JP4136541B2 - ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD - Google Patents

ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD Download PDF

Info

Publication number
JP4136541B2
JP4136541B2 JP2002246449A JP2002246449A JP4136541B2 JP 4136541 B2 JP4136541 B2 JP 4136541B2 JP 2002246449 A JP2002246449 A JP 2002246449A JP 2002246449 A JP2002246449 A JP 2002246449A JP 4136541 B2 JP4136541 B2 JP 4136541B2
Authority
JP
Japan
Prior art keywords
solar cell
cell module
roof material
roofing material
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002246449A
Other languages
Japanese (ja)
Other versions
JP2004087769A (en
Inventor
隆 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002246449A priority Critical patent/JP4136541B2/en
Publication of JP2004087769A publication Critical patent/JP2004087769A/en
Application granted granted Critical
Publication of JP4136541B2 publication Critical patent/JP4136541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、横葺き式屋根材(瓦)の表面に薄膜太陽電池を敷設した屋根材一体型太陽電池モジュール,およびその敷設方法に関する。
【0002】
【従来の技術】
頭記の屋根材一体型太陽電池モジュールとして、横葺き式瓦の屋根材に薄膜太陽電池を直接敷設し、その太陽電池の出力端子リードを一段上に並ぶ屋根材の裏面側に引き出してここに配線した給電ケーブルに接続するように構成したものが本発明と同じ出願人より特開2000−91618号として先に出願されており、その構成を図11,12に示す。
【0003】
まず、図11(a) 〜(c) は瓦形状になる屋根材の表面に太陽電池モジュールを敷設した屋根材1枚分のユニット、図12は前記ユニットを建屋の屋根に葺いて太陽電池モジュールを給電ケーブルに接続した状態を表す図であり、図において、1は屋根材、2は屋根材の表面に敷設した太陽電池モジュール、3は屋根材1を葺く屋根の野地板である。
【0004】
ここで、屋根材1は防錆処理を施した通常の鋼板,ステンレス鋼板,アルミ板あるいはセメント,モルタル,スレート,陶磁器などの不燃性の建材を素材として、図示のように前端から下向きに屈曲して垂下延在する前壁部1aを形成した断面L字形の瓦になる。なお、屋根材1の前壁部1aは、図12に示す使用状態で、一段下に並ぶ屋根材1との間との隙間から雨が内側に浸入するのを防ぐ役目を果たす。一方、太陽電池モジュール2は、詳細構造を後記する薄膜太陽電池4,および薄膜太陽電池4の出力端子に導電性テープ5などで接続して左右両側縁から後方に引き出したプラス極(+),マイナス極(−)の箔状端子リード6,7をサンドイッチ状に挟んでその表裏両面を透明なシート状の封止材8で封止し、さらに耐候性の高い表面保護材9を積層してラミネートした構造になり、前記屋根材1の上面面域に接着剤で貼り付けてその端子リード6,7を屋根材1の後縁から適宜な長さを持たせて背後に引き出し、さらに各端子リード6,7にコネクタ6a.7aを取付けた構成になる。なお、封止材8は例えばEVA(エチレン−酢酸ビニル共重合体)、表面保護材9にはETFEなどのフッ素系樹脂フィルムが採用される。
【0005】
そして、図12で示すように、屋根材1を野地板3の傾斜面に沿い前後端が重なるように配列して葺いた状態で、個々の屋根材1から背後に引き出した端子リード6,7のコネクタ6a,7aを一段上に並ぶ屋根材1の裏面側に引回して配線した給電ケーブル10に接続するようにしている。なお、屋根材1を野地板3に固定するには、図11(a) で示すように屋根材の後部側に開けた穴1bに針金を通して野地板3に固定する。
【0006】
次に、前記した太陽電池モジュール2の薄膜太陽電池4の詳細構造を図13で説明する。この薄膜太陽電池はフレシキブルなプラスチックシートを基板として、この基板上にアモルファスシリコン(a-Si)形の光電変換素子,透明電極,裏面電極,および接続電極をパターンニングした直列接続構造になり、本発明と同一出願人よりSCAF(Series Connection through Apertures on Film)と名付けて特開平10−233517号公報,特開2000−223727号公報などで出願されている。
【0007】
すなわち、図13に示す薄膜太陽電池4において、11はフレキシブルなシート状のプラスチック基板、12はプラスチック基板11の受光面側に形成した光電変換層(a-Si)、13は光電変換層12の受光面に形成した透明電極、14は光電変換層2の裏面電極、15はプラスチック基板11の裏面に形成した背面電極(接続電極)、16はプラスチック基板11を貫通して透明電極13と背面電極15との間を導通する集電ホール(スルーホール)、17は背面電極15と裏面電極14との間を導通する直列ホールであり、透明電極13,光電変換層12および裏面電極14には定ピッチ間隔おきにセル分割溝18をレーザースクライブしてアレイ状に並ぶ複数の短冊状ユニットセル20に分離し、さらにユニットセル20の配列と半ピッチずらして、プラスチック基板11の裏面側に形成した背面電極15にセル分割溝19をレーザースクライブしている。
【0008】
かかる構成で、太陽電池の受光面に照射した太陽光は透明電極13を透過して光電変換層12に入射し、各ユニットセル20の領域で光電変換層12に発生した電流が透明電極13に集められる。また、透明電極13は集電ホール16→背面電極15→直列ホール17を経て隣接するユニットセル20の裏面電極14に接続されており、これによりユニットセル20の相互間が直列接続される。
【0009】
前記したプラスチックフィルム基板型の薄膜太陽電池は、電池製造のための材料入手の制約が少なくて量産性(Roll to Roll 方式) にも優れているおり、さらにこの薄膜太陽電池を先述のように樹脂封止材8,表面保護材9で封止した太陽電池モジュール2は軽量で柔軟性があることから、その特長を活かして様々な用途への応用が提案されており、その応用の一つとして住宅などの屋根に葺く瓦などの屋根材に太陽電池モジュールを敷設し、屋根に照射する太陽光のエネルギーを利用して電力を得るようにした太陽電池発電システムの普及化が進んでいる。
【0010】
【発明が解決しようとする課題】
ところで、前記した屋根材一体形太陽電池を普及させるには、限られた屋根材の設置面積を如何に有効利用して太陽電池の発電量を増やすかが大きな課題となる。
【0011】
かかる観点から図11に示した従来の屋根材一体形太陽電池モジュールを検討すると、従来構造では太陽電池モジュール2が屋根材1の上面面域にのみ敷設されている。一方、図12のように屋根材1を屋根に葺いた使用状態では、瓦形の屋根材1に対して太陽光Sは屋根材1の上面域のみならず前面壁1aにも照射する。この場合に、屋根材1の上面域,前壁部1aは太陽光Sに対する相対角度が異なるために各面域の日射量は時々刻々変わるが、従来構造の屋根材一体形太陽電池モジュールでは、屋根材の前面壁1aが非発電面域となっていて該面域に照射する太陽光のエネルギーは全く利用されてない。
【0012】
本発明は上記の点に鑑みなされたものであり、その目的は外形寸法の限られた屋根材の表面積を最大限有効に生かして屋根材一枚当たりの発電量の増量化を図り、併せてこの瓦形屋根材の形状に適合した太陽電池モジュールのセル構造,およびその敷設方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために本発明によれば、横葺き式屋根材の表面に太陽電池モジュールを敷設した屋根材一体型太陽電池モジュールであって、屋根材はその前端から下向きに延在する前壁部を形成した瓦であり、太陽電池モジュールはフレシキブルな基板としてその受光面側に光電変換層として短冊状のセルユニットおよび各電極層をアレイ状に配列してその相互間を直列接続した薄膜太陽電池、ならびに薄膜太陽電池の出力端子に接続して左右側縁から後方に引き出したプラス極およびマイナス極のコネクタ付き端子リードをシート状の封止材および耐候性のある表面保護材で封止した構成になり、該太陽電池モジュールを前記屋根材の表面に貼り付けてその端子リードを屋根材の背後に引き出したものにおいて、
前記薄膜太陽電池を屋根材の上面および前壁面の両面域にまたがって敷設し、さらに、屋根材に対して、前記薄膜太陽電池のセルユニットのアレイを屋根材の幅(左右)方向に配列して敷設したものとする(請求項1)。
【0014】
発明によれば、限られた寸法の屋根材の表面積を最大限有効に生かして屋根材一枚当たりの発電量増加を図るようにすることができる。また、屋根材に対して、薄膜太陽電池のセルユニットのアレイを屋根材の幅(左右)方向に配列して敷設したことにより、太陽電池モジュールを屋根材に敷設した状態での薄膜太陽電池の各セルユニットにおける発電 量のバランスを確保することができる。
【0015】
上記発明の実施態様としては、屋根材および薄膜太陽電池のセル構造を次記のように構成するものとする。
【0016】
(1) 屋根材の上面から前壁部に移行するコーナー部分の屈曲面を円弧状の面(R面)に形成し(請求項)、かつこのR面の曲率半径を少なくとも10mm以上にして(請求項)、薄膜太陽電池の折り曲げ面域に集中して加わる応力の緩和を図るようにする。
【0017】
(2) 一方、前記太陽電池モジュールのフレシキブルな基板はプラスチックシートとし、また後記するように屋根材を鋼板製とし、その鋼板の平板状態で太陽電池モジュールを敷設した後に、曲げ加工を施して前壁部を屈曲形成する敷設方法を採用する場合のセル構造として、屋根材のコーナー部分に対応する太陽電池モジュールの面域に薄膜太陽電池本体を貫通して左右方向にスリットを形成し(請求項)、太陽電池モジュールの曲げ方向に対する伸びに自由度を確保するようにした構成とする、具体的には前記スリットを断続的に分散して千鳥状に形成し、かつ個々のスリット長さを薄膜太陽電池のセルユニット幅よりも小に設定する(請求項)ことで、セルユニットの通電機能を阻害せずに屋根材の曲げ加工に伴って薄膜太陽電池の曲げコーナー部に加わる応力集中の緩和が図れる。
【0018】
(3) さらに、前項(2) において、スリット加工に伴って光電変換層,電極層のせん断面に生じた返り,変形などが原因で薄膜太陽電池の光電変換層が電気的に短絡する危惧がある場合には、そのバックアップ手段として、スリットの形成領域を囲んで薄膜太陽電池の基板上に形成した光電変換層および電極層に分離溝を成形してスリット形成領域を他のセル領域と電気的に分断し(請求項)、スリットの加工が原因で太陽電池の発電能に支障を来すことがないようにすることができる。
【0019】
(4) また、前記の各項のように太陽電池モジュールを折り曲げて屋根材に敷設する際に柔軟な撓み性を確保するためには、太陽電池モジュールの封止材を厚さ1mm以下,表面保護材の厚さを100μm以下とするのがよい(請求項)。
【0020】
(5) また、屋根材に敷設した太陽電池モジュールの剥離を防いで長期使用の信頼性を高めるために、屋根材の後部側に水返しを形成した上で、屋根材に敷設した太陽電池モジュールの前縁を屋根材の前壁部の下縁側に折り返して貼り付けようにすることができる(請求項)。
【0021】
また、前記構成の屋根材一体型太陽電池モジュールの敷設方法として、本発明によれば、あらかじめ瓦形に成形された屋根材に対して、その上面および前壁部にまたがって太陽電池モジュールを貼り付ける敷設方法(請求項)のほかに、屋根材を鋼板製としてその前壁部を曲げ加工する以前の平板状態で太陽電池モジュールを貼り付け、その後に屋根材に曲げ加工を施して瓦形状に成形する敷設方法(請求項10)がある。
【0022】
なお、上記した二つの敷設方法はそれぞれ一長一短があるが、屋根材に太陽電池モジュールを貼り付ける作業性を考えた場合には、鋼板(板厚1mm以下の薄鋼板)の平板状態でその表面に太陽電池モジュールを貼り付けた後、曲げ加工を施す方法を採用すれば貼り付け作業が簡単に行えて量産性が向上する。また、太陽電池モジュールを貼り付けた後に屋根材を曲げ加工して前壁部を形成するには、例えば太陽電池モジュールにクッション材などを重ねて保護しながらロール曲げ,あるいは型曲げ加工を施すことで容易に対応できる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図10に示す実施例に基づいて説明する。なお、各実施例の図中で図11,図12に対応する部材には同じ符号を付してその詳細な説明は省略する。
【0024】
〔実施例1〕
まず、本発明の実施例による屋根材一体型太陽電池モジュールの基本構造を図1〜図3に示す。この実施例においては、図1(a),(b) で示すように前端側に下向きに延在する前壁部1aを形成した瓦形の屋根材1に対して、太陽電池モジュール2の薄膜太陽電池4が、屋根材1の上面域からさらに延長して前壁部1aの前面を覆う面域にまたがって敷設されている。
【0025】
ここで、図示例の屋根材1は鋼板(板厚1mm以下)を板金加工して前壁部1aを成形した瓦形状になり、その上面域から前壁部1aに移行するコーナー部1cを円弧状のR面として、そのR面の曲率半径は少なくとも10mm以上に設定して形成されている。
【0026】
また、太陽電池モジュール2は基本的に図11〜図13に示した従来のものと同様な構造であるが、その面積は前記のように屋根材1の上面および前壁部1aを含めた全表面域に敷設するように拡大した上で、さらにモジュールに柔軟な曲げ性を付与して太陽電池のセルに与える曲げ応力の影響を低く抑えるために、この実施例では薄膜太陽電池4の表裏両面に被着したシート状封止材(例えばEVA)8の厚さを1mm以下,好ましくは0.5mm以下とし、表面保護材(ETFE)9の厚さを100μm以下,好ましくは50μm以下とする。
【0027】
なお、図1(a) の図中に表示したA〜Dのうち、Aは屋根材1の前後方向に対応する太陽電池モジュール2の全長,Bは屋根材1の上面に対応する面域長さ,Cは前壁部1aに対応する面域長さ、Dは屋根材の1の上面から前壁部1aに移行するコーナー部1cに対応する面域長さを表している。
【0028】
図2は上記構成の屋根材一体型太陽電池モジュールを使用して屋根を葺いた状態を表しており、太陽光Sは図1(a) に示した太陽電池モジュール2の敷設面域A(A=B+C+D)に照射するので、図12に示した従来構成(太陽電池モジュール2の敷設面域は図1のB面域に対応する)と比べて屋根材一枚当たりの発電量が増加する。
【0029】
また、図3は前記太陽電池モジュール2の薄膜太陽電池4にパターン形成したユニットセル20(図13参照)の配列を表した展開図であり、この実施例では図示のようにプラスチック基板11の受光面側に配列してアレイ状にパターン形成したユニットセル20について、屋根材の幅(左右)方向をX,上下方向をYとして、個々のユニットセル20はそのセルの長辺をY方向に沿わせてA面域の全長に延在させ、X方向に配列した各ユニットセル20の間を図13で述べたように電極層,直列ホールを介して電気的に直列接続している。
【0030】
これにより、太陽電池モジュール2を図1のように瓦形屋根材1の上面および前壁部1aの両面域にまたがって敷設し、図12のように屋根に葺いた状態で太陽光Sの照射を受けた場合に、上面域Bと前面域Cの相対角度の相違から太陽光Sの入射量が異なっても、左右にアレイ配列した各セルユニット20の発電量は常にバランスする。
【0031】
これに対して、薄膜太陽電池のセルユニット20を図4で示すようにX,Yに対する向きを変えて上下方向にアレイ配列すると、屋根材の上面に対応するB面域のセルユニット20と、屋根材の前壁部に対応するC面域のセルユニット20とでは、太陽光入射量の相違から発電量が異なるために、太陽電池モジュール全体としての発電性能が極端に低下するような状況が生じる。例えば、太陽が真上に来て屋根材1の前壁部1a(C面域)に殆ど太陽光が当たらない状態になると、C面域に配列したユニットセル20は自由電子,自由ホールの発生がなくて出力が殆どゼロとなるとともに、そのユニットセル自身はシリコン材料,電極材料により大きな電気抵抗を呈し、その結果として太陽電池モジュール全体の出力が極端に低下して太陽電池としての発電機能を十分に発揮できなくなる。
【0032】
かかる点、薄膜太陽電池のセルユニット20を図3のような向きに合わせて配列すれば、各セルユニット20の発電量が常にバランスするので、太陽電池モジュール全体で発電機能が極端に低下する不具合を回避できる。
【0033】
〔実施例2〕
次に、屋根材1に太陽電池モジュール2を敷設する方法について、本発明の請求項10に対応する実施例を図5で説明する。すなわち、先記の実施例1では、鋼板を板金加工して瓦形に成形した屋根材1に対して、太陽電池モジュール2を後貼りしているが、屋根材1の先端形状がL字形に屈曲しているために貼り付けがやり難いといった作業上の問題がある。
【0034】
そこで、この実施例では図5(a) で示すように屋根材1の鋼板を曲げ加工する以前の平板状態で、太陽電池モジュール2を屋根材1の表面に貼り付け、その後に鋼板にロール曲げあるいは型曲げ加工を施して、図5(b)に示すように前壁部1aを形成するようにしている。なお、この曲げ加工の際に太陽電池モジュール2に、図示しないクッション材を重ね合わせるか、あるいは曲げ加工の治具側にクッション材を取付けて曲げ加工することで、太陽電池に損傷を与えることなく曲げ加工が行える。
【0035】
この敷設方法によれば、太陽電池モジュール2の貼り付け作業が容易となるので機械作業でも簡単に対応できて量産性が向上する。
【0036】
〔実施例3〕
次に、実施例2で述べた敷設方法の適用に好適な本発明の請求項に対応する太陽電池モジュールのセル構造を図6,図7に示す。
【0037】
すなわち、図5で述べたように平板の鋼板に太陽電池モジュール2を貼り付けた状態で屋根材1の前壁部1aを曲げ加工すると、太陽電池モジュール2の薄膜太陽電池4には折り曲げコーナーに対応する面域Dに大きな曲げ応力が加わり、特にプラスチック基板の受光面側に形成した光電変換層および電極層に対しては引張応力として作用してセルが損傷するおそれがある。
【0038】
そこで、この実施例では、屋根材1の曲げコーナー部分に対応する太陽電池モジュール2の面域Dに薄膜太陽電池4を貫通して左右方向にスリット21を形成するものとし、そのスリット2は図示のように断続的に分散させて千鳥状に形成している。また、個々のスリット長さは薄膜太陽電池4における各セルユニット20(図13参照)の横幅よりも小に設定してセルの通電機能を確保するようにしている。
【0039】
このように、折り曲げコーナー部分の面域Dに対応して薄膜太陽電池2にスリット21を千鳥状に形成しておくことにより、この領域は前後方向への伸びに対してある程度の自由度が確保される。したがって、実施例2で述べた敷設方法を採用して、太陽電池モジュール2を平板の鋼板に貼り付けた後に屋根材1に曲げ加工を施しても、薄膜太陽電池4の曲げコーナー部分に過大な応力が集中するのを回避できる。
【0040】
また、薄膜太陽電池4にスリット加工を施すと、スリット21のせん断面に返り,変形が生じて光電変換層12が短絡状態(透明電極13と裏面電極14とが物理的に接触する)となるおそれがあることから、図示実施例ではそのバックアップ手段として、スリット21の形成領域を囲んで薄膜太陽電池4のプラスチック基板11上に形成した光電変換層12および透明電極13,裏面電極14に分離溝22をレーザースクライブし、スリット21の形成領域を他のセル領域から電気的に分断するようにしている。これにより、スリット加工の際にスリット形成領域内で太陽電池に局部的なセルの短絡状態が生じても、その影響が他のセル領域に及ぶことがないので太陽電池としての発電機能を確保できる。
【0041】
〔実施例4〕
次に、先記の各実施例で述べた屋根材一体型太陽電池モジュールの応用実施例として、耐久性,信頼性の向上を図った実施例の構成を図8〜図10に示す。
【0042】
まず、図8の実施例では、屋根材1の後部上面に左右方向に延在する水の侵入を防ぐための水返し1dを形成した上で、さらに屋根材の表面に貼り付けた太陽電池モジュール2の先端を屋根材1の前壁部1aの下縁に折り返し、この折り返し部2aを前壁部1aの裏面に接着している。これにより、屋根材1を上下段に組み合わせて屋根に葺いた状態で、水返し1dが太陽電池モジュール2の上面と一段上に並ぶ屋根材との間の隙間から雨水が内側に浸入するのを阻止する。また、屋根材1に貼り付けた太陽電池モジュール2の折り返し部2aが一段下に並ぶ屋根材との間に挟まれるので、長期使用中に太陽電池モジュール2が屋根材1から剥離するといった不具合が防げて信頼性が高まる。
【0043】
また、図9,図10は鋼板製の屋根材に適用した例であり、この構成では屋根材1の後縁部分を上向きに湾曲状に折り返して水返し1dを曲げ加工により形成した上で、この水返し1dの壁面に沿って太陽電池モジュール2の端子リード6,7を背後に引き出すようにし、さらに太陽電池モジュール2の先端部分は屋根材1の前壁部1aと重ね合わせて内側に折り曲げている。この構成により、図8で述べた構成と同様に雨水の浸入および太陽電池モジュールの剥離を防止して信頼性,耐久性を高めることができる。
【0044】
【発明の効果】
以上述べたように、本発明によれば、断面L字状の瓦形屋根材に対し、その表面に薄膜太陽電池を敷設した屋根材一体型太陽電池モジュールにおいて、薄膜太陽電池を屋根材の上面および前壁の両面域にまたがって敷設したことにより、外形寸法の限られた屋根材の表面積を最大限有効に生かして発電面域を拡大し、屋根材一枚当たりの発電量増加を図ることができる。また、屋根材に対して、薄膜太陽電池のセルユニットのアレイを屋根材の幅(左右)方向に配列して敷設したことにより、太陽電池モジュールを屋根材に敷設した状態での薄膜太陽電池の各セルユニットにおける発電量のバランスを確保することができる。
【0045】
また、その実施の態様として請求項2〜10のセル構造および敷設方法を採用することにより、薄膜太陽電池の発電機能を損なうことなしに、信頼性,耐久性の高い屋根材一体型太陽電池モジュールを提供できる。
【図面の簡単な説明】
【図1】 本発明の実施例による屋根材1枚分の屋根材一体形太陽電池モジュールの基本的なユニット構造図で、(a),(b) はそれぞれ側面図,および平面図
【図2】 図1のユニットを屋根の野地板に沿って葺いた状態を表す側面図
【図3】 図1における薄膜太陽電池にパターン形成したセルユニットのアレイ配列を表した太陽電池モジュールの展開図
【図4】 図3と異なる向きにセルユニットを配列した太陽電池モジュールの展開図
【図5】 本発明の実施例2に対応する太陽電池モジュール敷設方法の説明図で、(a),(b) はそれぞれ屋根材に太陽電池モジュールを貼り付ける前,および太陽電池モジュールを貼り付けて屋根材を曲げ加工した状態を表す図
【図6】 本発明の実施例3に対応して折り曲げ領域にスリットを形成した薄膜太陽電池の平面図
【図7】 図6における矢視X−Xの拡大断面図
【図8】 本発明の実施例4に対応する屋根材一体型太陽電池モジュールの側視断面図
【図9】 図8と異なる実施例を示す屋根材一体型太陽電池モジュールの側視断面図
【図10】 図9の太陽電池モジュールを屋根に葺いた状態を表す側面図
【図11】 従来における屋根材一体形太陽電池モジュールのユニット構造で、(a) は平面図、(b) は側面図、(c) は太陽電池モジュールの断面図
【図12】 図11に示した太陽電池モジュールのユニットを屋根に葺いた状態を表す側面図
【図13】 図11における薄膜太陽電池の詳細構造図
【符号の説明】
1 屋根材
1a 前壁部
1c コーナー部
1d 水返し
2 太陽電池モジュール
2a 折り返し部
4 薄膜太陽電池
6,7 端子リード
6a,7a コネクタ
8 封止材
9 表面保護材
11 薄膜太陽電池のプラスチック基板
12 光電変換層
13 透明電極
14 裏面電極
15 背面電極
18,22 分離溝
20 セルユニット
21 スリット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a roofing material integrated solar cell module in which thin-film solar cells are laid on the surface of a horizontal roofing material (tile), and a laying method thereof.
[0002]
[Prior art]
As the roofing material integrated solar cell module described above, thin-film solar cells are directly laid on the roofing tile roofing material, and the output terminal leads of the solar cells are pulled out to the back side of the roofing material lined up here. An application that is configured to connect to a wired power supply cable has been previously filed as Japanese Patent Application Laid-Open No. 2000-91618 by the same applicant as the present invention, and its configuration is shown in FIGS.
[0003]
First, FIGS. 11A to 11C are units for one roof material in which a solar cell module is laid on the surface of a roof material having a tile shape, and FIG. 12 is a solar cell module by placing the unit on the roof of a building. In the figure, reference numeral 1 denotes a roofing material, 2 denotes a solar cell module laid on the surface of the roofing material, and 3 denotes a roof base plate covering the roofing material 1.
[0004]
Here, the roofing material 1 is made of a normal steel plate, stainless steel plate, aluminum plate or a non-combustible building material such as cement, mortar, slate, ceramics, etc., and bent downward from the front end as shown in the figure. Thus, a roof tile having an L-shaped cross section in which a front wall portion 1a extending downwardly is formed. In addition, the front wall part 1a of the roofing material 1 plays the role which prevents rain from entering inside from the clearance gap between the roofing materials 1 arranged in a step down in the use state shown in FIG. On the other hand, the solar cell module 2 is connected to output terminals of a thin film solar cell 4 and a thin film solar cell 4 whose detailed structure will be described later with a conductive tape 5 or the like, and is pulled out rearward from the left and right side edges. The negative electrode (−) foil-like terminal leads 6 and 7 are sandwiched, and both front and back surfaces are sealed with a transparent sheet-like sealing material 8, and a surface protection material 9 having high weather resistance is laminated. The laminated structure is affixed to the top surface area of the roofing material 1 with an adhesive, and the terminal leads 6 and 7 are pulled out from the rear edge of the roofing material 1 with an appropriate length, and each terminal. Connectors 6a. 7a is attached. The sealing material 8 is, for example, EVA (ethylene-vinyl acetate copolymer), and the surface protective material 9 is a fluorine resin film such as ETFE.
[0005]
Then, as shown in FIG. 12, the terminal leads 6, 7 pulled out from the individual roofing material 1 in a state where the roofing material 1 is arranged along the inclined surface of the field board 3 so that the front and rear ends overlap each other. The connectors 6a and 7a are routed to the back surface side of the roofing material 1 arranged in a row and connected to the power feeding cable 10 wired. In order to fix the roofing material 1 to the baseboard 3, as shown in FIG. 11 (a), the roofing material 1 is fixed to the baseboard 3 through a wire in a hole 1b opened on the rear side of the roofing material.
[0006]
Next, the detailed structure of the thin film solar cell 4 of the above-described solar cell module 2 will be described with reference to FIG. This thin-film solar cell has a series connection structure in which a flexible plastic sheet is used as a substrate and an amorphous silicon (a-Si) photoelectric conversion element, transparent electrode, back electrode, and connection electrode are patterned on this substrate. The same applicant as the invention has applied for SCAF (Series Connection through Apertures on Film) in Japanese Patent Application Laid-Open Nos. 10-233517 and 2000-223727.
[0007]
That is, in the thin film solar cell 4 shown in FIG. 13, 11 is a flexible sheet-like plastic substrate, 12 is a photoelectric conversion layer (a-Si) formed on the light receiving surface side of the plastic substrate 11, and 13 is the photoelectric conversion layer 12. The transparent electrode formed on the light receiving surface, 14 is the back electrode of the photoelectric conversion layer 2, 15 is the back electrode (connection electrode) formed on the back surface of the plastic substrate 11, and 16 is the transparent electrode 13 and the back electrode penetrating the plastic substrate 11. A current collecting hole (through hole) that conducts to 15, and 17 a series hole that conducts between the back electrode 15 and the back electrode 14, and the transparent electrode 13, the photoelectric conversion layer 12, and the back electrode 14 are fixed to each other. The cell dividing grooves 18 are laser scribed at intervals of the pitch to separate them into a plurality of strip-shaped unit cells 20 arranged in an array. Slide switch, and laser scribing a cell dividing groove 19 in the back electrode 15 formed on the back side of the plastic substrate 11.
[0008]
With this configuration, sunlight irradiated on the light receiving surface of the solar cell passes through the transparent electrode 13 and enters the photoelectric conversion layer 12, and current generated in the photoelectric conversion layer 12 in the region of each unit cell 20 is applied to the transparent electrode 13. Collected. Further, the transparent electrode 13 is connected to the back electrode 14 of the adjacent unit cell 20 through the current collecting hole 16 → the back electrode 15 → the series hole 17, whereby the unit cells 20 are connected in series.
[0009]
The plastic film substrate type thin film solar cell described above has few restrictions on material acquisition for battery production and is excellent in mass productivity (Roll to Roll method). Since the solar cell module 2 sealed with the sealing material 8 and the surface protection material 9 is lightweight and flexible, it has been proposed to be used for various purposes by taking advantage of its features. A solar cell power generation system in which a solar cell module is laid on a roof material such as a tile that runs on a roof of a house and the solar cell power generation system obtains electric power by using the energy of sunlight irradiated on the roof has been spreading.
[0010]
[Problems to be solved by the invention]
By the way, in order to spread the above-described roof material-integrated solar cells, how to effectively use the limited installation area of the roof material to increase the power generation amount of the solar cells becomes a big issue.
[0011]
Considering the conventional roof material integrated solar cell module shown in FIG. 11 from this point of view, the solar cell module 2 is laid only on the upper surface area of the roof material 1 in the conventional structure. On the other hand, when the roof material 1 is used on the roof as shown in FIG. 12, the sunlight S irradiates not only the upper surface area of the roof material 1 but also the front wall 1 a. In this case, the amount of solar radiation in each surface area varies from moment to moment because the upper surface area of the roof material 1 and the front wall portion 1a are different in relative angle to the sunlight S. However, in the roof material integrated solar cell module of the conventional structure, The front wall 1a of the roof material is a non-power generation surface area, and the energy of sunlight irradiated to the surface area is not used at all.
[0012]
The present invention has been made in view of the above points, and its purpose is to maximize the surface area of the roofing material with limited outer dimensions to maximize the amount of power generation per roofing material. The object is to provide a cell structure of a solar cell module adapted to the shape of the tile-shaped roof material, and a method for laying the cell structure.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a roof material-integrated solar cell module in which a solar cell module is laid on the surface of a horizontal roofing material, wherein the roof material extends downward from its front end. A solar cell module is a thin film in which strip-like cell units and photoelectric layers are arranged in an array on the light receiving surface side of the solar cell module as a flexible substrate, and the electrode layers are arranged in an array and connected in series. The terminal leads with positive and negative connectors connected to the output terminals of the solar cell and thin-film solar cell and pulled out from the left and right side edges are sealed with a sheet-like sealing material and a weather-resistant surface protective material In the configuration in which the solar cell module is attached to the surface of the roofing material and the terminal leads are pulled out behind the roofing material,
The thin-film solar cell is laid across the upper surface and the front wall surface of the roof material, and the array of cell units of the thin-film solar cell is arranged in the roof material width (left and right) direction with respect to the roof material. those laid Te to (claim 1).
[0014]
According to the present invention, it is possible to increase the amount of power generation per roofing material by making the most effective use of the surface area of the roofing material with limited dimensions. Moreover, the array of cell units of thin film solar cells is arranged in the roof material in the width (left and right) direction of the roof material, so that the thin film solar cell in the state where the solar cell module is laid on the roof material. The balance of the power generation amount in each cell unit can be ensured.
[0015]
As an embodiment of the said invention, the cell structure of a roofing material and a thin film solar cell shall be comprised as follows.
[0016]
(1) The curved surface of the corner portion that transitions from the upper surface of the roof material to the front wall portion is formed into an arcuate surface (R surface) (Claim 2 ), and the curvature radius of the R surface is at least 10 mm or more. (Claim 3 ) The stress applied concentrated on the bent surface area of the thin-film solar cell is reduced.
[0017]
(2) On the other hand, the flexible substrate of the solar cell module is a plastic sheet, and the roofing material is made of a steel plate as will be described later, and after the solar cell module is laid in the flat state of the steel plate, bending is performed before As a cell structure in the case of adopting a laying method in which the wall portion is bent, a slit is formed in the lateral direction through the thin film solar cell body in the surface area of the solar cell module corresponding to the corner portion of the roofing material (claim) 4 ) The solar cell module is configured to have a degree of freedom in stretching in the bending direction. Specifically, the slits are intermittently dispersed to form a staggered pattern, and the lengths of the individual slits are to set smaller than the cell unit width of the thin-film solar cell (claim 5) is, without inhibiting the energization function of the cell units of the thin film solar cell with the bent roofing It attained the concentration of stress relief applied to the lower corner portion.
[0018]
(3) Further, in the preceding paragraph (2), a photoelectric conversion layer with the slitting, return occurred shear plane of the electrode layer, fear of deformation and the photoelectric conversion layer of the thin-film solar cell due to short-circuit the electrical is In some cases, as a backup means, a separation groove is formed in the photoelectric conversion layer and electrode layer formed on the substrate of the thin film solar cell so as to surround the slit formation region, and the slit formation region is electrically connected to other cell regions. (Claim 6 ), it is possible to prevent the power generation performance of the solar cell from being hindered due to the processing of the slit.
[0019]
(4) Also, in order to ensure flexible flexibility when the solar cell module is bent and laid on the roofing material as described above, the solar cell module sealing material has a thickness of 1 mm or less and the surface. The thickness of the protective material is preferably 100 μm or less (claim 7 ).
[0020]
(5) In addition, in order to prevent the peeling of the solar cell module laid on the roofing material and increase the reliability of long-term use, a solar cell module laid on the roofing material after forming a water return on the rear side of the roofing material Can be folded and attached to the lower edge side of the front wall portion of the roofing material (claim 8 ).
[0021]
Moreover, according to the present invention, as a method for laying the roof material-integrated solar cell module having the above-described configuration, the solar cell module is pasted on the roof material previously formed into a tile shape so as to straddle the upper surface and the front wall portion. In addition to the laying method (Claim 9 ), the roofing material is made of steel plate, the solar cell module is pasted in the flat state before bending the front wall, and then the roofing material is bent to form a tile shape There is a laying method ( 10 ).
[0022]
Each of the above two laying methods has advantages and disadvantages, but when considering the workability of attaching the solar cell module to the roofing material, the surface of the steel plate (thin steel plate with a thickness of 1 mm or less) is flat on the surface. If a method of bending after the solar cell module is applied, the attaching operation can be easily performed and the mass productivity is improved. Moreover, in order to bend the roof material after forming the solar cell module and to form the front wall portion, for example, roll bending or mold bending processing is performed while protecting the solar cell module with a cushion material or the like. Can be easily handled.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. In the drawings of the embodiments, members corresponding to those in FIGS. 11 and 12 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0024]
[Example 1]
First, the basic structure of a roofing material integrated solar cell module according to an embodiment of the present invention is shown in FIGS. In this embodiment, as shown in FIGS. 1 (a) and 1 (b), a thin film of a solar cell module 2 is applied to a tile-shaped roof material 1 having a front wall portion 1a extending downward on the front end side. The solar cell 4 is further extended from the upper surface area of the roofing material 1 and laid over the surface area that covers the front surface of the front wall portion 1a.
[0025]
Here, the roofing material 1 in the illustrated example has a tile shape in which a front wall portion 1a is formed by sheet-metal processing a steel plate (thickness of 1 mm or less), and a corner portion 1c that transitions from the upper surface area to the front wall portion 1a is circular As the arc-shaped R surface, the radius of curvature of the R surface is set to at least 10 mm or more.
[0026]
Further, the solar cell module 2 has basically the same structure as the conventional one shown in FIGS. 11 to 13, but the area thereof is the whole including the upper surface of the roof material 1 and the front wall portion 1 a as described above. In order to suppress the influence of bending stress on the cells of the solar cell by giving the module a flexible bendability after being expanded so as to be laid on the surface area, both sides of the thin film solar cell 4 are used in this embodiment. The thickness of the sheet-like sealing material (for example, EVA) 8 deposited on the substrate is 1 mm or less, preferably 0.5 mm or less, and the thickness of the surface protective material (ETFE) 9 is 100 μm or less, preferably 50 μm or less.
[0027]
1A, A is the total length of the solar cell module 2 corresponding to the front-rear direction of the roofing material 1, and B is the surface area length corresponding to the upper surface of the roofing material 1. Here, C represents the surface area length corresponding to the front wall portion 1a, and D represents the surface area length corresponding to the corner portion 1c that transitions from the top surface of the roof material 1 to the front wall portion 1a.
[0028]
FIG. 2 shows a state in which the roof is covered with the roof material-integrated solar cell module having the above-described configuration, and the sunlight S is the laying surface area A (A) of the solar cell module 2 shown in FIG. = B + C + D), the power generation amount per roofing material increases as compared with the conventional configuration shown in FIG. 12 (the laying surface area of the solar cell module 2 corresponds to the B surface area of FIG. 1).
[0029]
FIG. 3 is a development view showing the arrangement of unit cells 20 (see FIG. 13) patterned on the thin-film solar cell 4 of the solar cell module 2. In this embodiment, the light reception of the plastic substrate 11 is illustrated. For the unit cells 20 arranged on the surface side and patterned in an array, the width (left and right) direction of the roofing material is X and the vertical direction is Y, and each unit cell 20 has its long side along the Y direction. Accordingly, the unit cells 20 extending in the entire length of the A-plane region and arranged in the X direction are electrically connected in series via the electrode layers and the series holes as described in FIG.
[0030]
As a result, the solar cell module 2 is laid across the upper surface of the tile-shaped roofing material 1 and the both surfaces of the front wall portion 1a as shown in FIG. In this case, even if the incident amount of sunlight S is different due to the difference in relative angle between the upper surface area B and the front area C, the power generation amount of each cell unit 20 arrayed on the left and right is always balanced.
[0031]
On the other hand, when the cell units 20 of the thin film solar cell are arrayed in the vertical direction while changing the direction with respect to X and Y as shown in FIG. 4, the cell unit 20 in the B surface area corresponding to the upper surface of the roof material, With the cell unit 20 in the C-plane area corresponding to the front wall portion of the roofing material, the amount of power generation is different due to the difference in the amount of sunlight incident, so that the power generation performance of the entire solar cell module is extremely reduced. Arise. For example, when the sun comes directly above and the front wall 1a (C plane area) of the roofing material 1 is hardly exposed to sunlight, the unit cells 20 arranged in the C plane area generate free electrons and free holes. The unit cell itself exhibits a large electrical resistance due to the silicon material and the electrode material, and as a result, the output of the entire solar cell module is extremely lowered, resulting in a power generation function as a solar cell. Cannot fully demonstrate.
[0032]
In this respect, if the cell units 20 of the thin-film solar battery are arranged in accordance with the orientation as shown in FIG. 3, the power generation amount of each cell unit 20 is always balanced. Can be avoided.
[0033]
[Example 2]
Next, a method for laying the solar cell module 2 to the roofing material 1, an embodiment corresponding to claim 10 of the present invention in FIG. That is, in Example 1 described above, the solar cell module 2 is post-bonded to the roof material 1 formed by sheet-metal processing into a tile shape, but the tip shape of the roof material 1 is L-shaped. There is a problem in work such that it is difficult to paste because it is bent.
[0034]
Therefore, in this embodiment, as shown in FIG. 5 (a), the solar cell module 2 is pasted on the surface of the roofing material 1 in a flat state before bending the steel plate of the roofing material 1, and then roll bending is performed on the steel plate. Alternatively, a mold bending process is performed to form the front wall portion 1a as shown in FIG. 5 (b). In this bending process, a solar cell module 2 is overlaid with a cushion material (not shown) or attached with a cushioning material on the side of the bending jig and bent without causing damage to the solar cell. Can be bent.
[0035]
According to this laying method, the attaching operation of the solar cell module 2 becomes easy, so that it is possible to easily cope with mechanical work, and the mass productivity is improved.
[0036]
Example 3
Next, the cell structure of the solar cell module corresponding to claims 4 to 6 of the present invention suitable for application of the laying method described in Example 2 is shown in FIGS.
[0037]
That is, when the front wall portion 1a of the roofing material 1 is bent with the solar cell module 2 attached to a flat steel plate as described in FIG. 5, the thin film solar cell 4 of the solar cell module 2 has a bent corner. A large bending stress is applied to the corresponding surface area D. In particular, the photoelectric conversion layer and the electrode layer formed on the light receiving surface side of the plastic substrate may act as tensile stress and damage the cell.
[0038]
Therefore, in this embodiment, the thin film solar cell 4 is penetrated in the surface area D of the solar cell module 2 corresponding to the bent corner portion of the roofing material 1 to form the slit 21 in the left-right direction. It is formed in a zigzag pattern by intermittently dispersing. In addition, the length of each slit is set smaller than the lateral width of each cell unit 20 (see FIG. 13) in the thin film solar cell 4 so as to ensure the cell energization function.
[0039]
Thus, by forming the slits 21 in the zigzag pattern in the thin film solar cell 2 corresponding to the surface area D of the bent corner portion, this area has a certain degree of freedom in the longitudinal direction. Is done. Therefore, even if the roofing material 1 is bent after the laying method described in Example 2 is adopted and the solar cell module 2 is attached to a flat steel plate, the bending corner portion of the thin-film solar cell 4 is excessive. Stress concentration can be avoided.
[0040]
In addition, when the thin film solar cell 4 is slit, the thin film solar cell 4 returns to the shearing surface of the slit 21 and is deformed so that the photoelectric conversion layer 12 is short-circuited (the transparent electrode 13 and the back electrode 14 are in physical contact). Therefore, in the illustrated embodiment, as a backup means, separation grooves are formed in the photoelectric conversion layer 12, the transparent electrode 13, and the back electrode 14 formed on the plastic substrate 11 of the thin film solar cell 4 so as to surround the formation region of the slit 21. Laser scribing 22 is used to electrically separate the formation region of the slit 21 from other cell regions. As a result, even if a local cell short-circuit occurs in the solar cell in the slit forming region during slit processing, the effect does not reach other cell regions, so that the power generation function as a solar cell can be secured. .
[0041]
Example 4
Next, as an application example of the roof material-integrated solar cell module described in each of the above-described examples, configurations of examples in which durability and reliability are improved are shown in FIGS.
[0042]
First, in the embodiment of FIG. 8, a solar cell module is formed on the upper surface of the rear portion of the roofing material 1 after forming a water return 1d for preventing the intrusion of water extending in the left-right direction, and further affixing the surface of the roofing material. The tip of 2 is folded back to the lower edge of the front wall portion 1a of the roofing material 1, and the folded portion 2a is bonded to the back surface of the front wall portion 1a. As a result, in a state where the roofing material 1 is combined in the upper and lower tiers and laid on the roof, the water return 1d enters the inside from the gap between the upper surface of the solar cell module 2 and the roofing material lined up one step. Stop. Further, since the folded portion 2a of the solar cell module 2 affixed to the roof material 1 is sandwiched between the roof material lined up one step below, there is a problem that the solar cell module 2 peels from the roof material 1 during long-term use. Prevents and increases reliability.
[0043]
FIGS. 9 and 10 are examples applied to a steel sheet roof material. In this configuration, the rear edge portion of the roof material 1 is bent upward and the water return 1d is formed by bending, The terminal leads 6 and 7 of the solar cell module 2 are pulled out along the wall surface of the water return 1d, and the tip of the solar cell module 2 is overlapped with the front wall portion 1a of the roof material 1 and bent inward. ing. With this configuration, similarly to the configuration described with reference to FIG. 8, it is possible to prevent rainwater from entering and peeling of the solar cell module, thereby improving reliability and durability.
[0044]
【The invention's effect】
As described above, according to the present invention, in a roof material integrated solar cell module in which a thin film solar cell is laid on the surface of an L-shaped roof material having an L-shaped cross section, the thin film solar cell is placed on the top surface of the roof material. In addition, the power generation area is expanded by making the most effective use of the surface area of the roofing material with limited outer dimensions, and the power generation amount per roofing material is increased by laying it across both areas of the front wall. Can do. Moreover, the array of cell units of thin film solar cells is arranged in the roof material in the width (left and right) direction of the roof material, so that the thin film solar cell in the state where the solar cell module is laid on the roof material. The balance of the power generation amount in each cell unit can be ensured.
[0045]
Further, by adopting the cell structure and laying method of claim 2-10 as a manner of its implementation, without impairing the power generation function of the thin-film solar cell, reliability, high roofing material integrated type solar cell module durable Can provide.
[Brief description of the drawings]
FIG. 1 is a basic unit structure diagram of a roof material integrated solar cell module for one roof material according to an embodiment of the present invention, wherein (a) and (b) are a side view and a plan view, respectively. 1 is a side view showing a state in which the unit of FIG. 1 is rolled along a roof base plate. FIG. 3 is a development view of a solar cell module showing an array arrangement of cell units patterned on the thin film solar cell in FIG. 4] Development view of solar cell module in which cell units are arranged in a direction different from FIG. 3. FIG. 5 is an explanatory view of a solar cell module laying method corresponding to Example 2 of the present invention. FIGS. 6A and 6B each show a state in which a solar cell module is attached to a roofing material and a state in which the solar cell module is attached and the roofing material is bent. FIG. 6 shows a slit formed in a folding region corresponding to Example 3 of the present invention. Thin film solar cell flat FIG. 7 is an enlarged cross-sectional view taken along the line XX in FIG. 6. FIG. 8 is a side cross-sectional view of a roofing material integrated solar cell module corresponding to Example 4 of the present invention. FIG. 10 is a side view of a roof material integrated solar cell module according to another embodiment. FIG. 10 is a side view showing a state in which the solar cell module of FIG. (A) is a plan view, (b) is a side view, and (c) is a cross-sectional view of a solar cell module. FIG. 12 shows a state in which the unit of the solar cell module shown in FIG. Side view to represent [FIG. 13] Detailed structure diagram of thin film solar cell in FIG.
DESCRIPTION OF SYMBOLS 1 Roof material 1a Front wall part 1c Corner part 1d Water return 2 Solar cell module 2a Folding part 4 Thin film solar cell 6,7 Terminal lead 6a, 7a Connector 8 Sealing material 9 Surface protection material 11 Plastic substrate of a thin film solar cell 12 Photoelectric Conversion layer 13 Transparent electrode 14 Back electrode 15 Back electrode 18, 22 Separation groove 20 Cell unit 21 Slit

Claims (10)

横葺き式屋根材の表面に太陽電池モジュールを敷設した屋根材一体型太陽電池モジュールであって、屋根材はその前端から下向きに延在する前壁部を形成した瓦であり、太陽電池モジュールはフレシキブルな基板としてその受光面側に光電変換層として短冊状のセルユニットおよび各電極層をアレイ状に配列してその相互間を直列接続した薄膜太陽電池、ならびに薄膜太陽電池の出力端子に接続して左右側縁から後方に引き出したプラス極およびマイナス極のコネクタ付き端子リードをシート状の封止材および耐候性の表面保護材で封止した構成になり、前記屋根材の表面に貼り付けてその端子リードを屋根材の背後に引き出したものにおいて、
前記薄膜太陽電池を屋根材の上面および前壁の両面域にまたがって敷設し、さらに、屋根材に対して、前記薄膜太陽電池のセルユニットのアレイを屋根材の幅(左右)方向に配列して敷設したことを特徴とする屋根材一体型太陽電池モジュール。
A roof material integrated solar cell module in which a solar cell module is laid on the surface of a horizontal roofing material, and the roof material is a tile formed with a front wall portion extending downward from the front end thereof. As a flexible substrate, a strip-shaped cell unit as a photoelectric conversion layer on the light receiving surface side and each electrode layer are arranged in an array and connected to each other in series, and connected to the output terminal of the thin film solar cell. The terminal lead with the positive and negative connectors pulled out rearward from the left and right side edges is sealed with a sheet-like sealing material and a weather-resistant surface protective material, and is attached to the surface of the roofing material. In that terminal lead pulled out behind the roofing material,
The thin-film solar cell is laid across the upper surface of the roof material and the front wall, and an array of cell units of the thin-film solar cell is arranged in the roof material width (left and right) direction with respect to the roof material. roofing material integrated type solar cell module, characterized in that laid Te.
請求項1記載の屋根材一体型太陽電池モジュールにおいて、屋根材の上面から前壁部に移行するコーナー部分の屈曲面を円弧状の面(R面)に形成したことを特徴とする屋根材一体型太陽電池モジュール。In claim 1 Symbol placement roofing material integrated type solar cell modules, roofing material, characterized in that the bending surfaces of the corner portion to move to the front wall portion from the upper surface of the roofing material to form an arcuate surface (R surface) Integrated solar cell module. 請求項記載の屋根材一体型太陽電池モジュールにおいて、R面の曲率半径を少なくとも10mm以上としたことを特徴とする屋根材一体型太陽電池モジュール。The roof material integrated solar cell module according to claim 2, wherein the radius of curvature of the R surface is at least 10 mm. 請求項1ないしのいずれか1項に記載の屋根材一体型太陽電池モジュールにおいて、前記太陽電池モジュールのフレシキブルな基板はプラスチックシートとし、さらに屋根材のコーナー部分に対応する太陽電池モジュールの面域に薄膜太陽電池本体を貫通して左右方向にスリットを形成したことを特徴とする屋根材一体型太陽電池モジュール。The roof material-integrated solar cell module according to any one of claims 1 to 3 , wherein the flexible substrate of the solar cell module is a plastic sheet, and further the area of the solar cell module corresponding to a corner portion of the roof material A roof material integrated solar cell module, characterized in that a slit is formed in the left-right direction through the thin film solar cell body. 請求項記載の屋根材一体型太陽電池モジュールにおいて、スリットを断続的に分散して千鳥状に形成し、かつ個々のスリット長さを薄膜太陽電池のセルユニット幅よりも小に設定したことを特徴とする屋根材一体型太陽電池モジュール。The roof material-integrated solar battery module according to claim 4, wherein the slits are intermittently dispersed to form a staggered pattern, and each slit length is set to be smaller than the cell unit width of the thin film solar battery. A roof material integrated solar cell module. 請求項記載の屋根材一体型太陽電池モジュールにおいて、スリットの形成領域を囲んで薄膜太陽電池の基板上に形成した光電変換層および電極層に分離溝を成形し、スリット形成領域を他のセル領域と電気的に分断したことを特徴とする屋根材一体型太陽電池モジュール。6. The roofing material integrated solar cell module according to claim 5 , wherein a separation groove is formed in the photoelectric conversion layer and the electrode layer formed on the substrate of the thin film solar cell so as to surround the slit forming region, and the slit forming region is formed in another cell. A roof material-integrated solar cell module characterized by being electrically separated from a region. 請求項1ないしのいずれか1項に記載の屋根材一体型太陽電池モジュールにおいて、太陽電池モジュールの封止材は厚さが1mm以下,表面保護材は厚さが100μm以下であることを特徴とする屋根材一体型太陽電池モジュール。The roof material-integrated solar cell module according to any one of claims 1 to 6 , wherein the sealing material of the solar cell module has a thickness of 1 mm or less, and the surface protection material has a thickness of 100 µm or less. The roof material integrated solar cell module. 請求項1記載の屋根材一体型太陽電池モジュールにおいて、屋根材の後部側に水返しを形成し、さらに屋根材に敷設した太陽電池モジュールの前縁を屋根材の前壁部の下縁側に折り返して貼着してなることを特徴とする屋根材一体型太陽電池モジュール。The roof material-integrated solar cell module according to claim 1, wherein a water return is formed on a rear side of the roof material, and a front edge of the solar cell module laid on the roof material is folded back to a lower edge side of the front wall portion of the roof material. A solar cell module integrated with a roofing material, wherein the solar cell module is affixed. 請求項1ないしのいずれか1項に記載の屋根材一体型太陽電池モジュールの敷設方法であって、あらかじめ瓦形に成形された屋根材に対して、その上面および前壁部にまたがって太陽電池モジュールを貼り付けたことを特徴とする屋根材一体型太陽電池モジュールの敷設方法。A method for laying a roofing material-integrated solar battery module according to any one of claims 1 to 8 , wherein the roofing material is formed in a tile shape in advance, and the sun straddles the upper surface and the front wall portion. A method for laying a solar cell module integrated with a roof material, wherein the battery module is attached. 請求項1ないしのいずれか1項に記載の屋根材一体型太陽電池モジュールの敷設方法であって、屋根材を鋼板製としてその平板状態で太陽電池モジュールを貼り付け、その後に屋根材に前壁部を曲げ加工を施して瓦形状に成形したことを特徴とする屋根材一体型太陽電池モジュールの敷設方法。A method for laying a roofing material-integrated solar cell module according to any one of claims 1 to 8 , wherein the roofing material is made of a steel plate, the solar cell module is pasted in a flat state, and then the roofing material is attached to the roofing material. A method for laying a solar cell module integrated with a roof material, characterized in that a wall portion is bent into a tile shape.
JP2002246449A 2002-08-27 2002-08-27 ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD Expired - Fee Related JP4136541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246449A JP4136541B2 (en) 2002-08-27 2002-08-27 ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246449A JP4136541B2 (en) 2002-08-27 2002-08-27 ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD

Publications (2)

Publication Number Publication Date
JP2004087769A JP2004087769A (en) 2004-03-18
JP4136541B2 true JP4136541B2 (en) 2008-08-20

Family

ID=32054343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246449A Expired - Fee Related JP4136541B2 (en) 2002-08-27 2002-08-27 ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD

Country Status (1)

Country Link
JP (1) JP4136541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599684A (en) * 2018-04-14 2018-09-28 广东汉能薄膜太阳能有限公司 A kind of photovoltaic generation watt and photovoltaic generating system

Also Published As

Publication number Publication date
JP2004087769A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3937654B2 (en) SOLAR CELL MODULE, ITS INSTALLATION METHOD, AND SOLAR POWER GENERATOR AND ROOF USING THE SAME
JP7071387B2 (en) Systems and methods for packaging photovoltaic roof tiles
JP3570738B2 (en) Solar power roof
US10658969B2 (en) Photovoltaic solar roof tile assembly
US5575861A (en) Photovoltaic shingle system
US5437735A (en) Photovoltaic shingle system
JP2974513B2 (en) Roof material integrated solar cell module
KR101313012B1 (en) Wiring sheet, solar cell with wiring sheet, solar cell module and wiring sheet roll
US20090014058A1 (en) Rooftop photovoltaic systems
US20100325976A1 (en) Solar shingle system
US20070283996A1 (en) Photovoltaic module with insulating interconnect carrier
JP2009043842A (en) Solar battery module
JPH111998A (en) Solar-cell integral type roof board, manufacture, thereof and execution method thereof
JP3879917B2 (en) Solar blinds
US20190319148A1 (en) Photovoltaic tile and photovoltaic system
JP3507126B2 (en) Horizontal roof unit with solar cells
JP5423105B2 (en) Solar cell, solar cell module and solar cell system
JP2670472B2 (en) Solar cell and installation method of solar cell
JP2006249877A (en) Solar cell module integrated with roof, its joiner, and construction method for roof installed with solar cell module
JP4136541B2 (en) ROOF MATERIAL INTEGRATED SOLAR CELL MODULE AND ITS LAYING METHOD
JP3017420B2 (en) Solar cell module
JP3849863B2 (en) Roof material integrated solar cell module
JP2016089620A (en) Solar cell array
JP3838789B2 (en) Solar cell module, method for producing solar cell module, solar cell module mounting structure, and roofing material with solar cell
WO2019058149A1 (en) Roof covering element provided with a solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees