JP4140226B2 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
JP4140226B2
JP4140226B2 JP2001313080A JP2001313080A JP4140226B2 JP 4140226 B2 JP4140226 B2 JP 4140226B2 JP 2001313080 A JP2001313080 A JP 2001313080A JP 2001313080 A JP2001313080 A JP 2001313080A JP 4140226 B2 JP4140226 B2 JP 4140226B2
Authority
JP
Japan
Prior art keywords
reflecting
mirror
light beam
scanning device
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001313080A
Other languages
Japanese (ja)
Other versions
JP2003121774A (en
Inventor
嘉章 萩野谷
秀樹 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2001313080A priority Critical patent/JP4140226B2/en
Publication of JP2003121774A publication Critical patent/JP2003121774A/en
Application granted granted Critical
Publication of JP4140226B2 publication Critical patent/JP4140226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、画像情報に基づいて光ビームを被走査体上に走査露光することにより、画像を記録するレーザープリンタや、デジタル複写機等の電子写真装置に用いられる光学走査装置に関するものである。
【0002】
【従来の技術】
従来のレーザープリンタや電子写真装置に用いられる光学走査装置について、図21を参照して説明する。
【0003】
光学走査装置300は、画像情報に基づいて光ビームLを出射する光源302と、この光源302から出射された光ビームLを所定の方向へ偏向させるポリゴンミラー304と、結像レンズ系306と、被走査体308に光ビームLを導く反射ミラー310とから構成され、各部品が図示しないカバーで閉塞されるハウジング312内に配設されるものである。このハウジング312は、フレーム314にスクリュー316で固定されて電子写真装置内に組み込まれるものである。
【0004】
なお、光学走査装置300が配設された電子写真装置は、被走査体308の周囲に、周知の帯電手段、現像手段、転写手段がフレーム314上に配設され、被走査体308上に形成されたトナー像を記録紙に転写し、定着手段によってトナー像が定着されることによって、記録紙に画像形成するものである。
【0005】
このように電子写真装置内部に配設された光学走査装置300では、ポリゴンミラー304や被走査体308の駆動モータや電子写真装置内部の用紙搬送手段の振動がハウジング312に伝達される。この結果、ハウジング312に配設された反射ミラー310が、図22の模式図に示すように、正規の実線位置に対して破線位置間を振動するたわみ振動を生じ、反射面310Aの変動によって光ビームLの光路が正規位置からずれて被走査体308上で走査線ずれを起こし、画質不良となる問題があった。
【0006】
この問題を解決する手段として、例えば、特開平11−187224号公報(以下、従来例1という)の光学走査装置では、図23(A)、(B)に示すように、ハウジング内に形成された一対の支持体320A、320Bの孔部322A、322Bに反射ミラー324が挿通され、反射ミラー324の反射面324A側を孔部322A内に突出形成された突起326Aと、孔部322B内に突出形成された突起326B、326Cによって支持されると共に、反射ミラー324の反射面324Aと反対側の面(以下、裏面という)324Bを孔部322A、322B内に挿入された板バネ328A、328Bによって押圧する。さらに、支持体320Aの孔部322Aに反射面324Aに対して所定のクリアランスX(図23(B)参照)を隔てて突出した支持部330A、330Bを設け、支持部330A、330Bと反射面324Aの間に接着剤332を塗布したものである。
【0007】
従来は、図24(A)に示すように、反射面324Aを突起326A〜326Cでのみ支持していたために、振動の伝達によって反射ミラー324(反射面324A)が突起326Aとの当接位置を中心として矢印B方向に揺動してしまう(図24(B)参照)が、本構成では支持部330A、330Bと接着剤332で固定しているため、前記揺動を防止できるとしている。
【0008】
特開平9−120039号公報(以下、従来例2という)に開示された別の例を図25(A)、(B)に示す。この光学走査装置では、反射ミラ-342の裏面342B側に錘344を取付けて、反射ミラ-342の共振周波数を変更して電子写真装置、ポリゴンミラーの駆動モータの入力周波数からおおむね20Hz回避することで、高画質化を図っている。
【0009】
特開平2−253274号公報(以下、従来例3という)に開示された別の例について、図26を参照して説明する。
【0010】
この光学走査装置では、一対の支持部材350上に載置され、板バネ352で固定された反射ミラー354の反射面354Aと直交する下面354Cとハウジング356の間にゴム、発泡ポリウレタンなどの緩衝部材358を配設して、反射ミラー354のたわみ振動を抑制する。
【0011】
次に、特開2000−241735号公報(以下、従来例4という)を図27(A)〜(D)を参照して説明する。この光学走査装置では、図27(A)に示すように、反射ミラー362の反射面362Aを、反射面362Aの光ビーム走査領域Sの外側の一端側を1点、他端側を二点で支持する一対の支持部材364A、364Bと、さらにその外側の反射ミラー362Aの両端を支持部材366A、366Bで支持する。反射ミラー362の裏面362Bは、図27(B)に示すように、両端を板バネ368A、368Bで支持されている。板バネ368Aは、2つに分岐した当接部370、372を有しており、それぞれ支持部材364A、364Bに反射ミラー362を押圧するものである。板バネ368Bも同様である。
【0012】
このような構成をとることにより、従来、支持部材364A、364Bとこれに対応する弾性部材による両端二点支持であった反射ミラーの走査領域Sの最大振幅W1(図27(C)参照)が、支持部材364A、支持部材364Bの外側に支持部材366A、366Bが配置され、裏面362B側から板バネ368A、368Bの当接部372によって押圧されることによって、最大振幅W2まで抑制されるとしている(図27(D)参照)。また、板バネ368A、368Bは、当接部370、372を一体的に設けることによって、コスト低減を図っている。
【0013】
またさらに、特開平6−324253公報(従来例5という)に開示された別の例を図28(A)〜(C)を参照して説明する。このミラー支持機構380は、図28(B)に示すように、反射ミラー382を壁面384の孔部386に挿入して固定する際に、V字形状の弾性体388を差し込んで固定するものである。
【0014】
V字形状弾性体388は、図28(A)に示すように、V字型に折り返された一方の面にその一部が下方に折り曲げられた係止部390が設けられると共に、他方の面(以下、当接面という場合がある)に大小2個の突起392、394が設けられている。さらにこの当接面の先端に折り返し部396が設けられている。
【0015】
このように構成されたミラー支持機構380は、図28(C)に示すように、反射ミラー382が孔部386に挿入された後、弾性体388を孔部386(反射ミラー382の下部)に挿入して係止部390で壁面384に係止することによって、当接面の大突起392が反射ミラー382を支持するとともに壁面384に押しつける。また、弾性体382の折り返し部396が反射ミラー382の端面を支持する。この状態で反射ミラー382が振動する(端面が二点鎖線位置から実線位置に移動する)と、弾性体388は折り返し部396が押圧されて変形することにより、大突起392を支点に二点鎖線位置から実線位置に回転する。この結果、小突起394が反射ミラー382に対する圧接力が増大して反射ミラー382の変位を拘束することにより、反射ミラー382の振動(振幅)を抑制できるとしている。
【0016】
【発明が解決しようとする課題】
上記各従来例には、以下の不都合があった。
【0017】
従来例1の実施例では、反射ミラー324の走査領域近傍の反射面324Aに接着を施すので、走査領域に誤って接着剤を塗布せぬようにしなければならず、塗布作業が困難であった。
【0018】
また、従来例2の光学走査装置では、反射ミラー342の裏面342Bに錘344を貼り付けるため、反射ミラ-342の反射面342Aを歪ませ、被走査体308上の光ビーム特性を悪化させてしまうことがあった。
【0019】
さらに、従来例4の光学走査装置では、従来からある支持部材364A、364Bの外側を支持部材366A、366Bで支持するため反射ミラー362を長尺化しなければならず、ハウジング(光学走査装置)が大型化してしまうという不都合があった。
【0020】
ところで、最近の光学走査装置では、図30に示す特願2000−345698に代表されるように、光ビームの光路が複雑な光学走査装置が提案されている。この電子写真装置400の光学走査装置402は、1つのポリゴンミラー403でイエロー、マゼンダ、シアン、ブラックに対応する4本の光ビームLY、LM、LC、LK(以下、LY〜LKという、他の参照符号も同様)を各被走査体404Y〜404Kに走査し、各被走査体404Y〜404Kから転写ベルト406に多重転写されることでカラー画像を形成する。このような光学走査装置402において配置される各反射ミラー408Y〜408Kの下側には各光ビームLY〜LKの光路があり、上側にはハウジング410を閉塞するカバー412が位置する。このような構成の光学走査装置においても、良好なカラー画像形成を行うために反射ミラー408Y〜408Kの振動を抑制する必要がある。しかしながら、光ビームの光路が複雑故、従来例の方法では困難である。
【0021】
例えば、従来例3の方法(緩衝部材の設置)を適用しようとすると、光学走査装置402の反射ミラー408Y〜408Kの下側には各光ビームLY、LM、LC、LKの光路があって緩衝部材の設置スペースを確保することが困難である。また、反射ミラー408Y〜408Kの上側にはハウジング410を閉塞するカバー412があるが、ハウジングの開放面を閉塞する部材であるため剛性をあげることが困難であり、剛性の低いカバー412と反射ミラー408Y〜408Kの間に緩衝部材を介在させても上記緩衝作用を達成することが困難である。
【0022】
また、従来例5のミラー支持機構380は反射ミラーの上下方向(走査方向と直交する方向)の位置に部材を配置する必要がないので反射ミラー408Y〜408Kに適用可能であるが、図29に示すように、下(−y)方向への変位に対しては小突起394が反射ミラー382の変位を規制して反射ミラー382の振動を抑制する(図29(A)→(B)参照)が、上(y)方向への変位に対しては小突起394と反射ミラー382の振動方向が同一(いずれも上方向)となって反射ミラー382の振動を抑制できない(図29(A)→(C)参照)という不都合があった。
【0023】
また、従来例2の方法は、上述のように、反射ミラー342の裏面342Bに錘344を貼り付けることで反射ミラー342の厚さが増してしまうので、光路が反射ミラーの下側または上側に存在する場合には、光路に干渉するというおそれがある。
【0024】
本発明の目的は上記課題を解決するために、反射部材の走査領域(反射面、裏面、反射面直交面)に、振動抑制部材を介在させることなく反射部材の振動を抑制する光学走査装置を提供することにある。
【0025】
【課題を解決するための手段】
前記目的を達成するために、請求項1記載の光学走査装置は、光源から出射された光ビームをポリゴンミラーで偏向させ、結像レンズ系を介して反射部材で反射させて被走査体に走査させる光学走査装置において、前記各光学部品を収納するハウジングと、前記ハウジングに設けられ前記反射部材における光ビーム走査方向において、光ビーム走査領域外の端部で光ビームの反射面あるいは前記反射面の裏面を1点で支持した第1支持手段と、前記ハウジングに設けられ前記反射部材における光ビーム走査方向において、前記第1支持手段が支持する端部と反対側の光ビーム走査領域外の端部で光ビームの前記反射面あるいは前記反射面の裏面を走査方向と直交する方向の2点で支持した第2支持手段と、前記第1、第2支持手段が支持する前記反射部材の前記反射面あるいは前記裏面の反対面を前記第1、第2支持手段側に押圧する押圧手段と、前記反射部材の光ビーム走査方向両端部のうち少なくとも前記第1支持手段側端部の端面に当接して前記反射部材の振動を規制する規制部材と、前記反射部材の光ビーム走査方向における前記第2支持手段側端部の端面を前記規制部材側に向かって押圧する押圧部材と、前記押圧部材による前記反射部材の押圧量を調整する調整手段と、を備えることを特徴とする。
【0026】
請求項1記載の光学走査装置の作用について説明する。
【0027】
この光学走査装置は、ハウジング内部に各光学部品が配設され、光源から出射した光ビームをポリゴンミラーで偏向させ、結像レンズ系を介して反射部材で反射させることによって、光ビームを被走査体上に走査させる。
【0028】
射部材は、ビーム走査方向の端部(光ビーム走査領域外)において、ハウジングに設けられた第1の支持手段によって反射面または反射面の裏面を1点で支持され、また、第1の支持手段が支持する端部と反対側の端部において、ハウジングに設けられた第2支持手段によって反射面または反射面の裏面を走査方向と直交する方向の2点で支持され、反対面側から押圧手段にて第1、第2の支持手段側に押圧されることにより位置決めされる。
【0029】
また、反射部材のビーム走査方向両端部のうち、少なくとも第1の支持手段側の端部の端面を規制部材に当接させて振動を規制するようにしたので、反射部材を厚くしたりせず、また、反射ミラーの走査領域近傍に部材を介在させないで反射ミラーの固有振動数を高域に移動することができる。
【0030】
その理由は、従来の反射部材の支持部に着目すると、図3(A)のように、反射部材が振動すると、反射部材の走査方向端部は図3(B)のような動きをする。この時の反射部材の固有振動数(Hz)は、
f(Hz)=λ2/2πL2×(EI/ρA)1/2
ここで、L:ハリの長さ 、
E:ハリ材料の縦弾性係数 、
I:断面2次モーメント、
ρ:密度 、
A :断面積、
の式から求められ、λは両端支持のハリと考えられるので
1次のλ:π、2次のλ:2π 、 3次のλ:3π
となるのに対し、本発明の構成(図3(C)参照)にするとλは片側支持、片側固定の状態に近づくので、片側支持、片側固定のλは1次のλ:3.927 、2次のλ:7.069、3次のλ:10.210となる。したがって、例えば1次で比較すると、本発明の構成の固有振動数の方が高くなる。すなわち、従来より簡易な構成で反射部材の固有振動数を高くすることができるので、光学走査装置のコストを低減できる。
更に、反射部材の光ビーム走査方向において、反射面または裏面を一点支持する第1支持手段側の端部の端面を規制部材に当接させることで、反射部材の撓み振動以外に1点支持側で生ずる回転振動も抑制することができ、さらに良好な画質とすることができる。
加えて、反射部材の光ビーム走査方向において押圧部材にて第2支持手段側端部の端面を第1支持手段側端部(規制部材)側に押圧することで、反射部材の断面を微妙ではあるが変化させて断面積、すなわち断面2次モーメントを増加させる。したがって、反射部材の固有振動数をさらに高域に移動でき、特に、輸送時の異常な外的衝撃に対しても、反射部材の位置を安定して保つことができる。
また、調整手段によって押圧部材による反射部材の押圧量を調整可能としたため、反射部材の固有振動数を微調整できる。
【0031】
請求項2に係わる光学走査装置は、請求項1記載の光学走査装置において、前記ハウジング内部において、前記反射部材の光ビーム走査領域の上下の少なくとも一方に前記光ビームの光路が形成されていることを特徴とする。
【0032】
請求項2記載の光学走査装置の作用について説明する。
【0033】
反射部材の光ビーム走査方向端部を規部材によって規制する構成を採用することによって、反射部材の光ビーム走査領域近傍に部材を介在させないで反射部材の振動を抑制ができるため、反射部材の光ビーム走査領域の上下方向(走査方向と直交する方向)における光ビーム光路の設計自由度が高まる。すなわち、光学走走査装置断面で考えたとき、反射面の鉛直上下方向に介在物が存在しないため、光路を反射部材の少なくとも一方に設けて複雑に折り曲げることができ、光学走査装置を小型化できる。
【0037】
請求項に係わる光学走査装置は請求項1または2記載の光学走査装置において、前記反射部材は、ハウジング内部において光ビームが最終的に反射されて被走査体に至る最終反射部材であることを特徴とする。
【0038】
請求項記載の光学走査装置の作用について説明する。
【0039】
反射部材を、ハウジング内部で最終的に光ビームを反射させて被走査体に至らせる最終反射部材としたものである。光学走査装置は光ビームをポリゴンミラーで走査する構造上、被走査体に近づくに従って走査幅が広がっていくため、最終反射部材の光ビーム走査領域(部材長さ)が光学走査装置内の反射部材の中では一番長い。すなわち、最終反射部材の長さが最も長くなるため、振動を抑制することが困難になる。したがって、従来は最終反射部材の厚さを厚くしたり、最終反射部材の質量を上げるため最終反射部材の裏側に金属部材を貼る必要があったが、請求項1または2の構成にすることで、反射部材の厚さを厚くすることが不要になり、また、金属部材を削除することができるので反射部材(光学走査装置)の軽量化が可能になる。反射部材の軽量化は、押圧手段の押圧力を減少させることに結びつき、押圧手段を小型化することができる。よって、光学走査装置のコストを低減することができる。また、反射部材の厚さ方向寸法減少にともない、光学走査装置の小型化にも寄与する。
【0059】
請求項記載の光学走査装置は、請求項1〜3の何れか1項に記載の光学走査装置において、前記調整手段を前記ハウジングの外部から操作可能としたことを特徴とする。
【0060】
請求項記載の光学走査装置の作用について説明する。
【0061】
押圧部材の反射部材に対する押圧量をハウジングの外部から調整可能としたため、ハウジングを開放せずに反射部材の固有振動数の微調整、特に、電子写真装置の加振源の個々のバラツキに対応させて調整することができる。したがって、電子写真装置の加振源の製造要求基準を緩和できるので、加振源の製造コストを低減できる。
【0062】
請求項記載の光学走査装置は、請求項1〜のいずれか1項記載の光学走査装置において、前記規制部材または前記押圧部材の少なくとも一方と反射部材の光ビーム走査方向端部の端面を接着したことを特徴とする。
【0063】
請求項記載の光学走査装置の作用について説明する。
【0064】
部材または押圧部材の少なくとも一方と反射部材の光ビーム走査方向端部の端面を接着することで、反射部材の光ビーム走査方向端部を固定状態にする。この結果、反射部材の固有振動数を一層高域に移動させることができ、特に、輸送時の異常な外的衝撃に対しても、反射部材の位置を安定して保つことができる。また、支持手段の位置ではなく、反射部材の光ビーム走査領域から離れた光ビーム走査方向端部で接着するので、接着剤を塗布するとき、反射部材の光ビーム走査領域に誤って接着剤を塗布してしまうおそれがない。したがって、作業時間を短縮でき、光学走査装置の製造コストを低減することができる。
【0065】
【発明の実施の形態】
(第1実施形態)
本発明の第1実施形態に係る光学走査装置について図1〜図4を参照して詳細に説明する。ここで、図1は本発明を適用した光学走査装置の説明図であり、図2は図1の要部拡大図である。
【0066】
光学走査装置10は、画像情報に基づいて光ビームLを出射する光源12と、光源12から出射された光ビームLを所定の方向へ偏向させるポリゴンミラー14と、結像レンズ系16と、被走査体18に光ビームLを導く反射ミラー20と、これらの光学部品を収容設置し図示しないカバーで閉塞されたハウジング22とから構成される。ハウジング22は、スクリュー24で電子写真装置のフレーム26に固定されている。この光学走査装置10を電子写真装置に組込み、画像情報に基づいて光ビームLを被走査体18に主走査させることにより、被走査体18上に静電潜像を形成する。
【0067】
電子写真装置は、周知の手段、すなわち、被走査体18に均一に帯電を行う帯電手段と、静電潜像が形成された被走査体18上にトナー像を形成する現像手段と、トナー像を転写可能なタイミングで記録紙を搬送する用紙搬送手段と、被走査体上のトナー像を記録紙上に転写させる転写手段と、転写されたトナー像を記録紙に定着させる定着手段と、から構成されている。
【0068】
反射ミラー20の反射面20Aは、長手(光ビーム走査)方向一端(走査領域外端部)を第1支持体28、長手方向他端を第2支持体30と反射ミラー角度調整機構32の調整スクリュー34で支持される。ここで、第1支持体28と第2支持体30は、ハウジング22に一体成形されている。一方、反射ミラー20の裏面20Bは、長手方向両端で支持体28、30と対向する位置を板バネ36A、36Bで押圧されている。したがって、板バネ36A、36Bで支持体28、30および調整スクリュー34に押圧された反射ミラー20を調整スクリュー34の螺入量を調整することによって被走査体18の所望位置に光ビームLが走査されるように調整可能である。
【0069】
一方、ハウジング22には、図2に示すように、反射ミラー20の長手方向端面である端面20Cと当接する規制部材38が壁面から突出形成されている。反射ミラー角度を調整するときは、図4(A)のように規制部材38と端面20Cが当接せず、クリアランスCが確保されている状態で行なう。調整スクリュー34で角度を調整後、図4(B)に示すように反射ミラー20を長手方向(規制部材38側)にスライドさせ、規制部材38と端面20Cを当接させる。この結果、反射ミラー20の端面20Cが規制部材38によって動きを規制される。なお、反射ミラー20のスライドの際、反射ミラー20は裏面20Bを板バネ36A、36Bで押圧され、反射面20Aを第1支持体28、第2支持体30、調整スクリュー34の3点で支持されているので、反射ミラー20の調整(反射)角度が狂うことはない。また、板バネ36A、36Bの押圧力を適切に設定することによって、輸送時の不要な衝撃によって規制部材38から反射ミラーの端面20Cが離間することも防止できる。
【0070】
このように構成された光学走査装置10の作用(反射ミラー20の振動抑制)について説明する。
【0071】
先ず、図3(A)に示す比較例のように、反射ミラー20の両端を第1支持体28と、第2支持体30および調整スクリュー34でのみ支持している図3(A)の模式図に示す比較例の場合、ポリゴンミラー14や電子写真装置内部の用紙搬送手段、あるいは被走査体18を駆動する駆動モーターの振動がハウジング22に伝わり、反射ミラー20にたわみ振動が発生する。この結果、反射ミラー20で被走査体18上に向かって反射される光ビームLの光路がずれて被走査体18上で走査線ずれを起こし、画質を悪化させる。この際、反射ミラー20の端面20Cは、図3(B)に二点鎖線で示すように、たわみ振動によって自由に振動してしまう。
【0072】
これに対して、本実施形態の光学走査装置10では、図3(C)のように、反射ミラー20の端面20Cを規制部材38に当接させているため、端面20Cの動きが規制される。したがって、反射ミラー20は、図3(D)に二点鎖線で示すように端面20Cから第1支持体28の支持位置まで振動しなくなり、第1支持体28から第2支持体30側のみの振動になる。すなわち、反射ミラー20を梁として見たとき、端面20Cと規制部材38が当接している部分の拘束状態は、固定状態に近づく。すなわち、端面20Cの拘束状態が支持から固定になったため、反射ミラー20の固有振動数を高域に移動させることができ、反射ミラー20のたわみ振動を抑制することができる。
【0073】
また、従来のたわみ振動防止方法より簡易な構成で良好な画質を得られるので光学走査装置のコストを低減できる。
【0074】
さらに、反射ミラー20と、各支持体28、30が反射ミラー20の反射面20Aを支持する位置と、反射ミラー20の光ビーム走査方向端面20C、20D(光ビーム走査方向端面20Cと反対側の端面)との位置関係は、図4(B)に示すように設定されている。すなわち、反射ミラー20の一方の端面20C(規制部材38側)から第1支持体28までの距離をα、他方の端面20Dから第2支持体30までの距離をβとしたとき、β<αの関係になっているので、上記距離が長い方が同じ力で押しつけたときに端面20Cをより固定状態に近づけることができる。すなわち、一層ハリの固定状態に近づき、反射ミラー20の固有振動数を一層高域に移動できる。
【0075】
このように、反射ミラー20の端面20Cを規制部材38で拘束することによって反射ミラー20の固有振動数を増加させるため、反射ミラー20の振動を抑制するために反射ミラー20の厚さを厚くしたり、反射ミラー20の質量を増加させるために反射ミラー20の裏側に金属部材を貼る必要がない。したがって、光学走査装置10を軽量化させることが可能になる。特に、この点において、ハウジング内部において最終的に光ビームを被走査体18に反射させる最終反射ミラーに適用することが一層望ましい。これは、光ビームLがポリゴンミラー14で偏向されるため、最終反射ミラーでは光ビーム走査領域が最も長くなる。したがって、最終反射ミラーのミラー長さが最も長くなり、振動の抑制が最も困難であるが、本構成を適用すればミラーの重量化させることなく容易に振動を抑制することができる。
【0076】
また、反射ミラー20の軽量化により反射ミラー20を支持する板バネ36の押圧力を小さくでき、板バネ36A、36Bの寸法(幅、板厚)を小さくすることができる。したがって、光学走査装置10のコストを低減することができる。さらに、反射ミラー20の板厚方向寸法を増加させることが不要となるため、光学走査装置10を小型化できる。
【0077】
さらにまた、反射ミラー20は片側2点(第2支持体30、調整スクリュー34)、他方1点(第1支持体28)で支持され、規制部材38を1点支持(第1支持体28)側に設置したので、反射ミラー20の撓み振動の他、反射ミラー20のねじれによる回転振動(図24、矢印B参照)も抑制でき、一層良好な画質を得ることができる。なお、回転振動は円筒反射鏡を本発明に適用する場合に特に有効である。反射ミラー20のねじれによる回転振動を特段気にしない場合は、二点支持(第1支持体30、調整スクリュー34)側を規制部材38で規制する構成でも良い。
(第2実施形態)
次に、本発明の第2実施形態に係る光学走査装置について図5を参照して説明する。なお、第1実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
【0078】
反射ミラー20の裏面20Bを押圧する板バネ36Aは、図5(A)〜(C)に示すように板体をV字型に折り返された形状になっており、折り返された一端側でハウジング22への取付用の取付部40と、他端側で反射ミラー20を支持する支持部42と、取付部40と支持部42の間で両者を弾性的に接続する弾性部(折り返し部分)44とから構成される。支持部42には、反射ミラー20の裏面20Bに当接される突起46A、46Bが弾性部44に沿って所定距離離間して形成されている。
【0079】
また、板バネ36Aの弾性部44が反射ミラー20の長手方向と平行になるように板バネ36Aがハウジング22に固着されている。この結果、図5(B)、図5(C)に示すように、板バネ36Aの突起46A、46Bも反射ミラー20の長手方向において、第1支持体28が反射面20Aを支持する位置から長手方向両側に距離xだけ離間(オフセット)した位置で反射ミラー20の裏面20Bを押圧することになる。
【0080】
なお、図5(B)、図5(C)に示すように、弾性部材36Bも同様の構成である。
【0081】
このように構成された光学走査装置の作用について説明する。
【0082】
図5(D)に示すように、従来、板バネ36A、36Bは、反射ミラー20の長手方向両端部で支持体28、30と対向する位置を押圧していたため、二点鎖線で示すように反射ミラー20の振幅が大きかった。これに対して本実施形態では、反射ミラー20の反射面20Aを支持体28、30が支持する位置を挟んで長手方向両側に距離xだけオフセットした位置で突起46A、46Bによって反射ミラー20の裏面20Bを押圧している(図5(B)、(C)参照)。このように裏面20Bを押圧することによって、両方向(±y方向)の振動を確実に抑制することができる。すなわち、図5(D)に示すように、反射ミラー20のy方向の変位は突起46Aによって抑制され、−y方向の変位は突起46Bによって抑制される。この結果、従来支持体28、30に対向する位置(1点)で押圧して二点鎖線のように振動していた撓み振動を破線のように抑制できる。また、反射ミラー20の固有振動数を高域に移動できる。
【0083】
なお、図27(B)に示す従来例において、板バネ368A、368Bを、それぞれ反射ミラー362の長手方向中央側にずらして、当接部370、372の反射ミラー362の裏面362Bに対する当接位置を支持部材364A、364Bの支持位置を挟んだ位置とすれば本実施形態に近い構成になるが、当接部370、372が反射ミラー362の撓みに対してそれぞれ独立して動くので上述の緩衝作用を十分に発揮することができない。
【0084】
これに対して本実施形態では、突起46A、46Bが1枚の支持部42上に形成されているため、反射ミラー20が撓もうとすると、板バネ36A、36Bの支持部42がねじれようとするが、反射面20Aと平行に配置された弾性部44がねじれを阻止するため、振動を効果的に抑制できる。
(第3実施形態)
続いて、本発明の第3実施形態に係る光学走査装置について図6を参照して説明する。なお、第1実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
【0085】
本実施形態では、規制部材38Aの形状が第1実施形態と異なる。すなわち、図6(A)に示すように、反射ミラー20の端面20Cに当接する規制部材38Aの面に断面三角形で長手方向に延在する突起(以下、鋭利部という)50A、50Bが形成されている。
【0086】
したがって、図4(A)、(B)に示すように、反射ミラー20を長手方向にスライドさせて規制部材38Aに押圧すると、反射ミラー20の端面20Cと反射面20Aのなす角部(稜線)52、および端面20Cと裏面20Bがなす角部(稜線)54が規制部材38Aの鋭利部50A、50Bの一部を破壊して食い込む(破壊して食い込んだ位置を食い込み部56Aという)。なお、破壊された鋭利部50A、50Bは、エアーで清掃して除去する。
【0087】
本実施形態の光学走査装置では、このようにして反射ミラー20の長手方向一端(端面20C)を規制部材38Aに対して固定しているため、電子写真装置の各部の振動のみならず、特に、輸送時の異常な外的衝撃に対しても、反射ミラー20の位置を安定して保つことができる。
【0088】
変形例を図7に示す。ハウジング22の深さが深く、鋭利部に抜き勾配を要する場合に好適である。
【0089】
規制部材38Bは三角錐形状であり、断面三角形の頂点である鋭利部50Bが上側に向かって抜き勾配を有するように形成されている。規制部材38Bと平行に配置される規制部材30Cも三角錐形状であるが、断面三角形の頂点である鋭利部50Cが下側に向かって抜き勾配を有するように形成されている。なお、鋭利部50Cの下側ハウジング面には、図示しない金型抜き穴が形成されている。
【0090】
このように構成された規制部材38B、38Cに対して反射ミラー20を長手方向にスライドさせて端面20Cを押しつけることによって、図7(B)〜(D)に示すように、反射ミラー20の角部52が規制部材38Cの鋭利部50Cに、角部54が鋭利部50Bに押し付けられる。この結果、図7(D)に示すように、角部52によって鋭利部50Cに食い込み部56Cができ、角部54によって鋭利部50Bに食い込み部56Bができる。この場合も、反射ミラー20の端面20C、すなわち長手方向一端の動きを固定状態にできる。
(第4実施形態)
続いて、本発明の第4実施形態に係る光学走査装置について図8を参照して説明する。なお、第1実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
【0091】
本実施形態では、図8に示すように、反射ミラー20の長手方向において規制部材と反対側の端面20Dにハウジング22に固着された押圧部材60の直立面61に形成された押圧突起62が当接して反射ミラー20を規制部材38(他端)側に押圧するように配設される。
【0092】
また、第1実施形態と異なる構成として、ミラー角度調整機構が省かれ、第1支持体30Bの支持部64、66が反射ミラー20の短手方向に所定距離離間されて2個所形成されている。この支持部64、66に反射面20Aが支持されることにより、反射ミラー20の角度が決定される。
【0093】
このように角度調整機構を持たない反射ミラー20においても本発明は有効である。また、反射ミラー20の端面20Dを押圧部材60の押圧突起62で押圧する(押圧力P1を作用させる)ことによって、図8(B)において実線から破線の変化で示すように、反射ミラー20の断面を微妙ではあるが変化させる(厚さt→t1)ことができる。この結果、反射ミラー20の断面積が増加して断面2次モーメントが増加する。したがって、反射ミラー20の固有振動数をさらに高域に移動でき、特に、輸送時の異常な外的衝撃に対しても、反射ミラー20の位置を安定して保持することができる。
【0094】
押圧部材60は、取付時に反射ミラー20の長さ方向の寸法公差を吸収可能で上記作用を達成できるものであれば良く、たとえば弾性体、板金製のブラケット、図10に示す押圧部材60Bの形状でプラスチック製のものでもよい。
(第5実施形態)
続いて、本発明の第5実施形態に係る光学走査装置について図9、図10を参照して説明する。なお、第4実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第4実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
【0095】
第4実施形態と異なる構成は、図9(A)のように、押圧部材60Aの直立面61にネジ孔68が形成され、反射ミラー20の端面20Dを押圧する調整スクリュー70がネジ孔68に螺入されている。
【0096】
このように構成したため、調整スクリュー70のネジ孔68に対する螺入量を調整することで反射ミラー20に対する押圧力P2(図9(B)参照)を変化させ、反射ミラー20の断面積(厚さt2)、断面2次モーメントを微調整する。すなわち、反射ミラー20の固有振動数を微調整することができる。また、調整スクリュー70の螺入量を調整することによって反射ミラー20の長手方向の公差を吸収できる。
【0097】
図10は図9の変形例を示す。押圧部材60Bの直立面61を反射ミラー20の端面20Dに直接当接させる構成としたものであり、押圧部材60Bの基礎部72に長孔74が形成され、長孔74に挿入されたスクリュー76がハウジング22の図示しないネジ孔に螺入されて押圧部材60Bをハウジング22に固定可能とされている。すなわち、長孔74に沿って押圧部材60Bを移動調整可能に構成したものである。
【0098】
なお、押圧部材60Bの形状は特に限定されるものではなく、プラスチック製で特に、反射ミラー20の端面20Dに対する当接部分を図8に示す押圧突起62のように形成しても良いし、規制部材38(図2参照)、38A(図6参照)、38B、38C(図7参照)の形状にしても良い。
(第6実施形態)
続いて、本発明の第6実施形態に係る光学走査装置について図11(A)、(B)を参照して説明する。なお、第5実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第5実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
【0099】
第5実施形態と異なる構成は、図11(A)、(B)に示すように押圧部材60Cは、ハウジング22の壁面に形成されたネジ孔80に螺入された調整スクリュー70Aから構成されている。ハウジング22の外部に位置する調整スクリュー70Aの一端には、オペレータが外部から押圧力を調整できるように調整ダイアル82が形成されている。また、ハウジング22の壁面において調整ダイアル82の周囲には、調整量の目安として目盛84が形成されている。
【0100】
したがって、オペレータがハウジング22の図示しないカバーを開くことなく、調整ダイアル82を目盛84にしたがって回転させることにより、調整スクリュー70Aによる反射ミラー20に対する押圧力を簡単に精度良く調整できる。
【0101】
ところで、第5実施形態および本実施形態のように調整可能であると、反射ミラー20を走査線法線方向に歪ませて、被走査体上での光ビームが湾曲(BOW)するおそれがある。しかしながら、第5実施形態の場合には光学走査装置調整時にBOWのスペック範囲内で調整すれば良いし、本実施形態の場合には調整ダイアル82の調整範囲を決めておけばよい。例えば、光学走査装置調整時に調整スクリュー70Aを端面20Dに接触させた状態で出荷する。それを電子写真装置に組み込み、反射ミラー20の固有振動数を移動させたい場合、調整範囲をハウジングの目盛り84の数で決めておけば良い。このように押圧部材60Cを光学走査装置の外部から調整可能としたことで、反射ミラー20の固有振動数の微調整、特に、電子写真装置の加振源の個々のバラツキに対応して調整することができる。したがって、電子写真装置の加振源の製造要求基準を緩和できるので、加振源のコストを低減できる。
(第7実施形態)
さらに、本発明の第7実施形態に係る光学走査装置について図12、図13を参照して説明する。なお、第1〜第6実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。
【0102】
電子写真装置90は、図12に示すように、光学走査装置92から黒、シアン、マゼンダ、イエローの各記録色の光ビームLK、LC、LM、LY(以下LK〜LY。他の参照番号も同様)を被走査体96K〜96Yに対して出射する構成である。被走査体96K〜96Yでは、光ビームLK〜LYによって、静電潜像が形成され、光ビームLK〜LYによって露光された部分にそれぞれの画像信号に対応する色のトナー像が形成される。それぞれの被走査体96K〜96Yに形成された各トナー像は、矢印A方向に定速で搬送される中間転写ベルト98上で重ね合わせられて転写された後、搬送される用紙100上に転写される。トナー像が転写された用紙100は、図示しない定着装置によってトナー像が定着され、図示しない排紙トレーに排出される。この電子写真装置90に用いられる光学走査装置92について図13を参照して説明する。図13は光学走査装置の斜視図でカバー102を外した状態である。光学走査装置92は被走査体96K〜96Yに対して光ビームLK〜LYを走査露光するためにカバー102によって外部から遮蔽されたハウジング22Aの内部に光学部品が配置されて構成されている。すなわち、光学走査装置92は、図示しない画像処理部より出力される黒(K)シアン(C)マゼンダ(M)イエロー(Y)の各記録情報信号に応じて光ビームLK〜LYをポリゴンミラー14に入射して偏向させ、図示しない開口部から被走査体96K〜96Yに対して露光可能なようにハウジング22Aに光学部品を配置したものである。構成の詳細を光ビームLMの光路に沿って説明する。光源104Mから出射された光ビームLMは、図12に示すように、コリメーターレンズ106Mを透過してゆるい発散光にされ、シリンダーレンズ108Mを透過して小ミラー110YMによって反射され、副走査方向に絞られてポリゴンミラー14に入射する。ポリゴンミラー14によって反射された光ビームLMは結像光学系であるfθレンズ112YMを透過し、中ミラー114Mを反射後、大ミラー118Mの下側を通過しシリンダーミラー116Mで反射後、大ミラー118Mで反射されて被走査体96Mを露光する。シリンダーミラー116Mの反射面は、副走査方向にR面を構成し、ポリゴンミラー14の面倒れが生じても、副走査方向への走査線ずれが生じない働きをする。なお、光ビームLYの光路上には、シリンダーレンズ108Yと小ミラー110YMの間にもう一枚小ミラー109Yが挿入されている。光ビームLKの光路上にも同様の配置がなされている。
【0103】
また、このようなトナー像を重ねてカラー画像を形成するタンデム構成の光学走査装置92は、図14(A)、(B)に示すように、SKEW補正、BOW補正(二点鎖線の画像位置を実線の画像位置に補正)する機構を設ける。SKEW補正は、図13に示すスキュー補正機構120K〜120Yでシリンダーミラー116K〜116Yをスキュー補正機構側と反対側の端部を基準にスキュー補正機構120K〜120Y内の図示しないカム機構で行なわれる。例えば、スキュー補正機構120Yによる調整によって、図12のシリンダミラー116Yの二点鎖線位置を実線位置に移動させてスキュー補正が行なわれる。
【0104】
次に、BOW調整機構を備えた大ミラー118K〜118Y(4本ある中から代表して大ミラー118M)について図12〜図17を用いて説明する。図15は図13の矢視イの部分破断図である。図16は図15の矢視ウの規制部材を削除した図である。
【0105】
大ミラー118Mは、図15に示すように、反射面122Mの一端側を第1支持体124Mの2個所の支持部126、128で、他端側を第2支持体130Mの1個の支持部132で支持されていると共に、裏面134Mを板バネ36A、36Bによって支持部126、128、132側に押圧されている。このように3個の支持部126、128、132に反射面122Mが支持されることによって、大ミラー118M(反射面122M)の角度が規定されている。第1支持体124M側にはBOW調整機構が設けられており、ハウジング22Aに形成された傾斜面135Mに略平行にアングル部材136Mが配設されている。図16に示すように、アングル部材136Mの傾斜面138Mには半球型の凸部140Mが形成されており、凸部140Mが大ミラー118Mの裏面134Mを支持している。なお、アングル部材136Mの傾斜面138Mにはネジ部142Mが形成され、調整スクリュー144Mを回転させることによって、アングル部材136Mの傾斜面138Mと傾斜面135Mとの距離が調整され、第1支持体124Mに2点支持された大ミラー118Mの裏面134Mに対する凸部140Mの押圧量が増減可能とされている。したがって、第1支持体124Mに2点支持された大ミラー118Mの曲げ量を変化させて、図14(B)に示すように、BOWを二点鎖線位置から実線位置に補正するものである。
【0106】
一方、ハウジング22Aには、図17に示すように、大ミラー118Mの長手方向一端の端面端面146Mと当接する規制部材38が一体に設けられている。BOW補正する(調整スクリュー144Mを回転させる)ときは、図4(A)のように、規制部材38と反射ミラー端面146を離間させておく(クリアランスC)。調整スクリュー144で調整後、図4(B)に示すように大ミラー118Mを長手方向(規制部材38側)にスライドさせ、規制部材38と大ミラー118Mの端面146Mを当接させる。大ミラー118Mの反射面122Mを3点で支持しているので、調整後のスライドによって被走査体18上の走査位置が所望位置から狂うことはない。
【0107】
このように構成することにより、第1実施形態と同様に、規制部材38が大ミラー118Mの端面146Mの動きを規制して固定するため、たわみ振動を抑制でき、形成される画質を向上させることができる。
【0108】
また、第1実施形態と同様に、大ミラー118Mの長手方向において、支持部126、128の反射面122Mの支持位置から端面146Mまでの距離をαとし、支持部130Mの反射面122Mの支持位置から大ミラー118Mの端面146Mと反対側の端面148Mまでの距離をβとしたとき、β<αの関係になっているので、ハリの固定状態に一層近づく。この結果、大ミラー118Mの固有振動数をより高域に移動できる。
【0109】
特に、最終反射ミラーである大ミラー118Mに適用することによって、大ミラー118Mの走査領域の走査方向と直交方向(以下、上下方向という場合がある)に光ビームの光路を形成する形成することができ、光学走査装置内の光路をコンパクトにすることができる。しかも、大ミラー118Mのように走査領域(ミラー長さ)が最も長い場合であっても、ミラーを厚くしたり質量の増加を図ることなく振動を抑制できるため、大ミラー118Mの軽量化(重量化の阻止)も達成することができる。
【0110】
このように構成された大ミラー118Mの固有振動数の測定結果を図18に示す。大ミラー118Mは長さ310mm、幅16mm、厚さ8mmで裏面134Mの走査方向角部を1個所長さ310mmに渡ってC3面取りを施していて、図15でいうα=30mm、β=5mmである。図18(A)は図4(A)の状態でクリアランスCは0.5mmである。図4(A)の状態では、図18(A)に示すように、大ミラー118Mの固有振動数は276.9Hzであるが、本実施形態の構成の場合は、図18(B)に示すように、大ミラー118Mの固有振動数が315.9Hzと、本構成によって大ミラー118Mの固有振動数が約40Hzほど高域に移動したことが確認された。
【0111】
なお、この例では、大ミラー118Mを支持する支持体は片側2点(第1支持体124M)、他方1点(第2支持体130M)で構成したが、第1支持体124Mと第2支持体130Mを逆にしても良い。一点支持側を規制部材側にすると反射部材の撓み振動の他、反射ミラーのねじれによる回転振動を抑制するので、さらに良好な画質を得ることができる。この回転振動は円筒反射鏡を本発明に適用する場合に特に有効である。また、板バネ36A、36Bに、第2実施形態(図5(A)〜(C))に示した一対の突起46A、46Bを有するものを適用しても良い。
(第8実施形態)
さらに、本発明の第8実施形態に係る光学走査装置について図18、図19を参照して説明する。なお、第7実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。
【0112】
本実施形態では、第7実施形態の規制部材38に換えて第3実施形態で説明した規制部材38Aを用いたものである。すなわち、図19のように、大ミラー118Mの端面146Mの動きを規制する規制部材38Aに鋭利部50A、50Bを設けている。したがって、図4(A)→(B)に従って、大ミラー118Mを長手方向にスライドさせると、この鋭利部50A、50Bと大ミラー118Mの端面146Mと反射面122Mとの角部(稜線)150および端面146Mと裏面134Mとの角部(稜線)152が、規制部材38Aの鋭利部50A、50Bに突入し、鋭利部50A、50Bの一部を破壊して食い込み部56B、56Cを形成し、反射ミラーの端面146Mを固定状態にする。したがって、電子写真装置の各部の振動のみならず、輸送時の異常な外的衝撃に対しても、大ミラー118Mの位置を安定して保つことができる。
【0113】
図20は図19の変形例であって、規制部材38Aに換えて図7に示した規制部材38B、38Cを適用したものである。
【0114】
図20(B)〜(D)に示すように、反射面122Mと端面146Mとの角部150Mは鋭利部50Cに、裏面134Mと端面146Mとの角部152Mは鋭利部50Bに当接する。この結果、角部150に対して鋭利部50Cに食い込み部56Cが、角部152に対して鋭利部50Bに食い込み部56Bが形成される。したがって、反射ミラーの端面146Mの動きを固定状態にする。
【0115】
なお、この第7、第8実施形態には、第4実施形態に示した押圧部材で規制部材と反対側の端面を押圧する構成を適用することができる。押圧部材で大ミラー118Mの端面148Mを規制部材側に押圧することで、大ミラー118Mの断面2次モーメントを増加させて固有振動数をさらに高域に移動させることができる。したがって、輸送時の異常な外的衝撃に対しても、反射部材の位置を安定して保つことができる。押圧部材は、取付時に反射ミラーの長さ方向の寸法公差を吸収できる構造をもつという条件で上記の作用がなされるものであれば良く、たとえば弾性体、板金製のブラケット、図10に示すような形状でプラスチック製のものでもよい。
【0116】
また、第7実施形態において、大ミラー118の端面148Mを図8に示す押圧部材60で規制部材38側に2kgfの押圧力を与えたときの大ミラー118Mの測定結果を図18(C)に示す。この場合には、大ミラー118Mの固有振動数は324.4Hzとなり、規制部材に当接させたのみの場合(図18(B))より固有振動数をさらに高域に移動できることが確認された。
【0117】
また、第7、第8実施形態には、第5実施形態(図9参照)のように、押圧部材に調整スクリューを設けて押圧力を調整可能な構成としても良い。このように構成することによって、大ミラー118Mの固有振動数を微調整することができる。また、反射ミラーの長さ方向公差を吸収できる。同様に図10に示すように、押圧部材に長孔を設け、押圧部材自体を移動調整可能にしたものでもよい。
【0118】
なお、押圧部材の大ミラー118Mの端面148Mに対する当接部分の形状は、プラスチック製で特に、図8に示す押圧突起62のようにしても良いし、規制部材38(図17参照)、38A(図19参照)、38B、38C(図20参照)の形状としても良い。
【0119】
また、第7、第8実施形態は、第6実施形態のように押圧部材を調整ダイヤルによってハウジングの外側から押圧調整できるようにしても良い。このように押圧部材60dを光学走査装置の外部から調整可能としたことで、大ミラー118Mの固有振動数の微調整、特に、電子写真装置の加振源の個々のバラツキに対して調整することができる。したがって、電子写真装置の加振源の製造要求基準を緩和できるので、加振源の製造コストを低減できる。また、第7、第8実施形態は、BOW調整機構を備えた構成であるが、実施例1のように、ミラー角度調整機構を有する反射ミラーや、ミラー角度調整機構を有しないものでも効果を奏する。
【0120】
ところで、前述の第1実施形態〜第8実施形態の構成に加え、規制部材または押圧部材)の少なくとも一方と反射ミラーの端面の少なくとも一方を接着して反射ミラーの端面の少なくとも一方の動きを固定状態にすることも考えられる。例えば、図4(C)に示すように、反射ミラー20の端面を規制部材38からオフセットした状態において、規制部材38の反射ミラー20に対する当接面に接着剤160を付着しておき、角度調整などを行なった後に反射ミラー20を長手方向(規制部材側)にスライドさせることによって、図4(D)に示すように、反射ミラー20の端面20Cが規制部材38の当接面に接着剤160によって固着される。この結果、反射ミラー20の端面20Cが固定状態となって、反射ミラー20の固有振動数をさらに高域に移動でき、特に、輸送時の異常な外的衝撃に対しても、反射ミラー20の位置を安定して保つことができる。また、従来例のように反射面の支持位置ではなく、反射面20Aの光ビーム走査領域から離れた反射ミラー20の端面20Dに接着するので、接着剤160を塗布するとき、反射ミラー20の走査領域に誤って、接着剤160を塗布してしまう危険がない。よって、作業時間の短縮が可能となり、光学走査装置のコストを低減することができる。
【0121】
なお、第1実施形態〜第8実施形態における規制部材は、ハウジングと一体形成されたものであるが、反射ミラーの固有振動数移動作用がなされるという条件で、たとえば弾性体、板金製のブラケット、図10のような形状でプラスチック製のもの(当接部を図17の規制部材38、図19の規制部材38A、図20の規制部材38Cなど)や、光学走査装置のカバーに規制部材を設置しハウジングに連結固定するようにしてもよい。
【0122】
【発明の効果】
以上述べたように、この請求項1記載の発明によれば、反射部材を厚くしたりせずまた、反射部材の走査領域近傍に振動抑制部材を介在させないで反射部材の固有振動数を高域に移動することができる。したがって、従来より簡易な構成で反射部材の固有振動数を高域に移動できるので、光学走査装置の製造コストを低減できる。更に、反射部材の撓み振動以外に、回転振動を抑制するので、さらに良好な画質を得ることができる。加えて、反射部材の断面を微妙ではあるが変化させることで断面積、断面2次モーメントが増加する。したがって、反射部材の固有振動数をさらに高域に移動でき、特に、輸送時の異常な外的衝撃に対しても、反射部材の位置を安定して保つことができる。また、調整手段により反射部材の固有振動数を微調整することができる。
【0123】
請求項2記載の発明によれば、従来より簡易な構成で反射部材の固有振動数を高域に移動できるので、光学走査装置の製造コストを低減できる。また、反射部材の走査領域近傍に部材を介在させないで反射部材の振動を抑制が可能になり、反射部材の上下方向空間部を有効に使うことができる。即ち、光学走走査装置断面で考えたとき、反射面の沿直上下方向に介在物がないため、光路を複雑に折り曲げることで光学走査装置を小型化できる。
【0125】
請求項記載の発明によれば、反射部材の板厚を薄くすることができる、また、金属部材を取付不要とすることができるので、光学走査装置の軽量化が可能になる。反射部材の軽量化は、支持に用いる押圧手段の押圧力を小さくすることに結びつき、押圧手段を小型化できる。よって、光学走査装置のコストを低減することができる。また、反射部材の板厚方向寸法減少にともない、光学走査装置を小型化できる。
【0132】
請求項記載の発明によれば、反射部材の固有振動数の微調整、特に、電子写真装置の加振源の個々のバラツキに対して、調整することができる。したがって、電子写真装置の加振源の製造要求基準を緩和できるので、加振源の製造コストを低減できる。
【0133】
請求項記載の発明によれば、反射部材の終端部の動きを固定状態にする。したがって、さらに反射部材の固有振動数をさらに高域に移動でき、特に、輸送時の異常な外的衝撃に対しても、反射部材の位置を安定して保つことができる。接着剤を塗布するとき、反射部材の走査領域に誤って接着剤を塗布してしまう危険がない。よって、作業時間の短縮が可能となり、光学走査装置のコストを低減することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る光学走査装置の一部省略斜視説明図である。
【図2】 図1の要部拡大図である。
【図3】 (A)は比較例における反射ミラーの支持状態および振動状態を示す説明図であり、(B)は比較例の反射ミラー端部における振動状態説明図であり、(C)は第1実施形態に係る反射ミラーの支持状態を示す説明図であり、(D)は本実施形態に係る反射ミラー端部における振動状態説明図である。
【図4】 (A)、(B)は、反射ミラーの端面と規制部材の当接前の状態、当接後の状態を示す説明図であり、(C)、(D)反射ミラーの端面と規制部材の接着前の状態、接着後の状態を示す説明図である。
【図5】 (A)は本発明の第2実施形態に係る光学走査装置の要部説明図であり、(B)は反射ミラーにおける板バネの支持位置を示す正面図であり、(C)は平面図であり、(D)は振動状態を示す模式図である。
【図6】 (A)は本発明の第3実施形態に係る光学走査装置の要部説明図であり、(B)は反射ミラー端面の規制部材に対する食い込み状態説明図である。
【図7】 図6の変形例に係る光学走査装置の要部説明図であり、(B)〜(D)は反射ミラー端面の規制部材に対する食い込み状態説明図である。
【図8】 (A)は本発明の第4実施形態に係る光学走査装置の要部説明図であり、(B)は端面押圧時の反射ミラーの変形状態説明図である。
【図9】 (A)は本発明の第5実施形態に係る光学走査装置の要部説明図であり、(B)は端面押圧時の反射ミラーの変形状態説明図である。
【図10】 図9の変形例に係る光学走査装置の要部説明図である。
【図11】 (A)は本発明の第6実施形態に係る光学走査装置の要部説明図であり、(B)は当該要部の平面図である。
【図12】 本発明の第7実施形態に係る電子写真装置の概略説明図である。
【図13】 本発明の第7実施形態に係る光学走査装置の斜視説明図である。
【図14】 (A)はSKEW補正の説明図であり、(B)はBOW補正の説明図である。
【図15】 図13における矢視イの部分破断図である。
【図16】 図15における矢視ウの規制部材を削除した図である。
【図17】 本発明の第7実施形態における光学走査装置の要部拡大斜視図である
【図18】 (A)は第7実施形態の構成で大ミラーと規制部材の間にクリアランスCがある場合、(B)は本発明の第7実施形態の構成を適用した場合、(C)は本発明の第7実施形態において大ミラーの規制部材側と反対側の端面を規制部材側に押圧した場合の各固有振動数の測定結果を示す図である。
【図19】 (A)は本発明の第8実施形態に係る光学走査装置の要部説明図であり、(B)は反射ミラー端面の規制部材に対する食い込み状態説明図である。
【図20】 図19の変形例に係る光学走査装置の要部説明図であり、(B)〜(D)は反射ミラー端面の規制部材に対する食い込み状態説明図である。
【図21】 従来例に係る光学走査装置の説明図である。
【図22】 従来例における反射ミラーの振動状態説明図である。
【図23】 (A)は従来例1に係る光学走査装置の要部説明斜視図であり、(B)は要部正面図である。
【図24】 (A)は比較例に係る光学走査装置の要部説明斜視図であり、(B)は要部正面図である。
【図25】 (A)は従来例2に係る光学走査装置概略図であり、(B)は反射ミラーの斜視図である。
【図26】 従来例3に係る光学走査装置の要部説明図である。
【図27】 (A)は従来例4に係る反射ミラーの反射面側斜視図であり、(B)は裏面側斜視図であり、(C)は比較例に係る振動状態説明図であり、(D)は従来例4に係る振動状態説明図である。
【図28】 (A)は従来例5に係る板バネの斜視説明図であり、(B)は従来例5に係る光学走査装置の要部説明図であり、(C)は振動状態説明図である。
【図29】 (A)は従来例5を適用した反射ミラー支持状態説明図であり、(B)は反射ミラーが−y方向に変位したときの支持状態説明図であり、(C)は反射ミラーがy方向に変位したときの支持状態説明図である。
【図30】 従来例に係る電子写真装置(光学走査装置)の説明図である。
【符号の説明】
10…光学走査装置
12…光源
14…ポリゴンミラー
16…結像レンズ系
18…被走査体
20…反射ミラー(反射部材)
22、22A…ハウジング
38、38A、38B、38C…規制部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical scanning device used in an electrophotographic apparatus such as a laser printer or a digital copying machine which records an image by scanning and exposing a light beam on a scanning object based on image information.
[0002]
[Prior art]
An optical scanning device used in a conventional laser printer or electrophotographic apparatus will be described with reference to FIG.
[0003]
The optical scanning device 300 includes a light source 302 that emits a light beam L based on image information, a polygon mirror 304 that deflects the light beam L emitted from the light source 302 in a predetermined direction, an imaging lens system 306, A reflection mirror 310 that guides the light beam L to the scanned body 308 is provided, and each component is disposed in a housing 312 that is closed by a cover (not shown). The housing 312 is fixed to the frame 314 with screws 316 and incorporated in the electrophotographic apparatus.
[0004]
In the electrophotographic apparatus in which the optical scanning device 300 is disposed, a known charging unit, developing unit, and transfer unit are disposed on the frame 314 around the scanned body 308 and formed on the scanned body 308. The formed toner image is transferred onto a recording sheet, and the toner image is fixed by a fixing unit, whereby an image is formed on the recording sheet.
[0005]
As described above, in the optical scanning device 300 arranged in the electrophotographic apparatus, the vibration of the polygon mirror 304, the drive motor of the scanned object 308, and the sheet conveying means in the electrophotographic apparatus are transmitted to the housing 312. As a result, as shown in the schematic diagram of FIG. 22, the reflection mirror 310 disposed in the housing 312 generates a flexural vibration that oscillates between the positions of the broken line with respect to the normal solid line position, and the light changes due to the fluctuation of the reflection surface 310A. There is a problem that the optical path of the beam L is deviated from the normal position and the scanning line is shifted on the scanned body 308, resulting in poor image quality.
[0006]
As a means for solving this problem, for example, in the optical scanning device disclosed in Japanese Patent Laid-Open No. 11-187224 (hereinafter referred to as Conventional Example 1), it is formed in the housing as shown in FIGS. The reflection mirror 324 is inserted into the holes 322A and 322B of the pair of supports 320A and 320B, and the projection 326A formed to protrude from the reflection surface 324A side of the reflection mirror 324 into the hole 322A and the hole 322B. While being supported by the formed projections 326B and 326C, the surface 324B opposite to the reflecting surface 324A of the reflecting mirror 324 (hereinafter referred to as the back surface) 324B is pressed by the leaf springs 328A and 328B inserted into the holes 322A and 322B. To do. Furthermore, support portions 330A and 330B that protrude with a predetermined clearance X (see FIG. 23B) with respect to the reflection surface 324A are provided in the hole 322A of the support 320A, and the support portions 330A and 330B and the reflection surface 324A are provided. The adhesive 332 is applied between the two.
[0007]
Conventionally, as shown in FIG. 24A, since the reflecting surface 324A is supported only by the protrusions 326A to 326C, the reflecting mirror 324 (reflecting surface 324A) is brought into contact with the protrusion 326A by transmission of vibration. Although it swings in the direction of arrow B as the center (see FIG. 24B), in this configuration, it is fixed by the support portions 330A and 330B and the adhesive 332, so that the swing can be prevented.
[0008]
Another example disclosed in Japanese Patent Laid-Open No. 9-120039 (hereinafter referred to as Conventional Example 2) is shown in FIGS. In this optical scanning device, a weight 344 is attached to the back surface 342B side of the reflective mirror 342, and the resonance frequency of the reflective mirror 342 is changed to avoid the input frequency of the electrophotographic device and the drive motor of the polygon mirror to approximately 20 Hz. So we are trying to improve the image quality.
[0009]
Another example disclosed in JP-A-2-253274 (hereinafter referred to as Conventional Example 3) will be described with reference to FIG.
[0010]
In this optical scanning device, a cushioning member such as rubber or foamed polyurethane is placed between a housing 356 and a lower surface 354C which is placed on a pair of support members 350 and is fixed by a leaf spring 352 and orthogonal to the reflecting surface 354A of the reflecting mirror 354. 358 is provided to suppress flexural vibration of the reflection mirror 354.
[0011]
Next, Japanese Patent Laid-Open No. 2000-241735 (hereinafter referred to as Conventional Example 4) will be described with reference to FIGS. In this optical scanning device, as shown in FIG. 27A, the reflecting surface 362A of the reflecting mirror 362 is composed of one point on the outer side of the light beam scanning region S of the reflecting surface 362A and two points on the other end side. A pair of supporting members 364A and 364B to be supported and both ends of the reflection mirror 362A on the outside thereof are supported by the supporting members 366A and 366B. As shown in FIG. 27B, the back surface 362B of the reflection mirror 362 is supported at both ends by leaf springs 368A and 368B. The leaf spring 368A has contact portions 370 and 372 branched into two, and presses the reflection mirror 362 against the support members 364A and 364B, respectively. The same applies to the leaf spring 368B.
[0012]
By adopting such a configuration, the maximum amplitude W1 (refer to FIG. 27C) of the scanning region S of the reflection mirror, which has been conventionally supported at both ends by the supporting members 364A and 364B and the corresponding elastic members, is obtained. The support members 366A and 366B are disposed outside the support member 364A and the support member 364B, and the maximum amplitude W2 is suppressed by being pressed from the back surface 362B side by the contact portions 372 of the leaf springs 368A and 368B. (See FIG. 27D). In addition, the leaf springs 368A and 368B are provided with contact portions 370 and 372 in an integrated manner so as to reduce the cost.
[0013]
Furthermore, another example disclosed in Japanese Patent Laid-Open No. 6-324253 (referred to as Conventional Example 5) will be described with reference to FIGS. As shown in FIG. 28 (B), this mirror support mechanism 380 inserts and fixes a V-shaped elastic body 388 when the reflecting mirror 382 is inserted into the hole 386 of the wall surface 384 and fixed. is there.
[0014]
As shown in FIG. 28 (A), the V-shaped elastic body 388 is provided with a locking portion 390 partially folded downward on one surface folded back into a V-shape and the other surface. Two large and small protrusions 392 and 394 are provided (hereinafter also referred to as contact surfaces). Further, a folded portion 396 is provided at the tip of the contact surface.
[0015]
As shown in FIG. 28C, the mirror support mechanism 380 configured as described above has the elastic body 388 in the hole 386 (below the reflection mirror 382) after the reflection mirror 382 is inserted into the hole 386. By inserting and locking to the wall surface 384 by the locking portion 390, the large protrusion 392 on the contact surface supports the reflection mirror 382 and presses against the wall surface 384. Further, the folded portion 396 of the elastic body 382 supports the end face of the reflection mirror 382. In this state, when the reflection mirror 382 vibrates (the end surface moves from the two-dot chain line position to the solid line position), the elastic body 388 is deformed by the folded portion 396 being pressed, and the large protrusion 392 serves as a fulcrum. Rotates from position to solid line position. As a result, the small protrusion 394 increases the pressure contact force with respect to the reflection mirror 382 and restrains the displacement of the reflection mirror 382, thereby suppressing the vibration (amplitude) of the reflection mirror 382.
[0016]
[Problems to be solved by the invention]
Each of the above conventional examples has the following disadvantages.
[0017]
In the embodiment of the conventional example 1, since the reflecting surface 324A in the vicinity of the scanning area of the reflecting mirror 324 is adhered, it is necessary to prevent the adhesive from being applied to the scanning area by mistake, and the application work is difficult. .
[0018]
Further, in the optical scanning device of Conventional Example 2, since the weight 344 is attached to the back surface 342B of the reflection mirror 342, the reflection surface 342A of the reflection mirror 342 is distorted to deteriorate the light beam characteristics on the scanned object 308. There was a case.
[0019]
Further, in the optical scanning device of the conventional example 4, the reflection mirror 362 has to be elongated in order to support the outside of the conventional support members 364A and 364B with the support members 366A and 366B, and the housing (optical scanning device) is required. There was an inconvenience of increasing the size.
[0020]
By the way, as a recent optical scanning device, as represented by Japanese Patent Application No. 2000-345698 shown in FIG. 30, an optical scanning device having a complicated optical path of a light beam has been proposed. The optical scanning device 402 of the electrophotographic apparatus 400 includes four light beams LY, LM, LC, and LK (hereinafter referred to as LY to LK) corresponding to yellow, magenta, cyan, and black with one polygon mirror 403. The same is applied to the scanning bodies 404Y to 404K, and a color image is formed by multiple transfer from the scanning bodies 404Y to 404K to the transfer belt 406. The optical paths of the respective light beams LY to LK are below the reflecting mirrors 408Y to 408K disposed in the optical scanning device 402, and a cover 412 that closes the housing 410 is located above. Even in the optical scanning apparatus having such a configuration, it is necessary to suppress the vibration of the reflection mirrors 408Y to 408K in order to form a good color image. However, since the optical path of the light beam is complicated, the conventional method is difficult.
[0021]
For example, if the method of Conventional Example 3 (installation of a buffer member) is to be applied, there are optical paths of the respective light beams LY, LM, LC, and LK below the reflecting mirrors 408Y to 408K of the optical scanning device 402. It is difficult to secure the installation space for the members. Further, there is a cover 412 that closes the housing 410 on the upper side of the reflection mirrors 408Y to 408K. However, since the cover 412 is a member that closes the open surface of the housing, it is difficult to increase the rigidity. Even if a buffer member is interposed between 408Y to 408K, it is difficult to achieve the above buffering action.
[0022]
Further, the mirror support mechanism 380 of the conventional example 5 is applicable to the reflection mirrors 408Y to 408K because it is not necessary to dispose a member at a position in the vertical direction (direction orthogonal to the scanning direction) of the reflection mirror. As shown, the small protrusion 394 restricts the displacement of the reflecting mirror 382 and suppresses the vibration of the reflecting mirror 382 with respect to the downward (−y) direction displacement (see FIGS. 29A to 29B). However, with respect to displacement in the upward (y) direction, the vibration directions of the small protrusion 394 and the reflection mirror 382 are the same (both upward), and the vibration of the reflection mirror 382 cannot be suppressed (FIG. 29A → (See (C)).
[0023]
In the method of the conventional example 2, as described above, the thickness of the reflection mirror 342 is increased by attaching the weight 344 to the back surface 342B of the reflection mirror 342, so that the optical path is below or above the reflection mirror. If present, it may interfere with the optical path.
[0024]
In order to solve the above problems, an object of the present invention is to provide an optical scanning device that suppresses vibration of a reflecting member without interposing a vibration suppressing member in a scanning region (reflecting surface, back surface, reflecting surface orthogonal surface) of the reflecting member. It is to provide.
[0025]
[Means for Solving the Problems]
  In order to achieve the above object, an optical scanning device according to claim 1, wherein a light beam emitted from a light source is deflected by a polygon mirror, reflected by a reflecting member through an imaging lens system, and scanned to a scanned object. In the optical scanning device, a housing for housing each optical component, and a light beam reflecting surface or a reflecting surface of the reflecting surface at an end outside the light beam scanning region in the light beam scanning direction of the reflecting member provided in the housing. First support means supporting the back surface at one point, and an end portion outside the light beam scanning region on the opposite side to the end portion supported by the first support means in the light beam scanning direction of the reflecting member provided in the housing The second support means for supporting the reflection surface of the light beam or the back surface of the reflection surface at two points in the direction orthogonal to the scanning direction, and before the first and second support means support the light beam. A pressing means for pressing the reflecting surface of the reflecting member or the opposite surface of the back surface to the first and second supporting means; and at least the first supporting means side end of the reflecting member in the light beam scanning direction. A regulating member that abuts the end surface of the reflecting member and regulates the vibration of the reflecting member;A pressing member that presses an end surface of the second supporting means side end portion in the light beam scanning direction of the reflecting member toward the regulating member; an adjusting means that adjusts a pressing amount of the reflecting member by the pressing member;It is characterized by providing.
[0026]
The operation of the optical scanning device according to claim 1 will be described.
[0027]
In this optical scanning device, each optical component is arranged inside the housing, and the light beam emitted from the light source is deflected by a polygon mirror and reflected by a reflecting member through an imaging lens system, thereby scanning the light beam. Scan over the body.
[0028]
  AntiShooting member, At the end of the beam scanning direction (outside the light beam scanning area)1st provided in the housingThe reflecting means or the back surface of the reflecting surface is supported at one point by the supporting means, and provided at the housing at the end opposite to the end supported by the first supporting means.Reflecting surface or back surface of reflecting surface by second support meansAt two points in the direction perpendicular to the scanning directionSupported by pressing means from the opposite sideFirst and second support meansIt is positioned by being pushed to the side.
[0029]
  Also, out of both ends of the reflecting member in the beam scanning directionSmallAt leastFirst support means sideEnd ofThe end face of theControl memberTo make vibrationsSince the regulation is performed, it is possible to move the natural frequency of the reflection mirror to a high range without increasing the thickness of the reflection member and without interposing a member in the vicinity of the scanning region of the reflection mirror.
[0030]
  The reason is that focusing on the support portion of the conventional reflecting member, as shown in FIG. 3A, when the reflecting member vibrates, the end portion in the scanning direction of the reflecting member moves as shown in FIG. The natural frequency (Hz) of the reflecting member at this time is
f (Hz) = λ2/ 2πL2× (EI / ρA)1/2
Here, L: length of tension,
        E: Elastic modulus of elasticity
         I: Section moment of inertia,
        ρ: density,
       A: sectional area,
Since λ is considered to be a support for both ends,
1st order λ: π, 2nd order λ: 2π, 3rd order λ: 3π
On the other hand, in the configuration of the present invention (see FIG. 3C), λ approaches a single-sided support and single-sided fixed state, so the single-sided support and single-sided fixed λ is the primary λ: 3.927, Second-order λ: 7.069 and third-order λ: 10.210. Therefore, for example, when compared with the first order, the natural frequency of the configuration of the present invention is higher. That is, since the natural frequency of the reflecting member can be increased with a simpler configuration than in the past, the cost of the optical scanning device can be reduced.
  Further, in the light beam scanning direction of the reflecting member, the end surface of the first supporting means side that supports the reflecting surface or the back surface at one point is brought into contact with the regulating member, so that the one-side supporting side in addition to the bending vibration of the reflecting member. Rotational vibration caused by the above can be suppressed, and a better image quality can be obtained.
  In addition, by pressing the end surface of the second support means side end with the pressing member in the light beam scanning direction of the reflection member toward the first support means side end (regulation member), the cross section of the reflection member is subtly Although there is a change, the cross-sectional area, that is, the moment of inertia of the cross-section is increased. Therefore, the natural frequency of the reflecting member can be moved to a higher range, and in particular, the position of the reflecting member can be stably maintained against abnormal external impact during transportation.
  Further, since the pressing amount of the reflecting member by the pressing member can be adjusted by the adjusting means, the natural frequency of the reflecting member can be finely adjusted.
[0031]
The optical scanning device according to claim 2 is the optical scanning device according to claim 1, wherein an optical path of the light beam is formed in at least one of the upper and lower sides of the light beam scanning region of the reflecting member in the housing. It is characterized by.
[0032]
The operation of the optical scanning device according to claim 2 will be described.
[0033]
  End of light beam scanning direction of reflecting memberRegulationsSystemElementBy adopting the configuration regulated by the above, the vibration of the reflecting member can be suppressed without interposing any member in the vicinity of the light beam scanning region of the reflecting member. The degree of freedom in designing the light beam optical path in the direction) increases. That is, when viewed from the cross section of the optical scanning device, there are no inclusions in the vertical vertical direction of the reflecting surface, so that an optical path can be provided on at least one of the reflecting members, and the optical scanning device can be miniaturized. .
[0037]
  Claim3An optical scanning device according to claim 1 is provided.Or 2In the described optical scanning device, the reflecting member is a final reflecting member that finally reflects the light beam inside the housing and reaches the object to be scanned.
[0038]
  Claim3The operation of the described optical scanning device will be described.
[0039]
  The reflecting member is a final reflecting member that finally reflects the light beam inside the housing to reach the body to be scanned. Since the optical scanning device scans the light beam with a polygon mirror, the scanning width increases as it approaches the object to be scanned. Therefore, the light beam scanning region (member length) of the final reflecting member is a reflecting member in the optical scanning device. The longest of all. That is, since the length of the final reflecting member is the longest, it is difficult to suppress vibration. Therefore, conventionally, it has been necessary to attach a metal member to the back side of the final reflecting member in order to increase the thickness of the final reflecting member or increase the mass of the final reflecting member.Or 2With this configuration, it is not necessary to increase the thickness of the reflecting member, and the metal member can be eliminated, so that the reflecting member (optical scanning device) can be reduced in weight. The reduction in the weight of the reflecting member leads to a reduction in the pressing force of the pressing means, and the pressing means can be reduced in size. Therefore, the cost of the optical scanning device can be reduced. In addition, as the dimension of the reflecting member in the thickness direction is reduced, it contributes to miniaturization of the optical scanning device.
[0059]
  Claim4An optical scanning device as claimed in claim1 to 3In the described optical scanning device, the adjusting means can be operated from the outside of the housing.
[0060]
  Claim4The operation of the described optical scanning device will be described.
[0061]
The pressing amount of the pressing member against the reflecting member can be adjusted from the outside of the housing, so that the natural frequency of the reflecting member can be finely adjusted without opening the housing, especially corresponding to individual variations of the excitation source of the electrophotographic apparatus. Can be adjusted. Therefore, since the manufacturing requirement standard of the excitation source of the electrophotographic apparatus can be relaxed, the manufacturing cost of the excitation source can be reduced.
[0062]
  Claim5The optical scanning device according to claim 1.4The optical scanning device according to any one of the above, wherein at least one of the restricting member or the pressing member is bonded to an end surface of the reflecting member in the light beam scanning direction.
[0063]
Claim5The operation of the described optical scanning device will be described.
[0064]
  RuleSystemElementOr at least one of the pressing member and the end of the reflecting member in the light beam scanning directionEnd faceBy adhering, the light beam scanning direction end of the reflecting member is fixed. As a result, the natural frequency of the reflecting member can be moved to a higher range, and in particular, the position of the reflecting member can be kept stable even against an abnormal external impact during transportation. In addition, since the adhesive is performed not at the position of the support means but at the end in the light beam scanning direction away from the light beam scanning area of the reflecting member, when applying the adhesive, the adhesive is mistakenly applied to the light beam scanning area of the reflecting member. There is no risk of application. Therefore, the working time can be shortened and the manufacturing cost of the optical scanning device can be reduced.
[0065]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
The optical scanning device according to the first embodiment of the present invention will be described in detail with reference to FIGS. Here, FIG. 1 is an explanatory view of an optical scanning apparatus to which the present invention is applied, and FIG. 2 is an enlarged view of a main part of FIG.
[0066]
The optical scanning device 10 includes a light source 12 that emits a light beam L based on image information, a polygon mirror 14 that deflects the light beam L emitted from the light source 12 in a predetermined direction, an imaging lens system 16, and a target. The reflection mirror 20 guides the light beam L to the scanning body 18 and a housing 22 that houses and installs these optical components and is closed by a cover (not shown). The housing 22 is fixed to the frame 26 of the electrophotographic apparatus with screws 24. The optical scanning device 10 is incorporated in an electrophotographic apparatus, and a scanning beam 18 is main-scanned based on image information, thereby forming an electrostatic latent image on the scanning member 18.
[0067]
The electrophotographic apparatus includes known means, that is, a charging unit that uniformly charges the scanning target 18, a developing unit that forms a toner image on the scanning target 18 on which the electrostatic latent image is formed, and a toner image. A sheet conveying unit that conveys the recording paper at a timing capable of transferring the image, a transfer unit that transfers the toner image on the scanned body onto the recording sheet, and a fixing unit that fixes the transferred toner image onto the recording sheet. Has been.
[0068]
The reflection surface 20A of the reflection mirror 20 is adjusted by the first support 28 at one end (outer end of the scanning region) in the longitudinal (light beam scanning) direction, and the second support 30 and the reflection mirror angle adjusting mechanism 32 at the other end in the longitudinal direction. Supported by a screw 34. Here, the first support 28 and the second support 30 are integrally formed with the housing 22. On the other hand, the back surface 20B of the reflecting mirror 20 is pressed by plate springs 36A and 36B at positions facing the supports 28 and 30 at both ends in the longitudinal direction. Therefore, the light beam L is scanned at a desired position of the scanning target 18 by adjusting the screwing amount of the adjusting screw 34 with the reflection mirror 20 pressed by the support members 28 and 30 and the adjusting screw 34 by the plate springs 36A and 36B. Can be adjusted.
[0069]
On the other hand, as shown in FIG. 2, the housing 22 is formed with a regulating member 38 that protrudes from the wall surface in contact with the end face 20 </ b> C that is the longitudinal end face of the reflection mirror 20. The reflection mirror angle is adjusted in a state where the regulating member 38 and the end face 20C are not in contact with each other and the clearance C is secured as shown in FIG. After adjusting the angle with the adjusting screw 34, as shown in FIG. 4B, the reflecting mirror 20 is slid in the longitudinal direction (regulating member 38 side) to bring the regulating member 38 into contact with the end face 20C. As a result, the movement of the end face 20 </ b> C of the reflection mirror 20 is restricted by the restriction member 38. When the reflection mirror 20 is slid, the back surface 20B of the reflection mirror 20 is pressed by the leaf springs 36A and 36B, and the reflection surface 20A is supported by three points of the first support 28, the second support 30 and the adjusting screw 34. Therefore, the adjustment (reflection) angle of the reflection mirror 20 does not go wrong. Further, by appropriately setting the pressing force of the leaf springs 36A and 36B, it is possible to prevent the end face 20C of the reflecting mirror from being separated from the regulating member 38 due to an unnecessary impact during transportation.
[0070]
The operation of the thus configured optical scanning device 10 (suppression of vibration of the reflection mirror 20) will be described.
[0071]
First, as in the comparative example shown in FIG. 3A, the both ends of the reflection mirror 20 are supported only by the first support 28, the second support 30 and the adjusting screw 34, as shown in FIG. 3A. In the case of the comparative example shown in the drawing, the vibration of the polygon mirror 14, the sheet conveying means inside the electrophotographic apparatus, or the drive motor that drives the scanned object 18 is transmitted to the housing 22, and the reflection mirror 20 generates a flexural vibration. As a result, the optical path of the light beam L reflected toward the scanned object 18 by the reflecting mirror 20 is shifted, causing a scanning line shift on the scanned object 18 and degrading the image quality. At this time, the end face 20C of the reflection mirror 20 freely vibrates due to flexural vibration as indicated by a two-dot chain line in FIG.
[0072]
On the other hand, in the optical scanning device 10 of the present embodiment, as shown in FIG. 3C, the end surface 20C of the reflecting mirror 20 is in contact with the regulating member 38, so that the movement of the end surface 20C is regulated. . Therefore, the reflection mirror 20 does not vibrate from the end face 20C to the support position of the first support 28 as shown by a two-dot chain line in FIG. 3D, and only the second support 30 side from the first support 28 is provided. It becomes a vibration. That is, when the reflecting mirror 20 is viewed as a beam, the restraint state of the portion where the end face 20C and the regulating member 38 are in contact approaches the fixed state. That is, since the restraint state of the end face 20C is fixed from the support, the natural frequency of the reflection mirror 20 can be moved to a high range, and the flexural vibration of the reflection mirror 20 can be suppressed.
[0073]
In addition, since a good image quality can be obtained with a simpler configuration than the conventional flexural vibration preventing method, the cost of the optical scanning device can be reduced.
[0074]
Further, the reflecting mirror 20, the positions where the supports 28 and 30 support the reflecting surface 20A of the reflecting mirror 20, and the light beam scanning direction end surfaces 20C and 20D of the reflecting mirror 20 (on the side opposite to the light beam scanning direction end surface 20C). The positional relationship with the end face is set as shown in FIG. That is, when the distance from one end face 20C (regulating member 38 side) of the reflection mirror 20 to the first support 28 is α and the distance from the other end face 20D to the second support 30 is β, β <α Therefore, the end face 20C can be brought closer to a fixed state when the longer distance is pressed with the same force. That is, it is possible to move closer to the fixed state and move the natural frequency of the reflection mirror 20 to a higher range.
[0075]
As described above, the natural frequency of the reflecting mirror 20 is increased by constraining the end face 20C of the reflecting mirror 20 with the regulating member 38, and therefore the thickness of the reflecting mirror 20 is increased in order to suppress the vibration of the reflecting mirror 20. In order to increase the mass of the reflection mirror 20, there is no need to attach a metal member to the back side of the reflection mirror 20. Therefore, the optical scanning device 10 can be reduced in weight. In particular, in this respect, it is more desirable to apply to a final reflecting mirror that finally reflects the light beam to the scanned object 18 inside the housing. This is because the light beam L is deflected by the polygon mirror 14, so that the light beam scanning region is the longest in the final reflection mirror. Therefore, the mirror length of the final reflecting mirror is the longest and vibration is most difficult to suppress, but if this configuration is applied, vibration can be easily suppressed without increasing the weight of the mirror.
[0076]
Further, by reducing the weight of the reflecting mirror 20, the pressing force of the leaf spring 36 that supports the reflecting mirror 20 can be reduced, and the dimensions (width, plate thickness) of the leaf springs 36A and 36B can be reduced. Therefore, the cost of the optical scanning device 10 can be reduced. Furthermore, since it is not necessary to increase the thickness direction dimension of the reflection mirror 20, the optical scanning device 10 can be reduced in size.
[0077]
Furthermore, the reflection mirror 20 is supported at two points on one side (second support body 30, adjustment screw 34) and at the other point (first support body 28), and supports the regulating member 38 at one point (first support body 28). Since it is installed on the side, in addition to the bending vibration of the reflection mirror 20, rotation vibration (see arrow B in FIG. 24) due to torsion of the reflection mirror 20 can be suppressed, and better image quality can be obtained. The rotational vibration is particularly effective when a cylindrical reflecting mirror is applied to the present invention. In the case where the rotational vibration due to the torsion of the reflection mirror 20 is not particularly concerned, the two-point support (first support 30, adjustment screw 34) side may be regulated by the regulating member 38.
(Second Embodiment)
Next, an optical scanning device according to a second embodiment of the present invention will be described with reference to FIG. In addition, the same referential mark is attached | subjected to the component similar to 1st Embodiment, and the detailed description is abbreviate | omitted. Moreover, only a different part from 1st Embodiment is demonstrated and description of another part is abbreviate | omitted.
[0078]
The leaf spring 36A that presses the back surface 20B of the reflecting mirror 20 has a shape obtained by folding the plate body into a V shape as shown in FIGS. 22, a support portion 42 that supports the reflection mirror 20 on the other end side, and an elastic portion (folded portion) 44 that elastically connects the attachment portion 40 and the support portion 42 to each other. It consists of. On the support portion 42, protrusions 46 </ b> A and 46 </ b> B that are in contact with the back surface 20 </ b> B of the reflection mirror 20 are formed along the elastic portion 44 and separated by a predetermined distance.
[0079]
The leaf spring 36A is fixed to the housing 22 so that the elastic portion 44 of the leaf spring 36A is parallel to the longitudinal direction of the reflection mirror 20. As a result, as shown in FIGS. 5B and 5C, the protrusions 46A and 46B of the leaf spring 36A are also in the longitudinal direction of the reflection mirror 20 from the position where the first support 28 supports the reflection surface 20A. The back surface 20B of the reflection mirror 20 is pressed at a position separated (offset) by a distance x on both sides in the longitudinal direction.
[0080]
As shown in FIGS. 5B and 5C, the elastic member 36B has the same configuration.
[0081]
The operation of the thus configured optical scanning device will be described.
[0082]
As shown in FIG. 5D, conventionally, the leaf springs 36A and 36B have pressed the positions facing the supports 28 and 30 at both ends in the longitudinal direction of the reflection mirror 20, so that the two-dot chain line indicates The amplitude of the reflection mirror 20 was large. On the other hand, in the present embodiment, the back surface of the reflection mirror 20 is projected by the projections 46A and 46B at a position offset by a distance x on both sides in the longitudinal direction across the position where the support surfaces 28 and 30 support the reflection surface 20A. 20B is pressed (see FIGS. 5B and 5C). By pressing the back surface 20B in this way, vibrations in both directions (± y directions) can be reliably suppressed. That is, as shown in FIG. 5D, the displacement in the y direction of the reflection mirror 20 is suppressed by the protrusion 46A, and the displacement in the −y direction is suppressed by the protrusion 46B. As a result, it is possible to suppress the bending vibration that has been pressed at a position (one point) facing the support bodies 28 and 30 and vibrated like a two-dot chain line as indicated by a broken line. Further, the natural frequency of the reflection mirror 20 can be moved to a high range.
[0083]
In the conventional example shown in FIG. 27B, the leaf springs 368A and 368B are shifted to the center in the longitudinal direction of the reflection mirror 362, respectively, and the contact positions of the contact portions 370 and 372 with respect to the back surface 362B of the reflection mirror 362 are obtained. If the support members 364A and 364B are sandwiched between the support positions, the configuration is similar to that of the present embodiment. However, since the contact portions 370 and 372 move independently of the deflection of the reflection mirror 362, the above-described buffering is performed. The effect cannot be fully exerted.
[0084]
On the other hand, in this embodiment, since the protrusions 46A and 46B are formed on the single support portion 42, when the reflection mirror 20 tries to bend, the support portions 42 of the leaf springs 36A and 36B tend to twist. However, since the elastic portion 44 arranged in parallel with the reflecting surface 20A prevents torsion, vibration can be effectively suppressed.
(Third embodiment)
Subsequently, an optical scanning device according to a third embodiment of the present invention will be described with reference to FIG. In addition, the same referential mark is attached | subjected to the component similar to 1st Embodiment, and the detailed description is abbreviate | omitted. Moreover, only a different part from 1st Embodiment is demonstrated and description of another part is abbreviate | omitted.
[0085]
In the present embodiment, the shape of the regulating member 38A is different from that of the first embodiment. That is, as shown in FIG. 6A, protrusions (hereinafter referred to as sharp portions) 50A and 50B extending in the longitudinal direction in a triangular cross section are formed on the surface of the regulating member 38A that abuts on the end surface 20C of the reflecting mirror 20. ing.
[0086]
Therefore, as shown in FIGS. 4A and 4B, when the reflecting mirror 20 is slid in the longitudinal direction and pressed against the regulating member 38A, a corner (ridge line) formed by the end surface 20C of the reflecting mirror 20 and the reflecting surface 20A is formed. 52, and a corner (ridgeline) 54 formed by the end surface 20C and the back surface 20B destroys and bites a part of the sharp portions 50A and 50B of the regulating member 38A (the broken and bited position is referred to as a biting portion 56A). The broken sharp portions 50A and 50B are removed by cleaning with air.
[0087]
In the optical scanning device of the present embodiment, since one end in the longitudinal direction (end surface 20C) of the reflection mirror 20 is fixed to the regulating member 38A in this way, not only the vibration of each part of the electrophotographic apparatus, The position of the reflecting mirror 20 can be kept stable even with an abnormal external impact during transportation.
[0088]
A modification is shown in FIG. This is suitable when the depth of the housing 22 is deep and a draft is required at the sharp part.
[0089]
The regulating member 38B has a triangular pyramid shape, and is formed so that the sharp portion 50B, which is the apex of the cross-sectional triangle, has a draft toward the upper side. The restricting member 30C arranged in parallel with the restricting member 38B has a triangular pyramid shape, but is formed so that the sharp portion 50C which is the apex of the cross-sectional triangle has a draft toward the lower side. In addition, a die punching hole (not shown) is formed on the lower housing surface of the sharp portion 50C.
[0090]
By sliding the reflecting mirror 20 in the longitudinal direction against the regulating members 38B and 38C configured in this way and pressing the end face 20C, as shown in FIGS. The portion 52 is pressed against the sharp portion 50C of the regulating member 38C, and the corner portion 54 is pressed against the sharp portion 50B. As a result, as shown in FIG. 7D, the corner portion 52 can bite into the sharp portion 50C, and the corner portion 54 can bite into the sharp portion 50B. Also in this case, the movement of the end face 20C of the reflection mirror 20, that is, one end in the longitudinal direction can be fixed.
(Fourth embodiment)
Subsequently, an optical scanning device according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, the same referential mark is attached | subjected to the component similar to 1st Embodiment, and the detailed description is abbreviate | omitted. Moreover, only a different part from 1st Embodiment is demonstrated and description of another part is abbreviate | omitted.
[0091]
In the present embodiment, as shown in FIG. 8, the pressing protrusion 62 formed on the upright surface 61 of the pressing member 60 fixed to the housing 22 on the end surface 20D opposite to the regulating member in the longitudinal direction of the reflecting mirror 20 The reflecting mirror 20 is disposed so as to be in contact with and press the reflecting mirror 20 toward the regulating member 38 (the other end).
[0092]
Further, as a configuration different from that of the first embodiment, the mirror angle adjustment mechanism is omitted, and the support portions 64 and 66 of the first support 30B are formed at two positions separated by a predetermined distance in the short direction of the reflection mirror 20. . The angle of the reflection mirror 20 is determined by supporting the reflection surface 20A on the support portions 64 and 66.
[0093]
Thus, the present invention is also effective in the reflection mirror 20 that does not have an angle adjustment mechanism. Further, by pressing the end face 20D of the reflecting mirror 20 with the pressing protrusion 62 of the pressing member 60 (by applying the pressing force P1), as shown by the change from the solid line to the broken line in FIG. Although the cross section is subtle, it can be changed (thickness t → t1). As a result, the cross-sectional area of the reflecting mirror 20 increases and the cross-sectional secondary moment increases. Therefore, the natural frequency of the reflection mirror 20 can be moved to a higher range, and in particular, the position of the reflection mirror 20 can be stably held against an abnormal external impact during transportation.
[0094]
The pressing member 60 only needs to be able to absorb the dimensional tolerance in the length direction of the reflection mirror 20 during mounting and to achieve the above-described action. For example, the pressing member 60 has a shape of an elastic body, a sheet metal bracket, or the pressing member 60B shown in FIG. It may be made of plastic.
(Fifth embodiment)
Subsequently, an optical scanning device according to a fifth embodiment of the present invention will be described with reference to FIGS. In addition, the same referential mark is attached | subjected to the component similar to 4th Embodiment, and the detailed description is abbreviate | omitted. Moreover, only a different part from 4th Embodiment is demonstrated and description of another part is abbreviate | omitted.
[0095]
9A, the screw hole 68 is formed in the upright surface 61 of the pressing member 60A, and the adjustment screw 70 that presses the end surface 20D of the reflecting mirror 20 is formed in the screw hole 68. It is screwed.
[0096]
Since it comprised in this way, the pressing force P2 (refer FIG.9 (B)) with respect to the reflective mirror 20 is changed by adjusting the screwing amount with respect to the screw hole 68 of the adjusting screw 70, and the cross-sectional area (thickness) of the reflective mirror 20 is changed. t2) Finely adjust the secondary moment of section. That is, the natural frequency of the reflection mirror 20 can be finely adjusted. Further, the tolerance in the longitudinal direction of the reflecting mirror 20 can be absorbed by adjusting the screwing amount of the adjusting screw 70.
[0097]
FIG. 10 shows a modification of FIG. The upright surface 61 of the pressing member 60B is configured to directly contact the end surface 20D of the reflecting mirror 20. A long hole 74 is formed in the base portion 72 of the pressing member 60B, and the screw 76 is inserted into the long hole 74. Is screwed into a screw hole (not shown) of the housing 22 so that the pressing member 60B can be fixed to the housing 22. That is, the pressing member 60 </ b> B is configured to be movable along the long hole 74.
[0098]
The shape of the pressing member 60B is not particularly limited, and is made of plastic. In particular, a contact portion with respect to the end surface 20D of the reflecting mirror 20 may be formed as a pressing protrusion 62 shown in FIG. You may make it the shape of the member 38 (refer FIG. 2), 38A (refer FIG. 6), 38B, 38C (refer FIG. 7).
(Sixth embodiment)
Subsequently, an optical scanning device according to a sixth embodiment of the present invention will be described with reference to FIGS. In addition, the same referential mark is attached | subjected to the component similar to 5th Embodiment, and the detailed description is abbreviate | omitted. Further, only the parts different from the fifth embodiment will be described, and description of other parts will be omitted.
[0099]
11A and 11B, the pressing member 60C is configured by an adjusting screw 70A screwed into a screw hole 80 formed on the wall surface of the housing 22. As shown in FIGS. Yes. An adjustment dial 82 is formed at one end of the adjustment screw 70 </ b> A located outside the housing 22 so that the operator can adjust the pressing force from the outside. In addition, a scale 84 is formed around the adjustment dial 82 on the wall surface of the housing 22 as a guide for the adjustment amount.
[0100]
Therefore, the operator can easily and accurately adjust the pressing force applied to the reflecting mirror 20 by the adjusting screw 70A by rotating the adjusting dial 82 according to the scale 84 without opening a cover (not shown) of the housing 22.
[0101]
By the way, if adjustment is possible as in the fifth embodiment and the present embodiment, the reflection mirror 20 may be distorted in the normal direction of the scanning line, and the light beam on the scanning target may be bent (BOW). . However, in the case of the fifth embodiment, adjustment may be made within the BOW specification range at the time of adjustment of the optical scanning device, and in the case of this embodiment, the adjustment range of the adjustment dial 82 may be determined. For example, the adjustment screw 70A is shipped in contact with the end face 20D when adjusting the optical scanning device. If it is incorporated in the electrophotographic apparatus and the natural frequency of the reflecting mirror 20 is to be moved, the adjustment range may be determined by the number of scales 84 of the housing. Since the pressing member 60C can be adjusted from the outside of the optical scanning device in this way, fine adjustment of the natural frequency of the reflection mirror 20, especially adjustment corresponding to individual variations of the excitation source of the electrophotographic apparatus is performed. be able to. Therefore, since the manufacturing requirement standard of the excitation source of the electrophotographic apparatus can be relaxed, the cost of the excitation source can be reduced.
(Seventh embodiment)
Furthermore, an optical scanning device according to a seventh embodiment of the present invention will be described with reference to FIGS. In addition, the same referential mark is attached | subjected to the component similar to 1st-6th embodiment, and the detailed description is abbreviate | omitted.
[0102]
As shown in FIG. 12, the electrophotographic apparatus 90 includes light beams LK, LC, LM, and LY (hereinafter referred to as LK to LY; other reference numbers) of black, cyan, magenta, and yellow recording colors from the optical scanning apparatus 92. (Similarly) is emitted to the scanned bodies 96K to 96Y. On the scanned bodies 96K to 96Y, electrostatic latent images are formed by the light beams LK to LY, and toner images of colors corresponding to the respective image signals are formed on the portions exposed by the light beams LK to LY. Each toner image formed on each of the scanned bodies 96K to 96Y is superimposed and transferred on the intermediate transfer belt 98 conveyed at a constant speed in the direction of arrow A, and then transferred onto the conveyed paper 100. Is done. The paper 100 on which the toner image has been transferred is fixed on the toner image by a fixing device (not shown) and discharged to a paper discharge tray (not shown). An optical scanning device 92 used in the electrophotographic apparatus 90 will be described with reference to FIG. FIG. 13 is a perspective view of the optical scanning device with the cover 102 removed. The optical scanning device 92 is configured by arranging optical components inside the housing 22A shielded from the outside by the cover 102 in order to scan and expose the light beams LK to LY to the scanned objects 96K to 96Y. That is, the optical scanning device 92 applies the light beams LK to LY to the polygon mirror 14 in accordance with each recording information signal of black (K) cyan (C) magenta (M) yellow (Y) output from an image processing unit (not shown). The optical components are arranged in the housing 22A so that the scanning objects 96K to 96Y can be exposed from an opening (not shown). Details of the configuration will be described along the optical path of the light beam LM. As shown in FIG. 12, the light beam LM emitted from the light source 104M is transmitted through the collimator lens 106M to be loosely divergent light, is transmitted through the cylinder lens 108M, and is reflected by the small mirror 110YM, and is transmitted in the sub-scanning direction. It is narrowed down and enters the polygon mirror 14. The light beam LM reflected by the polygon mirror 14 passes through the fθ lens 112YM as an imaging optical system, reflects from the middle mirror 114M, passes below the large mirror 118M, reflects by the cylinder mirror 116M, and then reflects to the large mirror 118M. And the object to be scanned 96M is exposed. The reflecting surface of the cylinder mirror 116M forms an R surface in the sub-scanning direction, and functions to prevent a scanning line shift in the sub-scanning direction even when the polygon mirror 14 is tilted. Note that another small mirror 109Y is inserted between the cylinder lens 108Y and the small mirror 110YM on the optical path of the light beam LY. A similar arrangement is made on the optical path of the light beam LK.
[0103]
In addition, as shown in FIGS. 14A and 14B, an optical scanning device 92 having a tandem configuration that forms a color image by superimposing such toner images has SKEW correction, BOW correction (image position of a two-dot chain line). Is corrected to a solid line image position). SKEW correction is performed by a cam mechanism (not shown) in the skew correction mechanisms 120K to 120Y with reference to the end of the cylinder mirrors 116K to 116Y opposite to the skew correction mechanism side in the skew correction mechanisms 120K to 120Y shown in FIG. For example, the skew correction is performed by moving the two-dot chain line position of the cylinder mirror 116Y of FIG. 12 to the solid line position by adjustment by the skew correction mechanism 120Y.
[0104]
Next, the large mirrors 118K to 118Y (large mirror 118M, representative of the four) provided with the BOW adjusting mechanism will be described with reference to FIGS. FIG. 15 is a partially cutaway view taken along the arrow A in FIG. FIG. 16 is a diagram in which the regulating member shown in FIG.
[0105]
As shown in FIG. 15, the large mirror 118M has one end of the reflecting surface 122M as two support portions 126 and 128 of the first support 124M, and the other end as one support of the second support 130M. The back surface 134M is pressed to the support portions 126, 128, and 132 by the leaf springs 36A and 36B. The angle of the large mirror 118M (reflective surface 122M) is defined by supporting the reflective surface 122M on the three support portions 126, 128, and 132 in this way. A BOW adjusting mechanism is provided on the first support 124M side, and an angle member 136M is disposed substantially parallel to the inclined surface 135M formed on the housing 22A. As shown in FIG. 16, a hemispherical convex portion 140M is formed on the inclined surface 138M of the angle member 136M, and the convex portion 140M supports the back surface 134M of the large mirror 118M. The inclined surface 138M of the angle member 136M is formed with a screw portion 142M. By rotating the adjusting screw 144M, the distance between the inclined surface 138M and the inclined surface 135M of the angle member 136M is adjusted, and the first support body 124M. The pressing amount of the convex portion 140M against the back surface 134M of the large mirror 118M supported at two points can be increased or decreased. Therefore, the amount of bending of the large mirror 118M supported at two points on the first support 124M is changed to correct the BOW from the two-dot chain line position to the solid line position as shown in FIG. 14B.
[0106]
On the other hand, as shown in FIG. 17, the housing 22A is integrally provided with a regulating member 38 that comes into contact with the end face 146M at one end in the longitudinal direction of the large mirror 118M. When performing BOW correction (rotating the adjusting screw 144M), as shown in FIG. 4A, the regulating member 38 and the reflecting mirror end surface 146 are separated (clearance C). After adjustment with the adjustment screw 144, as shown in FIG. 4B, the large mirror 118M is slid in the longitudinal direction (regulating member 38 side), and the regulating member 38 and the end surface 146M of the large mirror 118M are brought into contact with each other. Since the reflecting surface 122M of the large mirror 118M is supported at three points, the scanning position on the scanning target 18 is not shifted from the desired position by the adjusted slide.
[0107]
By configuring in this way, as in the first embodiment, the regulating member 38 regulates and fixes the movement of the end surface 146M of the large mirror 118M, so that flexural vibration can be suppressed and the formed image quality can be improved. Can do.
[0108]
Similarly to the first embodiment, in the longitudinal direction of the large mirror 118M, the distance from the support position of the reflection surface 122M of the support portions 126 and 128 to the end surface 146M is α, and the support position of the reflection surface 122M of the support portion 130M. When the distance from the end surface 148M on the opposite side of the large mirror 118M to the end surface 148M of the large mirror 118M is β, the relationship is β <α. As a result, the natural frequency of the large mirror 118M can be moved to a higher range.
[0109]
In particular, by applying to the large mirror 118M, which is the final reflection mirror, the optical path of the light beam is formed in a direction orthogonal to the scanning direction of the scanning region of the large mirror 118M (hereinafter sometimes referred to as the vertical direction). The optical path in the optical scanning device can be made compact. Moreover, even when the scanning region (mirror length) is the longest as in the case of the large mirror 118M, vibration can be suppressed without increasing the thickness of the mirror or increasing the mass, so that the weight (weight) of the large mirror 118M can be reduced. Prevention).
[0110]
FIG. 18 shows the measurement result of the natural frequency of the large mirror 118M configured as described above. The large mirror 118M has a length of 310 mm, a width of 16 mm, a thickness of 8 mm, and a corner in the scanning direction of the back surface 134M is C3 chamfered over a length of 310 mm. Α = 30 mm and β = 5 mm in FIG. is there. FIG. 18 (A) is the state of FIG. 4 (A), and the clearance C is 0.5 mm. In the state of FIG. 4 (A), as shown in FIG. 18 (A), the natural frequency of the large mirror 118M is 276.9 Hz, but in the case of the configuration of this embodiment, it is shown in FIG. 18 (B). As described above, it was confirmed that the natural frequency of the large mirror 118M was 315.9 Hz, and the natural frequency of the large mirror 118M was moved to a high frequency by about 40 Hz by this configuration.
[0111]
In this example, the support for supporting the large mirror 118M is composed of two points (first support 124M) on one side and the other point (second support 130M). However, the first support 124M and the second support are provided. The body 130M may be reversed. When the one-point support side is set to the regulating member side, in addition to the flexural vibration of the reflecting member, the rotational vibration due to the torsion of the reflecting mirror is suppressed, so that even better image quality can be obtained. This rotational vibration is particularly effective when a cylindrical reflecting mirror is applied to the present invention. Moreover, you may apply to the leaf | plate springs 36A and 36B what has a pair of protrusion 46A, 46B shown in 2nd Embodiment (FIG. 5 (A)-(C)).
(Eighth embodiment)
Furthermore, an optical scanning device according to an eighth embodiment of the present invention will be described with reference to FIGS. In addition, the same referential mark is attached | subjected to the component similar to 7th Embodiment, and the detailed description is abbreviate | omitted.
[0112]
In the present embodiment, the regulating member 38A described in the third embodiment is used instead of the regulating member 38 in the seventh embodiment. That is, as shown in FIG. 19, sharp portions 50A and 50B are provided on the regulating member 38A that regulates the movement of the end surface 146M of the large mirror 118M. Therefore, when the large mirror 118M is slid in the longitudinal direction in accordance with FIGS. 4 (A) → (B), the corners (ridge lines) 150 between the sharp portions 50A and 50B, the end surface 146M of the large mirror 118M, and the reflecting surface 122M and Corner portions (ridge lines) 152 between the end surface 146M and the back surface 134M enter the sharp portions 50A and 50B of the regulating member 38A, destroy part of the sharp portions 50A and 50B, and form biting portions 56B and 56C. The mirror end face 146M is set in a fixed state. Therefore, the position of the large mirror 118M can be stably maintained not only for vibration of each part of the electrophotographic apparatus but also for an abnormal external impact during transportation.
[0113]
FIG. 20 shows a modification of FIG. 19 in which the regulating members 38B and 38C shown in FIG. 7 are applied instead of the regulating member 38A.
[0114]
As shown in FIGS. 20B to 20D, the corner portion 150M between the reflecting surface 122M and the end surface 146M abuts the sharp portion 50C, and the corner portion 152M between the back surface 134M and the end surface 146M abuts the sharp portion 50B. As a result, the biting portion 56C is formed in the sharp portion 50C with respect to the corner portion 150, and the biting portion 56B is formed in the sharp portion 50B with respect to the corner portion 152. Therefore, the movement of the end face 146M of the reflecting mirror is fixed.
[0115]
In addition, the structure which presses the end surface on the opposite side to a control member with the press member shown in 4th Embodiment is applicable to these 7th, 8th embodiment. By pressing the end surface 148M of the large mirror 118M toward the regulating member with the pressing member, it is possible to increase the cross-sectional secondary moment of the large mirror 118M and move the natural frequency to a higher range. Therefore, the position of the reflecting member can be stably maintained even with an abnormal external impact during transportation. The pressing member only needs to have the above-described action under the condition that it has a structure capable of absorbing the dimensional tolerance in the length direction of the reflecting mirror when attached. For example, the pressing member is an elastic body, a bracket made of sheet metal, as shown in FIG. It may be of any shape and made of plastic.
[0116]
Further, in the seventh embodiment, FIG. 18C shows the measurement result of the large mirror 118M when the end face 148M of the large mirror 118 is applied with a pressing force of 2 kgf to the regulating member 38 side by the pressing member 60 shown in FIG. Show. In this case, the natural frequency of the large mirror 118M is 324.4 Hz, and it has been confirmed that the natural frequency can be further moved to a higher range than when the large mirror 118M is merely brought into contact with the regulating member (FIG. 18B). .
[0117]
Further, in the seventh and eighth embodiments, as in the fifth embodiment (see FIG. 9), an adjustment screw may be provided on the pressing member so that the pressing force can be adjusted. With this configuration, the natural frequency of the large mirror 118M can be finely adjusted. Moreover, the tolerance in the length direction of the reflecting mirror can be absorbed. Similarly, as shown in FIG. 10, the pressing member may be provided with a long hole so that the pressing member itself can be adjusted.
[0118]
In addition, the shape of the contact portion of the pressing member with respect to the end surface 148M of the large mirror 118M is made of plastic, in particular, may be the pressing protrusion 62 shown in FIG. 8, or may be the regulating members 38 (see FIG. 17), 38A ( 19B), 38B, and 38C (see FIG. 20).
[0119]
The seventh and eighth embodiments may be configured such that the pressing member can be pressed and adjusted from the outside of the housing by an adjustment dial as in the sixth embodiment. Since the pressing member 60d can be adjusted from the outside of the optical scanning device in this way, fine adjustment of the natural frequency of the large mirror 118M, in particular, adjustment for individual variations of the excitation source of the electrophotographic apparatus. Can do. Therefore, since the manufacturing requirement standard of the excitation source of the electrophotographic apparatus can be relaxed, the manufacturing cost of the excitation source can be reduced. In addition, the seventh and eighth embodiments are configured to include a BOW adjustment mechanism, but the effect is also achieved by a reflection mirror having a mirror angle adjustment mechanism or a mirror having no mirror angle adjustment mechanism as in the first embodiment. Play.
[0120]
By the way, in addition to the configurations of the first to eighth embodiments described above, at least one of the regulating member or the pressing member) and at least one of the end surfaces of the reflecting mirror are bonded to fix the movement of at least one of the end surfaces of the reflecting mirror. It can also be considered to be in a state. For example, as shown in FIG. 4C, in the state where the end face of the reflection mirror 20 is offset from the restriction member 38, the adhesive 160 is attached to the contact surface of the restriction member 38 with respect to the reflection mirror 20 to adjust the angle. After the reflection mirror 20 is slid in the longitudinal direction (regulating member side), the end surface 20C of the reflecting mirror 20 is bonded to the contact surface of the regulating member 38 as shown in FIG. Fixed by. As a result, the end face 20C of the reflection mirror 20 is fixed, and the natural frequency of the reflection mirror 20 can be moved to a higher frequency range. In particular, the reflection mirror 20 can be protected against abnormal external shocks during transportation. The position can be kept stable. Moreover, since it adheres not to the support position of the reflection surface as in the conventional example but to the end surface 20D of the reflection mirror 20 away from the light beam scanning region of the reflection surface 20A, when applying the adhesive 160, the scanning of the reflection mirror 20 is performed. There is no risk of applying the adhesive 160 to the area by mistake. Therefore, the working time can be shortened, and the cost of the optical scanning device can be reduced.
[0121]
The restricting member in the first to eighth embodiments is integrally formed with the housing. However, on the condition that the natural frequency of the reflecting mirror is moved, for example, an elastic body or a bracket made of sheet metal. 10. A plastic member having a shape as shown in FIG. 10 (the contact portion is the regulating member 38 in FIG. 17, the regulating member 38A in FIG. 19, the regulating member 38C in FIG. 20), or a cover of the optical scanning device. It may be installed and connected and fixed to the housing.
[0122]
【The invention's effect】
  As described above, according to the first aspect of the present invention, the reflection member is not made thick, and the natural frequency of the reflection member is increased in the vicinity of the scanning region of the reflection member without the vibration suppressing member interposed. Can be moved to. Therefore, since the natural frequency of the reflecting member can be moved to a high range with a simpler structure than before, the manufacturing cost of the optical scanning device can be reduced. Further, since the rotational vibration is suppressed in addition to the bending vibration of the reflecting member, a better image quality can be obtained.In addition, the sectional area and the moment of inertia of the cross section are increased by changing the cross section of the reflecting member although it is delicate. Therefore, the natural frequency of the reflecting member can be moved to a higher range, and in particular, the position of the reflecting member can be stably maintained against abnormal external impact during transportation. Further, the natural frequency of the reflecting member can be finely adjusted by the adjusting means.
[0123]
According to the second aspect of the present invention, since the natural frequency of the reflecting member can be moved to a high range with a simpler configuration than the conventional one, the manufacturing cost of the optical scanning device can be reduced. Further, it is possible to suppress the vibration of the reflecting member without interposing any member in the vicinity of the scanning region of the reflecting member, and the vertical space portion of the reflecting member can be used effectively. That is, when considered in the cross section of the optical scanning device, there are no inclusions in the vertical direction of the reflecting surface, so that the optical scanning device can be miniaturized by bending the optical path in a complicated manner.
[0125]
Claim3According to the described invention, it is possible to reduce the thickness of the reflecting member and to eliminate the need to attach a metal member, and thus it is possible to reduce the weight of the optical scanning device. The reduction in weight of the reflecting member leads to a reduction in the pressing force of the pressing means used for support, and the pressing means can be reduced in size. Therefore, the cost of the optical scanning device can be reduced. Further, the optical scanning device can be miniaturized as the thickness of the reflecting member decreases in the plate thickness direction.
[0132]
  Claim4According to the described invention, it is possible to finely adjust the natural frequency of the reflecting member, in particular, to individual variations of the excitation source of the electrophotographic apparatus. Therefore, since the manufacturing requirement standard of the excitation source of the electrophotographic apparatus can be relaxed, the manufacturing cost of the excitation source can be reduced.
[0133]
Claim5According to the described invention, the movement of the terminal portion of the reflecting member is set to a fixed state. Therefore, the natural frequency of the reflecting member can be further moved to a higher range, and in particular, the position of the reflecting member can be stably maintained against an abnormal external impact during transportation. When applying the adhesive, there is no risk of applying the adhesive by mistake to the scanning region of the reflecting member. Therefore, the working time can be shortened, and the cost of the optical scanning device can be reduced.
[Brief description of the drawings]
FIG. 1 is a partially omitted perspective explanatory view of an optical scanning device according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of a main part of FIG.
FIGS. 3A and 3B are explanatory views showing a support state and a vibration state of the reflection mirror in the comparative example, FIG. 3B is an explanatory view of a vibration state at the end of the reflection mirror in the comparison example, and FIG. It is explanatory drawing which shows the support state of the reflective mirror which concerns on 1 embodiment, (D) is a vibration state explanatory drawing in the reflective mirror end part which concerns on this embodiment.
4A and 4B are explanatory views showing a state before and after contact between the end face of the reflecting mirror and the regulating member, and FIG. 4C and FIG. 4D are end faces of the reflecting mirror. It is explanatory drawing which shows the state before adhesion | attachment of a regulating member, and the state after adhesion | attachment.
FIG. 5A is an explanatory diagram of a main part of an optical scanning device according to a second embodiment of the present invention, FIG. 5B is a front view showing a support position of a leaf spring in a reflecting mirror, and FIG. (D) is a schematic diagram showing a vibration state.
6A is an explanatory diagram of a main part of an optical scanning device according to a third embodiment of the present invention, and FIG. 6B is an explanatory diagram of a biting state of a reflecting mirror end surface with respect to a regulating member.
FIGS. 7A and 7B are explanatory views of a main part of an optical scanning device according to a modified example of FIG. 6, and FIGS.
FIG. 8A is an explanatory diagram of a main part of an optical scanning device according to a fourth embodiment of the present invention, and FIG. 8B is an explanatory diagram of a deformation state of a reflecting mirror when an end surface is pressed.
FIG. 9A is an explanatory diagram of a main part of an optical scanning device according to a fifth embodiment of the present invention, and FIG. 9B is an explanatory diagram of a deformed state of a reflecting mirror when an end surface is pressed.
10 is an explanatory diagram of a main part of an optical scanning device according to a modification of FIG.
FIG. 11A is a main part explanatory view of an optical scanning device according to a sixth embodiment of the present invention, and FIG. 11B is a plan view of the main part.
FIG. 12 is a schematic explanatory diagram of an electrophotographic apparatus according to a seventh embodiment of the present invention.
FIG. 13 is a perspective explanatory view of an optical scanning device according to a seventh embodiment of the present invention.
14A is an explanatory diagram of SKEW correction, and FIG. 14B is an explanatory diagram of BOW correction.
FIG. 15 is a partially cutaway view taken along arrow A in FIG. 13;
FIG. 16 is a diagram in which the regulating member of the arrow C in FIG. 15 is deleted.
FIG. 17 is an enlarged perspective view of a main part of an optical scanning device according to a seventh embodiment of the present invention.
18A is a configuration of the seventh embodiment, and there is a clearance C between the large mirror and the regulating member, and FIG. 18B is a case where the configuration of the seventh embodiment of the present invention is applied. These are figures which show the measurement result of each natural frequency at the time of pressing the end surface on the opposite side to the control member side of a large mirror in the 7th Embodiment of this invention.
FIG. 19A is a main part explanatory view of an optical scanning device according to an eighth embodiment of the present invention, and FIG. 19B is an explanatory view of the biting state of the reflecting mirror end face with respect to the regulating member.
FIGS. 20A and 20B are explanatory views of main parts of an optical scanning device according to a modification of FIG. 19, and FIGS.
FIG. 21 is an explanatory diagram of an optical scanning device according to a conventional example.
FIG. 22 is an explanatory diagram of a vibration state of a reflection mirror in a conventional example.
23A is a perspective view for explaining a main part of an optical scanning device according to Conventional Example 1, and FIG. 23B is a front view of the main part.
24A is a perspective view for explaining a main part of an optical scanning device according to a comparative example, and FIG. 24B is a front view of the main part.
25A is a schematic diagram of an optical scanning device according to Conventional Example 2, and FIG. 25B is a perspective view of a reflecting mirror.
FIG. 26 is an explanatory diagram of a main part of an optical scanning device according to Conventional Example 3.
27A is a perspective view of the reflecting surface side of the reflecting mirror according to Conventional Example 4, FIG. 27B is a perspective view of the back surface side, and FIG. 27C is a vibration state explanatory diagram according to a comparative example; (D) is explanatory drawing of the vibration state which concerns on the prior art example 4. FIG.
28A is a perspective explanatory view of a leaf spring according to Conventional Example 5, FIG. 28B is a main part explanatory view of an optical scanning device according to Conventional Example 5, and FIG. 28C is a vibration state explanatory diagram; It is.
FIGS. 29A and 29B are explanatory diagrams of the supporting state of the reflecting mirror to which the conventional example 5 is applied, FIG. 29B is an explanatory diagram of the supporting state when the reflecting mirror is displaced in the −y direction, and FIG. It is explanatory drawing of a support state when a mirror displaces to ay direction.
FIG. 30 is an explanatory diagram of an electrophotographic apparatus (optical scanning apparatus) according to a conventional example.
[Explanation of symbols]
10: Optical scanning device
12 ... Light source
14 ... Polygon mirror
16 ... Imaging lens system
18 ... Subject to be scanned
20: Reflection mirror (reflection member)
22, 22A ... Housing
38, 38A, 38B, 38C ... regulating member

Claims (5)

光源から出射された光ビームをポリゴンミラーで偏向させ、結像レンズ系を介して反射部材で反射させて被走査体に走査させる光学走査装置において、
前記各光学部品を収納するハウジングと、
前記ハウジングに設けられ前記反射部材における光ビーム走査方向において、光ビーム走査領域外の端部で光ビームの反射面あるいは前記反射面の裏面を1点で支持した第1支持手段と、
前記ハウジングに設けられ前記反射部材における光ビーム走査方向において、前記第1支持手段が支持する端部と反対側の光ビーム走査領域外の端部で光ビームの前記反射面あるいは前記反射面の裏面を走査方向と直交する方向の2点で支持した第2支持手段と、
前記第1、第2支持手段が支持する前記反射部材の前記反射面あるいは前記裏面の反対面を前記第1、第2支持手段側に押圧する押圧手段と、
前記反射部材の光ビーム走査方向両端部のうち少なくとも前記第1支持手段側端部の端面に当接して前記反射部材の振動を規制する規制部材と、
前記反射部材の光ビーム走査方向における前記第2支持手段側端部の端面を前記規制部材側に向かって押圧する押圧部材と、
前記押圧部材による前記反射部材の押圧量を調整する調整手段と、
を備えることを特徴とする光学走査装置。
In an optical scanning device in which a light beam emitted from a light source is deflected by a polygon mirror, reflected by a reflecting member via an imaging lens system, and scanned by a scanning object.
A housing for housing each optical component;
A first support means provided in the housing for supporting the light beam reflecting surface or the back surface of the reflecting surface at one point at an end outside the light beam scanning region in the light beam scanning direction of the reflecting member;
The reflection surface of the light beam or the back surface of the reflection surface at the end outside the light beam scanning region opposite to the end supported by the first support means in the light beam scanning direction of the reflection member provided in the housing A second support means that supports the two points in the direction orthogonal to the scanning direction;
A pressing unit that presses the reflection surface of the reflection member supported by the first and second support units or the opposite surface of the back surface toward the first and second support units;
A regulating member that abuts at least an end surface of the first supporting means side end portion of both ends of the reflecting member in the light beam scanning direction and regulates vibration of the reflecting member;
A pressing member that presses an end surface of the second supporting means side end portion in the light beam scanning direction of the reflecting member toward the regulating member;
Adjusting means for adjusting the pressing amount of the reflecting member by the pressing member;
An optical scanning device comprising:
前記ハウジング内部において、前記反射部材の光ビーム走査領域の上下の少なくとも一方に前記光ビームの光路が形成されていることを特徴とする請求項1記載の光学走査装置。  2. The optical scanning device according to claim 1, wherein an optical path of the light beam is formed in at least one of the upper and lower sides of the light beam scanning region of the reflecting member inside the housing. 前記反射部材は、ハウジング内部において光ビームが最終的に反射されて被走査体に至る最終反射部材であることを特徴とする請求項1または2記載の光学走査装置。  3. The optical scanning device according to claim 1, wherein the reflecting member is a final reflecting member that finally reflects the light beam inside the housing and reaches the object to be scanned. 前記調整手段を前記ハウジングの外部から操作可能としたことを特徴とする請求項1〜3の何れか1項に記載の光学走査装置。The optical scanning apparatus according to claim 1, wherein the adjustment unit is operable from outside the housing. 前記規制部材または前記押圧部材の少なくとも一方と反射部材の光ビーム走査方向端部の端面を接着したことを特徴とする請求項1〜4のいずれか1項記載の光学走査装置。5. The optical scanning device according to claim 1, wherein at least one of the restricting member or the pressing member is bonded to an end surface of an end portion of the reflecting member in the light beam scanning direction.
JP2001313080A 2001-10-10 2001-10-10 Optical scanning device Expired - Fee Related JP4140226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313080A JP4140226B2 (en) 2001-10-10 2001-10-10 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313080A JP4140226B2 (en) 2001-10-10 2001-10-10 Optical scanning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007312681A Division JP4687705B2 (en) 2007-12-03 2007-12-03 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2003121774A JP2003121774A (en) 2003-04-23
JP4140226B2 true JP4140226B2 (en) 2008-08-27

Family

ID=19131629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313080A Expired - Fee Related JP4140226B2 (en) 2001-10-10 2001-10-10 Optical scanning device

Country Status (1)

Country Link
JP (1) JP4140226B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678222B2 (en) * 2005-03-29 2011-04-27 富士ゼロックス株式会社 Optical scanning device
JP4617979B2 (en) * 2005-04-15 2011-01-26 富士ゼロックス株式会社 Optical unit, image forming apparatus and holder manufacturing method
JP2007072238A (en) * 2005-09-08 2007-03-22 Ricoh Co Ltd Optical scanner and image forming apparatus
JP5207593B2 (en) * 2006-03-09 2013-06-12 キヤノン株式会社 Scanning optical apparatus, image forming apparatus, and scanning line adjustment method for scanning optical apparatus
US8363296B2 (en) 2006-10-04 2013-01-29 Ricoh Company, Ltd. Optical scanning device, image forming apparatus, mirror, housing, mirror attaching method, mirror arrangement adjusting device, and mirror arrangement adjusting method
JP5096059B2 (en) * 2006-10-04 2012-12-12 株式会社リコー Image forming apparatus
JP4917926B2 (en) * 2007-03-14 2012-04-18 株式会社リコー Optical scanning apparatus and image forming apparatus
JP5152641B2 (en) * 2007-12-18 2013-02-27 株式会社リコー Curvature correction mechanism, optical scanning device, and image forming apparatus
JP6051640B2 (en) * 2012-07-19 2016-12-27 コニカミノルタ株式会社 Optical member holding structure, optical device, and image forming apparatus
JP6080625B2 (en) * 2013-03-13 2017-02-15 キヤノン株式会社 Image forming apparatus
JP6537227B2 (en) * 2014-06-17 2019-07-03 キヤノン株式会社 Optical scanning device, method of assembling the same, image forming apparatus
US9958672B2 (en) * 2015-02-20 2018-05-01 Kyocera Document Solutions Inc. Optical scanning device, image forming apparatus
JP2018055030A (en) * 2016-09-30 2018-04-05 キヤノン株式会社 Optical scanner and image formation device

Also Published As

Publication number Publication date
JP2003121774A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
US9975350B2 (en) Light scanning apparatus
CN104834193B (en) Imaging device
JP4140226B2 (en) Optical scanning device
JP4654074B2 (en) Optical unit and image forming apparatus
US7570279B2 (en) Optical scanning apparatus and image forming apparatus
US7123396B2 (en) Optical scanning apparatus and image forming apparatus
JP2018055030A (en) Optical scanner and image formation device
US7116457B2 (en) Optical scanning apparatus and image forming apparatus
JP4687705B2 (en) Optical scanning device
JP2885288B2 (en) Optical scanning device
JP5153586B2 (en) Optical scanning device
US7177060B2 (en) Optical scanning apparatus and image forming apparatus
JP2014209161A (en) Optical device, optical scanner, and image forming apparatus
JP2002368923A (en) Image reader and image forming device
US5450159A (en) Image forming apparatus
CN110531514B (en) Optical scanning device and image forming apparatus
JP3477968B2 (en) Image forming device
JP2001228425A (en) Optical scanner
JP2016218102A (en) Dynamic vibration absorber, and optical device and image forming apparatus including the same
JPH09120039A (en) Deflection scanning device
JP3286158B2 (en) Scanning optical device
US8786657B2 (en) Image forming apparatus with structure for suppressing position variation of exposure unit caused by vibrations generated therein
JP2004045808A (en) Light deflector
JP4817971B2 (en) Image forming apparatus
JP4492910B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees