JP4136139B2 - End mill - Google Patents

End mill Download PDF

Info

Publication number
JP4136139B2
JP4136139B2 JP33953998A JP33953998A JP4136139B2 JP 4136139 B2 JP4136139 B2 JP 4136139B2 JP 33953998 A JP33953998 A JP 33953998A JP 33953998 A JP33953998 A JP 33953998A JP 4136139 B2 JP4136139 B2 JP 4136139B2
Authority
JP
Japan
Prior art keywords
hole
end mill
blade
diameter
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33953998A
Other languages
Japanese (ja)
Other versions
JP2000158224A (en
Inventor
卓生 稲垣
董至 三浦
庄次 奥井
勝也 中木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Electric Hardmetal Corp
Original Assignee
Denso Corp
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Electric Hardmetal Corp filed Critical Denso Corp
Priority to JP33953998A priority Critical patent/JP4136139B2/en
Publication of JP2000158224A publication Critical patent/JP2000158224A/en
Application granted granted Critical
Publication of JP4136139B2 publication Critical patent/JP4136139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/205Number of cutting edges six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/24Overall form of the milling cutter
    • B23C2210/246Milling cutters comprising a hole or hollow in the end face or between the cutting edges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、マシニングセンタ等でアルミニウムや鋳鉄部品の高速、高精度加工に用いられる超硬合金製(表面に硬質コーティング層を有するものも含む)ソリッドエンドミル(以下単にエンドミルと云う)、詳しくは、再研磨対応と寿命向上のための工夫を加えたエンドミルに関する。
【0002】
【従来の技術】
高精度、高品質が要求される量産機械部品の加工は、マシニングセンタの高速、高性能化、超硬合金製エンドミルの高性能化に伴い、3枚以上の切れ刃を持つ多刃エンドミルによる高速、高精度加工が普及しつつある。
【0003】
この高速、高精度加工に利用するエンドミルの特長は、両端面にセンタ穴を設けていることである。同用途のエンドミルは、刃数が多く、しかも、高精度に作り込まれており、元々高価であるので再研磨による再生回数をできるだけ多くすることが望まれる。センター穴はその再研磨時に、両センター支持を行って新作品の精度と同様の精度を維持するために設けられる。
【0004】
このセンター穴を有するエンドミルは、再研磨による底刃側センター穴の消滅を防止するために先端中心部に沈み穴を設け、その沈み穴の奥端面に底刃側のセンター穴を設けているが、かかるエンドミルは、縦送り(軸方向への送り)後に、前後、又は左右もしくはその複合方向(軌跡が円弧になる方向)に横送りする加工や縦送りと横送りを同時進行させる加工が行えない。縦送り切削時に底刃の無い回転中心部に被削材が切り残され、それが沈み穴に入り込んで横送りを妨げるからである。
【0005】
そこで、底刃の内端側に内刃を設けることがなされている。図2に、その内刃を有するエンドミルの従来例を示す。このエンドミルの先端の沈み穴2は、図2(b)に示すように、軸心と平行なストレート穴にしてあり、そのため、内刃6はすかし角の無い刃になっている。
【0006】
【発明が解決しようとする課題】
図2のエンドミルは、外周刃4だけでなく、内刃6も軸心で平行になっているため、縦送り切削時のスラスト力が大きくなる。
【0007】
また、縦送り後の横送り切削では、内刃6に逃げ角が無く、被削材と沈み穴2の内周面との間に逃がし用のクリアランスが出来ないため、過大な負荷がかかる。
【0008】
そのため、改善対象のエンドミルは、4〜10枚ある切れ刃のうち、1枚が300個程度の加工数に達した段階で割損する事故が多発している。その割損は、沈み穴の穴底と内周面の交点付近で起こっており、前述の負荷の集中により、その部分が約300個加工するうちに応力限界に達して割損に至っていると考えられる。
【0009】
なお、特開昭48−38591号は、内刃を付けるために沈み穴(同公報は逃げ穴と称している)の内周壁を外周側に逃がすことを述べているが同公報の第9図に示されるような逃げ(内周壁を回転方向後方側ほど外側に寄せている)を付けるためには、外径が沈み穴の穴径よりも相当小さな砥石(砥石径が小さくなるほど加工能率が低下する)を用い、その砥石が隣り合う内刃と干渉しないようにして1刃毎に逃げを付ける加工が必須となり、加工時間が長くなってエンドミルの製造コストが高くなってしまう。
【0010】
また、同公報のエンドミルは、内刃が内向きに傾いているため、縦送り切削でのスラストが図2のエンドミルよりも大きくなると云う問題もある。
【0011】
この発明は、上記の点に鑑みてなされたものであって、内刃に簡単な方法で逃げとすかし角を付けられるようにして製造コストの低減と先端部の割損防止が図れるようにすることを課題としている。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、超硬合金製多刃エンドミルの先端に設ける沈み穴を入口から奥に向かって拡径するテーパ穴で形成し、そのテーパ沈み穴の内周面と先端のチップポケットの溝面との交差稜で内刃を形成したのである。
【0013】
なお、このエンドミルの沈み穴は、入口径をエンドミル径の1/2〜1/3、深さをエンドミル径の1/5〜1/10とし、さらに、穴のテーパ角を10°〜50°にするのが好ましい。
【0014】
【作用】
沈み穴を奥広がりのテーパ穴にしてその穴の内周面と先端のチップポケットの溝面との交差稜で内刃を形成すると、その内刃に自然に逃げのクリアランスとすかし角が付く。そのため、縦送り切削でのスラストが低減され、また、縦送り後の横送りでの負荷も軽減されて先端部の割損が防止され、エンドミルの寿命も向上する。
【0015】
また、奥広がりのテーパ沈み穴は、ブランク材(粉末原料を圧縮成形後焼結して得られる材料)製造時の粉末原料の圧縮成形工程において、型抜きの可能な形状の穴を型押し成形して作り、焼結後の例えば刃付け加工時に、所定のテーパ角を有する逆テーパ状砥石(これは穴径より少し小さなものでよい)を用いて目的のテーパ穴に仕上げる方法で形成することができる。この場合の穴広げの方法は、砥石を定位置で回転させ、ブランク材を軸心を中心にして一回転させる方法と、ブランク材を固定し、砥石を回転させながら穴の内周面に沿って一周させる方法があるが、どちらの方法を採用しても、砥石が他の刃と干渉しないようにする気遣いは無用であるし、砥石を1刃毎に当て直す必要もない。従って、1刃毎に逃げを付けるときよりも大径の砥石を用いて加工能率を高め、かつ加工の手間を削減でき、これによって製造コストの低減が図れる。
【0016】
なお、沈み穴の入口径が大き過ぎると加工径が10mm前後の小径エンドミルの場合、先端側での強度確保が難しくなり、逆にその入口径が小さ過ぎると、小径エンドミルの場合沈み穴内周面のテーパ加工が難しくなるので、沈み穴の入口径はエンドミル径の1/2〜1/3にしておくのがよい。
【0017】
また、沈み穴の深さは、浅過ぎると再研磨代が充分に採れず、逆に深過ぎると先端側の強度が落ちるので、エンドミル径の1/5〜1/10ぐらいが適している。
【0018】
さらに、沈み穴のテーパ角が10°未満では内刃の逃げが不足して内刃で切削するときの負荷軽減効果が薄く、一方、そのテーパ角が50°を超えると、沈み穴を取り巻く部分の根元側肉厚が小さくなり過ぎて先端側の強度不足を招くので、このテーパ角は10°〜50°の範囲で設定するのがよい。
【0019】
【発明の実施の形態】
図1に、この発明のエンドミルの実施形態を示す。図中1はシャンク、2は先端面に設けた沈み穴、3は両端面、即ち、沈み穴2の奥端面とシャンク1の後面に設けたセンター穴、4はねじれ角の付いた外周刃、5は先端の底刃、6は内刃、7は各底刃に対応させて設けた先端のチップポケット、8は外周刃4に添ったねじれ溝である。
【0020】
また、9は底刃5の逃げ面である。この逃げ面9は、図1(d)に示すように、エンドミルの回転方向後方に向かって下り傾斜に加工されて底刃に逃げ角αが付いている。
【0021】
図1(b)のκは底刃5のすかし角であり、これは従来のエンドミルにも付されている。
【0022】
この図1のエンドミルは、沈み穴2を奥広がりのテーパ穴にしており、この点が図2のエンドミルと異なる。このように、沈み穴2を奥広がりの方向に傾斜したテーパ穴となすことで、その穴の内周面とチップポケット7の溝面との交差稜で形成される内刃6にすかし角κ’が付き、縦送り切削でのスラストが小さくなる。また、図1(c)に示すように、内刃6の回転方向後方に逃げのクリアランスtが生じて内刃6による切削がなされるときの負荷も軽減され、沈み穴のコーナ部に無理な応力が頻繁に加わることが無くなる。
【0023】
なお、図1(b)に示す沈み穴2の入口径dは、エンドミル径Dの1/2〜1/3に設定されている。また、沈み穴2の深さLは1/5D〜1/10Dに、テーパ角θは10°〜50°の範囲に各々設定されている。
【0024】
以上の如く構成したこの発明のエンドミルは、直径D:11.6mm、刃数N:6枚、沈み穴入口径d:5.5mm、沈み穴深さL:2.0mm、沈み穴テーパ角θ:20°の諸元の試作品による評価試験の結果、割損事故が皆無となり、また、寿命も従来品に比べて1.5〜2倍に延びることが判った。
【0025】
【発明の効果】
以上述べたように、この発明のエンドミルは、従来ストレート又は先細テーパ形状にしていた沈み穴を奥広がりのテーパ穴となしてこの沈み穴の内周面とチップポケットの溝面との交差稜で形成される内刃にすかし角と逃げのクリアランスが自然につくようにしたので、先端部の割損が防止され、寿命が向上して刃具費低減の効果をもたらす。
【0026】
また、1刃毎に逃げを付ける加工が不要であり、また、1刃毎に逃げを付けるときの使用砥石よりも大径の砥石を用いて沈み穴のテーパ加工を能率良く行うことができるため、製造コストを削減でき、これによる刃具費低減も図れる。
【図面の簡単な説明】
【図1】(a)この発明のエンドミルの実施形態を示す側面図
(b)同上のエンドミルの先端部の拡大部分破断側面図
(c)同じく正面図
(d)図1(c)のX−X線に沿った拡大断面図
【図2】(a)従来の沈み穴付きエンドミルの側面図
(b)同上のエンドミルの先端部の拡大部分破断側面図
(c)同じく正面図
【符号の説明】
1 シャンク
2 沈み穴
3 センター穴
4 外周刃
6 内刃
7 チップポケット
8 ねじれ溝
9 底刃の逃げ面
α 底刃の逃げ角
κ 底刃のすかし角
κ’ 内刃のすかし角
t 内刃の逃げのクリアランス
[0001]
BACKGROUND OF THE INVENTION
The present invention is a solid end mill (hereinafter simply referred to as an end mill) made of cemented carbide (including a hard coating layer on the surface) used for high-speed and high-precision machining of aluminum and cast iron parts in a machining center or the like. The present invention relates to end mills that have been improved for polishing and improved service life.
[0002]
[Prior art]
High-precision and high-quality machining of mass-produced machine parts is possible with high-speed, high-performance machining centers, high-performance cemented carbide end mills, and multi-blade end mills with 3 or more cutting edges. High precision machining is becoming popular.
[0003]
The feature of the end mill used for this high-speed, high-precision machining is that center holes are provided on both end faces. The end mill for the same application has a large number of blades and is built with high precision and is originally expensive. Therefore, it is desired to increase the number of times of re-grinding as much as possible. The center hole is provided in order to maintain the same accuracy as that of the new work by supporting both centers during re-polishing.
[0004]
In the end mill having the center hole, a sink hole is provided at the center of the tip in order to prevent the disappearance of the center hole on the bottom blade side due to re-polishing, and a center hole on the bottom blade side is provided on the back end surface of the sink hole. Such end mills can perform longitudinal feed (feeding in the axial direction), transverse feed in the front-rear direction, left and right, or their combined direction (direction in which the locus becomes an arc), and machining that advances vertical feed and transverse feed simultaneously. Absent. This is because the work material is left uncut at the center of rotation where there is no bottom blade during vertical feed cutting, and it enters the sink hole to prevent lateral feed.
[0005]
Therefore, an inner blade is provided on the inner end side of the bottom blade. FIG. 2 shows a conventional example of an end mill having the inner blade. As shown in FIG. 2B, the sink hole 2 at the end of the end mill is a straight hole parallel to the shaft center, and therefore the inner blade 6 is a blade having no corner.
[0006]
[Problems to be solved by the invention]
In the end mill of FIG. 2, not only the outer peripheral blade 4 but also the inner blade 6 are parallel at the axis, so that the thrust force during longitudinal feed cutting becomes large.
[0007]
Further, in the transverse feed cutting after the longitudinal feed, the inner blade 6 has no clearance angle, and a clearance for the relief cannot be formed between the work material and the inner peripheral surface of the sink hole 2, so that an excessive load is applied.
[0008]
Therefore, there are many accidents in which the end mill to be improved breaks when one of the 4 to 10 cutting edges reaches the number of machining of about 300. The breakage occurs near the intersection between the bottom of the sink hole and the inner peripheral surface, and due to the concentration of the load described above, the stress limit is reached and the breakage is reached while about 300 pieces are processed. Conceivable.
[0009]
Japanese Patent Laid-Open No. 48-38591 describes that the inner peripheral wall of a sink hole (referred to as a relief hole in this publication) is escaped to the outer peripheral side in order to attach an inner blade. In order to have a relief as shown in (The inner wall moves closer to the rear in the rotational direction), the outer diameter is considerably smaller than the diameter of the sink hole (the smaller the grinding wheel diameter, the lower the machining efficiency) In other words, it is necessary to provide a relief for each blade so that the grindstone does not interfere with the adjacent inner blade, which increases the processing time and the manufacturing cost of the end mill.
[0010]
Further, the end mill of the publication has a problem that the thrust in the longitudinal feed cutting becomes larger than that of the end mill of FIG. 2 because the inner blade is inclined inward.
[0011]
The present invention has been made in view of the above points, and can reduce the manufacturing cost and prevent the tip portion from being broken by allowing the inner blade to have a relief and a bevel angle by a simple method. The challenge is to do.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a sink hole provided at the tip of a cemented carbide multi-blade end mill is formed as a tapered hole whose diameter increases from the inlet toward the back, and the inner peripheral surface of the taper sink hole An inner blade was formed at the intersection ridge between the tip and the groove surface of the tip pocket.
[0013]
The end hole of the end mill has an inlet diameter of 1/2 to 1/3 of the end mill diameter, a depth of 1/5 to 1/10 of the end mill diameter, and a taper angle of the hole of 10 ° to 50 °. Is preferable.
[0014]
[Action]
When the inner blade is formed at the intersection of the inner peripheral surface of the hole and the groove surface of the tip chip pocket with the sinking hole being a tapered hole, the inner blade naturally has clearance clearance and a corner angle. . Therefore, the thrust in the longitudinal feed cutting is reduced, the load in the transverse feed after the longitudinal feed is also reduced, the tip portion is prevented from being broken, and the life of the end mill is improved.
[0015]
In addition, the taper sinking hole that spreads out is formed by pressing a hole that can be punched in the compression molding process of the powder raw material at the time of manufacturing the blank material (the material obtained by sintering the powder raw material after compression molding). For example, at the time of blade processing after sintering, it is formed by a method of finishing to the desired tapered hole using a reverse tapered grindstone having a predetermined taper angle (this may be a little smaller than the hole diameter). Can do. In this case, the hole is expanded by rotating the grindstone at a fixed position, rotating the blank material around the axis, and fixing the blank material along the inner peripheral surface of the hole while rotating the grindstone. However, no matter which method is used, there is no need to worry that the grindstone does not interfere with other blades, and there is no need to reapply the grindstone for each blade. Therefore, it is possible to increase the processing efficiency and reduce the labor of processing by using a grindstone having a larger diameter than when a relief is provided for each blade, thereby reducing the manufacturing cost.
[0016]
If the entrance diameter of the sink hole is too large, it is difficult to secure the strength at the tip side in the case of a small diameter end mill with a machining diameter of around 10 mm. Conversely, if the entrance diameter is too small, the inner peripheral surface of the sink hole in the case of a small diameter end mill. Therefore, it is preferable to set the entrance diameter of the sink hole to 1/2 to 1/3 of the end mill diameter.
[0017]
Further, if the depth of the sunk hole is too shallow, a sufficient re-polishing allowance cannot be taken. Conversely, if the depth is too deep, the strength on the tip side decreases, so about 1/5 to 1/10 of the end mill diameter is suitable.
[0018]
Furthermore, if the taper angle of the sunk hole is less than 10 °, the inner blade is not sufficiently escaped and the effect of reducing the load when cutting with the inner blade is thin. On the other hand, if the taper angle exceeds 50 °, the part surrounding the sunk hole Since the thickness of the root side becomes too small and the strength on the tip side is insufficient, the taper angle is preferably set in the range of 10 ° to 50 °.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an end mill of the present invention. In the figure, 1 is a shank, 2 is a sink hole provided in the tip surface, 3 is both end surfaces, that is, a center hole provided in the back end surface of the sink hole 2 and the rear surface of the shank 1, 4 is an outer peripheral blade with a twist angle, Reference numeral 5 is a bottom blade at the tip, 6 is an inner blade, 7 is a tip pocket provided at the tip corresponding to each bottom blade, and 8 is a twist groove along the outer peripheral blade 4.
[0020]
Reference numeral 9 denotes a flank of the bottom blade 5. As shown in FIG. 1 (d), the flank 9 is machined in a downward slope toward the rear in the rotational direction of the end mill, and the bottom blade has a flank angle α.
[0021]
Κ in FIG. 1 (b) is a margin angle of the bottom blade 5, which is also applied to a conventional end mill.
[0022]
The end mill shown in FIG. 1 has a sink hole 2 that is a tapered hole that extends back, and this is different from the end mill shown in FIG. In this way, by forming the sinking hole 2 into a tapered hole inclined in the direction of depth, a corner angle is formed on the inner blade 6 formed by the intersecting ridge between the inner peripheral surface of the hole and the groove surface of the chip pocket 7. With κ ', thrust in vertical feed cutting is reduced. Moreover, as shown in FIG.1 (c), the clearance t of the escape in the rotation direction of the inner blade 6 arises, and the load at the time of cutting with the inner blade 6 is also reduced, and it is unreasonable at the corner portion of the sink hole. Stress is not frequently applied.
[0023]
In addition, the entrance diameter d of the sink hole 2 shown in FIG.1 (b) is set to 1 / 2-1 / 3 of the end mill diameter D. As shown in FIG. Further, the depth L of the sink hole 2 is set to 1 / 5D to 1 / 10D, and the taper angle θ is set to a range of 10 ° to 50 °.
[0024]
The end mill of the present invention configured as described above has a diameter D of 11.6 mm, the number of blades N: 6, sinkhole inlet diameter d: 5.5 mm, sinkhole depth L: 2.0 mm, sinkhole taper angle θ. : As a result of an evaluation test using a prototype of 20 ° specifications, it was found that there was no breakage accident and that the life was 1.5 to 2 times longer than that of the conventional product.
[0025]
【The invention's effect】
As described above, in the end mill of the present invention, the sink hole that has been formed in a straight or tapered shape in the prior art is formed as a taper hole that is widened to the depth, and at the intersection ridge between the inner peripheral surface of the sink hole and the groove surface of the chip pocket. Since the inner blade formed has a natural clearance angle and clearance clearance, breakage of the tip is prevented, the life is improved, and the cutting tool cost is reduced.
[0026]
In addition, it is not necessary to make a relief for each blade, and it is possible to efficiently taper a sunk hole using a grindstone having a diameter larger than that of the grindstone used when making a relief for each blade. Therefore, the manufacturing cost can be reduced and the cutting tool cost can be reduced.
[Brief description of the drawings]
FIG. 1A is a side view showing an embodiment of an end mill of the present invention, FIG. 1B is an enlarged partial cutaway side view of the tip end portion of the end mill, and FIG. [FIG. 2] (a) Side view of a conventional end mill with a sink hole (b) Side view of an enlarged part of the tip of the end mill (c) Same front view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Shank 2 Sink hole 3 Center hole 4 Outer edge blade 6 Inner blade 7 Tip pocket 8 Torsion groove 9 Bottom blade flank α Bottom blade clearance angle κ Bottom blade clearance angle κ 'Inner blade clearance angle t Inner blade Clearance clearance

Claims (2)

3枚以上の外周刃と各外周刃に連なる底刃を有し、かつ両端にセンター穴を有し、底刃側のセンター穴は、先端中心に設けた沈み穴の奥端面に設けられ、前記沈み穴は、入口から奥に向かって拡径するテーパ穴で形成され、底刃の内端部に前記テーパ沈み穴の内周面と先端のチップポケットの溝面との交差稜で形成された内刃を備えて成る超硬合金製ソリッドエンドミル。It has three or more outer peripheral blades and a bottom blade connected to each outer peripheral blade, and has center holes at both ends, and the center hole on the bottom blade side is provided at the back end surface of the sink hole provided at the center of the tip, The sink hole is formed by a tapered hole that expands from the entrance toward the back, and is formed at the inner end of the bottom blade by an intersection ridge between the inner peripheral surface of the taper sink hole and the groove surface of the tip tip pocket. Solid end mill made of cemented carbide with inner blade. 前記沈み穴の入口径をエンドミル径の1/2〜1/3、深さをエンドミル径の1/5〜1/10、穴のテーパ角を10°〜50°の範囲で各々設定した請求項1記載のエンドミル。The entrance diameter of the sink hole is set to 1/2 to 1/3 of the end mill diameter, the depth is set to 1/5 to 1/10 of the end mill diameter, and the taper angle of the hole is set in a range of 10 ° to 50 °. 1 is an end mill.
JP33953998A 1998-11-30 1998-11-30 End mill Expired - Lifetime JP4136139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33953998A JP4136139B2 (en) 1998-11-30 1998-11-30 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33953998A JP4136139B2 (en) 1998-11-30 1998-11-30 End mill

Publications (2)

Publication Number Publication Date
JP2000158224A JP2000158224A (en) 2000-06-13
JP4136139B2 true JP4136139B2 (en) 2008-08-20

Family

ID=18328438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33953998A Expired - Lifetime JP4136139B2 (en) 1998-11-30 1998-11-30 End mill

Country Status (1)

Country Link
JP (1) JP4136139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162628A (en) * 2009-01-14 2010-07-29 Mitsubishi Electric Corp Method for machining scroll member

Also Published As

Publication number Publication date
JP2000158224A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
KR100922781B1 (en) Cutting insert for high-speed milling cutter
US5876160A (en) Milling with insert having cutting-edge land of width increasing with depth of cut
KR20010043370A (en) Indexable insert for end mills
JP2004521766A (en) Sintered cutting insert with center hole for tightening screw
KR20010074934A (en) Indexable insert for rotary milling tools
JP2007030074A (en) Radius end mill and cutting method
JPS5981010A (en) Drilling tool
KR20120024666A (en) Cutting insert and face milling cutter
WO1998007543A9 (en) Insert having variable width land
MX2008000475A (en) Method for machining crankshafts and device for carrying out this method.
EP1322441B1 (en) Cutting tool and method and apparatus for making the same
US5725333A (en) Spiral end mill and method of manufacturing the same
KR100299471B1 (en) Cutting insert with twisted relief surface
JPS625726B2 (en)
JP7527796B2 (en) Multi-blade ball end mill and machining method thereof
JP4136139B2 (en) End mill
JPH0360909A (en) Ball end mill
JPS6125941Y2 (en)
JPH08112710A (en) End mill
JP4035184B2 (en) Polygonal end mill
CN112077370A (en) Indexable drill insert
JP4401495B2 (en) Single blade reamer
KR100485529B1 (en) Milling cutter for workpiece processing
JPS6246491Y2 (en)
JPS599775Y2 (en) drilling tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term