30~100kV between anode 6 grid 9 is applied by electron beam controller 3, dozens V grid voltage to the grid 9 hot cathode 8 V G is applied.
[0025]
The irradiation head 7 is made of SUS, and when irradiated with an electron beam, the dose equivalent rate of secondary X-rays emitted to the outside of the electron beam emission tube 2 is 0.6 μSv / hr (October 23, 2000). (See Science and Technology Agency Notification No. 5, Article 2) The thickness is selected to be as follows.
In this example, when the head thickness is 10 mm or more even at the minimum part, the secondary voltage when operating with the acceleration voltage V A = 60 kV and the beam current I B flowing between the hot cathode 8 and the anode 6 = 1 mA is used. The dose equivalent rate of X-rays was 0.5 μSv / hr.
[0026]
Further, in order to ensure control of the beam current I B in the regulation of the grid voltage V G, a result of the inventors has repeated experiments and research, the leaking beam current when set to the grid voltage V G = 0, 5% to become such a design condition of the electron beam emitting tube 2 of the beam current when the maximum grid voltage V G was found.
[0027]
Experiments, first, in advance by supplying heating power W K as a maximum beam current Maxi B = 1 mA flowing between the hot cathode 8- anode 6 while the maximum grid voltage V G to the hot cathode 8, then, The grid voltage V G is decreased to 0, and the inscribed circle diameter (the inner diameter when the cross section is circular) D, the distance L from the tip of the shield tube 10 to the tip of the hot cathode 8 and the acceleration voltage V A are changed. when the beam current I B was measured leakage limit acceleration voltage V M which is 5% of the maximum beam current Maxi B.
[0028]
Figure 2 represents the measurement result, the vertical axis distance L (mm), was expressed in graph plotting the logarithmic axis of the leakage limit acceleration voltage V M to the horizontal axis, the inscribed circle diameter D of the shield tube 10 Is constant, the distance L and the logarithmic value lnV M (kV) of the leakage limit acceleration voltage have a linear relationship, and the slope thereof depends on the inscribed circle diameter D (mm) .
Furthermore, in this case, increasing the number of grids 9 did not affect the leakage current value.
[0029]
And it was analyzing this, the distance L and the inscribed circle diameter D, against leakage limit acceleration voltage V M,
L = 0.18D × lnV M
And the acceleration voltage V A needs to be smaller than the leakage limit acceleration voltage V M.
L ≧ 0.18D × lnV A
Designed with the conditions of
And, thereby, the leakage beam current was suppressed to less than 5% of the beam current I B when the maximum grid voltage V G.
Incidentally, hot cathode 8 because it is disposed in the shield tube 10, the distance L is shorter than the length L S of the shield tube 10, it holds the relationship of L <L S.
[0030]
The grid 9 is formed with a large number of through holes 11 having an aperture ratio distribution designed in accordance with the irradiation intensity distribution of the electron beam to be irradiated from the irradiation window 5.
The grid 9 is based on, for example, a reference irradiation intensity distribution of an electron beam transmitted through a grid in which a through hole having a uniform aperture ratio distribution is formed and a target irradiation intensity distribution of an electron beam to be irradiated from an irradiation window. Designed on the basis of the difference in irradiation intensity distribution at the corresponding position.
[0031]
FIG. 3A is a beam profile showing an intensity distribution when an electron beam is cut in the diameter direction of the irradiation spot, where profile A is a reference irradiation intensity distribution and profile B is a target irradiation intensity distribution.
Then, when the electron beam is to be irradiated to the object to be processed with a flat irradiation intensity distribution as shown in profile B, the reference irradiation intensity distribution of profile A is subtracted from the target irradiation intensity distribution of profile B, and FIG. As shown in (b), the difference in irradiation intensity distribution at the corresponding position is obtained, and when the difference is negative, the aperture ratio is reduced according to the absolute value, and when the difference is positive, the aperture ratio is increased according to the absolute value. As a result, an irradiation intensity distribution such as profile B was obtained.
[0032]
At this time, generated in the hot cathode 8, and impinge on the grid 9 is attracted by the grid voltage electron is caused energy loss become grid current I G, the energy loss in this case is determined by the grid voltage × current .
Since the grid voltage V G is much smaller than the acceleration voltage V A and is several hundreds V at most, even if the loss current due to the grid voltage 150 V and the aperture ratio being reduced is 0.5 mA, the loss is 0.5. Only 075 W, and the irradiation intensity distribution of the electron beam can be controlled with a small energy loss.
[0033]
The number of the beam profile shaping grids 9 is arbitrary as long as at least one grid profile shaping grid 9 is provided. Also, as shown in FIG. 4, one or more beam profile shaping grids 9 and a substantially uniform aperture ratio are provided. One or more grids 13 in which a large number of distributed through holes 12 are formed may be used in an overlapping manner.
In short, at least one of the plurality of grids may be the beam profile shaping grid 9.
[0034]
When the plurality of grids 9... 13 are used in an overlapping manner, the total opening area of the through holes 11 and 12 of the grids 9... 13 is gradually increased from the hot cathode 8 side toward the anode 6 side. When formed in such a manner, the electron beam irradiation efficiency is excellent.
[0035]
Electron beam controller 3, the grid voltage adjusting means 21 for adjusting the grid voltage V G to maintain the beam current I B flowing between the hot cathode 8 anode 6 constant, to detect the electron emission capability of the hot cathode 8 The heating power adjustment for increasing the heating power W K (= filament voltage V K × filament current I K ) supplied to the hot cathode 8 when it is determined that the electron emission capacity has reached the lower limit. Means 22 are provided.
[0036]
And, thereby suppressing the heating power W K supplied to the hot cathode 8 as low as possible, and, while maintaining the beam current I B constant flowing between the hot cathode 8 anode 6, the electron beam emission tube 2 An electron beam can be irradiated.
[0037]
The grid voltage regulator 21, an ammeter 23 to monitor the beam current I B is connected, the feedback detection signal beam current I B in response to the adjust the grid voltage V G to be maintained at a constant value Take control.
Further, the heating power adjusting means 22, the grid voltage regulating means 21 to monitor the voltmeter 24 as an index of the electron emission capability of the grid voltage V G of the hot cathode 8 output from the connected grid voltage V G is preliminarily electron emission capability are made to determine that has reached the lower limit when it reaches a set upper limit value MAXV G.
[0038]
FIG. 5 is a flowchart showing the processing procedure of the electron beam controller 3. Note that the electronic controller 3 includes an initial heating power DW K , an acceleration voltage V A , an initial grid voltage DV G at which a target beam current TI B is obtained, and a maximum grid voltage maxV corresponding to the lower limit of the electron emission capability of the hot cathode 8. G is set at the time of factory shipment.
[0039]
Then, when the switch (not shown) is turned on and the processing is started, first, in step STP1, the heating power W K = DW K and the grid voltage V G = DV G are set, and in step STP2, the hot cathode is set. supplying heating power W K to 8, applying a respective grid voltage V G and the acceleration voltage V a across between the grid 9 hot cathode 8 and anode 6 grid 9.
[0040]
Then, the process proceeds to step STP3, whether the beam current I B is equal to the target beam current TI B judged by the difference ΔI B = I B -TI B.
If the difference ΔI B = 0, it is determined that the grid voltage V G and the heating power W K are appropriate, and the process returns to step STP2.
In the case of the difference [Delta] I B> 0, the process proceeds to step STP4 to reduce the beam current I B, in the case of a difference [Delta] I B <0 proceeds to step STP6 to raise the beam coulometric I B.
[0041]
In step STP4 and step STP5, it lowers the grid voltage V G until the difference ΔI B = 0, at the time point when the difference [Delta] I B = 0 returns to step STP2.
[0042]
Up On the other hand, in step STP6 and step STP7, which increase the grid voltage V G until the difference [Delta] I B = 0, the process proceeds to STP8 when it becomes the difference [Delta] I B = 0, grid voltage V G is set in advance whether reaches the grid voltage MAXV G is determined.
Then, when the grid voltage V G = maxV G is reached, it is determined that the electron emission capability of the hot cathode 8 has reached the lower limit, and the process proceeds to STP 9 where the heating power W K = W K + ΔW is set in advance. The heating power is increased by the power value ΔW, and the process returns to step STP2.
[0043]
Here, the processes of steps STP4 and S5 and steps STP6 and 7 are the processes in the grid voltage adjusting means 21, and the processes of steps STP8 and 9 are the processes in the heating power adjusting means 22.
[0044]
The above is an example of the present invention, and its operation will be described next.
First, when the electron beam controller 3 is turned on, is adjusted grid voltage V G so that the beam current I B is kept constant, the electron beam is irradiated from the electron beam emission tube 2.
[0045]
On the other hand, although the change in which the hot cathode 8 is deteriorated and the electron emission capability is lowered is long-term, it is surely changed according to the usage time of the electron beam emission tube 2. In this case, as the beam current I B due to the decrease of the electron emission capability does not decrease, since the control for increasing the grid voltage V G contrast, the voltage value of the grid voltage V G is the current of the electron emission capability It becomes the index which shows.
[0046]
Therefore, it is determined that the electron emission capability has reached the lower limit when the grid voltage V G = the upper limit value maxV G , and the heating power W K supplied to the hot cathode 8 is increased by a preset value.
Since the response speed of the beam current I B to the change in the heating power W K is slow, the beam current I B does not increase immediately but gradually increases. Therefore, when the beam current I B increases, It can maintain the beam current I B constant by lowering the voltage V G.
[0047]
In this way, by increasing the heating power W K little by little when the electron emission capability reaches the lower limit due to deterioration of the hot cathode 8 and the like, by adjusting the grid voltage V G when the beam current I B fluctuates. Since the beam current I B is kept constant, the heating power W K is kept as low as possible, the life of the hot cathode 8 and thus the electron beam emission tube 2 is extended, and the control of the beam current I B is stable. To be done.
[0048]
The electron beam emission tube 2 is
L ≧ 0.18D × lnV A
L: Distance from the tip of the shield tube to the tip of the hot cathode (mm)
D: Inscribed circle diameter of shield tube (mm)
V A : acceleration voltage (kV)
The position of the hot cathode 8 with respect to the acceleration voltage VA and the size of the shield tube 10 are selected so as to satisfy the above relationship.
Accordingly, the leakage beam current is suppressed to less than 5% of the beam current I B when the maximum grid voltage V G, trying to stop temporarily the electron beam irradiation by squeezing the grid voltage V G There is no problem in practical use.
[0049]
Further, a large number of through holes 11 are formed in the grid 9 of the electron beam emitting tube 2, and only electrons that have passed through the through holes 11 reach the anode 6, and electrons that directly collide with the grid 9 pass through the through holes 11. The current flows into the grid 9 without passing through.
Therefore, for example, if the aperture ratio of the through holes 11 in the vicinity of the center is designed to be small and the aperture ratio of the surrounding through holes 11 to be designed to be large, the irradiation intensity at the center portion is lowered, and the substantially uniform flat as a whole. An electron beam with an irradiation intensity distribution is output.
[0050]
At this time, electrons colliding directly to the grid 9, increases the grid current I G is a current I GL flowing into the grid, the energy loss in this case is obtained by the grid voltage V G × current I GL, grid voltage Since V G is remarkably small compared with the acceleration voltage V A and is several hundred V at most, even if 0.5 mA of the grid current I G detected when the grid voltage V G = 150 V is lost, The loss is only 75 mW, and there is little energy loss for controlling the irradiation intensity distribution of the electron beam.
[0051]
In the above description, a case has been described in which to monitor the grid voltage V G as an electron emission capability of the hot cathode, as shown in FIG. 6, the provided separately detecting electrodes 14 in the vicinity of the hot cathode 8, a hot cathode A predetermined potential difference is given to 8 and the current value flowing into the detection electrode 14 is monitored as the electron emission capability of the hot cathode, and the electron emission capability when the current value falls to a preset lower limit value. May be determined to have reached the lower limit.
[0052]
Moreover, the irradiation intensity distribution of the electron beam is not limited to a flat shape, and the distribution pattern thereof is arbitrary, such as sharpening more sharply or forming a plurality of peaks.
[0053]
【The invention's effect】
As described above, according to the present invention, the beam current is maintained constant by adjusting the grid voltage even when the electron emission capability of the hot cathode decreases and the beam current fluctuates. However, since the heating power is increased little by little, the beam current can be controlled stably, and at the same time, the heating power can be kept as low as possible to extend the life of the hot cathode. effective.
[0054]
Further, since the leakage beam current when the grid voltage is set to 0 can be suppressed to 5% or less of the beam current when the grid voltage is maximized, the electron beam irradiation is temporarily stopped when the electron beam irradiation is temporarily stopped. The effect of wire leakage does not become a practical problem.
[0055]
Furthermore, since the aperture ratio distribution according to the irradiation intensity distribution of the electron beam to be irradiated from the irradiation window is designed to irradiate a large number of through holes formed in the grid, unlike the case where such an opening is provided in the irradiation window, An excellent effect is obtained that the irradiation intensity distribution of the electron beam can be controlled with a small energy loss.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an electron beam irradiation apparatus according to the present invention.
FIG. 2 is a graph showing measurement results.
FIG. 3 is a graph showing a profile of an electron beam irradiation intensity distribution.
FIG. 4 is an explanatory diagram showing another embodiment in which the grid arrangement is different.
FIG. 5 is a flowchart showing a processing procedure of the electron beam controller.
FIG. 6 is an explanatory diagram showing another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron beam irradiation apparatus 2 ... Electron beam emission tube 3 ... Electron beam controller 4 ......... Sealing tube (body part)
5. Electron beam irradiation window 6... Anode 7... Irradiation head 8... Hot cathode 9 ... Grid 10 ... Shield tube 11 ... Through hole 21 ... Grid voltage adjusting means 22... Heating power adjusting means V A ... Acceleration voltage V G ... Grid voltage I B ... Beam current W K ... Heating power L ... Distance D ... Inscribed circle diameter

Claims (2)

電子線照射窓を形成した陽極となる照射ヘッドが胴部の一端側に設けられた電子線放出管が、該電子線放出管に対して電力供給する電子線コントローラに接続された電子線照射装置において、
電子線を発生させる熱陰極及び一以上のグリッドが、前記電子線放出管の胴部内に配された断面略円形又は略正多角形のシールド管内に設けられ、
L≧0.18D×lnV
L:シールド管先端から熱陰極先端までの距離(mm)
D:シールド管の内接円直径(mm)
:加速電圧(kV)
の関係を満たすように熱陰極の位置、シールド管の大きさ及び加速電圧が選定され、
前記グリッドのうち少なくとも一のグリッドに、照射窓から照射させようとする電子線の照射強度分布に応じて設計された開口率分布で多数の透孔が形成され、
前記電子線コントローラには、熱陰極−陽極間に流れるビーム電流が一定に維持されるようにグリッド電圧を調整するグリッド電圧調整手段と、熱陰極の電子放出能力を検出して電子放出能力が下限に達したと判断されたときに熱陰極へ供給される加熱電力を予め設定された値だけ上昇させる加熱電力調整手段を備えたことを特徴とする電子線照射装置。
An electron beam irradiation apparatus in which an electron beam emission tube having an irradiation head serving as an anode having an electron beam irradiation window provided on one end side of the body is connected to an electron beam controller that supplies power to the electron beam emission tube In
A hot cathode for generating an electron beam and one or more grids are provided in a shield tube having a substantially circular or substantially regular polygonal cross section disposed in a body portion of the electron beam emitting tube,
L ≧ 0.18D × lnV A
L: Distance from the tip of the shield tube to the tip of the hot cathode (mm)
D: Inscribed circle diameter of shield tube (mm)
V A : acceleration voltage (kV)
The position of the hot cathode, the size of the shield tube and the acceleration voltage are selected so as to satisfy the relationship
At least one of the grids is formed with a large number of through holes with an aperture ratio distribution designed according to the irradiation intensity distribution of the electron beam to be irradiated from the irradiation window,
The electron beam controller includes a grid voltage adjusting means for adjusting a grid voltage so that a beam current flowing between the hot cathode and the anode is kept constant, and an electron emission capability of the hot cathode by detecting the electron emission capability of the hot cathode. An electron beam irradiation apparatus comprising heating power adjusting means for increasing the heating power supplied to the hot cathode by a preset value when it is determined that the temperature has been reached.
電子線照射窓を形成した陽極となる照射ヘッドが胴部の一端側に設けられた電子線放出管において、
電子線を発生させる熱陰極及びグリッドが、胴部内に配された断面略円形又は略正多角形のシールド管内に設けられ、
L≧0.18D×lnV
L:シールド管先端から熱陰極先端までの距離(mm)
D:シールド管の内接円直径(mm)
:加速電圧(kV)
の関係を満たすように熱陰極の位置、シールド管の大きさが選定されたことを特徴とする電子線放出管。
In the electron beam emission tube provided with an irradiation head on the one end side of the body part as an anode that forms an electron beam irradiation window,
A hot cathode for generating an electron beam and a grid are provided in a shield tube having a substantially circular or substantially regular polygonal cross section disposed in the body part,
L ≧ 0.18D × lnV A
L: Distance from the tip of the shield tube to the tip of the hot cathode (mm)
D: Inscribed circle diameter of shield tube (mm)
V A : acceleration voltage (kV)
An electron beam emission tube characterized in that the position of the hot cathode and the size of the shield tube are selected so as to satisfy the above relationship.
JP2003188478A 2003-06-30 2003-06-30 Electron beam irradiation apparatus and electron beam emission tube Expired - Fee Related JP4140464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188478A JP4140464B2 (en) 2003-06-30 2003-06-30 Electron beam irradiation apparatus and electron beam emission tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188478A JP4140464B2 (en) 2003-06-30 2003-06-30 Electron beam irradiation apparatus and electron beam emission tube

Publications (2)

Publication Number Publication Date
JP2005024343A JP2005024343A (en) 2005-01-27
JP4140464B2 true JP4140464B2 (en) 2008-08-27

Family

ID=34187016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188478A Expired - Fee Related JP4140464B2 (en) 2003-06-30 2003-06-30 Electron beam irradiation apparatus and electron beam emission tube

Country Status (1)

Country Link
JP (1) JP4140464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0802102A2 (en) 2008-10-07 2010-07-20 Tetra Laval Holdings & Finance Control method for a device for electron beam sterilization and a device for carrying out said method
US10525531B2 (en) * 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
FR3075673B1 (en) * 2017-12-26 2019-12-20 Addup SELECTIVE ADDITIVE MANUFACTURING APPARATUS WITH ELECTRON SOURCE HAVING INDIRECT HEATING CATHODE

Also Published As

Publication number Publication date
JP2005024343A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4688760B2 (en) Charged particle beam irradiation device and method for operating a charged particle beam irradiation device
EP0543935B1 (en) Particle beam generator
CN108463872B (en) Ion implanter, semiconductor wafer implanting apparatus and method
EP2763156A1 (en) X-ray source with improved target lifetime
CN113793790A (en) Open type micro-focus X-ray source and control method thereof
JP2004273419A (en) Electron beam source, electron optical apparatus using such beam source, and method of operating electro beam source
JP4140464B2 (en) Electron beam irradiation apparatus and electron beam emission tube
US20160238636A1 (en) Method for estimating lifetime of cathode in electron beam lithography apparatus
US6252344B1 (en) Electron gun used in an electron beam exposure apparatus
JP2008251300A (en) X-ray inspection device
JP5362297B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP2017157558A (en) Thermal field emitter tip, electron beam device including thermal field emitter tip, and method for operating electron beam device
JP3265166B2 (en) Electrostatic deflector
CN107637180B (en) X-ray generating apparatus and control method thereof
JPH09260237A (en) Electron gun, electron beam equipment and electron beam irradiation method
JP2022112487A (en) Electron beam lithography device and cathode life prediction method
JPH07272652A (en) Adjusting method for electric field ionizing type gas phase ion source
JP2018098395A (en) Charged particle device, charged particle drawing apparatus and charged particle beam control method
JP3825933B2 (en) Electron beam irradiation apparatus, electron beam drawing apparatus using the electron beam irradiation apparatus, scanning electron microscope, and point light source type X-ray irradiation apparatus
US11404238B2 (en) Control method for electron microscope and electron microscope
US11398364B2 (en) Electron gun, electron microscope, three-dimensional additive manufacturing apparatus, and method of adjusting current of electron gun
Yeheskel et al. An intense electron beam source
WO2019038966A1 (en) Charged particle beam generator and particle beam treatment device provided with same, and method for operating charged particle beam generator
US11749491B2 (en) Electron beam writing apparatus and cathode life span prediction method
JP2019002783A (en) Electron beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees