JP4134630B2 - Kitchen waste heat recovery system - Google Patents

Kitchen waste heat recovery system Download PDF

Info

Publication number
JP4134630B2
JP4134630B2 JP2002231111A JP2002231111A JP4134630B2 JP 4134630 B2 JP4134630 B2 JP 4134630B2 JP 2002231111 A JP2002231111 A JP 2002231111A JP 2002231111 A JP2002231111 A JP 2002231111A JP 4134630 B2 JP4134630 B2 JP 4134630B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
side end
exhaust
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002231111A
Other languages
Japanese (ja)
Other versions
JP2004069216A (en
Inventor
憲治 谷本
剛 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002231111A priority Critical patent/JP4134630B2/en
Publication of JP2004069216A publication Critical patent/JP2004069216A/en
Application granted granted Critical
Publication of JP4134630B2 publication Critical patent/JP4134630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、店舗などの厨房で発生する排気から熱回収を行う厨房用排熱回収システムに関するものである。
【0002】
【従来の技術】
従来より、持ち帰り弁当の販売店、あるいはファミリーレストランやファーストフード店などのように厨房のある店舗においては、調理に伴って高温になる空気を排気として、一般に排気フードから排気ダクトを通して屋外に放出している。このため、従来の店舗では調理に使用した熱エネルギーの大部分を無駄にしており、省エネルギーの観点からは、排気が有する熱エネルギーの有効利用を図ることが望ましい。
【0003】
例えば、特開2001−41554号公報には、厨房の排気を排気フードから屋外に導く排気ダクト内で、排気が有する熱エネルギーを給湯用の水に与えることによって、排気の温度を低くするとともに、給湯に要する加熱量を低減する技術が開示されている。こうすることによって、調理によって発生した高温空気が従来は屋外に捨てられて熱エネルギーが無駄になっていたのに対して、排熱の有効利用を図るようにしている。
【0004】
【発明が解決しようとする課題】
ところで、この種の店舗では、冷媒回路内での冷媒の循環によって店内の空調を行う空調設備の補助的に用いるデシカント空調機を設けることや、出来立ての温かい食品を保温するための保温庫を設けることを想定したシステム設計が要求されることがある。
【0005】
デシカント空調機では、空気を減湿/加湿するために吸着素子が用いられる。この吸着素子は、水分の吸着量が増えると吸着性能が低下するが、高温に加熱して水分を脱離させると再生することができる。この吸着素子の再生には熱源が必要であり、従来は一般に電気ヒータなどが用いられている。また、保温庫を設ける場合も、通常は同じく電気ヒータなどの熱源が用いられる。
【0006】
そこで、厨房からの排熱を吸着素子や保温庫の加熱に利用することが考えられるが、単にその排熱を吸着素子や保温庫に与えるだけのシステムでは、該システムが空調設備とは別系統になり、全体のシステム構成が複雑になるおそれがある。
【0007】
本発明は、このような問題点に鑑みて創案されたものであり、その目的とするところは、デシカント空調に用いる吸着素子の再生や保温庫の加熱と、室内の空調とを、厨房排気の排熱を有効に利用した一つのシステムで行えるようにすることである。
【0008】
【課題を解決するための手段】
本発明は、厨房の排気が有する排熱を、デシカント空調の吸着素子(53,54)の再生用熱源、及び食品を保温する保温庫(30)の加熱用熱源の少なくとも一方に利用するとともに、該排熱を室内の空調にも利用できるようにしたものである。
【0009】
具体的に、請求項1に記載の発明は、厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備え、該冷媒回路(70)は、食品の保温に用いられる保温庫(30)に設けられた保温用熱交換器(31)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備えている。更に、上記保温用熱交換器 (31) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続されている。そして、上記冷媒回路(70)は、室内熱交換器(41)が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器(41)が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記保温用熱交換器(31)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴としている。
【0010】
上記請求項1の発明では、圧縮機構(61)から吐出された冷媒は、保温用熱交換器(31)において保温庫(30)の庫内空気と熱交換し、凝縮する。凝縮した冷媒は、膨張行程を経た後に排熱回収用熱交換器(21)へ流れて蒸発し、圧縮機構(61)に吸入される。
【0011】
一方、室内の暖房運転中で室内熱交換器(41)が凝縮器になっている場合、圧縮機構(61)から吐出された冷媒は、室内熱交換器(41)及び保温用熱交換器(31)で凝縮した後に合流し、排熱回収用熱交換器(21)で蒸発して圧縮機構(61)に戻る。また、冷房運転中で室内熱交換器(41)が蒸発器になっている場合は、圧縮機構(61)から吐出された冷媒は、保温用熱交換器(31)で凝縮した後、排熱回収用熱交換器(21)と室内熱交換器(41)とで蒸発して、圧縮機構(61)に吸入される。
【0012】
したがって、排熱回収用熱交換器(21)で回収した排熱を、暖房運転時と冷房運転時のいずれでも保温庫(30)の庫内空気を加熱するのに利用できるとともに、特に暖房時には室内空気を加熱するのにも利用できる。
【0013】
また、請求項2に記載の発明は、厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備え、該冷媒回路(70)は、デシカント空調に用いられる吸着素子(53,54)を再生する再生用熱交換器(51)と、食品の保温に用いられる保温庫(30)に設けられた保温用熱交換器(31)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備えている。更に、上記保温用熱交換器 (31) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、上記再生用熱交換器 (51) は、保温用熱交換器 (31) と並列に接続され、上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続されている。そして、上記冷媒回路(70)は、室内熱交換器(41)が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器(41)が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記再生用熱交換器(51)及び保温用熱交換器(31)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴としている。
【0014】
上記請求項2の発明では、圧縮機構(61)から吐出された冷媒は、一部が再生用熱交換器(51)において吸着素子(53,54)の再生用空気と熱交換し、残りが保温用熱交換器(31)において保温庫(30)の庫内空気と熱交換し、それぞれ凝縮する。凝縮した冷媒は、膨張行程を経た後に排熱回収用熱交換器(21)へ流れて蒸発し、圧縮機構(61)に吸入される。
【0015】
一方、室内の暖房運転中で室内熱交換器(41)が凝縮器になっている場合、圧縮機構(61)から吐出された冷媒は、室内熱交換器(41)、再生用熱交換器(51)、及び保温用熱交換器(31)で凝縮した後に合流し、排熱回収用熱交換器(21)で蒸発して圧縮機構(61)に戻る。また、冷房運転中で室内熱交換器(41)が蒸発器になっている場合は、圧縮機構(61)から吐出された冷媒は、再生用熱交換器(51)及び保温用熱交換器(31)で凝縮した後、排熱回収用熱交換器(21)と室内熱交換器(41)とで蒸発して、圧縮機構(61)に吸入される。
【0016】
したがって、排熱回収用熱交換器(21)で回収した排熱を、暖房運転時と冷房運転時のいずれでも、デシカント空調における吸着素子(53,54)の再生と、保温庫(30)における庫内空気の加熱とに利用できるとともに、特に暖房時には室内空気を加熱するのにも利用できる。
【0017】
また、請求項3に記載の発明は、厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備えている。該冷媒回路(70)は、デシカント空調に用いられる吸着素子(53,54)を再生する再生用熱交換器(51)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備えている。更に、上記再生用熱交換器 (51) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続されている。そして、上記冷媒回路(70)は、室内熱交換器 (41) が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器 (41) が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記再生用熱交換器(51)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴としている。
【0018】
上記請求項3の発明では、圧縮機構 (61) から吐出された冷媒は、再生用熱交換器 (51) において吸着素子 (53,54) の再生用空気と熱交換し、凝縮する。凝縮した冷媒は、膨張行程を経た後に排熱回収用熱交換器 (21) へ流れて蒸発し、圧縮機構 (61) に吸入される。冷媒が以上の循環動作を繰り返すことにより、蒸気圧縮式冷凍サイクルの動作が行われる。
【0019】
一方、室内の暖房運転中で室内熱交換器 (41) が凝縮器になっている場合、圧縮機構 (61) から吐出された冷媒は、室内熱交換器 (41) 及び再生用熱交換器 (51) で凝縮した後に合流し、排熱回収用熱交換器 (21) で蒸発して圧縮機構 (61) に戻る。また、冷房運転中で室内熱交換器 (41) が蒸発器になっている場合は、圧縮機構 (61) から吐出された冷媒は、再生用熱交換器 (51) で凝縮した後、排熱回収用熱交換器 (21) と室内熱交換器 (41) とで蒸発して、圧縮機構 (61) に吸入される。
【0020】
したがって、排熱回収用熱交換器 (21) で回収した排熱を、暖房運転時と冷房運転時のいずれでもデシカント空調の吸着素子 (53,54) を再生するのに利用できるとともに、特に暖房運転時には室内空気を加熱するのにも利用できる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0022】
(システムの構成)
図1は、この実施形態に係る厨房用排熱回収システム(1)を適用した店舗(2)の概略構成図である。このシステム(1)が適用される店舗(2)は、例えば、持ち帰り弁当の販売店、あるいはファミリーレストランやファーストフード店など、調理食品を扱う店舗である。
【0023】
この店舗(2)の厨房(3)には、コンロ等の調理機器(10)と、調理に伴って発生する高温の空気を室外に排出する排気設備(20)が設けられている。また、この店舗(2)の店内(4)には、調理済みの食品を保温しておくための保温庫(30)が設けられていて、客が店内(4)で温かい食品を選択することができるようになっている。上記厨房(3)と店内(4)とはカウンター(5)で仕切られている。このカウンター(5)は、例えば、販売員から客へ食品の受け渡しをしたり食器を置いたりするのに用いられる。
【0024】
店舗(2)の天井には、天井埋め込み型の空気調和装置の室内ユニット(40)が複数台設置されている。また、店舗(2)の天井には、デシカント空調機(50)も設置されている。デシカント空調機(50)は、空気の湿度を操作して室内に供給することによって空調を行うもので、このシステム(1)では室内ユニット(40)による空調の補助的な役割を果たしている。
【0025】
店舗(2)の屋外には室外ユニット(60)が設置されている。そして、上記排気設備(20)、保温庫(30)、室内ユニット(40)、及びデシカント空調機(50)には、それぞれ熱交換器(21,31,41,51)が内蔵され、室外ユニット(60)には圧縮機構(61)(図2参照)及び室外熱交換器(62)が内蔵されている。室内側の各機器(20,30,40,50)の熱交換器(21,31,41,51)は、室外ユニット(60)の圧縮機構(61)及び室外熱交換器(62)と接続され、図2,図3に示すように冷媒が循環する冷媒回路(70)を構成している。
【0026】
上記排気設備(20)は、調理機器(10)の上方に設置された排気フード(22)と、排気フード(22)に導入される高温の空気を室外に導く排気ダクト(23)と、排気ダクト(23)内の高温の空気を室外に排出する排気ファン(24)とから構成されている。排気フード(22)内には、排気が有する排熱を回収するための排熱回収用熱交換器(21)が設けられている。
【0027】
保温庫(30)は、庫内が棚状になっていて、調理済みの食品を加温しながら保存するように構成されている。そして、該保温庫(30)には、庫内空気を加熱する保温用熱交換器(31)が、庫内空間に隣接する状態で配設されている。また、保温庫(30)には、庫内空気を保温用熱交換器(31)を通して循環させる庫内ファン(32)が設けられている。
【0028】
上記室内ユニット(40)には、室内空気を加熱または冷却するための室内熱交換器(41)が設けられている。また、室内ユニット(40)には、ケーシング(42)に吸い込んだ室内空気を室内熱交換器(41)に通風させてから室内に吹き出す室内ファン(43)が設けられている。
【0029】
デシカント空調機(50)は、ケーシング(52)内に、吸着剤を含有する2つの吸着素子(53,54)を有している。このデシカント空調機(50)は、一方の吸着素子(53,54)で吸着用の空気の水分を吸着しながら他方の吸着素子(54,53)を再生用の空気で再生する状態と、一方の吸着素子(53,54)を再生用空気で再生しながら他方の吸着素子(54,53)で吸着用空気の水分を吸着する状態とを交互に切り換えて運転を行い、水分を奪った除湿空気または水分を与えた加湿空気を室内へ連続して供給することができるように構成されている。このデシカント空調機(50)には、吸着素子(53,54)の再生用空気を加熱するために、再生用熱交換器(51)が設けられている。また、デシカント空調機(50)のケーシング(52)内には、吸着用空気を送風する吸着空気用ファン(図示せず)と、再生用空気を送風する再生空気用ファン(55)(図2参照)とが設けられている。
【0030】
(冷媒回路の構成)
次に、このシステムの冷媒回路(70)について、図2及び図3を参照して説明する。
【0031】
この冷媒回路(70)は、空調用の第1系統側回路(71)と、排熱回収用の第2系統側回路(72)とを備えている。第1系統側回路(71)は冷媒の循環方向が冷房サイクルと暖房サイクルとに切り換え可能に構成され、第2系統側回路(72)は冷媒の循環方向が一定に構成されている。
【0032】
この冷媒回路(70)では、第1圧縮機(61a)と第2圧縮機(61b)と第3圧縮機(61c)が並列に接続され、上記圧縮機構(61)が構成されている。この圧縮機構(61)は、電動機がインバータ制御されて容量が段階的又は連続的に可変となるインバータ圧縮機や、電動機が常に一定速で回転するノンインバータ圧縮機を適宜組み合わせて構成することができる。
【0033】
上記第1圧縮機(61a)、第2圧縮機(61b)及び第3圧縮機(61c)の各吐出管(81a,81b,81c)は、合流して第1高圧ガス管(82a)及び第2高圧ガス管(82b)に接続されている。つまり、並列になった3本の吐出管(81a,81b,81c)が、同じく並列になった2本の高圧ガス管(82a,82b)に接続されている。
【0034】
第1高圧ガス管(82a)は、第1四路切換弁(73)の第1ポート(P1)に接続されている。第1四路切換弁(73)の第2ポート(P2)には、室外ガス管(83)によって上記室外熱交換器(62)のガス側端部が接続されている。また、室外熱交換器(62)の液側端部には、並列に接続された再生用熱交換器(51)及び保温用熱交換器(31)を介して液管(84)の一端が接続されている。この液管(84)の途中にはレシーバ(76)が設けられ、液管(84)の他端は第1連絡液管(85a)及び第2連絡液管(85b)に接続されている。
【0035】
なお、上記室外熱交換器(62)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、熱源ファンである室外ファン(63)が近接して配置されている。
【0036】
また、上記再生用熱交換器(51)及び保温用熱交換器(31)は、室外熱交換器(62)と同様にクロスフィン式のフィン・アンド・チューブ型熱交換器を用いてもよいし、その他の形式の熱交換器を用いてもよい。保温用熱交換器(31)の近傍には庫内ファン(32)が配置され、再生用熱交換器(51)の近傍には吸着素子(53,54)に通風させる再生空気用ファン(55)が配置されている。
【0037】
上記第1四路切換弁(73)の第3ポート(P3)には、連絡ガス管(86)が接続されている。また、上記第1四路切換弁(73)の第4ポート(P4)は、接続管(87)によって第2四路切換弁(74)の第3ポート(P3)に接続されている。第2四路切換弁(74)の第1ポート(P1)には、上記第2高圧ガス管(82b)が接続されている。第2四路切換弁(74)の第2ポート(P2)は、閉塞された閉鎖ポートに構成されている。また、第2四路切換弁(74)の第4ポート(P4)は、第1系統側回路(71)の低圧ガス管(86a)が接続されている。以上の構成において、第2四路切換弁(74)は三路切換弁で代用してもよい。
【0038】
上記第1四路切換弁(73)及び第2四路切換弁(74)は、それぞれ、第1ポート(P1)と第2ポート(P2)とが連通し且つ第3ポート(P3)と第4ポート(P4)とが連通する第1状態(図の実線参照)と、第1ポート(P1)と第3ポート(P3)とが連通し、且つ第2ポート(P2)と第4ポート(P4)とが連通する第2状態(図の破線参照)とに切り換わるように構成されている。
【0039】
上記第1圧縮機(61a)の吸入管(87a)は、第2系統側回路(72)の低圧ガス管(86b)に接続されている。この吸入管(87a)は、分岐管(88a)を介して第3四路切換弁(75)の第1ポート(P1)に接続されている。第3四路切換弁(75)の第2ポート(P2)には第2圧縮機(61b)の吸入管(87b)が接続されている。第3圧縮機(61c)の吸入管(87c)は上記第1系統側回路(71)の低圧ガス管(86a)に接続される一方、分岐管(88b)を介して第3四路切換弁(75)の第3ポート(P3)に接続されている。第1圧縮機(61a)及び第3圧縮機(61c)の吸入管(87a,87c)の分岐管(88a,88b)には、低圧ガス管(86a,86b)から第3四路切換弁(75)に向かう冷媒の流れのみを許容し、その逆流を禁止する逆止弁(CV1,CV2)が設けられている。さらに、第3四路切換弁(75)の第4ポート(P4)は、閉塞された閉鎖ポートに構成されている。したがって、この第3四路切換弁(75)の代わりに三路切換弁を用いてもよい。
【0040】
上記第3四路切換弁(75)は、第1ポート(P1)と第2ポート(P2)が連通し、第3ポート(P3)と第4ポート(P4)が連通する第1の状態(図の実線参照)と、第1ポート(P1)と第4ポート(P4)が連通し、第2ポート(P2)と第3ポート(P3)が連通する第2の状態(図の破線参照)とに切り換え可能に構成されている。
【0041】
上記液管(84)は、逆止弁(CV3)の設けられた第1分岐液管(89a)を介して上記第1連絡液管(85a)に接続されている。該第1連絡液管(85a)は膨張機構である室内膨張弁(EV1)を介して室内熱交換器(41)の液側端部に接続されている。また、室内熱交換器(41)のガス側端部には、上記連絡ガス管(86)が接続されている。
【0042】
一方、液管(84)から分岐した第2連絡液管(85b)は、膨張機構である排熱回収側膨張弁(EV2)を介して排熱回収用熱交換器(21)の液側端部に接続されている。この排熱回収用熱交換器(21)のガス側端部には、第2系統側回路(72)の低圧ガス管(86b)が接続されている。
【0043】
また、上記第1分岐液管(89a)における逆止弁(CV3)の下流側とレシーバ(76)の上端部とは、第2分岐液管(89b)によって接続されている。この第2分岐液管(89b)には、レシーバ(76)へ向かう冷媒流れのみを許容する逆止弁(CV4)が設けられている。
【0044】
−運転動作−
次に、この排熱回収システム(1)における冷媒回路上(70)での冷媒の流れを説明する。
【0045】
(冷房運転)
まず、夏期に行う冷房運転時の動作について説明する。この冷房運転時は、第1四路切換弁(73),第2四路切換弁(74),及び第3四路切換弁(75)が、それぞれ第1状態に設定される。また、室内膨張弁(EV1)及び排熱回収側膨張弁(EV2)は、それぞれ所定開度に制御される。
【0046】
この状態で3台の圧縮機(61a,61b,61c)がすべて運転されるとすると、各圧縮機(61a,61b,61c)から吐出されたガス冷媒は合流し、第1四路切換弁(73)を通って室外ガス管(83)を流れ、室外熱交換器(62)へ流入する。ガス冷媒は、この室外熱交換器(62)で一部が凝縮した後に分岐して、保温用熱交換器(31)及び再生用熱交換器(51)へ流入する。冷媒は、保温用熱交換器(31)及び再生用熱交換器(51)でさらに凝縮して液化し、レシーバ(76)へ流入する。
【0047】
液冷媒は、レシーバ(76)から流出した後、分岐して第1連絡液管(85a)及び第2連絡液管(85b)を流れる。第1連絡液管(85a)を流れる液冷媒は室内膨張弁(EV1)で膨張し、さらに室内熱交換器(41)で室内空気との熱交換により蒸発した後、第1四路切換弁(73)及び第2四路切換弁(74)を通って第3圧縮機(61c)に吸入される。一方、第2連絡液管(85b)を流れる液管は排熱回収側膨張弁(EV2)で膨張した後、排熱回収用熱交換器(21)で排気との熱交換により蒸発して第1圧縮機(61a)及び第2圧縮機(61b)に吸入される。
【0048】
なお、この冷房運転時は、冷房負荷に応じて第3四路切換弁(75)を第2状態に切り換えてもよく、そうすると室内熱交換器(41)からのガス冷媒が第2圧縮機(61b)と第3圧縮機(61c)に吸入され、排熱回収用熱交換器(21)からのガス冷媒が第1圧縮機(61a)に吸入される状態となる。また、第2圧縮機(61b)は停止させることも可能である。
【0049】
冷媒が冷房運転時に以上のようにして冷媒回路(70)内を循環することで、室内空気から回収した熱と厨房の排気から回収した熱により、再生用熱交換器(51)による吸着素子(53,54)の加熱と、保温用熱交換器(31)による食品の保温とを行うことができる。
【0050】
なお、上記運転時には、例えば室外熱交換器(62)において、冷媒回路(70)における蒸発熱量と凝縮熱量のバランスをとるように室外ファン(63)の起動/停止及び風量調整を行うとよい。また、それだけでは凝縮熱量や蒸発熱量の調整が不十分であるような場合を想定して、図示していないが蒸発器あるいは凝縮器となる補助熱交換器を冷媒回路上に設けてもよい。
【0051】
(暖房運転)
次に、冬季に行う暖房運転時の動作について説明する。この暖房運転時は、第1四路切換弁(73),及び第2四路切換弁(74)がそれぞれ第2状態に設定され、第3四路切換弁(75)は第1状態に設定される。また、室内膨張弁(EV1)は全開に設定され、排熱回収側膨張弁(EV2)は所定開度に制御される。なお、暖房運転時には第3圧縮機(61c)は停止状態となる。
【0052】
以上の設定で、第1圧縮機(61a)及び第2圧縮機(61b)から吐出された冷媒は、一部が第1高圧ガス管(82a)を流れ、残りが第2高圧ガス管(82b)を流れる。第1高圧ガス管(82a)を流れる冷媒は、第1四路切換弁(73)を通過して室内熱交換器(41)で凝縮し、第1連絡液管(85a)から第2分岐液管(89b)を通ってレシーバ(76)へ流入する。また、第2高圧ガス管(82b)を流れる冷媒は、第2四路切換弁(74)及び第1四路切換弁(73)を通過して室外ガス管(83)を流れ、室外熱交換器(62)、保温用熱交換器(31)、及び再生用熱交換器(51)で凝縮し、レシーバ(76)へ流入する。この暖房運転時も、室外ファン(63)の動作を制御して室外熱交換器(62)における凝縮熱量を調節したり、図示しない補助熱交換器を設けておくことで、冷媒回路(70)における凝縮熱量と蒸発熱量のバランスをとるようにしておくとよい。
【0053】
上記レシーバ(76)で合流した液冷媒は、第2連絡液管(85b)を流れ、排熱回収側膨張弁(EV2)で膨張した後に排熱回収用熱交換器(21)に流入する。排熱回収用熱交換器(21)において、冷媒は排気との熱交換により加熱されて蒸発し、ガス冷媒となる。このガス冷媒は、第2系統側回路(72)の低圧ガス管(86b)を流れ、一部が第1圧縮機(61a)に吸入されるとともに残りが第3四路切換弁(75)を介して第2圧縮機(61b)に吸入される。
【0054】
なお、この暖房運転時は、第3四路切換弁(75)を第2状態に切り換えるとともに第2圧縮機(61b)を停止して、第1圧縮機(61a)のみで運転を行うことも可能である。
【0055】
暖房運転時には、冷媒が以上のようにして循環することにより、厨房での調理によって発生した排気が有する排熱を回収しながら、室内の暖房と、再生用熱交換器(51)による吸着素子の加熱と、保温用熱交換器(31)による食品の保温とを行うことができる。
【0056】
−実施形態の効果−
本実施形態によれば、厨房の排熱を利用して、デシカント空調機(50)における吸着素子(53,54)の再生と、保温庫(30)における食品の保温とを行うことができるので、デシカント空調機(50)や保温庫(30)に従来は設けられている電気ヒータを不要にしたり、該電気ヒータを設ける場合であってもその加熱容量を抑えることができる。したがって、システム(1)の省エネ化を図ることができる。
【0057】
また、特に夏期にはデシカント空調機(50)を用いて室内を除湿することで空調負荷を低減することができるため、冷房運転の省エネ化が可能となる。また、冬季には排熱を室内熱交換器(42)による室内空気の加熱に利用でき、しかもデシカント空調機(50)で加湿された暖かい空気を室内に供給することもできるため、暖房運転の省エネ化が可能となる。
【0058】
そして、本実施形態によれば、デシカント空調に用いる吸着素子(53,54)の再生及び保温庫(30)の加熱と、室内の空調とを、厨房排気の排熱を有効に利用した一つのシステムで行えるため、全体のシステム構成が複雑になるのを防止できる。
【0059】
−実施形態の変形例−
上記実施形態では、冷媒回路(70)において室外熱交換器(62)の下流側に保温用熱交換器(31)と再生用熱交換器(51)を並列に接続した構成にしているが、図4に示すように、逆に室外熱交換器(62)を保温用熱交換器(31)と再生用熱交換器(51)の下流側に接続してもよい。こうすると、保温用熱交換器(31)と再生用熱交換器(51)における加熱量を優先し、余った分を室外熱交換器(62)で凝縮させることが可能になるため、システムの運転制御を比較的容易に行うことが可能になる。
【0060】
また、上記実施形態では、3台の圧縮機(61a,61b,61c)からなる圧縮機構(61)を用いたシステムについて説明したが、この圧縮機構(61)を始め、各機器や冷媒回路の具体構成は適宜変更してもよい。
【0061】
さらに、上記実施形態では、厨房の排熱をデシカント空調機(50)における吸着素子(53,54)の再生と保温庫(30)における食品の加熱の両方に利用し、かつ空調を行うシステムについて説明したが、本発明のシステムは、デシカント空調機(50)における吸着素子(53,54)の再生と保温庫(30)における食品の加熱の一方と空調とを行うシステムにしてもよい。
【0062】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、排熱回収用熱交換器(21)で回収した排熱を保温庫(30)の庫内空気を加熱するのに利用できるとともに、該排熱を暖房時には室内空気を加熱するのにも利用できるため、冷房運転及び暖房運転の省エネ化を図ることが可能となる。
【0063】
さらに、請求項2に記載の発明によれば、排熱回収用熱交換器(21)で回収した排熱を、デシカント空調機(50)における吸着素子(53,54)の再生と、保温庫における庫内空気の加熱とに利用できるため、請求項1の発明の効果を同時に奏することができる。
【0064】
また、請求項3に記載の発明によれば、排熱回収用熱交換器 (21) で回収した排熱を、デシカント空調の吸着素子 (53,54) を再生するのに利用できるため、夏期はデシカント空調機 (50) による除湿を行って室内熱交換器 (42) の冷房負荷を低減できることとなり、冷房運転の省エネ化が可能となる。また、冬季は排熱を室内の空調に利用でき、しかもデシカント空調機 (50) で加湿された暖かい空気を室内に供給することもできるので、室内熱交換器 (42) の暖房負荷を低減し、暖房運転の省エネ化を図ることができる。
【0065】
そして、請求項1から請求項の発明によれば、デシカント空調に用いる吸着素子(53,54)の再生や保温庫(30)の加熱と、室内の空調とを、厨房排気の排熱を有効に利用した一つのシステムで行えるため、全体のシステム構成が複雑になるのを防止できる。
【0066】
また、請求項から請求項に記載の発明によれば、冷暖房が可能なシステムにおいて、特に暖房時には厨房の排熱を利用して室内を暖房できるため、暖房運転時の省エネ化を図ることが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る厨房用排熱回収システムを適用した店舗の概略構成図である。
【図2】 図1の排熱回収システムの冷媒回路図であり、冷房運転状態を示している。
【図3】 図1の排熱回収システムの冷媒回路図であり、暖房運転状態を示している。
【図4】 実施形態の変形例に係る排熱回収システムの冷媒回路図である。
【符号の説明】
(1) 厨房用排熱回収システム
(2) 店舗
(3) 厨房
(4) 店内
(10) 厨房機器
(20) 排気設備
(21) 排熱回収用熱交換器
(30) 保温庫
(31) 保温用熱交換器
(40) 室内ユニット
(41) 室内熱交換器
(50) デシカント空調機
(51) 再生用熱交換器
(53,54) 吸着素子
(60) 室外ユニット
(61) 圧縮機構
(62) 室外熱交換器
(70) 冷媒回路
(EV1) 室内膨張弁(膨張機構)
(EV2) 排熱回収側膨張弁(膨張機構)
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a kitchen exhaust heat recovery system that recovers heat from exhaust generated in a kitchen of a store or the like.
[0002]
[Prior art]
  Traditionally, in stores with take-out lunch boxes or kitchens such as family restaurants and fast food stores, air that becomes hot as it is cooked is exhausted and generally discharged from the exhaust hood to the outside through an exhaust duct. ing. For this reason, most of the heat energy used for cooking is wasted in conventional stores, and from the viewpoint of energy saving, it is desirable to make effective use of the heat energy of the exhaust.
[0003]
  For example, in Japanese Patent Laid-Open No. 2001-41554, in the exhaust duct that guides the exhaust of the kitchen from the exhaust hood to the outside, the heat energy of the exhaust is given to hot water, thereby reducing the temperature of the exhaust, A technique for reducing the amount of heating required for hot water supply is disclosed. By doing so, the high-temperature air generated by cooking is conventionally thrown away outdoors and the heat energy is wasted, whereas the exhaust heat is effectively used.
[0004]
[Problems to be solved by the invention]
  By the way, in this type of store, a desiccant air conditioner that is used as an auxiliary for air conditioning equipment that performs air conditioning in the store by circulating the refrigerant in the refrigerant circuit, and a heat storage room for keeping freshly cooked foods are installed. A system design that is supposed to be provided may be required.
[0005]
  In desiccant air conditioners, adsorption elements are used to dehumidify / humidify air. This adsorbing element decreases in adsorption performance as the amount of moisture adsorbed increases, but can be regenerated when heated to a high temperature to desorb moisture. The regeneration of the adsorption element requires a heat source, and conventionally an electric heater or the like is generally used. Further, when a heat storage is provided, a heat source such as an electric heater is usually used.
[0006]
  Therefore, it is conceivable to use the exhaust heat from the kitchen for heating the adsorption element and the heat insulation. However, in a system that simply gives the exhaust heat to the adsorption element and the heat insulation, the system is separate from the air conditioning equipment. The overall system configuration may become complicated.
[0007]
  The present invention was devised in view of such problems, and the object of the present invention is to regenerate adsorption elements used for desiccant air conditioning, to heat a warming box, and to air condition an indoor room. It is to be able to do it with one system that effectively uses exhaust heat.
[0008]
[Means for Solving the Problems]
  The present invention uses the exhaust heat of the exhaust of the kitchen as at least one of a heat source for regeneration of the adsorbing element (53, 54) of the desiccant air conditioner and a heat source for heating of the warmer (30) for keeping food warm, The exhaust heat can also be used for indoor air conditioning.
[0009]
  Specifically, the invention according to claim 1 is a kitchen exhaust heat recovery system for recovering exhaust heat of exhaust generated in the kitchen, comprising: a compression mechanism (61);Gas side end is compression mechanism (61) An outdoor heat exchanger (a switchable connection between the discharge pipe and the suction pipe and a liquid side end connected to the liquid pipe ( 62 ) And an expansion mechanism provided in the liquid pipe (EV1) And the liquid side end is connected to the liquid pipe and the gas side end is the compression mechanism. (61) Indoor heat exchanger that is switchably connected to the discharge pipe and suction pipe ( 41 )And a refrigerant circuit (70) sequentially connected to each other, and the refrigerant circuit (70) is provided with a heat-retaining heat exchanger (31) provided in a heat-retaining cabinet (30) used for heat-retaining food, and Exhaust heat recovery heat exchanger (21) provided in the exhaust pathAndI have.Further, the heat exchanger for heat insulation (31) Is the outdoor heat exchanger ( 62 ) At the gas-side end or liquid-side end of the outdoor heat exchanger ( 62 ) And the above heat exchanger for exhaust heat recovery (twenty one) The liquid side end is an expansion mechanism (EV2) The gas side end is connected to the liquid pipe through the compression mechanism (61) Connected to the suction pipe.The refrigerant circuit (70) has a cooling operation in which the indoor heat exchanger (41) serves as an evaporator to cool the room, and the indoor heat exchanger (41) serves as a condenser to heat the room. It is configured to be able to switch between heating operation and the aboveRefrigerant circuit (70) IsIn any of the cooling operation and the heating operation, the heat-retaining heat exchanger (31) serves as a condenser, and the exhaust heat recovery heat exchanger (21) serves as an evaporator. Yes.
[0010]
  In the first aspect of the present invention, the refrigerant discharged from the compression mechanism (61) exchanges heat with the air in the heat insulation chamber (30) in the heat insulation heat exchanger (31) and condenses. The condensed refrigerant passes through the expansion stroke, then flows to the exhaust heat recovery heat exchanger (21), evaporates, and is sucked into the compression mechanism (61).
[0011]
  On the other hand, when the indoor heat exchanger (41) is a condenser during indoor heating operation, the refrigerant discharged from the compression mechanism (61) is separated from the indoor heat exchanger (41) and the heat-retaining heat exchanger ( After condensing in 31), they merge, evaporate in the heat exchanger for exhaust heat recovery (21), and return to the compression mechanism (61). In addition, when the indoor heat exchanger (41) is an evaporator during cooling operation, the refrigerant discharged from the compression mechanism (61) is condensed by the heat-retaining heat exchanger (31) and then exhausted. It evaporates in the recovery heat exchanger (21) and the indoor heat exchanger (41) and is sucked into the compression mechanism (61).
[0012]
  Accordingly, the exhaust heat recovered by the exhaust heat recovery heat exchanger (21) can be used to heat the air in the heat insulation chamber (30) during both heating operation and cooling operation, and particularly during heating. It can also be used to heat indoor air.
[0013]
  The invention according to claim 2 is a kitchen exhaust heat recovery system for recovering exhaust heat of exhaust generated in the kitchen, comprising: a compression mechanism (61);Gas side end is compression mechanism (61) An outdoor heat exchanger (a switchable connection between the discharge pipe and the suction pipe and a liquid side end connected to the liquid pipe ( 62 ) And an expansion mechanism provided in the liquid pipe (EV1) And the liquid side end is connected to the liquid pipe and the gas side end is the compression mechanism. (61) Indoor heat exchanger that is switchably connected to the discharge pipe and suction pipe ( 41 )And a refrigerant circuit (70) sequentially connected to each other. The refrigerant circuit (70) includes a regeneration heat exchanger (51) for regenerating the adsorbing elements (53, 54) used for desiccant air conditioning, and a food insulation temperature. Heat exchanger (31) for heat insulation provided in the heat insulator (30) used for the heat exchanger (21) for exhaust heat recovery provided in the exhaust path from the kitchenAndI have.Further, the heat exchanger for heat insulation (31) Is the outdoor heat exchanger ( 62 ) At the gas-side end or liquid-side end of the outdoor heat exchanger ( 62 ) And the above heat exchanger for regeneration (51) Is a heat exchanger for heat insulation (31) Connected to the heat exchanger for exhaust heat recovery (twenty one) The liquid side end is an expansion mechanism (EV2) The gas side end is connected to the liquid pipe through the compression mechanism (61) Connected to the suction pipe.The refrigerant circuit (70) has a cooling operation in which the indoor heat exchanger (41) serves as an evaporator to cool the room, and the indoor heat exchanger (41) serves as a condenser to heat the room. It is configured to be able to switch between heating operation and the aboveRefrigerant circuit (70) IsIn both the cooling operation and the heating operation, the regeneration heat exchanger (51) and the heat retaining heat exchanger (31) can be operated as a condenser, and the exhaust heat recovery heat exchanger (21) can be operated as an evaporator. It is characterized by being configured.
[0014]
  In the invention of claim 2, a part of the refrigerant discharged from the compression mechanism (61) exchanges heat with the regeneration air of the adsorption elements (53, 54) in the regeneration heat exchanger (51), and the rest In the heat exchanger for heat insulation (31), heat is exchanged with the air in the heat insulation box (30), and the heat is condensed. The condensed refrigerant passes through the expansion stroke, then flows to the exhaust heat recovery heat exchanger (21), evaporates, and is sucked into the compression mechanism (61).
[0015]
  On the other hand, when the indoor heat exchanger (41) is a condenser during indoor heating operation, the refrigerant discharged from the compression mechanism (61) passes through the indoor heat exchanger (41), the regeneration heat exchanger ( 51) and after condensing in the heat-retaining heat exchanger (31), they merge, evaporate in the exhaust heat recovery heat exchanger (21), and return to the compression mechanism (61). Further, when the indoor heat exchanger (41) is an evaporator during the cooling operation, the refrigerant discharged from the compression mechanism (61) is converted into a regeneration heat exchanger (51) and a heat retaining heat exchanger ( After condensing in (31), the exhaust heat recovery heat exchanger (21) and the indoor heat exchanger (41) evaporate and are sucked into the compression mechanism (61).
[0016]
  Therefore, the exhaust heat recovered by the exhaust heat recovery heat exchanger (21) can be used to regenerate the adsorbing elements (53, 54) in the desiccant air conditioner in both the heating operation and the cooling operation, and It can be used for heating the indoor air, and can also be used for heating indoor air especially during heating.
[0017]
  The invention according to claim 3 is a kitchen exhaust heat recovery system for recovering exhaust heat of exhaust generated in the kitchen, comprising: a compression mechanism (61);Gas side end is compression mechanism (61) An outdoor heat exchanger (a switchable connection between the discharge pipe and the suction pipe and a liquid side end connected to the liquid pipe ( 62 ) And an expansion mechanism provided in the liquid pipe (EV1) And the liquid side end is connected to the liquid pipe and the gas side end is the compression mechanism. (61) Indoor heat exchanger that is switchably connected to the discharge pipe and suction pipe ( 41 )And a refrigerant circuit (70) connected in sequence. The refrigerant circuit (70) includes a regeneration heat exchanger (51) for regenerating the adsorbing elements (53, 54) used for desiccant air conditioning, and a heat exchanger for exhaust heat recovery provided in an exhaust path from the kitchen. (twenty one)AndI have.Further, the regeneration heat exchanger (51) Is the outdoor heat exchanger ( 62 ) At the gas-side end or liquid-side end of the outdoor heat exchanger ( 62 ) And the above heat exchanger for exhaust heat recovery (twenty one) The liquid side end is an expansion mechanism (EV2) The gas side end is connected to the liquid pipe through the compression mechanism (61) Connected to the suction pipe. AndThe refrigerant circuit (70)Indoor heat exchanger (41) Cooling operation in which the room becomes an evaporator and cools the room, and the indoor heat exchanger (41) The refrigerant circuit is configured to be capable of switching between heating operation for heating the room as a condenser. (70) Is the above in both cooling operation and heating operation.Heat exchanger for regeneration (51)Becomes a condenser, Waste heat recovery heat exchanger (21)Can be operated as an evaporatorIt is characterized by being composed.
[0018]
  In the invention of claim 3, the compression mechanism (61) The refrigerant discharged from the (51) Adsorption element in (53,54) Exchanges heat with the air for regeneration and condenses. The condensed refrigerant passes through the expansion process and then is used as a heat exchanger for exhaust heat recovery. (twenty one) Evaporates and flows into the compression mechanism (61) Inhaled. The operation of the vapor compression refrigeration cycle is performed by the refrigerant repeating the above circulation operation.
[0019]
  On the other hand, indoor heat exchanger during indoor heating operation (41) When the is a condenser, the compression mechanism (61) The refrigerant discharged from the indoor heat exchanger (41) And regeneration heat exchanger (51) Heat exchanger for exhaust heat recovery after condensing in (twenty one) Evaporate and compress mechanism (61) Return to. Also, the indoor heat exchanger during cooling operation (41) If the is an evaporator, the compression mechanism (61) The refrigerant discharged from the (51) After being condensed in the heat exchanger for exhaust heat recovery (twenty one) And indoor heat exchanger (41) And the evaporation mechanism (61) Inhaled.
[0020]
  Therefore, heat exchanger for exhaust heat recovery (twenty one) The desiccant air-conditioning adsorption element can be used to recover the exhaust heat recovered at the time of both heating and cooling operations. (53,54) Can be used to regenerate the air, and can also be used to heat indoor air, particularly during heating operation.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022]
  (System configuration)
  FIG. 1 is a schematic configuration diagram of a store (2) to which a kitchen exhaust heat recovery system (1) according to this embodiment is applied. The store (2) to which the system (1) is applied is a store that handles cooked foods such as a take-out lunch store, a family restaurant, or a fast food store.
[0023]
  The kitchen (3) of the store (2) is provided with a cooking device (10) such as a stove and an exhaust facility (20) for discharging hot air generated during cooking to the outside. In addition, in the store (4) of this store (2), there is a heat storage room (30) for keeping the cooked food warm, and customers select hot food in the store (4). Can be done. The kitchen (3) and the store (4) are separated by a counter (5). This counter (5) is used, for example, for delivering food or placing tableware from a salesperson to a customer.
[0024]
  On the ceiling of the store (2), a plurality of indoor units (40) of a ceiling-embedded air conditioner are installed. A desiccant air conditioner (50) is also installed on the ceiling of the store (2). The desiccant air conditioner (50) performs air conditioning by operating the humidity of air and supplying it to the room. In this system (1), the air conditioner is supplemented by the indoor unit (40).
[0025]
  An outdoor unit (60) is installed outside the store (2). The exhaust equipment (20), the heat insulation (30), the indoor unit (40), and the desiccant air conditioner (50) each have a built-in heat exchanger (21, 31, 41, 51). (60) incorporates a compression mechanism (61) (see FIG. 2) and an outdoor heat exchanger (62). The heat exchanger (21, 31, 41, 51) of each indoor unit (20, 30, 40, 50) is connected to the compression mechanism (61) and the outdoor heat exchanger (62) of the outdoor unit (60). As shown in FIGS. 2 and 3, a refrigerant circuit (70) in which the refrigerant circulates is configured.
[0026]
  The exhaust system (20) includes an exhaust hood (22) installed above the cooking appliance (10), an exhaust duct (23) for guiding high-temperature air introduced into the exhaust hood (22) to the outside, and an exhaust An exhaust fan (24) that discharges high-temperature air in the duct (23) to the outside of the room. In the exhaust hood (22), an exhaust heat recovery heat exchanger (21) for recovering exhaust heat of the exhaust is provided.
[0027]
  The heat storage (30) has a shelf shape inside and is configured to store cooked foods while heating them. In the heat insulation box (30), a heat exchanger for heat insulation (31) for heating the air in the box is disposed adjacent to the space in the box. The heat insulation chamber (30) is provided with an internal fan (32) for circulating the internal air through the heat exchanger (31) for heat insulation.
[0028]
  The indoor unit (40) is provided with an indoor heat exchanger (41) for heating or cooling indoor air. The indoor unit (40) is provided with an indoor fan (43) that blows indoor air sucked into the casing (42) through the indoor heat exchanger (41) and then blows the air into the room.
[0029]
  The desiccant air conditioner (50) has two adsorbing elements (53, 54) containing an adsorbent in a casing (52). In this desiccant air conditioner (50), one adsorbing element (53, 54) adsorbs moisture in the adsorbing air while the other adsorbing element (54, 53) is regenerated with regeneration air, Dehumidification that deprives moisture by performing operation by alternately switching the adsorption element (54,53) to the state of adsorbing moisture in the adsorption air while regenerating the adsorption element (53,54) of the other It is configured so that humidified air to which air or moisture is given can be continuously supplied into the room. The desiccant air conditioner (50) is provided with a regeneration heat exchanger (51) for heating the regeneration air of the adsorption elements (53, 54). Also, in the casing (52) of the desiccant air conditioner (50), an adsorption air fan (not shown) for blowing the adsorption air and a regeneration air fan (55) for blowing the regeneration air (FIG. 2). For example).
[0030]
  (Configuration of refrigerant circuit)
  Next, the refrigerant circuit (70) of this system will be described with reference to FIGS.
[0031]
  The refrigerant circuit (70) includes a first system side circuit (71) for air conditioning and a second system side circuit (72) for exhaust heat recovery. The first system side circuit (71) is configured such that the circulation direction of the refrigerant can be switched between a cooling cycle and a heating cycle, and the second system side circuit (72) is configured such that the circulation direction of the refrigerant is constant.
[0032]
  In the refrigerant circuit (70), the first compressor (61a), the second compressor (61b), and the third compressor (61c) are connected in parallel to constitute the compression mechanism (61). The compression mechanism (61) may be configured by appropriately combining an inverter compressor whose capacity is variable stepwise or continuously as the motor is inverter-controlled and a non-inverter compressor whose motor always rotates at a constant speed. it can.
[0033]
  The discharge pipes (81a, 81b, 81c) of the first compressor (61a), the second compressor (61b), and the third compressor (61c) merge to form a first high-pressure gas pipe (82a) and a second 2 It is connected to the high pressure gas pipe (82b). That is, three discharge pipes (81a, 81b, 81c) arranged in parallel are connected to two high-pressure gas pipes (82a, 82b) arranged in parallel.
[0034]
  The first high-pressure gas pipe (82a) is connected to the first port (P1) of the first four-way switching valve (73). The gas side end of the outdoor heat exchanger (62) is connected to the second port (P2) of the first four-way switching valve (73) by an outdoor gas pipe (83). In addition, at the liquid side end of the outdoor heat exchanger (62), one end of the liquid pipe (84) is connected via the regeneration heat exchanger (51) and the heat retaining heat exchanger (31) connected in parallel. It is connected. A receiver (76) is provided in the middle of the liquid pipe (84), and the other end of the liquid pipe (84) is connected to the first communication liquid pipe (85a) and the second communication liquid pipe (85b).
[0035]
  The outdoor heat exchanger (62) is, for example, a cross fin type fin-and-tube heat exchanger, and an outdoor fan (63), which is a heat source fan, is disposed close to the outdoor heat exchanger (62).
[0036]
  Further, the regeneration heat exchanger (51) and the heat-retaining heat exchanger (31) may be cross-fin type fin-and-tube heat exchangers similarly to the outdoor heat exchanger (62). However, other types of heat exchangers may be used. An in-compartment fan (32) is disposed in the vicinity of the heat-retaining heat exchanger (31), and a regenerative air fan (55) that ventilates the adsorption elements (53, 54) in the vicinity of the regenerative heat exchanger (51). ) Is arranged.
[0037]
  A communication gas pipe (86) is connected to the third port (P3) of the first four-way selector valve (73). The fourth port (P4) of the first four-way selector valve (73) is connected to the third port (P3) of the second four-way selector valve (74) by a connecting pipe (87). The second high pressure gas pipe (82b) is connected to the first port (P1) of the second four-way switching valve (74). The second port (P2) of the second four-way selector valve (74) is configured as a closed port. The fourth port (P4) of the second four-way selector valve (74) is connected to the low pressure gas pipe (86a) of the first system side circuit (71). In the above configuration, the second four-way switching valve (74) may be replaced with a three-way switching valve.
[0038]
  The first four-way switching valve (73) and the second four-way switching valve (74) are respectively connected to the first port (P1) and the second port (P2) and to the third port (P3) and the second port. The first state (refer to the solid line in the figure) in which the 4 port (P4) communicates, the first port (P1) and the third port (P3) communicate, and the second port (P2) and the fourth port ( P4) is configured to switch to the second state (see the broken line in the figure).
[0039]
  The suction pipe (87a) of the first compressor (61a) is connected to the low pressure gas pipe (86b) of the second system side circuit (72). The suction pipe (87a) is connected to the first port (P1) of the third four-way switching valve (75) via the branch pipe (88a). The suction port (87b) of the second compressor (61b) is connected to the second port (P2) of the third four-way selector valve (75). The suction pipe (87c) of the third compressor (61c) is connected to the low pressure gas pipe (86a) of the first system side circuit (71), while the third four-way switching valve is connected via the branch pipe (88b). It is connected to the third port (P3) of (75). The branch pipes (88a, 88b) of the suction pipes (87a, 87c) of the first compressor (61a) and the third compressor (61c) are connected from the low pressure gas pipes (86a, 86b) to the third four-way switching valve ( There are provided check valves (CV1, CV2) that allow only the flow of refrigerant toward 75) and prohibit the reverse flow. Further, the fourth port (P4) of the third four-way selector valve (75) is configured as a closed port. Therefore, a three-way switching valve may be used instead of the third four-way switching valve (75).
[0040]
  The third four-way selector valve (75) is in a first state (first port (P1) and second port (P2) communicate with each other, and third port (P3) and fourth port (P4) communicate with each other). The second state (refer to the broken line in the figure), the first port (P1) and the fourth port (P4) communicate, and the second port (P2) and the third port (P3) communicate. And can be switched to.
[0041]
  The liquid pipe (84) is connected to the first communication liquid pipe (85a) via a first branch liquid pipe (89a) provided with a check valve (CV3). The first communication liquid pipe (85a) is connected to the liquid side end of the indoor heat exchanger (41) via an indoor expansion valve (EV1) which is an expansion mechanism. The communication gas pipe (86) is connected to the gas side end of the indoor heat exchanger (41).
[0042]
  On the other hand, the second connecting liquid pipe (85b) branched from the liquid pipe (84) is connected to the liquid side end of the heat exchanger (21) for exhaust heat recovery via an exhaust heat recovery side expansion valve (EV2) that is an expansion mechanism. Connected to the department. The low pressure gas pipe (86b) of the second system side circuit (72) is connected to the gas side end of the exhaust heat recovery heat exchanger (21).
[0043]
  The downstream side of the check valve (CV3) in the first branch liquid pipe (89a) and the upper end of the receiver (76) are connected by a second branch liquid pipe (89b). The second branch liquid pipe (89b) is provided with a check valve (CV4) that allows only the refrigerant flow toward the receiver (76).
[0044]
      -Driving action-
  Next, the flow of the refrigerant on the refrigerant circuit (70) in the exhaust heat recovery system (1) will be described.
[0045]
  (Cooling operation)
  First, the operation at the time of cooling operation performed in summer will be described. During this cooling operation, the first four-way switching valve (73), the second four-way switching valve (74), and the third four-way switching valve (75) are each set to the first state. The indoor expansion valve (EV1) and the exhaust heat recovery side expansion valve (EV2) are each controlled to a predetermined opening degree.
[0046]
  If all the three compressors (61a, 61b, 61c) are operated in this state, the gas refrigerant discharged from each compressor (61a, 61b, 61c) joins and the first four-way switching valve ( 73) through the outdoor gas pipe (83) and into the outdoor heat exchanger (62). The gas refrigerant is branched after being partially condensed in the outdoor heat exchanger (62), and flows into the heat-retaining heat exchanger (31) and the regeneration heat exchanger (51). The refrigerant is further condensed and liquefied by the heat retaining heat exchanger (31) and the regeneration heat exchanger (51), and flows into the receiver (76).
[0047]
  After flowing out of the receiver (76), the liquid refrigerant branches off and flows through the first communication liquid pipe (85a) and the second communication liquid pipe (85b). The liquid refrigerant flowing through the first connecting liquid pipe (85a) is expanded by the indoor expansion valve (EV1) and further evaporated by heat exchange with the indoor air in the indoor heat exchanger (41), and then the first four-way switching valve ( 73) and the second four-way selector valve (74), and is sucked into the third compressor (61c). On the other hand, the liquid pipe flowing through the second communication liquid pipe (85b) is expanded by the exhaust heat recovery side expansion valve (EV2) and then evaporated by heat exchange with the exhaust gas in the exhaust heat recovery heat exchanger (21). The air is sucked into the first compressor (61a) and the second compressor (61b).
[0048]
  During this cooling operation, the third four-way switching valve (75) may be switched to the second state in accordance with the cooling load, so that the gas refrigerant from the indoor heat exchanger (41) is transferred to the second compressor ( 61b) and the third compressor (61c) are sucked, and the gas refrigerant from the exhaust heat recovery heat exchanger (21) is sucked into the first compressor (61a). The second compressor (61b) can also be stopped.
[0049]
  As the refrigerant circulates in the refrigerant circuit (70) as described above during the cooling operation, the adsorption element (51) by the regeneration heat exchanger (51) uses the heat collected from the indoor air and the heat collected from the kitchen exhaust ( 53, 54) and the heat insulation of the food by the heat exchanger for heat insulation (31) can be performed.
[0050]
  During the above operation, for example, in the outdoor heat exchanger (62), the outdoor fan (63) may be started / stopped and the air volume adjusted so as to balance the amount of heat of evaporation and the amount of heat of condensation in the refrigerant circuit (70). Further, assuming that the adjustment of the amount of heat of condensation and the amount of heat of evaporation is insufficient by itself, an auxiliary heat exchanger that is not shown in the figure but serves as an evaporator or a condenser may be provided on the refrigerant circuit.
[0051]
  (Heating operation)
  Next, the operation | movement at the time of the heating operation performed in winter is demonstrated. During this heating operation, the first four-way selector valve (73) and the second four-way selector valve (74) are each set to the second state, and the third four-way selector valve (75) is set to the first state. Is done. Also, the indoor expansion valve (EV1) is set to fully open, and the exhaust heat recovery side expansion valve (EV2) is controlled to a predetermined opening. During the heating operation, the third compressor (61c) is stopped.
[0052]
  With the above settings, a part of the refrigerant discharged from the first compressor (61a) and the second compressor (61b) flows through the first high-pressure gas pipe (82a) and the rest flows through the second high-pressure gas pipe (82b). ). The refrigerant flowing through the first high-pressure gas pipe (82a) passes through the first four-way switching valve (73), condenses in the indoor heat exchanger (41), and passes through the first communication liquid pipe (85a) to the second branch liquid. It flows into the receiver (76) through the pipe (89b). The refrigerant flowing through the second high-pressure gas pipe (82b) passes through the second four-way switching valve (74) and the first four-way switching valve (73), flows through the outdoor gas pipe (83), and performs outdoor heat exchange. Is condensed in the heat exchanger (62), the heat retaining heat exchanger (31), and the regeneration heat exchanger (51), and flows into the receiver (76). Even during this heating operation, the refrigerant circuit (70) is controlled by controlling the operation of the outdoor fan (63) to adjust the heat of condensation in the outdoor heat exchanger (62) or by providing an auxiliary heat exchanger (not shown). It is advisable to balance the amount of heat of condensation and the amount of heat of evaporation.
[0053]
  The liquid refrigerant joined by the receiver (76) flows through the second communication liquid pipe (85b), expands by the exhaust heat recovery side expansion valve (EV2), and then flows into the exhaust heat recovery heat exchanger (21). In the heat exchanger (21) for exhaust heat recovery, the refrigerant is heated and evaporated by heat exchange with the exhaust gas, and becomes a gas refrigerant. This gas refrigerant flows through the low-pressure gas pipe (86b) of the second system side circuit (72), and a part of the refrigerant is sucked into the first compressor (61a) and the rest passes through the third four-way switching valve (75). Through the second compressor (61b).
[0054]
  During this heating operation, the third four-way selector valve (75) is switched to the second state, the second compressor (61b) is stopped, and the operation can be performed using only the first compressor (61a). Is possible.
[0055]
  During the heating operation, the refrigerant circulates as described above, so that the exhaust heat generated by the cooking in the kitchen is recovered while the indoor heating and the adsorption element of the regeneration heat exchanger (51) Heating and heat insulation of the food by the heat exchanger for heat insulation (31) can be performed.
[0056]
      -Effect of the embodiment-
  According to the present embodiment, the waste heat of the kitchen can be used to regenerate the adsorption elements (53, 54) in the desiccant air conditioner (50) and to heat the food in the heat insulation box (30). The electric heater conventionally provided in the desiccant air conditioner (50) and the heat insulation box (30) can be eliminated or the heating capacity can be suppressed even when the electric heater is provided. Therefore, energy saving of the system (1) can be achieved.
[0057]
  Further, especially in the summer, the air conditioning load can be reduced by dehumidifying the room using the desiccant air conditioner (50), so that it is possible to save energy in the cooling operation. In winter, exhaust heat can be used for heating indoor air by the indoor heat exchanger (42), and warm air humidified by the desiccant air conditioner (50) can also be supplied indoors. Energy saving is possible.
[0058]
  And according to this embodiment, the regeneration of the adsorption elements (53, 54) used for desiccant air conditioning, the heating of the heat insulation box (30), and the indoor air conditioning are one that effectively uses the exhaust heat of the kitchen exhaust. Since it can be performed by the system, the overall system configuration can be prevented from becoming complicated.
[0059]
    -Modification of the embodiment-
  In the above embodiment, the refrigerant circuit (70) has a structure in which the heat-retaining heat exchanger (31) and the regeneration heat exchanger (51) are connected in parallel to the downstream side of the outdoor heat exchanger (62). As shown in FIG. 4, the outdoor heat exchanger (62) may be connected downstream of the heat retaining heat exchanger (31) and the regeneration heat exchanger (51). This gives priority to the amount of heat in the heat exchanger for heat insulation (31) and the heat exchanger for regeneration (51), and the excess can be condensed in the outdoor heat exchanger (62). Operation control can be performed relatively easily.
[0060]
  Further, in the above embodiment, the system using the compression mechanism (61) including the three compressors (61a, 61b, 61c) has been described. However, in addition to the compression mechanism (61), each device and refrigerant circuit The specific configuration may be changed as appropriate.
[0061]
  Furthermore, in the above embodiment, a system that uses the exhaust heat of the kitchen for both the regeneration of the adsorption elements (53, 54) in the desiccant air conditioner (50) and the heating of the food in the heat insulation box (30) and performs air conditioning. As described above, the system of the present invention may be a system that performs one of the regeneration of the adsorbing elements (53, 54) in the desiccant air conditioner (50) and the heating of the food in the heat insulation box (30) and air conditioning.
[0062]
【The invention's effect】
  As described above, according to the first aspect of the present invention, the exhaust heat recovered by the exhaust heat recovery heat exchanger (21) can be used to heat the internal air of the heat insulation chamber (30). Since the exhaust heat can also be used to heat indoor air during heating, it is possible to save energy in the cooling operation and the heating operation.
[0063]
  Furthermore, according to the invention described in claim 2, the exhaust heat recovered by the heat exchanger (21) for recovering exhaust heat is used to regenerate the adsorbing elements (53, 54) in the desiccant air conditioner (50) and Therefore, the effect of the invention of claim 1 can be obtained at the same time.
[0064]
  According to the invention of claim 3, the heat exchanger for exhaust heat recovery (twenty one) The exhaust heat collected in the desiccant air conditioning adsorption element (53,54) The desiccant air conditioner can be used to recycle (50) Indoor heat exchanger with dehumidification by (42) Therefore, the cooling load can be reduced, and energy saving in the cooling operation can be achieved. In winter, exhaust heat can be used for indoor air conditioning, and a desiccant air conditioner. (50) It is also possible to supply indoors with warm air humidified by (42) It is possible to reduce the heating load and to save energy in the heating operation.
[0065]
  And claim 1FromClaim3According to the invention, regeneration of the adsorption elements (53, 54) used for desiccant air conditioning, heating of the heat insulation box (30), and indoor air conditioning can be performed in one system that effectively uses the exhaust heat of the kitchen exhaust. Therefore, the overall system configuration can be prevented from becoming complicated.
[0066]
  Claims1Claims from3According to the invention described in the above, in the system capable of cooling and heating, the room can be heated using the exhaust heat of the kitchen particularly during heating, so that energy saving during heating operation can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a store to which a kitchen exhaust heat recovery system according to an embodiment of the present invention is applied.
FIG. 2 is a refrigerant circuit diagram of the exhaust heat recovery system of FIG. 1, showing a cooling operation state.
FIG. 3 is a refrigerant circuit diagram of the exhaust heat recovery system of FIG. 1 and shows a heating operation state.
FIG. 4 is a refrigerant circuit diagram of an exhaust heat recovery system according to a modification of the embodiment.
[Explanation of symbols]
(1) Waste heat recovery system for kitchen
(2) Store
(3) Kitchen
(4) Inside the store
(10) Kitchen equipment
(20) Exhaust equipment
(21) Heat exchanger for exhaust heat recovery
(30) Incubator
(31) Heat exchanger for heat insulation
(40) Indoor unit
(41) Indoor heat exchanger
(50) Desiccant air conditioner
(51) Regenerative heat exchanger
(53,54) Adsorption element
(60) Outdoor unit
(61) Compression mechanism
(62) Outdoor heat exchanger
(70) Refrigerant circuit
(EV1) Indoor expansion valve (expansion mechanism)
(EV2) Waste heat recovery side expansion valve (expansion mechanism)

Claims (3)

厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、
圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備え、
該冷媒回路(70)は、食品の保温に用いられる保温庫(30)に設けられた保温用熱交換器(31)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備え
上記保温用熱交換器 (31) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、
上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続される一方、
上記冷媒回路(70)は、室内熱交換器(41)が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器(41)が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、
上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記保温用熱交換器(31)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴とする厨房用排熱回収システム。
An exhaust heat recovery system for a kitchen that recovers exhaust heat of exhaust generated in the kitchen,
A compression mechanism (61) , an outdoor heat exchanger ( 62 ) having a gas side end switchably connected to a discharge pipe and a suction pipe of the compression mechanism (61) and a liquid side end connected to the liquid pipe The expansion mechanism (EV1) provided in the liquid pipe , the liquid side end is connected to the liquid pipe, and the gas side end is switchably connected to the discharge pipe and the suction pipe of the compression mechanism (61). in-room heat exchanger (41) and is provided with a refrigerant circuit which is connected in the forward (70),
The refrigerant circuit (70) includes a heat exchanger (31) for heat insulation provided in a heat insulation box (30) used for heat insulation of food, and a heat exchanger for exhaust heat recovery provided in an exhaust path from the kitchen. (21) and equipped with a,
The heat-retaining heat exchanger (31) is connected in series with the outdoor heat exchanger ( 62 ) to the gas-side end or the liquid-side end of the outdoor heat exchanger ( 62 ),
The exhaust heat recovery heat exchanger (21), and the gas-side end portion is connected to said liquid pipe through a liquid-side end the expansion mechanism (EV2) is Ru is connected to the suction pipe of the compression mechanism (61) on the other hand,
The refrigerant circuit (70) includes a cooling operation in which the indoor heat exchanger (41) serves as an evaporator to cool the room, and a heating operation in which the indoor heat exchanger (41) serves as a condenser to heat the room. And is configured to be switchable,
The refrigerant circuit (70) can be operated such that the heat-retaining heat exchanger (31) serves as a condenser and the exhaust heat recovery heat exchanger (21) serves as an evaporator in both the cooling operation and the heating operation. A waste heat recovery system for a kitchen characterized by being configured.
厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、
圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備え、
該冷媒回路(70)は、デシカント空調に用いられる吸着素子(53,54)を再生する再生用熱交換器(51)と、食品の保温に用いられる保温庫(30)に設けられた保温用熱交換器(31)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備え
上記保温用熱交換器 (31) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、
上記再生用熱交換器 (51) は、保温用熱交換器 (31) と並列に接続され、
上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続される一方、
上記冷媒回路(70)は、室内熱交換器(41)が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器(41)が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、
上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記再生用熱交換器(51)及び保温用熱交換器(31)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴とする厨房用排熱回収システム。
An exhaust heat recovery system for a kitchen that recovers exhaust heat of exhaust generated in the kitchen,
A compression mechanism (61) , an outdoor heat exchanger ( 62 ) having a gas side end switchably connected to a discharge pipe and a suction pipe of the compression mechanism (61) and a liquid side end connected to the liquid pipe The expansion mechanism (EV1) provided in the liquid pipe , the liquid side end is connected to the liquid pipe, and the gas side end is switchably connected to the discharge pipe and the suction pipe of the compression mechanism (61). in-room heat exchanger (41) and is provided with a refrigerant circuit which is connected in the forward (70),
The refrigerant circuit (70) includes a heat exchanger for regeneration (51) for regenerating the adsorbing elements (53, 54) used for desiccant air conditioning, and a heat insulation provided in a heat insulation box (30) used for heat insulation of food. comprising a heat exchanger (31), heat is provided in the exhaust path from the kitchen recovery heat exchanger and (21),
The heat-retaining heat exchanger (31) is connected in series with the outdoor heat exchanger ( 62 ) to the gas-side end or the liquid-side end of the outdoor heat exchanger ( 62 ),
The regeneration heat exchanger (51) is connected in parallel with the heat-retaining heat exchanger (31) ,
The exhaust heat recovery heat exchanger (21), and the gas-side end portion is connected to said liquid pipe through a liquid-side end the expansion mechanism (EV2) is Ru is connected to the suction pipe of the compression mechanism (61) on the other hand,
The refrigerant circuit (70) includes a cooling operation in which the indoor heat exchanger (41) serves as an evaporator to cool the room, and a heating operation in which the indoor heat exchanger (41) serves as a condenser to heat the room. And is configured to be switchable,
In the refrigerant circuit (70) , in both the cooling operation and the heating operation, the regeneration heat exchanger (51) and the heat retention heat exchanger (31) serve as a condenser, and the exhaust heat recovery heat exchanger (21). A waste heat recovery system for kitchens, which is configured to be capable of operating as an evaporator.
厨房において発生する排気の排熱を回収する厨房用排熱回収システムであって、
圧縮機構(61)と、ガス側端部が圧縮機構 (61) の吐出管と吸入管とに切換可能に接続され且つ液側端部が液管に接続された室外熱交換器( 62 )と、上記液管に設けられた膨張機構 (EV1) と、液側端部が上記液管に接続され且つガス側端部が上記圧縮機構 (61) の吐出管と吸入管とに切換可能に接続された室内熱交換器( 41 とが順に接続された冷媒回路(70)を備え、
該冷媒回路(70)は、デシカント空調に用いられる吸着素子(53,54)を再生する再生用熱交換器(51)と、厨房からの排気経路中に設けられた排熱回収用熱交換器(21)とを備え
上記再生用熱交換器 (51) は、上記室外熱交換器( 62 )のガス側端部又は液側端部に該室外熱交換器( 62 )と直列に接続され、
上記排熱回収用熱交換器 (21) は、液側端部が膨張機構 (EV2) を介して上記液管に接続され且つガス側端部が圧縮機構 (61) の吸入管に接続される一方、
上記冷媒回路(70)は、室内熱交換器 (41) が蒸発器になって室内を冷却する冷房運転と、該室内熱交換器 (41) が凝縮器になって室内を加温する暖房運転とを切り換え可能に構成されると共に、
上記冷媒回路 (70) は、冷房運転及び暖房運転の何れにおいても上記再生用熱交換器(51)が凝縮器となり、排熱回収用熱交換器(21)が蒸発器となる運転が可能に構成されていることを特徴とする厨房用排熱回収システム。
An exhaust heat recovery system for a kitchen that recovers exhaust heat of exhaust generated in the kitchen,
A compression mechanism (61) , an outdoor heat exchanger ( 62 ) having a gas side end switchably connected to a discharge pipe and a suction pipe of the compression mechanism (61) and a liquid side end connected to the liquid pipe The expansion mechanism (EV1) provided in the liquid pipe , the liquid side end is connected to the liquid pipe, and the gas side end is switchably connected to the discharge pipe and the suction pipe of the compression mechanism (61). in-room heat exchanger (41) and is provided with a refrigerant circuit which is connected in the forward (70),
The refrigerant circuit (70) includes a regeneration heat exchanger (51) for regenerating the adsorbing elements (53, 54) used for desiccant air conditioning, and a heat exchanger for exhaust heat recovery provided in an exhaust path from the kitchen. (21) and equipped with a,
The regeneration heat exchanger (51) is connected the outdoor heat exchanger (62) in series with the gas-side end portion or the liquid-side end of the outdoor heat exchanger (62),
The heat exchanger (21) for exhaust heat recovery has a liquid side end connected to the liquid pipe via an expansion mechanism (EV2) and a gas side end connected to the suction pipe of the compression mechanism (61). on the other hand,
The refrigerant circuit (70) includes a cooling operation by the indoor heat exchanger (41) cools the room becomes the evaporator, heating operation indoor heat exchanger (41) for heating the room turned condenser And is configured to be switchable,
The refrigerant circuit (70) can be operated such that the regeneration heat exchanger (51) serves as a condenser and the exhaust heat recovery heat exchanger (21) serves as an evaporator in both the cooling operation and the heating operation. A waste heat recovery system for a kitchen characterized by being configured.
JP2002231111A 2002-08-08 2002-08-08 Kitchen waste heat recovery system Expired - Fee Related JP4134630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231111A JP4134630B2 (en) 2002-08-08 2002-08-08 Kitchen waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231111A JP4134630B2 (en) 2002-08-08 2002-08-08 Kitchen waste heat recovery system

Publications (2)

Publication Number Publication Date
JP2004069216A JP2004069216A (en) 2004-03-04
JP4134630B2 true JP4134630B2 (en) 2008-08-20

Family

ID=32016975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231111A Expired - Fee Related JP4134630B2 (en) 2002-08-08 2002-08-08 Kitchen waste heat recovery system

Country Status (1)

Country Link
JP (1) JP4134630B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008013396A (en) * 2006-04-18 2009-01-20 Halton Group Ltd Oy Recirculating exhaust system.
JP4836201B2 (en) * 2007-07-26 2011-12-14 東京瓦斯株式会社 Kitchen system
CN102840636A (en) * 2011-06-25 2012-12-26 荣国华 Heat energy recovery device
WO2013135136A1 (en) * 2012-03-12 2013-09-19 Rong Guohua Kitchen heat-recycling air conditioning system
CN113819622B (en) * 2021-08-31 2022-11-15 青岛海尔空调器有限总公司 Air conditioner control method and system and air conditioner
CN115291648B (en) * 2022-08-01 2023-02-03 宁波方太厨具有限公司 Intelligent household appliance and temperature control method, system, equipment and medium thereof

Also Published As

Publication number Publication date
JP2004069216A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
US9599379B2 (en) Integral air conditioning system for heating and cooling
EP2351969A1 (en) Humidity control device
KR102139084B1 (en) Air conditioner
JP2002081688A (en) Ventilator
JP4134630B2 (en) Kitchen waste heat recovery system
JP2005195285A (en) Air conditioner
JP6296617B2 (en) Cooling storage and dehumidifying air conditioning system
JP5049500B2 (en) Dehumidifying air conditioning system and dehumidifying air conditioner
JP2001193965A (en) Method and apparatus for energy conservation air conditioning
JP5614838B2 (en) Kitchen air supply and exhaust system
JP5849696B2 (en) Air conditioning system
JPH0749900B2 (en) Heat recovery type air conditioner
KR100849549B1 (en) Air conditioning apparatus
JPH08261517A (en) Air-conditioning device
JP4317498B2 (en) Air conditioner
JP2010281502A (en) Humidifier
JP2000329375A (en) Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
KR100889128B1 (en) Air conditioning apparatus
JPH0285656A (en) Airconditioner
KR100885574B1 (en) Air conditioning apparatus
CN114198829B (en) Humidity regulating system
JP3536905B2 (en) Cool air / dehumidification switching type air conditioner
CN219607260U (en) Air-cooled kitchen integrated kitchen thermal management system
KR20090028855A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees