JP4137693B2 - Induction heating cooking container - Google Patents

Induction heating cooking container Download PDF

Info

Publication number
JP4137693B2
JP4137693B2 JP2003132991A JP2003132991A JP4137693B2 JP 4137693 B2 JP4137693 B2 JP 4137693B2 JP 2003132991 A JP2003132991 A JP 2003132991A JP 2003132991 A JP2003132991 A JP 2003132991A JP 4137693 B2 JP4137693 B2 JP 4137693B2
Authority
JP
Japan
Prior art keywords
heating element
container
partition wall
bubbles
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003132991A
Other languages
Japanese (ja)
Other versions
JP2004329748A (en
Inventor
美里 飯高
孝平 根本
綾野 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Seal International Inc
Original Assignee
Fuji Seal International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Seal International Inc filed Critical Fuji Seal International Inc
Priority to JP2003132991A priority Critical patent/JP4137693B2/en
Publication of JP2004329748A publication Critical patent/JP2004329748A/en
Application granted granted Critical
Publication of JP4137693B2 publication Critical patent/JP4137693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導加熱を利用した誘導加熱調理器によって内容物を加熱することができる誘導加熱調理用容器に関する。
【0002】
【従来の技術】
この種の誘導加熱調理用容器は、電磁誘導によって発熱する発熱体を備え、該容器を誘導加熱調理器の容器載置面に載置して該調理器の誘導加熱コイルに電流を流すと、高周波磁界が発生して発熱体に渦電流が誘起され、渦電流により発熱体が抵抗損失で発熱し、これにより内容物が温められる。
【0003】
【発明が解決しようとする課題】
ところで、最近では、容器本体をプラスチックや紙等のように非導電性材料から構成し、その底部の外面あるいは内面に発熱体を固着したり、また底部に発熱体を内蔵した簡易的な容器も提案されている。しかしながら、発熱体が容器本体と一体に構成されたこれらの容器の場合には、発熱体の加熱により容器本体が損傷するおそれがあるため、本発明者らは従来より容器本体とは別体構成の発熱体を備えた誘導加熱調理器用容器について継続的に研究開発を行っている。容器本体とは別体に形成された発熱体は略平板状であり、また、容器本体の底部内面も略平坦であるため、発熱体を容器本体に入れると、発熱体は容器本体の底部内面に隙間をあけずに載置されることとなる。
【0004】
その状態で例えば水を容器本体に入れ、誘導加熱調理器によって発熱体を加熱させ、それにより内容物が加熱調理されると、その表面において水蒸気が気泡となって発生する。しかし、発熱体の下面と容器本体の底部内面との間には隙間がほとんどないため、その下面において発生した気泡は発熱体から離反することなくそのまま付着、滞留しやすい。その結果、発熱体の下面には水蒸気が層状に蓄積しそれによって下面が覆われることもある。誘導加熱調理においては、発熱体自身が発熱し、その熱が内容物に放熱されることで加熱調理を行うものである。しかしながら、発熱体の下面が水蒸気の層で覆われるとそれが断熱層として働くため、発熱体の放熱が妨げられ、加熱効率が低下するのみならず、発熱体が自身の蓄熱によって熱損傷することにもなる。
【0005】
また、発熱体と固体の内容物とを上下に分離するために、容器本体の底部内面より上方に網状体を区画壁として設け、該網状体と容器本体の底部内面との間に発熱体を位置させるようにした容器も開発している。固体の内容物としては乾燥麺等の乾燥食品があり、加熱調理に際して水を容器本体に注ぎ入れ、発熱体によりその水を加熱する。この容器においては、発熱体の上面で発生した気泡は網状体の目(開口)を通過して上方に排出されていくが、気泡が多くなったりすると網状体の下側に気泡が蓄積して水蒸気の層が形成されることがある。このように網状体の下側に水蒸気の層が形成されると、該層によって発熱体の上面が次第に覆われることとなり、これによって発熱体の上面からの放熱が妨げられて上述したような問題の原因となる。また、形成された水蒸気の層によって発熱体は容器本体の底部内面に押し付けられることにもなるので、発熱体の下面で発生した気泡も上方に逃げにくくなるうえに容器本体の底部内面の熱損傷も懸念される。
【0006】
その一方、本発明者らは開発過程において発熱体の取り扱い性の向上や破損防止等を目的としてアルミニウムシートからなる発熱体本体を合成樹脂で被覆した樹脂被覆型のアルミニウム発熱体を開発した。該アルミニウムシートは例えば厚さ5乃至30μmの薄いものが発熱効率に優れており、従って軽量で製造も容易であってコストも低減できるなど経済面でも優れている。その一方、アルミニウムシートは薄いこともあって熱損傷しやすいものであるうえに、被覆する樹脂が内容物との間に介在するので樹脂コートのないものに比べると放熱面でも若干劣ることになる。従って、このような樹脂コートされたアルミニウム発熱体を使用した場合には、上述したような層状の水蒸気が発熱体表面に付着することによる樹脂コートとアルミニウムシートに熱損傷のおそれがより一層高まるのである。
【0007】
そこで本発明は、上記従来の問題点に鑑みてなされ、発熱体の表面に水蒸気の気泡が層状に集積することを抑制することにより、発熱体の放熱効率を高めて発熱体の熱損傷を防止することのできる誘導加熱調理用容器を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決すべくなされたものであり、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する平板状の発熱体とを備えた誘導加熱調理用容器において、発熱体と容器本体の底部内面との間には発熱体の略中央部から周縁部まで達する気泡排出通路が形成されていることを特徴とする。
【0009】
そして、容器本体の底部内面には略中央部から周縁部に向けて延びる凸条が形成され、容器本体の底部内面のうち凸条が形成されていない領域と発熱体の下面との間の隙間により前記気泡排出通路が構成されるものや、発熱体の下面には略中央部から周縁部に向けて延びる凸条が形成され、発熱体の下面のうち凸条が形成されていない領域と容器本体の底部内面との間の隙間により前記気泡排出通路が構成されるものや、また、容器本体の底部内面と発熱体の下面のうちの少なくとも一方には、略中央部から周縁部に向けて延びる凹条が形成され、該凹条により前記気泡排出通路が構成されるものがある。
【0010】
このように発熱体と容器本体の底部内面との間に発熱体の略中央部から周縁部まで達する気泡排出通路が形成されているので、容器本体内に水等の液体を入れて加熱した場合、発熱体の下面において発生した水蒸気の気泡は、この気泡排出通路を通って発熱体の周縁部に到達し、発熱体の周縁部と容器本体の胴部内面との間の隙間から上方に排出される。
【0011】
また、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する板状の発熱体とを備えた誘導加熱調理用容器において、発熱体の略中央部には貫通孔が形成され、且つ、発熱体は、その周縁部から貫通孔に向けて高くなるように形成されていることを特徴とする。
【0012】
該容器にあっては、発熱体が周縁部から略中央部の貫通孔に向けて高くなるように形成されているため、発熱体の発熱によりその下面において発生した水蒸気の気泡は、略中央部の貫通孔に向かってスムーズに移動して貫通孔から上方に排出される。
【0013】
また、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する板状の発熱体とを備えた誘導加熱調理用容器において、発熱体は、容器本体の底部内面に載置される略平坦な載置部をその略中央部に有し且つ、該載置部から周縁部に向けて高くなるように形成されていることを特徴とする。
【0014】
該容器にあっては、発熱体がその略平坦な載置部から周縁部に向けて高くなるように形成されているため、発熱体の発熱によりその下面において発生した水蒸気の気泡は、周縁部に向かってスムーズに移動して発熱体の周縁部と容器本体の胴部内面との間の隙間から上方に排出される。
【0015】
また、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する板状の発熱体とを備えた誘導加熱調理用容器において、発熱体は、その略中央部を支点として揺動可能に構成されていることを特徴とする。
【0016】
該容器にあっては、発生した水蒸気の気泡の上昇運動により発熱体は揺動する。そして、発熱体が揺動することにより、発熱体の表面に付着している気泡がスムーズに発熱体から離れることとなる。
【0017】
また、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する平板状の発熱体とを備えた誘導加熱調理用容器において、容器本体の収容部を上下に区画する区画壁が設けられ、該区画壁と容器本体の底部内面との間に発熱体が位置し、区画壁は、所定箇所を頂部とする下面凹状に形成され、該頂部には上下の貫通孔が形成されていることを特徴とする。
【0018】
該容器にあっては、区画壁により容器本体の収容部が上下に区画され、区画壁の上方に例えば固体の内容物が入れられる。そして、この区画壁が所定箇所を頂部とする下面凹状に形成されているので、区画壁と発熱体との間には区画壁の下面形状に対応した隙間が形成されることとなる。従って、区画壁の下面に平板状の発熱体が密着することが防止され、発熱体の上面において発生した水蒸気の気泡が区画壁の下面で仮に層状に集積したとしても、その水蒸気の層は発熱体の上面から離間した状態にある。しかも、気泡は区画壁の下面に沿ってその頂部へと移動し、頂部に形成されている貫通孔から上方に排出されるので、仮に水蒸気の層が形成されてもそれによって発熱体の上面が覆われることが防止される。
【0019】
このように区画壁を設ける場合には、その区画壁を網状体から構成することが好ましく、多数の開口(多数の貫通孔)から気泡を上方に排出することが容易となる。そして、そのように区画壁を網状体から構成する場合には、頂部に形成する貫通孔を網状体の開口よりも大きくすることが好ましい。即ち、気泡が激しく発生する場合においても頂部の大きめの貫通孔から気泡がスムーズに排出されることとなる。
【0020】
また、本発明に係る誘導加熱調理用容器は、非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する平板状の発熱体とを備えた誘導加熱調理用容器において、容器本体の収容部を上下に区画する区画壁が設けられ、該区画壁は上下の貫通孔を有し、区画壁の下面は略平坦であり、該区画壁と容器本体の底部内面との間に発熱体が位置し、発熱体を区画壁から所定距離下方に離間させる発熱体離間手段を備えていることを特徴とする。
【0021】
該容器にあっては、区画壁の下面が略平坦であるものの発熱体を区画壁から所定距離下方に離間させる発熱体離間手段を備えているので、区画壁の下面に仮に水蒸気の層が形成されてもそれによって発熱体の上面が覆われることが防止される。
【0022】
【発明の実施の形態】
以下、本発明の誘導加熱調理用容器の一実施形態について図1乃至図4を参酌しつつ、上面開口の有底円筒状の容器本体1と、電磁誘導によって発熱する薄肉略平板状の発熱体2とを備えた誘導加熱調理用容器について説明する。
【0023】
該容器本体1は、上方に向けて略テーパ状に拡径する胴部3と、該胴部3と一体的に形成された平板状の底部4と、胴部3の上端部に全周に亘って形成されたフランジ部5とを備えている。
【0024】
胴部3の外周面には、上下方向のリブ6が放射状に形成され、フランジ部5は、断面視略コの字状に形成されている。また、胴部3は、上方胴部3aと下方胴部3bとが水平環状の接続部7を介して階段状に連続するよう形成され、上方胴部3aの下端には、補助片8が下方胴部3bとの間で所定の間隙を有するように、下方に向けて延設されている。また、下方胴部3bの内周面には、底部4から所定高さ上方位置に、環状の係止用突起9が形成されている。該係止用突起9は、発熱体2の上昇を規制する規制手段として機能する。従って、係止用突起9は環状でなくてもよい。
【0025】
また、底部内面には、略中央部から周縁部に向けて延びる凸条20が形成されている。該凸条20は、その上に発熱体2が載置されるように複数本、放射状に配置されており、本実施形態においては、径方向に直線状に延びる凸条20が略90度おきに合計四本突設されている。尚、これら複数の凸条20はその高さが略一定である。また、各凸条20は、その内側端部同士が互いに離間するように形成されると共に、その外側端部も胴部内面には達せずに両者は離間している。そして、この凸条20の上に発熱体2が載置されると、隣り合う二本の凸条20間には、発熱体2の略中央部から周縁部まで達する扇状の気泡排出通路21が形成される。
【0026】
該構成の容器本体1は、熱可塑性樹脂から射出成形により形成されたものであり、熱可塑性樹脂としては、例えば、ポリプロピレン、高密度ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアミド、ポリスチレン等がある。特に、プロピレンエチレン共重合体等のポリプロピレン系樹脂が、軽く適度な機械的強度を有し、比較的安価で成形性も良く、適度な耐熱温度及び熱変形温度を有し総合的に優れているため、好ましい。但し、容器本体1の材質はこれらに限定されず、合成樹脂以外にも、例えば紙等の非導電性材料を使用でき、特に、合成樹脂や紙等から形成すれば、軽いうえに焼却廃棄も比較的容易であるため、使い捨ての容器として好ましい。また、胴部3の外側に筒状のシュリンクラベル等のラベルを装着してもよい。
【0027】
かかる容器本体1内には、前記発熱体2が容器本体1の底部内面上に載置されるようにして収容されている。該発熱体2は胴部内面よりも小径に形成され、従って容器本体1内に入れられると、発熱体2の周縁部と胴部内面との間には環状の隙間が形成される。
【0028】
該発熱体2は、図4のように導電性材料からなるシート状の発熱体本体60が合成樹脂からなる被覆部61により被覆された樹脂被覆型のものである。
導電性材料としては、例えば、鉄、ステンレス、クロム、アルミニウム、銅等の金属材料や、カーボン等の非金属材料であって、アルミニウム、ステンレス、銅、鉄が好ましく、特に、アルミニウムが最も好ましい。また、発熱体本体60の厚さは、例えばアルミニウムシートの場合には7乃至100μm好ましくは15乃至30μmである。
【0029】
また、被覆部61は、例えばポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアミド等の耐熱性樹脂シートから構成することが好ましく、少なくとも発熱体本体60の上面と下面の全体を覆っており、その厚さは、片側0.5mm以下、特に片側0.01乃至0.2mm程度が好ましい。このように、発熱体本体60を被覆部61で覆うことによって、発熱体本体60が保護されると共に、温度上昇等に伴う発熱体本体60の反りも抑制される。また、薄い発熱体本体60を被覆部61で覆うことによって発熱体本体60のみの構成に比して全体の厚みが増すために、良好な取り扱い性が得られる。
【0030】
かかる発熱体2は、図3に示すように、略中央部に丸形の貫通孔10が形成されて全体として平面視においてループ状(ドーナツ状、貫通孔10空き円盤状)に形成されている。詳細には、調理器の誘導コイルの内周と外周との間の領域上にループ状の発熱体2が重なり合うことができる形状、大きさに設定されている。例えば、発熱体本体60は、内径がφ40(mm)外径がφ130(mm)に形成される。
尚、このように発熱体2の略中央部には上下貫通した貫通孔10が形成されており、前記気泡排出通路21は、この貫通孔10と発熱体2の周縁部とを連通するように径方向に形成される。
【0031】
以上のように構成された容器に例えば水を入れて調理器に載せて加熱すると、図3のように発熱体2の発熱によってその表面には水蒸気の気泡aが発生する。発熱体2の上面2aにおいて発生した気泡aは順次発熱体2から離反して上昇していく。その一方、発熱体2の下面2bにおいて発生した気泡aは、容器本体1の底部内面と発熱体2の下面2bとの間に形成された気泡排出通路21を介して、発熱体2の略中央部の貫通孔10から、また、発熱体2の周縁部と胴部内面との間の環状の隙間から、それぞれ上方に排出される。従って、発熱体2の下面2bにおいて発生した気泡aが発熱体2の下面2bに付着したまま滞留してそれが層状に集積するということが未然に防止される。よって、気泡aが層状に集積して形成される水蒸気の層が断熱層として発熱体2の下面2bに付着することによって発熱体2の放熱が妨げられるということがなく、発熱体2の熱がスムーズに水に放熱され、発熱体2の熱による損傷が防止される。また、発熱体2の放熱効率がよいため、水の加熱効率も高まる。特に、本実施形態では、発熱体2の略中央部に上下貫通した貫通孔10を形成したことにより、その貫通孔10からも上方に気泡aが排出される。但し、発熱体本体60に形成された貫通孔を被覆部61で覆って塞ぐようにして発熱体2が貫通孔10を有しないような構成としてもよい。
また、凸条20を外側端部から内側端部に向けて徐々に低くなるように若しくは徐々に高くなるようにしてもよく、発熱体2の下面2bとの接触面積が減少するため気泡aの排出効率がより一層高まる。
更に、凸条20を径方向に連続するもののみならず不連続のものであってもよい。このような凸条20の形状の他、その配置態様や個数等についても適宜設計変更可能である。
【0032】
また、本実施形態では底部内面に凸条20を形成したが、凹条を形成してもよい。その場合、底部内面に形成した凹条自体が気泡排出通路となる。
【0033】
また、発熱体2の下面2bに凸条や凹条を形成して底部内面との間に気泡排出通路を形成してもよい。例えば、図5に示すように、略中央部に貫通孔10を有する平板状の発熱体2の場合において、その貫通孔10から周縁部まで達するように径方向に直線状に延びるリブ22をプレス等により形成する。即ち、発熱体2の上面2aには凸条が形成されると共にそれに対応して下面2bには凹条が形成される。従って、この発熱体2を使用すると、下面2bの凹条が気泡排出通路となり、上下逆にして使用すると、下面2bの凸条間に図1の場合と同様に扇状の気泡排出通路が形成される。尚、容器本体1の底部内面と発熱体2の下面2bの双方に凹条を形成してもよい。
【0034】
また更に、略中央部に貫通孔10が形成された板状の発熱体2をその周縁部から貫通孔10に向けて徐々に高くなるように形成してもよい。例えば、図6のように、周縁部から略中央部の貫通孔10に向けて徐々にテーパ状に高くなるように、発熱体2を逆すり鉢状とする。これにより、発熱体2の下面2bにおいて発生した気泡aは、テーパ状の発熱体2の下面2bに沿って略中央部の貫通孔10へと集まり、その貫通孔10から上方に排出される。従って、発熱体2の下面2bに気泡aが溜まることが防止される。
【0035】
また、発熱体2の形状を逆に図7のように周縁部に向けて高くなる形状としてもよい。即ち、発熱体2は、略平坦な載置部23をその略中央部に有し、該載置部23によって容器本体1の底部内面に載置される。そして、該載置部23から周縁部に向けて徐々に高さがテーパ状に高くなっている。換言すれば、発熱体2をすり鉢状とし、これにより発熱体2の下面2bの気泡aは傾斜した発熱体2の下面2bに沿って周縁部へと移動して、発熱体2の周縁部と容器本体1の胴部内面との間の隙間から上方に排出される。尚、図7に示す発熱体2はその略中央部に貫通孔10が形成されていないものであるが、貫通孔10を設けてもよい。
【0036】
また、図6及び図7に示した発熱体2においては、略中央部若しくは周縁部に向けてテーパ状に高くなる形状であったが、多段的な階段状に高さが変化する構成であってもよく、何れにしても略中央部若しくは周縁部に向けて徐々に高さが高くなるように構成すればよい。
【0037】
ところで、上述したように、容器本体1内には、容器本体1内に入れられた乾燥麺等の乾燥食品等の固体の内容物を発熱体2から上方に分離するために、容器本体1の収容部を上下に区画する区画壁30が設けられる場合があるが、図8に示す容器の場合には、その区画壁30が平板状ではなく所定箇所を頂部31とする下面凹状に形成されている。具体的には、略中央部を頂部31とするドーム形状(凹状曲面)に形成されている。該区画壁30には、多数の上下貫通孔32が形成されており、例えば網状体から構成される。そして、図8に示す区画壁30は、多数の上下貫通孔32(網状体の場合にはその開口)よりも大きい貫通孔33が頂部31に形成されている。
【0038】
かかる容器にあっては、平板状の発熱体2は区画壁30の下方に位置するが、その発熱体2の上面2aにおいて発生した気泡aはそこに滞留することなく発熱体2から上方に離反していく。即ち、区画壁30を下面凹状に形成することにより発熱体2が区画壁30に密着することがなくなって発熱体2と区画壁30との間には区画壁30の下面形状に対応した隙間が形成され、従って、発熱体2の上面2aに気泡aが付着したまま集積することが防止される。また、発熱体2の上面2aから上方に離反した気泡aは区画壁30の下面に達すると、通常は多数の上下貫通孔32を通って上方に排出されるが、気泡aの発生が多くなると、区画壁30の下面において気泡aが層状に集積することがある。しかしながら、そのように気泡aが層状に集積しても、区画壁30が下面凹状に形成されているのでその層状の気泡aは徐々に区画壁30の略中央部の頂部31に向けて移動し、頂部31に形成された大きめの上下貫通孔33から確実に排出される。従って、発熱体2の上面2aにおける放熱が妨げられることはない。
【0039】
尚、区画壁30は、頂部31に貫通孔33を有する場合にはその他の多数の上下貫通孔32はなくてもよい。逆に、多数の上下貫通孔32を有する網状体等から区画壁30を構成する場合には頂部31の大きめの貫通孔33を省略してもよい。
【0040】
また、図9のように、区画壁30の周縁部に切欠34を形成して胴部内面との間に上下貫通孔を形成し、頂部31の貫通孔33のみならず胴部内面との間の貫通孔からも気泡aが上方に排出されるようにしてもよい。尚、図9の場合には、区画壁30は頂部31のみに貫通孔33を有するが、上述したように、多数の貫通孔32を有する網状体等から区画壁30を構成しても無論よい。
【0041】
また更に、発熱体2を平板状とし且つ区画壁30の下面も略平坦とする場合には、発熱体2を区画壁30から所定距離下方に離間させる発熱体離間手段を設けることが好ましい。例えば、図10に示すように、発熱体離間手段として、区画壁30の下面には下方に突出した突起40を形成する。該突起40の高さ分だけ、区画壁30から発熱体2が下方に離間することとなり、両者の密着が防止される。従って、発熱体2の上面2aにおいて発生した気泡aが層状に集積した場合にも、その層状に集積した気泡aは発熱体2の上面2aに付着し滞留するのではなく、そこから上方に離間した区画壁30の下面に位置し、区画壁30に形成されている多数の貫通孔32を介して気泡aが上方に排出される。よって、発熱体2の放熱効率が高まり、発熱体2の熱による損傷が防止される。
【0042】
尚、発熱体離間手段として、発熱体2の上面2aに突起を形成してもよい。また、図11のように胴部内面に上述したような係止用突起9を発熱体離間手段として形成し、該係止用突起40によって発熱体2の上昇を規制することによって発熱体2を区画壁30から所定距離下方に離間させてもよい。
【0043】
また、発熱体2がその略中央部を支点として揺動する構成としてもよい。例えば、図12のように、平板状の発熱体2の下面略中央部に枢支突起50を形成すると共に、区画壁30の下面略中央部にも枢支突起51を形成し、両枢支突起40によって発熱体2が区画壁30と底部内面によって揺動可能に枢支されるようにする。かかる容器に水を入れて加熱すると、発熱体2の表面、特に、その下面2bにおいて発生した気泡aの上昇運動により発熱体2は水平状態を中心として上下に揺動する。このような発熱体2の揺動動作により、発熱体2の表面に付着した気泡aが素早く離反することとなる。
【0044】
尚、発熱体2の上下両面にそれぞれ枢支突起を形成したり、逆に、底部内面と区画壁30にそれぞれ枢支突起を形成してもよい。また、発熱体2自体を例えばすり鉢状に形成し、その下面略中央部を尖鋭なものとすることで発熱体2を揺動可能に構成したりすることもでき、発熱体2を揺動可能にする構成は種々の変更が可能である。
また、区画壁30を設けずに発熱体2を揺動可能に構成してもよい。その場合には、発熱体2若しくは底部内面の枢支突起によって発熱体2が揺動可能に枢支される。但し、区画壁30を設けた場合に発熱体2を揺動可能に構成すると、発熱体2の揺動動作により区画壁30の下面に気泡aが集積しにくくなり、また集積したとしても揺動動作によって区画壁30の貫通孔32から気泡aが排出されやすくなるので好ましい。
【0045】
尚、上記実施形態では、容器本体1を円筒状としているのでそれに対応して発熱体2も円盤状としたが、発熱体2を容器本体1の形状に合わせることなく多角形状とすることもでき、また、容器本体1についても円筒状のみならず矩形のものであってもよい。
【0046】
また、発熱体は、アルミニウムシートからなる発熱体本体と、該発熱体本体を被覆する合成樹脂からなる被覆部とを備えていることが好ましい。発熱体本体をアルミニウムシートから構成することにより経済面に優れ、しかも、薄いアルミニウムシートを被覆部で覆うことによって発熱体本体が保護されて耐久性が向上するうえに、厚みの増加によってその取り扱い性も向上する。その一方、被覆部の存在によってアルミニウムシートの放熱面の懸念が生じるが、上述したような種々の解決手段を用いることにより、発熱体の放熱効率が高まるため、その熱による損傷を効果的に防止することができる。
【0047】
【発明の効果】
以上のように、本発明に係る容器に水等の液体を入れて加熱すると、発熱体の表面において発生した水蒸気の気泡が効率よく発熱体から離反するので、発熱体の表面に気泡が層状に集積することがなく、それが原因となって生じる発熱体の熱による損傷を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の誘導加熱調理用容器を示す断面図。
【図2】同容器の横断面図。
【図3】同容器の使用状態を示す要部断面図。
【図4】同容器に使用されている発熱体の一部断面図。
【図5】他の実施形態における誘導加熱調理用容器の発熱体を示す斜視図。
【図6】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【図7】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【図8】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【図9】他の実施形態における誘導加熱調理用容器を示す平面図。
【図10】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【図11】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【図12】他の実施形態における誘導加熱調理用容器の使用状態を示す要部断面図。
【符号の説明】
1…容器本体、2…発熱体、3…胴部、4…底部、9…係止用突起(規制手段、発熱体離間手段)、10、31,32…貫通孔、20…凸条、21…気泡排出通路、22…リブ(凸条)、23…載置部、30…区画壁、34…切欠、a…気泡、40…突起(発熱体離間手段)、50,51…枢支突起、60…発熱体本体、61…被覆部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating cooking container capable of heating contents by an induction heating cooker using induction heating.
[0002]
[Prior art]
This type of induction heating cooking container includes a heating element that generates heat by electromagnetic induction, and when the container is placed on the container mounting surface of the induction heating cooker and a current is passed through the induction heating coil of the cooking appliance, A high frequency magnetic field is generated to induce an eddy current in the heating element, and the eddy current generates heat due to resistance loss due to the eddy current, thereby warming the contents.
[0003]
[Problems to be solved by the invention]
By the way, recently, a simple container in which the container body is made of a non-conductive material such as plastic or paper and the heating element is fixed to the outer surface or the inner surface of the bottom part, or the heating element is built in the bottom part. Proposed. However, in the case of these containers in which the heating element is configured integrally with the container body, the container body may be damaged by heating of the heating element. Research and development is ongoing for induction heating cooker containers equipped with heating elements. The heating element formed separately from the container body has a substantially flat plate shape, and the inner surface of the bottom of the container body is also substantially flat. Therefore, when the heating element is inserted into the container body, the heating element becomes the inner surface of the bottom of the container body. It will be mounted without leaving a gap.
[0004]
In this state, for example, when water is put into the container body and the heating element is heated by the induction heating cooker, and the contents are cooked by heating, steam is generated as bubbles on the surface. However, since there is almost no gap between the lower surface of the heating element and the bottom inner surface of the container body, bubbles generated on the lower surface tend to adhere and stay as they are without separating from the heating element. As a result, water vapor accumulates in a layered manner on the lower surface of the heating element, which may cover the lower surface. In induction cooking, the heating element itself generates heat, and the heat is radiated to the contents to perform cooking. However, when the lower surface of the heating element is covered with a water vapor layer, it acts as a heat insulating layer, which prevents heat dissipation of the heating element, not only lowering the heating efficiency, but also causing heat damage to the heating element due to its own heat storage. It also becomes.
[0005]
Further, in order to separate the heating element and the solid contents vertically, a mesh body is provided as a partition wall above the bottom inner surface of the container body, and the heating element is provided between the mesh body and the bottom inner surface of the container body. We are also developing containers that can be positioned. The solid contents include dry food such as dry noodles, and water is poured into the container body during cooking, and the water is heated by a heating element. In this container, bubbles generated on the upper surface of the heating element pass through the mesh (openings) of the mesh body and are discharged upward. However, when the number of bubbles increases, the bubbles accumulate on the lower side of the mesh body. A layer of water vapor may be formed. When the water vapor layer is formed on the lower side of the mesh body in this way, the upper surface of the heating element is gradually covered by the layer, thereby preventing heat dissipation from the upper surface of the heating element and causing the above-described problems. Cause. In addition, since the heating element is pressed against the bottom inner surface of the container body by the formed water vapor layer, bubbles generated on the lower surface of the heating element are also difficult to escape upward, and the bottom inner surface of the container body is thermally damaged. Is also a concern.
[0006]
On the other hand, the present inventors have developed a resin-coated aluminum heating element in which a heating element body made of an aluminum sheet is coated with a synthetic resin for the purpose of improving handling of the heating element and preventing damage in the development process. For example, a thin aluminum sheet having a thickness of 5 to 30 μm is excellent in heat generation efficiency, and thus is excellent in terms of economy, such as being lightweight, easy to manufacture, and reducing costs. On the other hand, the aluminum sheet is thin and easily damaged by heat, and the resin to be coated is interposed between the contents and the heat dissipation surface is slightly inferior to that without the resin coat. . Therefore, when such a resin-coated aluminum heating element is used, the risk of thermal damage to the resin coat and the aluminum sheet due to adhesion of layered water vapor to the surface of the heating element is further increased. is there.
[0007]
Therefore, the present invention has been made in view of the above-described conventional problems, and by suppressing the accumulation of water vapor bubbles in a layered manner on the surface of the heating element, the heat dissipation efficiency of the heating element is improved and thermal damage to the heating element is prevented. An object of the present invention is to provide a container for induction heating cooking that can be performed.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the induction heating cooking container according to the present invention is placed on a container body made of a non-conductive material and an inner surface of the bottom of the container body. In an induction heating cooking container provided with a flat plate-like heating element that is put in the container body and generates heat by electromagnetic induction, a peripheral portion from a substantially central portion of the heating element between the heating element and the bottom inner surface of the container body A bubble discharge passage reaching up to is formed.
[0009]
And the convex line | wire extended toward a peripheral part from the substantially center part is formed in the bottom part inner surface of a container main body, The clearance gap between the area | region where the convex line | wire is not formed among the inner surface of the bottom part of a container main body, and the lower surface of a heat generating body. The bubble discharge passage is configured by the above, or a convex line extending from the substantially central part toward the peripheral part is formed on the lower surface of the heating element, and the region where the convex line is not formed on the lower surface of the heating element and the container At least one of the bottom inner surface of the container main body and the lower surface of the heating element is formed from a gap between the bottom inner surface of the main body and the bottom surface of the heating element from the substantially central portion toward the peripheral portion. An extending groove is formed, and the bubble discharge passage is constituted by the groove.
[0010]
In this way, a bubble discharge passage is formed between the heating element and the bottom inner surface of the container body so as to reach from the substantially central part to the peripheral part of the heating element, so when water such as water is put into the container body and heated The water vapor bubbles generated on the lower surface of the heating element reach the peripheral edge of the heating element through the bubble discharge passage, and are discharged upward from the gap between the peripheral edge of the heating element and the inner surface of the body of the container body. Is done.
[0011]
In addition, the induction heating cooking container according to the present invention is a plate body that is made of a non-conductive material and that is placed in the container body so as to be placed on the bottom inner surface of the container body and generates heat by electromagnetic induction. In the induction heating cooking vessel provided with a heating element, a through hole is formed in a substantially central portion of the heating element, and the heating element is formed so as to increase from the peripheral edge toward the through hole. It is characterized by being.
[0012]
In the container, since the heating element is formed so as to become higher from the peripheral part toward the through hole in the substantially central part, the bubbles of water vapor generated on the lower surface by the heat generation of the heating element are substantially in the central part. It moves smoothly toward the through hole and is discharged upward from the through hole.
[0013]
In addition, the induction heating cooking container according to the present invention is a plate body that is made of a non-conductive material and that is placed in the container body so as to be placed on the bottom inner surface of the container body and generates heat by electromagnetic induction. In the induction heating cooking container provided with the heating element, the heating element has a substantially flat placing portion placed on the inner surface of the bottom portion of the container main body at the substantially central portion thereof, and a peripheral edge from the placing portion. It is formed so that it may become high toward a part.
[0014]
In the container, since the heating element is formed so as to become higher from the substantially flat mounting portion toward the peripheral portion, the bubbles of water vapor generated on the lower surface by the heat generation of the heating member are It moves smoothly toward the top and is discharged upward from the gap between the peripheral edge of the heating element and the inner surface of the body of the container body.
[0015]
In addition, the induction heating cooking container according to the present invention is a plate body that is made of a non-conductive material and that is placed in the container body so as to be placed on the bottom inner surface of the container body and generates heat by electromagnetic induction. In the induction heating cooking container provided with the above-mentioned heating element, the heating element is configured to be swingable with its substantially central portion as a fulcrum.
[0016]
In the container, the heating element swings due to the upward movement of the generated water vapor bubbles. As the heating element swings, the bubbles attached to the surface of the heating element are smoothly separated from the heating element.
[0017]
The induction heating cooking container according to the present invention includes a container body made of a non-conductive material, and a flat plate shape that is placed in the container body so as to be placed on the bottom inner surface of the container body and generates heat by electromagnetic induction. In the induction heating cooking container provided with a heating element, a partition wall is provided for vertically partitioning the container body accommodating portion, and the heating element is located between the partition wall and the bottom inner surface of the container body. The wall is formed in a concave shape on the lower surface with a predetermined portion as a top portion, and upper and lower through holes are formed in the top portion.
[0018]
In the container, the container main body is vertically partitioned by the partition wall, and, for example, solid content is placed above the partition wall. And since this partition wall is formed in the lower surface concave shape which makes a predetermined location a top part, the clearance gap corresponding to the lower surface shape of a partition wall will be formed between a partition wall and a heat generating body. Accordingly, the flat plate-like heating element is prevented from coming into close contact with the lower surface of the partition wall, and even if water vapor bubbles generated on the upper surface of the heating element accumulate in layers on the lower surface of the partition wall, the water vapor layer generates heat. It is in a state separated from the upper surface of the body. In addition, since the bubbles move to the top along the lower surface of the partition wall and are discharged upward from the through hole formed in the top, even if a water vapor layer is formed, the upper surface of the heating element is thereby formed. It is prevented from being covered.
[0019]
When the partition wall is provided as described above, the partition wall is preferably formed of a net-like body, and air bubbles can be easily discharged upward from a large number of openings (a large number of through holes). And when comprising a partition wall from a mesh body in that way, it is preferable to make the through-hole formed in a top part larger than the opening of a mesh body. That is, even when bubbles are generated violently, the bubbles are smoothly discharged from the large through hole at the top.
[0020]
The induction heating cooking container according to the present invention includes a container body made of a non-conductive material, and a flat plate shape that is placed in the container body so as to be placed on the bottom inner surface of the container body and generates heat by electromagnetic induction. In an induction heating cooking container provided with a heating element, a partition wall is provided for vertically partitioning the container body containing portion, the partition wall has upper and lower through holes, and the lower surface of the partition wall is substantially flat. And a heating element is located between the partition wall and the bottom inner surface of the container body, and is provided with heating element spacing means for spacing the heating element downward from the partition wall by a predetermined distance.
[0021]
The container is provided with heating element separating means for separating the heating element from the dividing wall downward by a predetermined distance although the lower surface of the dividing wall is substantially flat, so that a water vapor layer is temporarily formed on the lower surface of the dividing wall. This prevents the upper surface of the heating element from being covered.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIG. 1 to FIG. 4, an embodiment of an induction heating cooking container according to the present invention, a bottomed cylindrical container body 1 having an upper surface opening, and a thin, substantially flat heating element that generates heat by electromagnetic induction. 2 will be described.
[0023]
The container body 1 has a barrel portion 3 that expands upward in a substantially tapered shape, a flat bottom portion 4 formed integrally with the barrel portion 3, and an upper end portion of the barrel portion 3 on the entire circumference. And a flange portion 5 formed over the same.
[0024]
On the outer peripheral surface of the body portion 3, vertical ribs 6 are formed in a radial shape, and the flange portion 5 is formed in a substantially U shape in a sectional view. The body 3 is formed such that an upper body 3a and a lower body 3b are connected in a stepped manner via a horizontal annular connecting portion 7, and an auxiliary piece 8 is provided at the lower end of the upper body 3a. It extends downward so as to have a predetermined gap with the body portion 3b. An annular locking projection 9 is formed on the inner peripheral surface of the lower body portion 3b at a position above the bottom portion 4 by a predetermined height. The locking projection 9 functions as a regulating means for regulating the rise of the heating element 2. Therefore, the locking protrusion 9 does not have to be annular.
[0025]
Moreover, the protruding item | line 20 extended toward a peripheral part from the substantially center part is formed in the bottom part inner surface. A plurality of the ridges 20 are arranged radially so that the heating element 2 is placed thereon. In the present embodiment, the ridges 20 extending linearly in the radial direction are arranged approximately every 90 degrees. There are a total of four protrusions. Note that the height of the plurality of ridges 20 is substantially constant. Each ridge 20 is formed such that the inner ends thereof are separated from each other, and the outer ends thereof do not reach the inner surface of the trunk portion and are separated from each other. When the heating element 2 is placed on the ridge 20, a fan-shaped bubble discharge passage 21 extending from the substantially central portion to the peripheral portion of the heating element 2 is formed between the two adjacent ridges 20. It is formed.
[0026]
The container body 1 having such a configuration is formed by injection molding from a thermoplastic resin. Examples of the thermoplastic resin include polypropylene, high-density polyethylene, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyamide, and polystyrene. is there. In particular, polypropylene-based resins such as propylene-ethylene copolymers are light and have moderate mechanical strength, are relatively inexpensive and have good moldability, have moderate heat resistance and heat distortion temperatures, and are excellent overall. Therefore, it is preferable. However, the material of the container body 1 is not limited to these, and other than the synthetic resin, for example, a non-conductive material such as paper can be used. In particular, if it is made of synthetic resin or paper, it is light and incinerated. Since it is relatively easy, it is preferable as a disposable container. Further, a label such as a cylindrical shrink label may be attached to the outside of the body portion 3.
[0027]
In the container main body 1, the heating element 2 is accommodated on the bottom inner surface of the container main body 1. The heating element 2 is formed to have a smaller diameter than the inner surface of the barrel part. Therefore, when the heating element 2 is placed in the container body 1, an annular gap is formed between the peripheral edge of the heating element 2 and the inner surface of the trunk part.
[0028]
The heating element 2 is a resin-coated type in which a sheet-like heating element body 60 made of a conductive material is covered with a covering portion 61 made of a synthetic resin as shown in FIG.
Examples of the conductive material include metal materials such as iron, stainless steel, chromium, aluminum, and copper, and non-metallic materials such as carbon. Aluminum, stainless steel, copper, and iron are preferable, and aluminum is most preferable. The thickness of the heating element body 60 is, for example, 7 to 100 μm, preferably 15 to 30 μm in the case of an aluminum sheet.
[0029]
The covering portion 61 is preferably composed of a heat-resistant resin sheet such as polybutylene terephthalate, polyethylene terephthalate, polyamide, etc., and covers at least the entire upper and lower surfaces of the heating element body 60, and the thickness is One side is preferably 0.5 mm or less, particularly about 0.01 to 0.2 mm on one side. Thus, by covering the heat generating body main body 60 with the covering portion 61, the heat generating body main body 60 is protected, and warping of the heat generating body main body 60 accompanying a temperature rise or the like is also suppressed. Moreover, since the entire thickness is increased by covering the thin heating element body 60 with the covering portion 61 as compared with the configuration of the heating element body 60 alone, good handleability can be obtained.
[0030]
As shown in FIG. 3, the heating element 2 has a circular through hole 10 formed in a substantially central portion, and is formed in a loop shape (doughnut shape, through hole 10 free disk shape) as a whole in plan view. . Specifically, the shape and size are set such that the loop-shaped heating element 2 can overlap the region between the inner periphery and the outer periphery of the induction coil of the cooker. For example, the heating element body 60 has an inner diameter of φ40 (mm) and an outer diameter of φ130 (mm).
In addition, the through hole 10 penetrating vertically is formed in the substantially central portion of the heating element 2 as described above, and the bubble discharge passage 21 communicates the through hole 10 and the peripheral portion of the heating element 2. It is formed in the radial direction.
[0031]
When, for example, water is placed in a container configured as described above and placed on a cooker and heated, water vapor bubbles a are generated on the surface due to heat generation of the heating element 2 as shown in FIG. The bubbles a generated on the upper surface 2a of the heating element 2 are sequentially lifted away from the heating element 2. On the other hand, the bubble a generated on the lower surface 2b of the heating element 2 is substantially centered on the heating element 2 via the bubble discharge passage 21 formed between the bottom inner surface of the container body 1 and the lower surface 2b of the heating element 2. From the through hole 10 of the part, and from the annular gap between the peripheral edge of the heating element 2 and the inner surface of the body part, the gas is discharged upward. Accordingly, it is possible to prevent the bubbles a generated on the lower surface 2b of the heating element 2 from staying while being attached to the lower surface 2b of the heating element 2 and accumulating in layers. Therefore, the water vapor layer formed by accumulating the bubbles a in layers does not interfere with the heat dissipation of the heating element 2 by adhering to the lower surface 2b of the heating element 2 as a heat insulating layer. Heat is smoothly radiated to the water, and the heat generating element 2 is prevented from being damaged by heat. Moreover, since the heat dissipation efficiency of the heating element 2 is good, the heating efficiency of water is also increased. In particular, in the present embodiment, by forming the through hole 10 penetrating vertically at the substantially central portion of the heating element 2, the bubbles a are also discharged upward from the through hole 10. However, the heat generating body 2 may be configured not to have the through hole 10 by covering and closing the through hole formed in the heat generating body main body 60 with the covering portion 61.
Further, the ridge 20 may be gradually lowered or gradually increased from the outer end toward the inner end, and the contact area with the lower surface 2b of the heating element 2 is reduced, so that the bubbles a Emission efficiency is further increased.
Furthermore, the ridges 20 may be discontinuous as well as continuous in the radial direction. In addition to the shape of the ridges 20, the arrangement and number of the ridges 20 can be appropriately changed in design.
[0032]
In the present embodiment, the ridges 20 are formed on the inner surface of the bottom, but the ridges may be formed. In that case, the groove itself formed on the inner surface of the bottom portion becomes the bubble discharge passage.
[0033]
Moreover, you may form a protruding item | line and a concave item in the lower surface 2b of the heat generating body 2, and may form a bubble discharge channel | path between bottom part inner surfaces. For example, as shown in FIG. 5, in the case of a flat plate-like heating element 2 having a through hole 10 at a substantially central portion, a rib 22 extending linearly in the radial direction so as to reach the peripheral portion from the through hole 10 is pressed. Etc. are formed. That is, a convex line is formed on the upper surface 2a of the heating element 2, and a concave line is formed on the lower surface 2b correspondingly. Therefore, when this heating element 2 is used, the concave strip on the lower surface 2b becomes a bubble discharge passage, and when it is used upside down, a fan-shaped bubble discharge passage is formed between the convex strips on the lower surface 2b as in FIG. The In addition, you may form a groove on both the bottom inner surface of the container main body 1, and the lower surface 2b of the heat generating body 2. FIG.
[0034]
Furthermore, the plate-shaped heating element 2 having the through hole 10 formed in the substantially central portion may be formed so as to gradually increase from the peripheral portion toward the through hole 10. For example, as shown in FIG. 6, the heating element 2 is formed in a reverse mortar shape so as to gradually increase in a tapered shape from the peripheral edge toward the through hole 10 in the substantially central portion. As a result, the bubbles a generated on the lower surface 2b of the heating element 2 gather along the lower surface 2b of the tapered heating element 2 into the substantially central through hole 10 and are discharged upward from the through hole 10. Accordingly, the bubbles a are prevented from accumulating on the lower surface 2b of the heating element 2.
[0035]
Alternatively, the shape of the heating element 2 may be conversely increased toward the peripheral edge as shown in FIG. That is, the heating element 2 has a substantially flat mounting portion 23 at a substantially central portion thereof, and is placed on the inner surface of the bottom of the container body 1 by the mounting portion 23. The height gradually increases from the placement portion 23 toward the peripheral edge in a tapered shape. In other words, the heating element 2 is shaped like a mortar, whereby the bubbles a on the lower surface 2b of the heating element 2 move to the peripheral edge along the lower surface 2b of the inclined heating element 2, and the peripheral edge of the heating element 2 It is discharged upward from the gap between the inner surface of the body portion of the container body 1. In addition, although the heat generating body 2 shown in FIG. 7 is a thing in which the through-hole 10 is not formed in the approximate center part, you may provide the through-hole 10. FIG.
[0036]
In addition, the heating element 2 shown in FIGS. 6 and 7 has a shape that increases in a tapered shape toward a substantially central portion or a peripheral portion, but has a configuration in which the height changes in a multi-stepped shape. In any case, the height may be gradually increased toward the substantially central portion or the peripheral portion.
[0037]
By the way, as described above, in the container body 1, in order to separate the solid contents such as dried food such as dry noodles contained in the container body 1 upward from the heating element 2, In some cases, a partition wall 30 is provided to partition the housing portion in the vertical direction. In the case of the container shown in FIG. Yes. Specifically, it is formed in a dome shape (concave curved surface) having a substantially central portion as a top portion 31. A large number of upper and lower through holes 32 are formed in the partition wall 30 and are made of, for example, a net-like body. In the partition wall 30 shown in FIG. 8, a through hole 33 larger than a large number of upper and lower through holes 32 (openings in the case of a net-like body) is formed in the top portion 31.
[0038]
In such a container, the flat plate-like heating element 2 is positioned below the partition wall 30, but the bubbles a generated on the upper surface 2 a of the heating element 2 are separated upward from the heating element 2 without staying there. I will do it. That is, by forming the partition wall 30 in a concave shape on the lower surface, the heating element 2 does not adhere to the partition wall 30 and a gap corresponding to the lower surface shape of the partition wall 30 is formed between the heating element 2 and the partition wall 30. Therefore, the bubbles a are prevented from being accumulated on the upper surface 2a of the heating element 2 while being attached. In addition, when the bubbles a separated upward from the upper surface 2a of the heating element 2 reach the lower surface of the partition wall 30, they are normally discharged upward through a large number of upper and lower through holes 32, but the generation of bubbles a increases. In some cases, bubbles a may accumulate in layers on the lower surface of the partition wall 30. However, even if the bubbles a are accumulated in a layered manner, the partition wall 30 is formed in a concave shape on the lower surface, so that the layered bubble a gradually moves toward the top 31 at the substantially central portion of the partition wall 30. Then, it is reliably discharged from the large upper and lower through holes 33 formed in the top portion 31. Therefore, the heat radiation on the upper surface 2a of the heating element 2 is not hindered.
[0039]
In addition, the partition wall 30 does not need many other upper and lower through-holes 32, when the top part 31 has the through-holes 33. FIG. On the contrary, when the partition wall 30 is constituted by a net or the like having a large number of upper and lower through holes 32, the larger through hole 33 of the top 31 may be omitted.
[0040]
Further, as shown in FIG. 9, a notch 34 is formed in the peripheral portion of the partition wall 30 to form upper and lower through holes between the inner surface of the body portion, and not only between the through hole 33 of the top portion 31 but also the inner surface of the body portion. The bubbles a may be discharged upward from the through holes. In the case of FIG. 9, the partition wall 30 has the through-holes 33 only at the top portion 31. However, as described above, it is of course possible to configure the partition wall 30 from a net or the like having a large number of through-holes 32. .
[0041]
Furthermore, when the heating element 2 has a flat plate shape and the lower surface of the partition wall 30 is also substantially flat, it is preferable to provide heating element separating means for separating the heating element 2 downward from the partition wall 30 by a predetermined distance. For example, as shown in FIG. 10, a protrusion 40 protruding downward is formed on the lower surface of the partition wall 30 as a heating element separation means. The heating element 2 is separated downward from the partition wall 30 by the height of the projection 40, and the two are prevented from coming into close contact with each other. Therefore, even when the bubbles a generated on the upper surface 2a of the heating element 2 accumulate in a layered manner, the bubbles a accumulated in the layered state do not adhere to and stay on the upper surface 2a of the heating element 2, but are separated upward from there. The bubbles a are discharged upward through a large number of through holes 32 formed in the partition wall 30 located on the lower surface of the partition wall 30. Therefore, the heat dissipation efficiency of the heating element 2 is increased, and damage to the heating element 2 due to heat is prevented.
[0042]
In addition, you may form a protrusion in the upper surface 2a of the heat generating body 2 as a heat generating body separation means. Further, as shown in FIG. 11, the locking protrusion 9 as described above is formed as a heating element separating means on the inner surface of the body portion, and the heating element 2 is controlled by restricting the rising of the heating element 2 by the locking protrusion 40. It may be spaced apart from the partition wall 30 by a predetermined distance.
[0043]
Moreover, it is good also as a structure which the heat generating body 2 rock | fluctuates by using the approximate center part as a fulcrum. For example, as shown in FIG. 12, the pivot protrusion 50 is formed at the substantially central portion of the lower surface of the flat plate-like heating element 2, and the pivot protrusion 51 is also formed at the substantially central portion of the lower surface of the partition wall 30. The protrusions 40 pivot the heat generating body 2 to be swingable between the partition wall 30 and the bottom inner surface. When water is poured into such a container and heated, the heating element 2 swings up and down around the horizontal state by the upward movement of the bubbles a generated on the surface of the heating element 2, particularly the lower surface 2 b thereof. By such a swinging operation of the heating element 2, the bubbles a attached to the surface of the heating element 2 are quickly separated.
[0044]
In addition, you may form a pivot protrusion in each of the upper and lower surfaces of the heat generating body 2, or conversely form a pivot protrusion in the bottom inner surface and the partition wall 30, respectively. Further, the heating element 2 itself is formed in a mortar shape, for example, and the heating element 2 can be configured to be swingable by making the substantially central portion of the lower surface sharp, so that the heating element 2 can swing. Various changes can be made to the configuration.
Further, the heating element 2 may be configured to be swingable without providing the partition wall 30. In that case, the heating element 2 is pivotably supported by the heating element 2 or the pivot protrusion on the inner surface of the bottom. However, if the heating element 2 is configured to be swingable when the partition wall 30 is provided, the bubbles a are less likely to accumulate on the lower surface of the partition wall 30 due to the swinging operation of the heating element 2, and even if the bubbles a accumulate, It is preferable because the bubble a is easily discharged from the through hole 32 of the partition wall 30 by the operation.
[0045]
In the above embodiment, since the container main body 1 has a cylindrical shape, the heating element 2 has a disk shape correspondingly. However, the heating element 2 can be polygonal without matching the shape of the container main body 1. Also, the container body 1 may be rectangular as well as cylindrical.
[0046]
The heating element preferably includes a heating element body made of an aluminum sheet and a covering portion made of a synthetic resin that covers the heating element body. The heat generating body is made of an aluminum sheet, which is economical, and the thin aluminum sheet is covered with a covering to protect the heat generating body and improve its durability. Will also improve. On the other hand, there is concern about the heat dissipation surface of the aluminum sheet due to the presence of the covering portion, but the heat dissipation efficiency of the heating element is increased by using various solutions as described above, so that the heat damage is effectively prevented. can do.
[0047]
【The invention's effect】
As described above, when a liquid such as water is put into the container according to the present invention and heated, the bubbles of water vapor generated on the surface of the heating element are efficiently separated from the heating element, so that the bubbles are layered on the surface of the heating element. Without being accumulated, it is possible to prevent damage to the heating element caused by the heat.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a container for induction heating cooking according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the same container.
FIG. 3 is a cross-sectional view of a main part showing a use state of the container.
FIG. 4 is a partial cross-sectional view of a heating element used in the container.
FIG. 5 is a perspective view showing a heating element of a container for induction heating cooking according to another embodiment.
FIG. 6 is a cross-sectional view of a main part showing a use state of an induction heating cooking container in another embodiment.
FIG. 7 is a cross-sectional view of a main part showing a use state of an induction heating cooking container in another embodiment.
FIG. 8 is a cross-sectional view of a main part showing a use state of an induction heating cooking container in another embodiment.
FIG. 9 is a plan view showing an induction heating cooking container in another embodiment.
FIG. 10 is a cross-sectional view of an essential part showing a use state of an induction heating cooking container in another embodiment.
FIG. 11 is a cross-sectional view of a main part showing a use state of an induction heating cooking container in another embodiment.
FIG. 12 is a cross-sectional view of an essential part showing a use state of an induction heating cooking container in another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container main body, 2 ... Heat generating body, 3 ... trunk | drum, 4 ... bottom part, 9 ... Locking protrusion (regulation means, heat generating body separation means) 10, 31, 32 ... Through-hole, 20 ... Projection, 21 DESCRIPTION OF SYMBOLS ... Bubble discharge path, 22 ... Rib (projection), 23 ... Mounting part, 30 ... Partition wall, 34 ... Notch, a ... Bubble, 40 ... Protrusion (heating element separation means), 50, 51 ... Pivot protrusion, 60 ... heating element body, 61 ... covering section

Claims (1)

非導電性材料からなる容器本体と、該容器本体の底部内面に載置されるように容器本体内に入れられて電磁誘導によって発熱する板状の発熱体とを備えた誘導加熱調理用容器において、In an induction heating cooking container comprising: a container body made of a non-conductive material; and a plate-like heating element that is placed in the container body and generates heat by electromagnetic induction so as to be placed on the bottom inner surface of the container body ,
発熱体は、その略中央部を支点として揺動可能に構成されていることを特徴とする誘導加熱調理用容器。An induction heating cooking container, wherein the heating element is configured to be swingable about a substantially central portion thereof.
JP2003132991A 2003-05-12 2003-05-12 Induction heating cooking container Expired - Fee Related JP4137693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132991A JP4137693B2 (en) 2003-05-12 2003-05-12 Induction heating cooking container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132991A JP4137693B2 (en) 2003-05-12 2003-05-12 Induction heating cooking container

Publications (2)

Publication Number Publication Date
JP2004329748A JP2004329748A (en) 2004-11-25
JP4137693B2 true JP4137693B2 (en) 2008-08-20

Family

ID=33507656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132991A Expired - Fee Related JP4137693B2 (en) 2003-05-12 2003-05-12 Induction heating cooking container

Country Status (1)

Country Link
JP (1) JP4137693B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071568A1 (en) * 2005-12-20 2007-06-28 Arcelik Anonim Sirketi A cooking container for induction heaters
JP5340568B2 (en) * 2007-08-21 2013-11-13 大日本印刷株式会社 Electric cooker container
JP5495296B2 (en) * 2009-08-06 2014-05-21 大和製罐株式会社 Induction heating cooking container
CN105832130B (en) * 2015-01-15 2017-10-24 西安科弘厨房工程设备有限责任公司 steam/electromagnetic heating frying pan
JP2016158885A (en) * 2015-03-02 2016-09-05 昶 林 Boil over preventer
JP7429518B2 (en) * 2019-11-01 2024-02-08 パーソルエクセルHrパートナーズ株式会社 liquid heating device
DE102021106932A1 (en) 2021-03-20 2022-09-22 Xinco GmbH Cookware for an induction hob

Also Published As

Publication number Publication date
JP2004329748A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
KR100491255B1 (en) Container lid including venting and denesting features
CA1100773A (en) Serving dish
JP4137693B2 (en) Induction heating cooking container
JP2022084140A (en) Microwave adaptable food packaging container
JP2016214429A (en) Electric water heater
JP5335116B1 (en) Cooling lid for stacked containers
JP5081317B1 (en) Cooking container
JP2019076661A5 (en)
JP4110516B2 (en) Microwave food container
JP2008050052A (en) Heating container for microwave oven
US20090194544A1 (en) Fluid retention package system
JP7323923B2 (en) Thermal cooker
JP3335297B2 (en) Electric rice cooker
JP5125211B2 (en) Electric rice cooker
JP4185438B2 (en) Heating element for induction cooking
KR101281244B1 (en) Cooking case with cap
JP5169009B2 (en) Electric rice cooker
JP2003111668A (en) Container for induction heat-cooking
JP2004008489A (en) Cooking vessel
JP2001029230A (en) Electric hot water vessel
JP4579462B2 (en) Induction heating cooking container
CN219249907U (en) Fryer assembly and air fryer
JPS591977Y2 (en) container for noodles
JP2008259557A (en) Electric rice cooker
KR20060124369A (en) Cooking implement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees