JP4139068B2 - Absorption refrigeration system - Google Patents

Absorption refrigeration system Download PDF

Info

Publication number
JP4139068B2
JP4139068B2 JP2000388031A JP2000388031A JP4139068B2 JP 4139068 B2 JP4139068 B2 JP 4139068B2 JP 2000388031 A JP2000388031 A JP 2000388031A JP 2000388031 A JP2000388031 A JP 2000388031A JP 4139068 B2 JP4139068 B2 JP 4139068B2
Authority
JP
Japan
Prior art keywords
cylinder
concentration
low
solvent
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000388031A
Other languages
Japanese (ja)
Other versions
JP2002195691A (en
Inventor
泰平 林
直人 野邑
薫 河本
尚哉 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Rinnai Corp
Original Assignee
Osaka Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Rinnai Corp filed Critical Osaka Gas Co Ltd
Priority to JP2000388031A priority Critical patent/JP4139068B2/en
Publication of JP2002195691A publication Critical patent/JP2002195691A/en
Application granted granted Critical
Publication of JP4139068B2 publication Critical patent/JP4139068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸収液をバーナの加熱で低濃度から中濃度に濃縮し、さらに溶媒蒸気の凝縮熱を利用して高濃度に濃縮させる吸収式冷凍装置の冷凍能力の増大に関する。
【0002】
【従来の技術】
空調などに使用される吸収式冷凍装置は、低濃度吸収液タンク、加熱手段、および低濃度吸収液の分離筒を備え、低濃度吸収液を加熱して沸騰させ、沸騰した低濃度吸収液を溶媒蒸気と中濃度吸収液とに分離する高温再生器を有する。分離筒の外周には、低温再生器が設けられている。低温再生器は、中濃度吸収液を溶媒蒸気タンクの外面に沿って流下させ、溶媒蒸気の凝縮熱を利用して更に溶媒を蒸発させ、高濃度吸収液と溶媒蒸気とを生成する。
【0003】
吸収式冷凍装置の最上部には、溶媒蒸気を集めて凝縮させるとともに凝縮した溶媒が溜まる凝縮器が設置されている。凝縮器の下方には、低温再生器の外周に、放熱用の冷却塔に連結した冷却コイルと、該冷却コイルに高濃度吸収液を流下させる吸収液流下手段とを備えた吸収器が配されている。冷却コイルは、一部が凝縮器内に延長され、溶媒蒸気の凝縮熱を排出する作用をしている。吸収器の外周には、室内機に連結した冷水(冷暖房機の場合は冷温水)コイルと、該冷水コイルに液化した溶媒を流下させる溶媒流下手段とを備えた蒸発器が設置されている。
【0004】
この吸収式冷凍装置は、バーナなどの加熱源で低濃度吸収液を加熱して、溶媒(水)と高濃度吸収液(臭化リチウム水溶液)とに分離し、吸収式冷凍装置内の圧力差で上位に導く。溶媒は冷水コイルに滴下されて蒸発し、冷房の冷媒である冷水を生成する。蒸発した溶媒は圧力差で吸収器に流れ、冷却コイルに流下された高濃度吸収液に吸収される。この際に発生する吸収熱は室外機で大気に放散される。溶媒を吸収して低濃度となった低濃度吸収液は、吸収液ポンプで高温再生器に循環される。
【0005】
【発明が解決しようとする課題】
吸収式冷凍装置を家庭用の空調機に使用する場合には、冷凍能力の増大と装置の小型化とを同時に達成する必要があり、このためには高温再生器の分離性能の向上が重要である。
この発明の目的は、高温再生器の分離筒における水蒸気と中濃度吸収液との分離を円滑に行い、水蒸気に中濃度吸収液の飛沫が混ざることを防止して、装置の大型化を伴わずに冷凍能力の増大ができる吸収式冷凍装置の提供にある。
【0006】
【課題を解決するための手段】
この発明は、低濃度吸収液タンク、加熱手段、および沸騰した低濃度吸収液の分離筒を備え、低濃度吸収液を加熱して沸騰させ、沸騰した低濃度吸収液を溶媒蒸気と中濃度吸収液とに分離する高温再生器と、前記分離筒で生成した溶媒蒸気を溜める溶媒蒸気タンク、および該溶媒蒸気タンクの外面に沿って中濃度吸収液を流下させ、溶媒蒸気の凝縮熱を利用して中濃度吸収液を加熱し高濃度吸収液と溶媒蒸気とを生成する低温再生器と、前記低温再生器および前記分離筒で生成した溶媒蒸気を凝縮させるとともに凝縮した溶媒を溜める凝縮器と、室内機に連結した冷水コイル、および該冷水コイルに前記凝縮器の溶媒を流下させる溶媒流下手段とを備え、冷水コイルの表面で溶媒を蒸発させて冷水コイル内の冷水を冷却する蒸発器と、放熱用の冷却塔に連結した冷却コイル、および該冷却コイルに高濃度吸収液を流下させる吸収液流下手段とを備え、前記蒸発器で蒸発した溶媒を高濃度吸収液に吸収させる吸収器と、前記溶媒を吸収して低濃度となった低濃度吸収液を前記高温再生器に循環させる吸収液ポンプとを備える吸収式冷凍装置において、前記分離筒は、下端が前記低濃度吸収液タンクに連結して垂直的に立設され上端に溶媒蒸気の出口が設けられている外筒と、該外筒内に同心的に配され、下部に中濃度吸収液の流出口が設けられている有底の内筒と、鍔状に拡開した上縁を有する筒状を呈し、該上縁が前記外筒の上端部に取付けられるとともに前記内筒の上端部に同心的に差し込まれて配された飛沫防止筒とからなり、該飛沫防止筒の上縁は逆ベルマウス状を呈するとともに、前記内筒と前記飛沫防止筒との隙間は、該隙間の幅より大きい上下方向の直円筒部分を有し、前記低濃度吸収液タンク内で沸騰した低濃度吸収液は、前記外筒と内筒との隙間を吹き上がり、前記内筒の上端と前記飛沫防止筒の上縁との隙間を通じて、前記内筒と飛沫防止筒との隙間を下方に吹き下がることを特徴とする。
【0007】
【発明の効果】
この発明では、分離筒は、下端が高温再生器に連結して垂直的に立設され上端に溶媒蒸気の出口が設けられている外筒と、該外筒内に同心的に配され、下部に中濃度吸収液の流出口が設けられている有底の内筒と、鍔状に拡開した上縁を有する筒状を呈し、該上縁が外筒の上端部に取付けられるとともに内筒の上端部に同心的に差し込まれて配された飛沫防止筒とからなる。
【0008】
このため、高温再生器で沸騰させた低濃度吸収液は、外筒と内筒との隙間を吹き上がると、内筒の上端を回って内筒と飛沫防止筒との隙間を下方に吹き下がる。この結果、立上の初期に同伴される液を下向きに噴出する。その下向きの運動エネルギーにより、液の飛沫が蒸気に同伴されることが確実に防止でき、高い分離性能が得られ、吸収式冷凍装置の大型化を伴わずに冷凍能力が向上できるとともに、冷房の立ち上がり性能が向上する。
【0009】
また、飛沫防止筒の上縁は逆ベルマウス状を呈するので、吹き上がった沸騰液を円滑に下方に誘導して吹き下がる方向に反転させることができ、飛沫の蒸気への混入防止が有効にできる。
さらに、内筒と飛沫防止筒との隙間は、該隙間の幅より大きい上下方向の直円筒部分を有するので、吹き下がる吸収液の整流がなされ、飛沫の発生が低減できる。
請求項に記載の構成では、外筒の上端はベル型天井で塞がれているとともに、該ベル型天井の中心に蒸気口が形成されているので、蒸気口と飛沫防止筒の下端との距離を大きくでき、飛沫の蒸気への混入防止効果が増大する。
請求項に記載の構成では、飛沫防止筒の内周側の通路面積は、蒸気口の面積の4倍以上であり、飛沫防止筒の下端から上昇する溶媒蒸気の流速を小さくできるため、飛沫の蒸気への混入防止効果が増大する。
【0010】
【発明の実施の形態】
図1はこの発明の吸収式冷凍装置を示し、円筒型で気密性の本体ケーシング10と、該本体ケーシング10の下方に配された高温再生器1と、該高温再生器1の側方に配された吸収液ポンプPとを備えている。本体ケーシング10は、冷却塔11と冷却液流路12で連結され、さらに室内機13と冷水流路14で連結されている。本体ケーシング10は、円筒形の外胴1A、緩やかな球面状を呈する天板1B、および底板1Cから構成されている。底板1Cは、円形底穴1Dが開けられた中央部1E、筒部1Fと、低位の外周部1Gとからなる。
【0011】
本体ケーシング10内には、高温再生器1の分離筒2、低温再生器3、吸収器7、凝縮器8および蒸発器9が組み込まれている。高温再生器1、本体ケーシング10および吸収液ポンプP内には、吸収液である臭化リチウム水溶液が循環している。低温再生器3は、縦型二重円筒状の溶媒蒸気タンク4、中濃度吸収液の分離器5、および環状液受け器6を備えている。
【0012】
高温再生器1は、バーナ15と、該バーナ15により加熱される低濃度吸収液タンク16と、分離筒2とからなる。低濃度吸収液タンク16の天井には円形の沸騰口17が開口しており、沸騰口17は沸騰させた低濃度吸収液を溶媒(水)蒸気と中濃度吸収液とに分離する分離筒2の下端に接続している。分離筒2は、円形底穴1Dから本体ケーシング10の中心に同心的に差し込まれて垂直に設置されている。
【0013】
分離筒2は、図2に示す如く、いずれも円筒状を呈し同心的に配された外筒21および内筒22と、分離して水蒸気中に中濃度吸収液の飛沫が混ざることを防止する飛沫防止筒23とを備えている。飛沫防止筒23は、上端に逆ベルマウス状(鍔状)の上縁24を有し、該上縁24が外筒21の上端に気密的に固定され、内筒22内の上端部に同心的に垂下されている。
【0014】
外筒21は、下端が沸騰口17に連結し、上端には飛沫防止筒23の上に同心的に重ねてベル型天井25が気密に接合されている。ベル型天井25は、中心に分離された水蒸気が通過する蒸気口26が短筒状に開口している。内筒22は、沸騰口17の近傍に位置する下端が球殻状底27で塞がれるとともに、下部には中濃度吸収液を流出させる中濃度吸収液出口28が設けられている。
【0015】
内筒22の上端20は円形の開口となっており、逆ベルマウス状の上縁24の下端と同レベルに設定されている。ベル型天井25の上には、偏平な円缶状の水蒸気溜め29が設置されている。水蒸気溜め29は、底板29aの中心に設けた開口を貫通して蒸気口26が差し込まれ、気密的に接合されている。
【0016】
高温再生器1で低濃度吸収液が沸騰して、外筒21と内筒22との間の隙間を吹き上がった水蒸気と中濃度吸収液との混合物が、逆ベルマウス状の上縁24で下方に転向して内筒22の上端から内筒22内に入る。とくに、吸収式冷凍装置の運転の立上時には、低濃度吸収液タンク16内の低濃度吸収液が急激に沸騰して、気液混合物が外筒21と内筒22との隙間Aを吹き上がり、転向して内筒22と飛沫防止筒23との隙間Bを吹き下がる。
【0017】
この際に、飛沫防止筒23は、隙間Bを吹き下がる気液混合物から発生した飛沫を確実に下方に落とし、蒸気口26を通過する水蒸気に中濃度吸収液の飛沫が混入することを阻止する。外筒21と内筒22との隙間Aは、断面積がほぼ同一に設定してある。また、隙間Bは、幅Wと逆ベルマウス状を除く飛沫防止筒23の直管部分の上下方向の長さLが、L≧2Wとなっている。
【0018】
飛沫防止筒23の上縁24が逆ベルマウス状であると、この吹き上げから吹き下げへの転向が円滑に行われ、且つL≧2Wであると吹き下がる吸収液を確実に下方に方向転換できるため、飛沫防止筒23から上方に流れる水蒸気に吸収液の飛沫が巻き込まれる度合いを低減できる。4W≧L≧Wであると、隙間B内で沸騰液を整流して円滑に下方に流下させることができ、L≦Wであると、整流が不充分で、飛沫防止筒23の下端から蒸気口26へ流出する飛沫が増大する。また、L≧4Wであると、内筒22内の液面が高い場合に蒸気流路が塞がる問題が生じ易い。
【0019】
蒸気口26の直径D1 と飛沫防止筒23の内径D2 とはD2 ≧2D1 に設定されるとともに、飛沫防止筒23の内周側の通路面積は、蒸気口26の面積の4倍以上に設定され、飛沫防止筒23の下端の位置で上方に流れる水蒸気の流速を小さくしている。この結果、吸収液の飛沫が上方に流れる水蒸気に巻き込まれる度合いを低減できる。また、ベル型天井25の採用は、飛沫防止筒23の下端と蒸気口26とのレベル差(上下の距離)を大きくでき、水蒸気に中濃度吸収液の飛沫が巻き込まれる度合いが低減する。水(溶媒)が蒸発して濃縮され、且つ高温度になっている中濃度吸収液は、中濃度吸収液出口28から流出する。
【0020】
分離筒2の外側には低温再生器3が設けられている。低温再生器3は、分離筒2と本体ケーシング10の外胴1Aの中間に同心的に配された円筒ケーシング30を有する。円筒ケーシング30は、外筒壁3aと内筒壁3bとを備えている。円筒ケーシング30内には、外筒壁3aと内筒壁3bとの間にそれぞれ隙間を介して同心的に配された縦型二重円筒状の溶媒蒸気タンク4が設置されている。溶媒蒸気タンク4の上方には、図3に示す如く、中濃度吸収液の分離器5が設置されている。
【0021】
円筒ケーシング30と溶媒蒸気タンク4との環状隙間は、下端が底板1Cの中央部1Eで気密的に塞がれるとともに、中央部1Eには高濃度吸収液出口31が設けられている。この実施例では、中濃度吸収液の分離器5は円環状となっており、外筒壁3aの上端に同心的に固定されている。中濃度吸収液の分離器5の上方には、天蓋32が天板1Bに近接して設置され、天蓋32の側部に蒸気抜き口33が開口している。蒸気抜き口33は、凝縮器8への水蒸気通路となっている。
【0022】
溶媒蒸気タンク4は、同心を有する2つの円筒で形成され、熱交換面として作用する外壁41と内壁42とを備える。外壁41と内壁42との円環状の隙間は、上下端が環状の蓋板43と底壁44により気密的に塞がれ、高温蒸気室を形成している。なお、外壁41と内壁42の上端部を近接方向に湾曲させて突き合わせ接合させることにより、蓋板43を省略することも可能である。内壁42の上部と水蒸気溜め29の底は、複数の蒸気エルボ管45で連結され、底壁44には水または蒸気の出口パイプ46が接続されている。
【0023】
溶媒蒸気タンク4の上方には、中濃度吸収液の分離器5が設置されている。分離器5は、図4に示す如く、略U字形断面の円環状の容器本体51と、該容器本体51の上方開口を塞ぐ円環板状の蓋52とを接合して形成されている。容器本体51は、外周壁53の下端が外筒壁3aの上端に気密的に接合され、内周壁の内側は、蒸気通路5Aとなっている。
【0024】
器底54には、上向きバーリング加工による上筒部を有する蒸気穴55と、下向きバーリング加工による下筒部を有する液穴56とが、等間隔に交互に開けられている。蓋52には、中濃度吸収液が供給される中濃度吸収液の供給口57が開けられ、中濃度吸収液管58の末端が差し込まれている。中濃度吸収液管58から分離器5内に供給された中濃度吸収液は、円筒ケーシング30内が低圧であるため分離器5内で沸騰する。
【0025】
この実施例では、120度の間に5個の液穴56が30度の間隔で形成され、液穴56の中間に4個の蒸気穴55が開けられている。中濃度吸収液の供給口57は、液穴56の形成区間の反対側に設けられており、中濃度吸収液管58の先端は垂直に器底54に近接し、両側に横穴59が開けられている。これにより、中濃度吸収液が分離器5に注入される際の動揺を低減でき、急激な沸騰を阻止できる。また、中濃度吸収液管58の出口から液穴56に到る流路で沸騰が完了し、液穴56の近傍での中濃度吸収液の動揺を減衰させることが可能である。
【0026】
外壁41と内壁42とは、上端部に、近接方向に傾斜した傾斜面を有しており、蓋板43の上には、中濃度吸収液を溜める円環樋状の環状液受け器6が冠状に設置されている。環状液受け器6は、図5に示す如く、略V字形に傾斜した底部61の内外側面に中濃度吸収液が流下する小穴62が周設されており、内外上縁にはV字形の切り欠き63が周設されている。
【0027】
中濃度吸収液の分離器5から環状液受け器6に流下した中濃度吸収液は、各小穴62から傾斜した溶媒蒸気タンク4の上端部の内外周面に均一に流下する。分離器5からの中濃度吸収液の流下量が多いときは、中濃度吸収液は切り欠き63からも傾斜した溶媒蒸気タンク4の上端部の内外周面に均一に流下する。これにより、中濃度吸収液は外壁41および内壁42の全外面を覆って薄膜状に流下し、溶媒蒸気タンク4内部の水蒸気と効率良く熱交換される。
【0028】
中濃度吸収液は、水蒸気の凝縮熱により加熱され再沸騰して、水蒸気と高濃度吸収液とに分離し、水蒸気は蒸気抜き口33から凝縮器8に移動し、高濃度吸収液は高濃度吸収液出口31から流出する。この構成では、溶媒蒸気タンク4の外壁41と内壁42とが熱交換面として作用しているので、中濃度吸収液の蒸発が効率良くなされる。この結果、伝熱面積が約2倍になることから、同一能力を有する低温再生器において、最大で約50%の小型化が可能になる。
【0029】
沸騰で生じた水蒸気は、上筒部を有する蒸気穴55から円筒ケーシング30内に抜け、蒸気通路5Aから蒸気抜き口33を経て凝縮器8に移動する。この際に、上筒部を有する蒸気穴55は、中濃度吸収液の飛沫が分離器5の外に飛散することを有効に阻止する作用を有する。沸騰後に安定した中濃度吸収液は、5個の液穴56から環状液受け器6に流下する。この際に、下筒部を有する液穴56は、中濃度吸収液が動揺して飛散することを防止する作用を有する。
【0030】
低温再生器3の外側には、吸収器7が設けられ、吸収器7の上方には凝縮器8が設置されている。吸収器7の外側で凝縮器8の下方には、蒸発器9が設置されている。吸収器7は、冷却塔11に連結した冷却コイル71と、該冷却コイル71の上方に配され、高濃度吸収液を冷却コイル71に散布する吸収液散布具72とを備える。
【0031】
凝縮器8内には冷却コイル71に連結した凝縮コイル81が配されている。凝縮器8は、分離筒2および低温再生器3から流入した水蒸気を凝縮コイル81で凝縮するとともに、すでに凝縮している水が供給され、凝縮器8の下部に設置された水受け容器82に溜まる。
【0032】
蒸発器9は、室内機13に連結した冷水コイル91と、該冷水コイル91の上方に配され、水を冷水コイル91に散布する水散布具92からなる。水散布具92へは上方に設置された水受け容器82から水が供給される。溶媒である水蒸気を吸収して低濃度となった低濃度吸収液は、吸収液ポンプPにより高温再生器1の低濃度吸収液タンク16に循環される。
【0033】
つぎに作用を説明する。高温再生器1でバーナ15により加熱された低濃度吸収液は、沸騰口17から分離筒2内に吹き上がり、溶媒である水の蒸発と、中濃度吸収液とに分離する。水蒸気は、飛沫防止筒23で吸収液の飛沫と分離され、水蒸気溜め29→蒸気エルボ管45→溶媒蒸気タンク4の順で流れる。
【0034】
中濃度吸収液は、内筒22の下部に設けられた中濃度吸収液出口28から流出し、中濃度吸収液管58から中濃度吸収液の分離器5に流入する。中濃度吸収液の分離器5で沸騰して蒸気が分離し、安定した中濃度吸収液は、中濃度吸収液の分離器5から環状液受け器6に流下し、小穴62を介して溶媒蒸気タンク4の外面にフィルム状に供給される。
【0035】
溶媒蒸気タンク4の外壁41および内壁42はいずれも熱交換面として作用し、水蒸気の凝縮熱で、薄膜状に流下する中濃度吸収液は加熱され、水が蒸発して高濃度吸収液に濃縮される。高濃度吸収液は、高濃度吸収液出口31から流出して、吸収器7の吸収液散布具72に供給され、冷却コイル71に散布される。水蒸気および水は、一旦は凝縮器8に供給され、水蒸気は液化した水となり、すでに液化している水とともに水散布具92に供給され、冷水コイル91に散布される。
【図面の簡単な説明】
【図1】 吸収式冷凍装置の断面骨格図である。
【図2】 低温再生器の断面図である。
【図3】 低温再生器の要部拡大断面図である。
【図4】 中濃度吸収液の分離器の正面断面図および平面断面図である。
【図5】 環状液受け器の平面図および正面断面図である。
【符号の説明】
1 高温再生器
2 分離筒
3 低温再生器
4 溶媒蒸気タンク
5 中濃度吸収液の分離器
6 環状液受け器
7 吸収器
8 凝縮器
9 蒸発器
11 冷却塔
13 室内機
15 バーナ(加熱手段)
16 低濃度吸収液タンク
21 外筒
22 内筒
23 飛沫防止筒
24 上縁
25 ベル型天井
26 蒸気口
71 冷却コイル
72 吸収液散布具(吸収液流下手段)
91 冷水コイル
92 水散布具(溶媒流下手段)
P 吸収液ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an increase in the refrigerating capacity of an absorption refrigeration apparatus in which an absorbing liquid is concentrated from a low concentration to a medium concentration by heating a burner and further concentrated to a high concentration using the heat of condensation of solvent vapor.
[0002]
[Prior art]
The absorption refrigeration system used for air conditioning and the like includes a low concentration absorbent tank, a heating means, and a low concentration absorbent separation cylinder. The low concentration absorbent is heated to boil, and the boiled low concentration absorbent is removed. It has a high temperature regenerator that separates into solvent vapor and medium concentration absorbent. A low temperature regenerator is provided on the outer periphery of the separation cylinder. The low temperature regenerator causes the intermediate concentration absorbing liquid to flow down along the outer surface of the solvent vapor tank, and further evaporates the solvent using the heat of condensation of the solvent vapor to generate a high concentration absorbing liquid and a solvent vapor.
[0003]
At the top of the absorption refrigeration apparatus, a condenser for collecting and condensing the solvent vapor and storing the condensed solvent is installed. Below the condenser, on the outer periphery of the low-temperature regenerator, there is disposed an absorber provided with a cooling coil connected to a cooling tower for heat dissipation and an absorption liquid flow-down means for flowing a high-concentration absorption liquid through the cooling coil. ing. A part of the cooling coil is extended into the condenser and functions to discharge the condensation heat of the solvent vapor. On the outer periphery of the absorber, an evaporator including a cold water (cold / hot water in the case of an air conditioner) coil connected to an indoor unit and a solvent flow down means for flowing down the liquefied solvent to the cold water coil is installed.
[0004]
This absorption refrigeration system heats the low-concentration absorption liquid with a heating source such as a burner and separates it into a solvent (water) and a high-concentration absorption liquid (lithium bromide aqueous solution), and the pressure difference in the absorption refrigeration apparatus To the top. The solvent is dropped into the cold water coil and evaporated to produce cold water that is a cooling refrigerant. The evaporated solvent flows into the absorber due to the pressure difference, and is absorbed by the high-concentration absorbing liquid flowing down to the cooling coil. The absorbed heat generated at this time is dissipated to the atmosphere by the outdoor unit. The low-concentration absorption liquid that has become a low concentration by absorbing the solvent is circulated to the high-temperature regenerator by the absorption liquid pump.
[0005]
[Problems to be solved by the invention]
When an absorption refrigeration system is used in a domestic air conditioner, it is necessary to simultaneously increase the refrigeration capacity and reduce the size of the system. To this end, it is important to improve the separation performance of the high-temperature regenerator. is there.
The object of the present invention is to smoothly separate the water vapor and the medium concentration absorbing liquid in the separation cylinder of the high temperature regenerator, to prevent the medium concentration absorbing liquid from being mixed with the water vapor, and without increasing the size of the apparatus. The present invention also provides an absorption refrigeration apparatus capable of increasing the refrigeration capacity.
[0006]
[Means for Solving the Problems]
The present invention comprises a low-concentration absorbent tank, heating means, and a boiled low-concentration absorbent separation tube. The low-concentration absorbent is heated to the boil, and the boiled low-concentration absorbent is absorbed into the solvent vapor and medium concentration. A high-temperature regenerator that separates into a liquid, a solvent vapor tank that accumulates the solvent vapor generated in the separation cylinder, and a medium-concentration absorbing liquid that flows down along the outer surface of the solvent vapor tank, and uses the condensation heat of the solvent vapor. A low temperature regenerator that heats the medium concentration absorbing liquid to generate a high concentration absorbing liquid and solvent vapor, a condenser that condenses the solvent vapor generated in the low temperature regenerator and the separation cylinder and stores the condensed solvent; A chilled water coil connected to the indoor unit, and a solvent flow down means for flowing down the solvent of the condenser to the chilled water coil, and an evaporator for evaporating the solvent on the surface of the chilled water coil to cool the chilled water in the chilled water coil; For heat dissipation A cooling coil connected to the cooling tower, and an absorption liquid flow-down means for flowing down the high-concentration absorbing liquid to the cooling coil, an absorber for absorbing the solvent evaporated by the evaporator into the high-concentration absorbing liquid, and the solvent In an absorption refrigeration apparatus comprising an absorption liquid pump that circulates a low concentration absorption liquid that has been absorbed to a low concentration to the high temperature regenerator, the lower end of the separation cylinder is connected to the low concentration absorption liquid tank and And an outer cylinder provided with an outlet for solvent vapor at the upper end, and a bottomed inner cylinder provided concentrically within the outer cylinder and provided with an outlet for medium concentration absorbing liquid at the lower part And an anti-splash cylinder that has a cylindrical shape with an upper edge that expands in a bowl shape, and is attached to the upper end of the outer cylinder and inserted concentrically with the upper end of the inner cylinder from it, the upper edge of the splash barrel when exhibiting inverse bell-shaped and Moni, clearance between the inner cylinder and the splash cylinder has a width greater than the vertical direction straight cylindrical portion of the gap, the low concentration absorption solution low concentration absorption solution boiled in the tank, the outer A gap between the cylinder and the inner cylinder blows up, and a gap between the upper end of the inner cylinder and the upper edge of the splash prevention cylinder blows down the gap between the inner cylinder and the splash prevention cylinder.
[0007]
【The invention's effect】
In this invention, the separation cylinder is connected to the high-temperature regenerator so that the lower end is vertically erected, and the upper end is provided with an outlet for solvent vapor. The bottomed inner cylinder is provided with an outlet for the intermediate concentration absorbing liquid, and the cylinder has an upper edge that expands like a bowl, and the upper edge is attached to the upper end of the outer cylinder and the inner cylinder And an anti-splash cylinder arranged concentrically at the upper end of the tube.
[0008]
For this reason, when the low-concentration absorbent boiled in the high-temperature regenerator blows up through the gap between the outer cylinder and the inner cylinder, it goes down the gap between the inner cylinder and the splash-proof cylinder around the upper end of the inner cylinder. . As a result, the liquid accompanying the initial stage of rising is ejected downward. The downward kinetic energy can reliably prevent liquid droplets from being entrained in the vapor, providing high separation performance, improving the refrigeration capacity without increasing the size of the absorption refrigeration system, and improving the cooling capacity. Start-up performance is improved.
[0009]
In addition, the upper edge of the splash-proof cylinder has an inverted bell mouth shape, so that the boiled liquid that has blown up can be smoothly guided downward and reversed in the direction of blow-down, effectively preventing splashes from entering the steam. it can.
Furthermore, since the gap between the inner cylinder and the splash prevention cylinder has a vertical cylinder portion in the vertical direction that is larger than the width of the gap, rectification of the absorbing liquid that blows down is performed, and the generation of splash can be reduced.
In the configuration according to claim 2 , the upper end of the outer cylinder is closed with a bell-shaped ceiling, and a steam port is formed at the center of the bell-shaped ceiling. Can be increased, and the effect of preventing splashes from entering the steam is increased.
In the configuration according to claim 3 , the passage area on the inner peripheral side of the splash prevention cylinder is four times or more than the area of the steam opening, and the flow velocity of the solvent vapor rising from the lower end of the splash prevention cylinder can be reduced. The effect of preventing the contamination of steam into the steam increases.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an absorption refrigeration apparatus according to the present invention, which is a cylindrical and airtight main body casing 10, a high-temperature regenerator 1 disposed below the main body casing 10, and a side of the high-temperature regenerator 1. The absorption liquid pump P is provided. The main casing 10 is connected to the cooling tower 11 by the coolant flow path 12, and is further connected to the indoor unit 13 by the cold water flow path 14. The main body casing 10 includes a cylindrical outer body 1A, a top plate 1B having a gentle spherical shape, and a bottom plate 1C. The bottom plate 1C includes a central portion 1E, a cylindrical portion 1F, and a lower outer peripheral portion 1G in which a circular bottom hole 1D is formed.
[0011]
In the main casing 10, the separation cylinder 2, the low temperature regenerator 3, the absorber 7, the condenser 8 and the evaporator 9 of the high temperature regenerator 1 are incorporated. In the high temperature regenerator 1, the main body casing 10, and the absorption liquid pump P, an aqueous lithium bromide solution as an absorption liquid circulates. The low temperature regenerator 3 includes a vertical double cylindrical solvent vapor tank 4, a medium concentration absorbing liquid separator 5, and an annular liquid receiver 6.
[0012]
The high temperature regenerator 1 includes a burner 15, a low concentration absorbent tank 16 heated by the burner 15, and a separation cylinder 2. A circular boiling port 17 is opened at the ceiling of the low concentration absorbent tank 16, and the boiling port 17 separates the boiled low concentration absorbent into solvent (water) vapor and medium concentration absorbent. It is connected to the lower end. The separation cylinder 2 is concentrically inserted from the circular bottom hole 1D into the center of the main casing 10 and installed vertically.
[0013]
As shown in FIG. 2, the separation cylinder 2 is separated from the outer cylinder 21 and the inner cylinder 22 which are both cylindrical and concentrically arranged to prevent the mixture of water droplets from being mixed with water vapor. A splash prevention cylinder 23 is provided. The splash prevention cylinder 23 has an upper edge 24 of an inverted bell mouth shape (saddle shape) at the upper end, the upper edge 24 is airtightly fixed to the upper end of the outer cylinder 21, and concentric with the upper end portion in the inner cylinder 22. Is drooping.
[0014]
The outer cylinder 21 has a lower end connected to the boiling port 17, and a bell-shaped ceiling 25 is airtightly joined to the upper end concentrically on the splash prevention cylinder 23. In the bell-shaped ceiling 25, a steam port 26 through which water vapor separated in the center passes is opened in a short cylindrical shape. The inner cylinder 22 is closed at its lower end located in the vicinity of the boiling port 17 by a spherical shell-shaped bottom 27, and is provided at its lower part with a medium-concentration absorbing liquid outlet 28 through which the medium-concentration absorbing liquid flows out.
[0015]
The upper end 20 of the inner cylinder 22 is a circular opening and is set at the same level as the lower end of the upper edge 24 of the inverted bell mouth shape. On the bell-shaped ceiling 25, a flat circular can-shaped water reservoir 29 is installed. The water vapor reservoir 29 penetrates through an opening provided at the center of the bottom plate 29a, and a vapor port 26 is inserted into the water vapor reservoir 29 so as to be airtightly joined.
[0016]
In the high temperature regenerator 1, the low-concentration absorbing liquid boils, and a mixture of water vapor and medium-concentration absorbing liquid blown up through the gap between the outer cylinder 21 and the inner cylinder 22 is formed at the upper edge 24 of the inverted bell mouth shape. It turns downward and enters the inner cylinder 22 from the upper end of the inner cylinder 22. In particular, at the start-up of the absorption refrigeration apparatus, the low-concentration absorbent in the low-concentration absorbent tank 16 suddenly boils and the gas-liquid mixture blows up through the gap A between the outer cylinder 21 and the inner cylinder 22. Then, it turns and blows down the gap B between the inner cylinder 22 and the splash prevention cylinder 23.
[0017]
At this time, the splash preventing cylinder 23 surely drops the splash generated from the gas-liquid mixture blowing down the gap B, and prevents the splash of the intermediate concentration absorbing liquid from being mixed into the water vapor passing through the steam port 26. . The gap A between the outer cylinder 21 and the inner cylinder 22 is set to have substantially the same cross-sectional area. In the gap B, the length L in the vertical direction of the straight pipe portion of the splash prevention cylinder 23 excluding the width W and the inverted bell mouth shape is L ≧ 2W.
[0018]
If the upper edge 24 of the splash-preventing cylinder 23 is an inverted bell mouth shape, the turning from the blowing up to the blowing down is smoothly performed, and if L ≧ 2W, the absorbing liquid that blows down can be reliably turned downward. Therefore, it is possible to reduce the degree of splashing of the absorbing liquid in the water vapor flowing upward from the splash prevention cylinder 23. If 4W ≧ L ≧ W, the boiling liquid can be rectified in the gap B to smoothly flow downward, and if L ≦ W, the rectification is insufficient, and steam is discharged from the lower end of the splash prevention cylinder 23. The splash flowing out to the mouth 26 increases. Further, when L ≧ 4W, there is a problem that the steam flow path is blocked when the liquid level in the inner cylinder 22 is high.
[0019]
The diameter D1 of the steam port 26 and the inner diameter D2 of the splash preventing cylinder 23 are set to D2 ≧ 2D1, and the passage area on the inner peripheral side of the splash preventing cylinder 23 is set to be four times or more than the area of the steam port 26. The flow rate of water vapor flowing upward at the position of the lower end of the splash prevention cylinder 23 is reduced. As a result, it is possible to reduce the degree to which the droplets of the absorbing liquid are caught in the water vapor flowing upward. In addition, the use of the bell-shaped ceiling 25 can increase the level difference (up and down distance) between the lower end of the splash prevention cylinder 23 and the steam port 26, and the degree of splashing of the intermediate concentration absorbing liquid into the water vapor is reduced. The medium-concentration absorbent that is concentrated by evaporation of water (solvent) and flows out from the medium-concentration absorbent outlet 28.
[0020]
A low temperature regenerator 3 is provided outside the separation cylinder 2. The low-temperature regenerator 3 includes a cylindrical casing 30 that is concentrically disposed between the separation cylinder 2 and the outer body 1 </ b> A of the main body casing 10. The cylindrical casing 30 includes an outer cylinder wall 3a and an inner cylinder wall 3b. In the cylindrical casing 30, a vertical double cylindrical solvent vapor tank 4 is disposed concentrically between the outer cylinder wall 3 a and the inner cylinder wall 3 b with a gap therebetween. Above the solvent vapor tank 4, as shown in FIG. 3, a separator 5 for medium concentration absorbing liquid is installed.
[0021]
The lower end of the annular gap between the cylindrical casing 30 and the solvent vapor tank 4 is hermetically closed at the central portion 1E of the bottom plate 1C, and a high concentration absorbent outlet 31 is provided at the central portion 1E. In this embodiment, the intermediate concentration absorbent separator 5 has an annular shape and is concentrically fixed to the upper end of the outer cylindrical wall 3a. A canopy 32 is installed in the vicinity of the top plate 1B above the separator 5 for medium concentration absorbing liquid, and a steam vent 33 is opened at the side of the canopy 32. The steam vent 33 serves as a water vapor passage to the condenser 8.
[0022]
The solvent vapor tank 4 is formed of two concentric cylinders and includes an outer wall 41 and an inner wall 42 that act as heat exchange surfaces. An annular gap between the outer wall 41 and the inner wall 42 is hermetically closed at the upper and lower ends by an annular lid plate 43 and a bottom wall 44 to form a high-temperature steam chamber. In addition, it is also possible to omit the cover plate 43 by curving the upper end portions of the outer wall 41 and the inner wall 42 in the proximity direction and butting them together. The upper part of the inner wall 42 and the bottom of the water vapor reservoir 29 are connected by a plurality of steam elbow pipes 45, and a water or steam outlet pipe 46 is connected to the bottom wall 44.
[0023]
Above the solvent vapor tank 4, a separator 5 for medium concentration absorbing liquid is installed. As shown in FIG. 4, the separator 5 is formed by joining an annular container body 51 having a substantially U-shaped cross section and an annular plate-shaped lid 52 that closes the upper opening of the container body 51. In the container body 51, the lower end of the outer peripheral wall 53 is airtightly joined to the upper end of the outer cylindrical wall 3a, and the inside of the inner peripheral wall is a steam passage 5A.
[0024]
Vapor holes 55 having an upper cylindrical portion by upward burring and liquid holes 56 having a lower cylindrical portion by downward burring are alternately formed in the vessel bottom 54 at equal intervals. The lid 52 is provided with a medium-concentration absorbing liquid supply port 57 through which the medium-concentration absorbing liquid is supplied, and an end of the medium-concentration absorbing liquid pipe 58 is inserted. The intermediate concentration absorbing liquid supplied from the intermediate concentration absorbing liquid tube 58 into the separator 5 boils in the separator 5 because the inside of the cylindrical casing 30 has a low pressure.
[0025]
In this embodiment, five liquid holes 56 are formed at intervals of 30 degrees between 120 degrees, and four vapor holes 55 are formed in the middle of the liquid holes 56. The medium-concentrated absorbent supply port 57 is provided on the opposite side of the section where the liquid hole 56 is formed. The tip of the medium-concentrated absorbent liquid pipe 58 is vertically close to the vessel bottom 54, and a horizontal hole 59 is formed on both sides. ing. Thereby, the fluctuation | variation at the time of inject | pouring a medium concentration absorption liquid to the separator 5 can be reduced, and rapid boiling can be prevented. Further, the boiling is completed in the flow path from the outlet of the medium concentration absorbing liquid tube 58 to the liquid hole 56, and the fluctuation of the medium concentration absorbing liquid in the vicinity of the liquid hole 56 can be attenuated.
[0026]
The outer wall 41 and the inner wall 42 have an inclined surface inclined in the proximity direction at the upper end, and an annular bowl-shaped annular liquid receptacle 6 for storing a medium concentration absorbing liquid is placed on the cover plate 43. It is installed in a coronal shape. As shown in FIG. 5, the annular liquid receiver 6 is provided with a small hole 62 around the inner and outer surfaces of the bottom 61 inclined substantially V-shaped, and a V-shaped cut at the inner and outer upper edges. A notch 63 is provided around.
[0027]
The medium-concentration absorbing liquid that has flowed down from the medium-concentrated absorbing liquid separator 5 to the annular liquid receiver 6 flows uniformly onto the inner and outer peripheral surfaces of the upper end portion of the solvent vapor tank 4 inclined from the small holes 62. When the amount of medium concentration absorbent flowing down from the separator 5 is large, the medium concentration absorbent uniformly flows from the notch 63 to the inner and outer peripheral surfaces of the upper end portion of the solvent vapor tank 4 inclined. As a result, the intermediate concentration absorbing liquid flows down in a thin film shape covering the entire outer surfaces of the outer wall 41 and the inner wall 42, and efficiently exchanges heat with the water vapor in the solvent vapor tank 4.
[0028]
The medium concentration absorbing liquid is heated by the heat of condensation of water vapor, re-boils, and separated into water vapor and a high concentration absorbing liquid. The water vapor moves from the vapor outlet 33 to the condenser 8, and the high concentration absorbing liquid has a high concentration. It flows out from the absorption liquid outlet 31. In this configuration, since the outer wall 41 and the inner wall 42 of the solvent vapor tank 4 act as a heat exchange surface, the medium concentration absorbing liquid is efficiently evaporated. As a result, since the heat transfer area is approximately doubled, it is possible to reduce the size of the low-temperature regenerator having the same capacity by about 50% at the maximum.
[0029]
The water vapor generated by boiling passes through the steam hole 55 having the upper cylindrical portion into the cylindrical casing 30 and moves from the steam passage 5A to the condenser 8 through the steam vent 33. At this time, the vapor hole 55 having the upper cylinder portion has an action of effectively preventing the splash of the medium concentration absorbing liquid from splashing out of the separator 5. The medium concentration absorbing liquid that has stabilized after boiling flows down from the five liquid holes 56 to the annular liquid receiver 6. At this time, the liquid hole 56 having the lower cylinder portion has an effect of preventing the medium concentration absorbing liquid from being shaken and scattered.
[0030]
An absorber 7 is provided outside the low-temperature regenerator 3, and a condenser 8 is installed above the absorber 7. An evaporator 9 is installed outside the absorber 7 and below the condenser 8. The absorber 7 includes a cooling coil 71 connected to the cooling tower 11, and an absorbing liquid spreader 72 that is disposed above the cooling coil 71 and sprays a high concentration absorbing liquid to the cooling coil 71.
[0031]
A condenser coil 81 connected to the cooling coil 71 is disposed in the condenser 8. The condenser 8 condenses the water vapor flowing in from the separation cylinder 2 and the low temperature regenerator 3 by the condensing coil 81 and is supplied with already condensed water, and is supplied to a water receiving container 82 installed at the lower part of the condenser 8. Accumulate.
[0032]
The evaporator 9 includes a cold water coil 91 connected to the indoor unit 13, and a water sprayer 92 that is disposed above the cold water coil 91 and sprays water onto the cold water coil 91. Water is supplied to the water spreader 92 from a water receiving container 82 installed above. The low-concentration absorption liquid that has become a low concentration by absorbing water vapor as a solvent is circulated to the low-concentration absorption liquid tank 16 of the high-temperature regenerator 1 by the absorption liquid pump P.
[0033]
Next, the operation will be described. The low-concentration absorbing liquid heated by the burner 15 in the high-temperature regenerator 1 blows up into the separation cylinder 2 from the boiling port 17 and is separated into water evaporation as a solvent and medium-concentration absorbing liquid. The water vapor is separated from the splash of the absorbing liquid in the splash prevention cylinder 23 and flows in the order of the water vapor reservoir 29 → the steam elbow pipe 45 → the solvent vapor tank 4.
[0034]
The intermediate concentration absorption liquid flows out from the intermediate concentration absorption liquid outlet 28 provided at the lower part of the inner cylinder 22 and flows into the intermediate concentration absorption liquid separator 58 from the intermediate concentration absorption liquid pipe 58. The vapor is separated by boiling in the separator 5 for the intermediate concentration absorbing liquid, and the stable intermediate concentration absorbing liquid flows down from the separator 5 for the intermediate concentration absorbing liquid to the annular liquid receiver 6, and the solvent vapor is passed through the small hole 62. A film is supplied to the outer surface of the tank 4.
[0035]
Both the outer wall 41 and the inner wall 42 of the solvent vapor tank 4 act as heat exchange surfaces, and the intermediate concentration absorbing liquid flowing down in the form of a thin film is heated by the heat of condensation of water vapor, and the water evaporates and concentrates into a high concentration absorbing liquid. Is done. The high-concentration absorption liquid flows out from the high-concentration absorption liquid outlet 31, is supplied to the absorption liquid sprayer 72 of the absorber 7, and is sprayed on the cooling coil 71. The water vapor and water are once supplied to the condenser 8, and the water vapor becomes liquefied water, is supplied to the water sprayer 92 together with the already liquefied water, and is sprayed to the cold water coil 91.
[Brief description of the drawings]
FIG. 1 is a cross-sectional skeleton view of an absorption refrigeration apparatus.
FIG. 2 is a cross-sectional view of a low temperature regenerator.
FIG. 3 is an enlarged cross-sectional view of a main part of a low-temperature regenerator.
FIGS. 4A and 4B are a front sectional view and a plan sectional view of a separator for medium concentration absorbing liquid. FIGS.
FIG. 5 is a plan view and a front sectional view of an annular liquid receiver.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Separation cylinder 3 Low temperature regenerator 4 Solvent vapor tank 5 Medium concentration absorption liquid separator 6 Annular liquid receiver 7 Absorber 8 Condenser 9 Evaporator 11 Cooling tower 13 Indoor unit 15 Burner (heating means)
16 Low-concentration absorbing liquid tank 21 Outer cylinder 22 Inner cylinder 23 Splash prevention cylinder 24 Upper edge 25 Bell-shaped ceiling 26 Steam port 71 Cooling coil 72 Absorbing liquid sprayer (absorbing liquid flowing-down means)
91 Cold water coil 92 Water sprayer (solvent flow down means)
P Absorption liquid pump

Claims (3)

低濃度吸収液タンク、加熱手段、および沸騰した低濃度吸収液の分離筒を備え、低濃度吸収液を加熱して沸騰させ、沸騰した低濃度吸収液を溶媒蒸気と中濃度吸収液とに分離する高温再生器と、
前記分離筒で生成した溶媒蒸気を溜める溶媒蒸気タンク、および該溶媒蒸気タンクの外面に沿って中濃度吸収液を流下させ、溶媒蒸気の凝縮熱を利用して中濃度吸収液を加熱し高濃度吸収液と溶媒蒸気とを生成する低温再生器と、
前記低温再生器および前記分離筒で生成した溶媒蒸気を凝縮させるとともに凝縮した溶媒を溜める凝縮器と、
室内機に連結した冷水コイル、および該冷水コイルに前記凝縮器の溶媒を流下させる溶媒流下手段とを備え、冷水コイルの表面で溶媒を蒸発させて冷水コイル内の冷水を冷却する蒸発器と、
放熱用の冷却塔に連結した冷却コイル、および該冷却コイルに高濃度吸収液を流下させる吸収液流下手段とを備え、前記蒸発器で蒸発した溶媒を高濃度吸収液に吸収させる吸収器と、
前記溶媒を吸収して低濃度となった低濃度吸収液を前記高温再生器に循環させる吸収液ポンプとを備える吸収式冷凍装置において、
前記分離筒は、下端が前記低濃度吸収液タンクに連結して垂直的に立設され上端に溶媒蒸気の出口が設けられている外筒と、該外筒内に同心的に配され、下部に中濃度吸収液の流出口が設けられている有底の内筒と、鍔状に拡開した上縁を有する筒状を呈し、該上縁が前記外筒の上端部に取付けられるとともに前記内筒の上端部に同心的に差し込まれて配された飛沫防止筒とからなり、
該飛沫防止筒の上縁は逆ベルマウス状を呈するとともに、
前記内筒と前記飛沫防止筒との隙間は、該隙間の幅より大きい上下方向の直円筒部分を有し、
前記低濃度吸収液タンク内で沸騰した低濃度吸収液は、前記外筒と内筒との隙間を吹き上がり、前記内筒の上端と前記飛沫防止筒の上縁との隙間を通じて、前記内筒と飛沫防止筒との隙間を下方に吹き下がることを特徴とする吸収式冷凍装置。
Equipped with a low-concentration absorption liquid tank, heating means, and a boiled low-concentration absorption liquid separation cylinder, the low-concentration absorption liquid is heated to boil, and the boiled low-concentration absorption liquid is separated into solvent vapor and medium-concentration absorption liquid A high temperature regenerator to
A solvent vapor tank that stores the solvent vapor generated in the separation cylinder, and a medium concentration absorption liquid flowing down along the outer surface of the solvent vapor tank, and the medium concentration absorption liquid is heated using the condensation heat of the solvent vapor to obtain a high concentration A low-temperature regenerator that generates an absorbent and solvent vapor;
A condenser for condensing the solvent vapor generated in the low-temperature regenerator and the separation cylinder and storing the condensed solvent;
A chilled water coil connected to the indoor unit, and a solvent flow down means for flowing down the solvent of the condenser to the chilled water coil, an evaporator for evaporating the solvent on the surface of the chilled water coil and cooling the chilled water in the chilled water coil;
A cooling coil connected to a cooling tower for heat dissipation, and an absorption liquid flow-down means for flowing down the high-concentration absorption liquid to the cooling coil, and an absorber for absorbing the solvent evaporated in the evaporator into the high-concentration absorption liquid
In an absorption refrigeration apparatus comprising an absorption liquid pump that circulates a low-concentration absorption liquid having a low concentration by absorbing the solvent to the high-temperature regenerator
The separation cylinder has a lower end vertically connected to the low-concentration absorbing liquid tank, and an upper cylinder provided with an outlet for solvent vapor at the upper end. Presents a bottomed inner cylinder provided with an outlet for a medium-concentration absorbing solution and a cylindrical shape having an upper edge that expands like a bowl, and the upper edge is attached to the upper end of the outer cylinder and It consists of a splash-proof cylinder that is concentrically inserted into the upper end of the inner cylinder,
The upper edge of the splash-proof cylinder has an inverted bell mouth shape,
The gap between the inner cylinder and the splash prevention cylinder has a vertical cylinder portion in the vertical direction larger than the width of the gap,
The low concentration absorbent boiled in the low concentration absorbent tank blows up through the gap between the outer cylinder and the inner cylinder, and passes through the gap between the upper end of the inner cylinder and the upper edge of the splash prevention cylinder. Absorption refrigeration apparatus characterized in that the gap between the splatter and the splash prevention cylinder blows downward.
請求項1に記載の吸収式冷凍装置において、前記外筒の上端はベル型天井で塞がれているとともに、該ベル型天井の中心に蒸気口が形成されていることを特徴とする吸収式冷凍装置。The absorption refrigeration apparatus according to claim 1, wherein an upper end of the outer cylinder is closed with a bell-shaped ceiling, and a steam port is formed at the center of the bell-shaped ceiling. Refrigeration equipment. 請求項2に記載の吸収式冷凍装置において、前記飛沫防止筒の内周側の通路面積は、前記蒸気口の面積の4倍以上であることを特徴とする吸収式冷凍装置。3. The absorption refrigeration apparatus according to claim 2, wherein a passage area on the inner peripheral side of the splash prevention cylinder is four times or more than an area of the steam port .
JP2000388031A 2000-12-21 2000-12-21 Absorption refrigeration system Expired - Fee Related JP4139068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000388031A JP4139068B2 (en) 2000-12-21 2000-12-21 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000388031A JP4139068B2 (en) 2000-12-21 2000-12-21 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2002195691A JP2002195691A (en) 2002-07-10
JP4139068B2 true JP4139068B2 (en) 2008-08-27

Family

ID=18854841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000388031A Expired - Fee Related JP4139068B2 (en) 2000-12-21 2000-12-21 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP4139068B2 (en)

Also Published As

Publication number Publication date
JP2002195691A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US6820440B2 (en) Absorption-type air conditioner core structure
US3964273A (en) Compact absorption refrigeration apparatus
JP4132655B2 (en) Absorption refrigeration system
JP4139068B2 (en) Absorption refrigeration system
JP4139067B2 (en) Absorption refrigeration system
JP3226460B2 (en) Regenerator for absorption refrigeration system
JP3729876B2 (en) Air conditioner low temperature regenerator
JP3408116B2 (en) Absorption refrigeration equipment
JP3028924B2 (en) Absorption refrigeration equipment
JP2728362B2 (en) Absorption refrigeration equipment
JP2957112B2 (en) Regenerator for absorption refrigeration system
JP2994253B2 (en) Absorption air conditioner
JP3017056B2 (en) Cooling and heating system using absorption refrigeration system
JPH04236078A (en) Absorption type refrigerating machine
JP3911335B2 (en) Absorption air conditioner
JP2957111B2 (en) High temperature regenerator of absorption refrigeration system
JP3790360B2 (en) Absorption refrigeration system
JPH07190550A (en) Regenerator for absorption type refrigerator
JPH09210507A (en) Dripping mechanism for refrigerant liquid or absorption liquid for absorption type refrigerating device
JPH07190557A (en) Absorption type refrigerator
JPH09170852A (en) Absorption type refrigerating unit
JP2002195680A (en) Absorption refrigerator
JPH07190553A (en) Absorption type refrigerator
JPH0960996A (en) Heat-exchanger for absorption type refrigerating device
JP2000220920A (en) Absorptive freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees