JP4132873B2 - Plasma processing apparatus and power supply member thereof - Google Patents

Plasma processing apparatus and power supply member thereof Download PDF

Info

Publication number
JP4132873B2
JP4132873B2 JP2002054225A JP2002054225A JP4132873B2 JP 4132873 B2 JP4132873 B2 JP 4132873B2 JP 2002054225 A JP2002054225 A JP 2002054225A JP 2002054225 A JP2002054225 A JP 2002054225A JP 4132873 B2 JP4132873 B2 JP 4132873B2
Authority
JP
Japan
Prior art keywords
power supply
supply member
frequency power
processing
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002054225A
Other languages
Japanese (ja)
Other versions
JP2003257940A (en
Inventor
大輔 林
慎司 桧森
淳 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002054225A priority Critical patent/JP4132873B2/en
Priority to PCT/JP2003/002381 priority patent/WO2003073489A1/en
Publication of JP2003257940A publication Critical patent/JP2003257940A/en
Priority to US10/927,587 priority patent/US7230202B2/en
Priority to US11/797,626 priority patent/US20070284085A1/en
Application granted granted Critical
Publication of JP4132873B2 publication Critical patent/JP4132873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプラズマ処理装置およびその給電部材にかかり,特に給電部材に熱遮断機構を持たせたプラズマ処理装置およびその給電部材に関する。
【0002】
【従来の技術】
半導体製造工程,液晶表示装置の製造工程などで行われるプラズマ処理においては,電極が備えられた気密な処理容器内に処理ガスを導入し,電極に高周波電力を印加して,処理ガスをプラズマ化し,被処理体表面にエッチングや成膜等所定の処理を行っている。
【0003】
上記プラズマ処理を行うプラズマ処理装置においては,電極に高周波電力を印加するために,高周波電源と電極とを電気的に接続するための給電部材が備えられる。この給電部材は、導通棒(Hot・Return)、給電棒とも称されている。この給電部材は,高周波電源から電極に供給される高周波電力の損失を最小限に抑えるため,従来,良導体の例えば,アルミニウム,銅等で形成されていた。
【0004】
図4は,従来の給電部材を備えたプラズマ処理装置の1例であるプラズマエッチング装置10の概略断面図である。図4に示すように,プラズマエッチング装置10には,例えば略円筒形の接地された気密な処理容器12内に,半導体ウエハWを載置する,載置台を兼ねた下部電極14が,例えば上下動可能に設けられている。処理容器12底面部と下部電極14の底面部とは,略円筒形の蛇腹状に形成されたベローズ20により気密に接続され,処理容器12内を気密に保っている。
【0005】
下部電極14に対向して上部電極18が設けられ,処理容器12を介して接地されている。処理容器12上部には,ガス導入系(図示せず)に接続されたガス導入口16が設けられ,上部電極18に設けられた複数のガス吐出口19より,処理ガスを処理容器12内に導入する。処理ガスには,例えばCガス,ArガスおよびOガスの混合ガス等が用いられる。処理容器12下部には,排気機構(図示せず)に接続された排気管22が設けられ,この排気管22を介して真空引きされることで,処理容器12内は所定の真空度に保たれる。
【0006】
下部電極14の下部には,整合器24を介して高周波電源26から,例えば13.56MHzの高周波電力を供給するための給電部材50が設けられている。給電部材50は,上述したように,アルミニウム,銅等の良導体で形成されており,高周波電源26から供給される高周波電力を効率よく下部電極14に伝達できるように構成されている。
【0007】
この高周波電源26により与えられる電力によって,処理容器12内に導入された処理ガスはプラズマ状態となり,電極間の下部電極14近傍に発生する自己バイアス電圧により加速されたイオン及びラジカルのエネルギーにより,被処理体にエッチング処理が施される。
【0008】
【発明が解決しようとする課題】
ところで,下部電極14は,内部に埋め込まれたヒータ,冷媒供給部,温度測定部材などからなる温度調節機構(図示せず)により所定温度に維持される。また,半導体ウエハWと下部電極14との間には伝熱ガス供給機構(図示せず)から伝熱ガス(例えばHeガス)が所定の圧力で供給され,下部電極14からの熱を半導体ウエハWに効率的に伝えるように構成され,半導体ウエハWの温度を制御することが可能になっている。
【0009】
上述のように下部電極14は,半導体ウエハWの温度制御体を兼ねており,例えば,ポリシリコン等をエッチングする場合には,下部電極14は60℃以上に,また,シリコン酸化膜等をエッチングする場合には,約0℃から−20℃に制御される。このとき,一般的に電気抵抗の低い良導体は熱伝導率が高い場合が多く,下部電極14と直結される良導体で形成された給電部材50は,下部電極14と同等の温度になる。
【0010】
しかしながら,給電部材50が例えば60℃以上の高温になると,オペレータがメンテナンス時に火傷などの危険を伴う。また,安全のため温度が下がるまで待つと時間がかかり,効率が悪いという問題があった。
【0011】
また,給電部材50が例えば0℃〜−20℃という低温になると,図4に示したように大気に曝されている場合には,給電部材50の表面に結露が発生し,高周波の沿面伝達が起こる危険性があるという問題があった。
【0012】
本発明は,従来のプラズマ処理装置およびその給電部材が有する上記問題点に鑑みてなされたものであり,本発明の目的は,効率よく高周波電力を伝達しながら,熱の伝達を遮断することが可能な,新規かつ改良されたプラズマ処理装置およびその給電部材を提供することである。
【0013】
【課題を解決するための手段】
上記課題を解決するため,本発明によれば,気密な処理容器内に処理ガスを導入するとともに高周波電力を印加して処理ガスのプラズマを形成し,被処理体の処理面に対して所定のプラズマ処理を施すプラズマ処理装置に備えられ,高周波電力を発生する高周波電源と高周波電力が印加される電極部との間を電気的に接続する給電部材であって,導体で形成された第1の部材と,第1の部材に,少なくとも1層,層状に介挿された誘電体の第2の部材とを有する給電部材およびそれを備えたプラズマ処理装置が提供される。第2の部材は,アルミナセラミック,バルクイットリア,またはジルコニアのいずれかで形成されることが好ましい。
【0014】
かかる構成によれば,導体の第1部材が,高周波電源および電極部と直結するとともに,第1部材に少なくとも1層,熱伝導率が低い誘電体で形成された第2部材を設けることで,電力を効率よく伝達するとともに,熱の伝導を遮断することができる。
【0015】
【発明の実施の形態】
以下に添付図面を参照しながら,本発明にかかるプラズマ処理装置およびその給電部材の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
【0016】
図1は,本実施の形態にかかるプラズマ処理装置の1例であるプラズマエッチング装置100の概略断面図,図2は,給電部材150を示す概略断面図,図3は,給電部材160を示す概略断面図である。
【0017】
図1に示すように,プラズマエッチング装置100には,例えば略円筒形の接地された気密な処理容器102内下部に,半導体ウエハWを載置する,載置台を兼ねた下部電極104が,例えば上下動可能に設けられている。処理容器102底面部と下部電極104の底面部とは,略円筒形の蛇腹状に形成されたベローズ120により気密に接続され,処理容器102内を気密に保っている
【0018】
下部電極104に対向して上部電極108が設けられ,処理容器102を介して接地されている。本実施の形態においては,下部電極104にのみ高周波電力を印加しているが,上部電極108にも高周波電力を印加するように構成してもよい。
【0019】
処理容器102上部には,ガス導入系(図示せず)に接続されたガス導入口106が設けられ,上部電極108に設けられた複数のガス吐出口109より,処理ガスを処理容器102内に導入する。処理ガスには,例えばCガス,ArガスおよびOガスの混合ガス等が用いられる。
【0020】
処理容器102下部には,排気機構(図示せず)に接続された排気管110が設けられ,この排気管110を介して真空引きされることで,処理容器102内は所定の真空度に保たれる。また,処理容器102の両側壁外部に磁石を設け,電界に垂直な磁場を与えるようにしてもよい。この場合,磁石の磁場の強度は可変であるように構成されることが好ましい。
【0021】
下部電極104は,内部に埋め込まれたヒータ,冷媒供給部,温度測定部材などからなる温度調節機構(図示せず)により所定温度に維持される。半導体ウエハWと下部電極104との間には伝熱ガス供給機構(図示せず)から伝熱ガス(例えばHeガス)が所定の圧力で供給され,下部電極104からの熱を半導体ウエハWに伝えるように構成され,半導体ウエハWの温度を制御することが可能になっている。
【0022】
下部電極104には給電部材150,整合器112を介して高周波電源114が接続されている。高周波電源114の周波数は例えば13.56MHzである。本発明の特徴である給電部材150の構成については,後述する。
【0023】
上記のように,高周波電源114により,整合器112および給電部材150を介して与えられる電力によって,処理容器102内に導入された処理ガスはプラズマ状態となり,電極間の下部電極104近傍に発生する自己バイアス電圧により加速されたイオン及びラジカルのエネルギーにより,被処理体にエッチング処理が施される。
【0024】
次に,プラズマエッチング装置100を用いてエッチング処理を行う際の動作を説明する。まず,処理容器102内の下部電極104上に半導体ウエハWを載置し,排気管110を介して排気機構(図示せず)により,処理容器102内を所定の真空度以下に排気する。その後,ガス導入口106から,ガス吐出口109を介して所定の処理ガスを所定の流量で処理容器102内に導入し,所定の真空度になるように調節する。
【0025】
下部電極104は,その内部の温度調節機構により,半導体ウエハWが所定の温度に保たれるように調節される。例えば,ポリシリコン等をエッチングする場合には,下部電極104は60℃以上に,また,シリコン酸化膜等をエッチングする場合には,約0℃から−20℃に制御される。続いて,高周波電源114から整合器112および給電部材150を介して,例えば13.56MHzの高周波電力を印加する。この高周波電力の印加により,処理容器102内の処理ガスはプラズマ化され,被処理体表面に所定のエッチング処理が施される。
【0026】
導通棒(Hot・Return)とも称される給電部材150について説明すると,図2に示すように,本発明の特徴である給電部材150は,導体152,156,および誘電体154の3つの部分を有している。導体152,156は,例えばアルミニウム,銅等の電気抵抗の低い良導体で形成されており,例えば底面積Aの略円柱状である。誘電体154は,熱伝導率の低い誘電体で形成され,厚さd,底面積Aを有する略円柱状であるが。導体152,156,および誘電体154の形状は,円筒状,または,内部に円柱状の空洞を複数有する円柱状などでもよい。
【0027】
導体152,156間における,高周波電力の静電結合による損失を少なくするため,給電部材150の静電容量は大きくすることが好ましい。給電部材150の静電容量は,誘電体154の誘電率,および底面積Aに比例し,厚さdに反比例することから,誘電率および底面積Aはなるべく大きく,厚さdはなるべく薄くする必要がある。底面積Aに関しては,プラズマエッチング装置100の設計上許される範囲で大きく,厚さdに関しては,誘電体154の加工が可能な範囲で薄く形成されることが好ましい。
【0028】
また,下部電極104と導体156とを熱的に遮断するために,誘電体154は熱伝導率の低い材料であることが好ましい。誘電体154の材料としては,誘電率および熱伝導率を考慮して,例えばアルミナセラミック,バルクイットリア,またはジルコニア等を用いることができる。
【0029】
上記構成によれば,下部電極104に,高周波電力を供給する給電部材150に,誘電体154を設け,例えば10MHz以上の高周波電力を効率よく伝達する一方で,下部電極104の熱が給電部材150下部の導体156に伝導するのを遮断できるので,メンテナンス時の危険や,作業効率の低下,また,給電部材150表面の結露などを防止することができる。
【0030】
また,図3に示したように,給電部材150に代えて,給電部材160を用いてもよい。給電部材160は,導体162,166,170および誘電体164,168の5つの部分を有している。導体162,166,170は,例えばアルミニウム,銅等の電気抵抗の低い良導体で形成されており,例えば底面積Aの略円柱状である。誘電体164,168は,熱伝導率の低い誘電体で形成され,それぞれ厚さd1,d2,底面積Aを有する略円柱状である。導体162,166,170,および誘電体164,168の形状は,円筒状,または,内部に円柱状の空洞を複数有する円柱状などでもよい。
【0031】
導体162,166,および導体166,170間における,高周波電力の静電結合による損失を少なくするため,給電部材160の静電容量は大きくすることが好ましい。導体162,166間の静電容量は,誘電体164の誘電率,および底面積Aに比例し,厚さd1に反比例し,導体166,170間の静電容量は,誘電体168の誘電率,および底面積Aに比例し,厚さd2に反比例することから,誘電率および底面積Aはなるべく大きく,厚さd1,d2はなるべく薄くする必要がある。
【0032】
底面積Aに関しては,プラズマエッチング装置100の設計上許される範囲で大きく,厚さd1,d2に関しては,誘電体164,168の加工が可能な範囲で薄く形成されることが好ましい。
【0033】
また,誘電体164,168は,下部電極104と導体170とを熱的に遮断するために,熱伝導率の低い材料であることが好ましい。よって,誘電体164,168の材料としては,誘電率および熱伝導率を考慮して,例えばアルミナ,セラミック,バルクイットリア,またはジルコニア等を用いることができる。上記構成によれば,熱遮断効果のある2層の誘電体164,168を設けたので,たとえば10MHz以上の高周波電力の損失を防ぎながら,より熱伝導を防止できる効果がある。
【0034】
以上説明したように,高周波電源114からの電力を下部電極104に伝達する給電部材150または160は,熱遮断効果のある誘電体154または,誘電体164,168を有しているので,高周波電力を効率よく下部電極104に伝達するとともに,温度制御体を兼ねた下部電極104の温度が,給電部材150,160の下部に伝導されるのを防止できるので,下部電極104を60℃以上に加熱するポリシリコンをエッチングするプロセスや,0〜−20℃の低温に制御するシリコン酸化膜をエッチングするプロセスを始め,様々なプロセスを安全に効率よく行うことが可能となる。
【0035】
以上,添付図面を参照しながら本発明にかかるプラズマ処理装置およびその給電部材の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0036】
例えば,給電部材150,160は,プラズマエッチング装置100に備えられる場合には略円柱状であるが,プラズマ処理装置が例えば液晶表示装置の製造用など,四角柱状の場合には,略四角柱状となるなど,外形状の相違は本発明の技術的範囲である。
【0037】
また,給電部材を形成する導体,および誘電体の材料は上記のものに限定されない。誘電体層は,1層,2層の場合について説明したが,それ以上形成してもよい。また,給電部材中の誘電体層の配置される位置は,プラズマ処理装置の設計上の制約などを勘案して決定されるものであるが,同様の効果を有するものであれば本発明の範囲であると了解される。
【0038】
【発明の効果】
以上説明したように,本発明によれば,プラズマ処理装置内の電極に高周波電力を供給する給電部材に,少なくとも1層の誘電体を設け,高周波電力を効率よく伝達する一方で,電極に与えられた熱が給電部材下部に伝導するのを遮断できるので,メインテナンス時の危険や,作業効率の低下,また,給電部材表面の結露などを防止し,安全に効率よくプラズマ処理を行うことができる。
【図面の簡単な説明】
【図1】本実施の形態にかかるプラズマエッチング装置100の概略断面図である。
【図2】給電部材150を示す概略断面図である。
【図3】給電部材160を示す概略断面図である。
【図4】プラズマエッチング装置10の概略断面図である。
【符号の説明】
100 プラズマエッチング装置
102 処理容器
104 下部電極
106 ガス導入口
108 上部電極
109 ガス吐出口
110 排気管
112 整合器
114 高周波電源
120 ベローズ
150 給電部材
152,156 導体
154 誘電体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing apparatus and a power supply member thereof, and more particularly to a plasma processing apparatus in which a power supply member has a heat shut-off mechanism and a power supply member thereof.
[0002]
[Prior art]
In plasma processing performed in semiconductor manufacturing processes, liquid crystal display manufacturing processes, etc., a processing gas is introduced into an airtight processing vessel equipped with electrodes, and high-frequency power is applied to the electrodes to convert the processing gas into plasma. The surface of the object to be processed is subjected to predetermined processing such as etching and film formation.
[0003]
The plasma processing apparatus that performs the plasma processing includes a power supply member for electrically connecting the high-frequency power source and the electrode in order to apply high-frequency power to the electrode. This power supply member is also referred to as a conduction rod (hot return) or a power supply rod. This power supply member has heretofore been formed of a good conductor such as aluminum or copper in order to minimize loss of high-frequency power supplied to the electrodes from a high-frequency power source.
[0004]
FIG. 4 is a schematic cross-sectional view of a plasma etching apparatus 10 which is an example of a plasma processing apparatus provided with a conventional power supply member. As shown in FIG. 4, the plasma etching apparatus 10 includes, for example, a lower electrode 14 that serves as a mounting table, on which a semiconductor wafer W is mounted, for example, in a substantially cylindrical grounded airtight processing container 12. It is provided to be movable. The bottom surface portion of the processing container 12 and the bottom surface portion of the lower electrode 14 are hermetically connected by a bellows 20 formed in a substantially cylindrical bellows shape, and the inside of the processing container 12 is kept airtight.
[0005]
An upper electrode 18 is provided to face the lower electrode 14 and is grounded through the processing container 12. A gas introduction port 16 connected to a gas introduction system (not shown) is provided in the upper portion of the processing vessel 12, and a processing gas is introduced into the processing vessel 12 from a plurality of gas discharge ports 19 provided in the upper electrode 18. Introduce. For example, a mixed gas of C 4 F 6 gas, Ar gas, and O 2 gas is used as the processing gas. An exhaust pipe 22 connected to an exhaust mechanism (not shown) is provided at the lower portion of the processing container 12, and the inside of the processing container 12 is maintained at a predetermined degree of vacuum by being evacuated through the exhaust pipe 22. Be drunk.
[0006]
A power supply member 50 for supplying, for example, high frequency power of 13.56 MHz from the high frequency power supply 26 via the matching unit 24 is provided below the lower electrode 14. As described above, the power supply member 50 is formed of a good conductor such as aluminum or copper, and is configured to efficiently transmit the high frequency power supplied from the high frequency power supply 26 to the lower electrode 14.
[0007]
The processing gas introduced into the processing vessel 12 is in a plasma state by the electric power supplied from the high-frequency power source 26, and is subjected to the energy of ions and radicals accelerated by the self-bias voltage generated in the vicinity of the lower electrode 14 between the electrodes. An etching process is performed to a process body.
[0008]
[Problems to be solved by the invention]
By the way, the lower electrode 14 is maintained at a predetermined temperature by a temperature adjusting mechanism (not shown) including a heater, a refrigerant supply unit, a temperature measuring member and the like embedded therein. A heat transfer gas (for example, He gas) is supplied between the semiconductor wafer W and the lower electrode 14 from a heat transfer gas supply mechanism (not shown) at a predetermined pressure, and the heat from the lower electrode 14 is transferred to the semiconductor wafer. It is configured to efficiently transmit to W, and the temperature of the semiconductor wafer W can be controlled.
[0009]
As described above, the lower electrode 14 also serves as a temperature control body of the semiconductor wafer W. For example, when etching polysilicon or the like, the lower electrode 14 is etched at 60 ° C. or more, and a silicon oxide film or the like is etched. In this case, the temperature is controlled from about 0 ° C to -20 ° C. At this time, a good conductor having a low electric resistance generally has a high thermal conductivity, and the power supply member 50 formed of a good conductor directly connected to the lower electrode 14 has a temperature equivalent to that of the lower electrode 14.
[0010]
However, if the power supply member 50 reaches a high temperature of, for example, 60 ° C. or higher, there is a risk that the operator may be burned during maintenance. In addition, there is a problem that it takes time to wait for the temperature to drop for safety and the efficiency is poor.
[0011]
Further, when the power supply member 50 is at a low temperature of, for example, 0 ° C. to −20 ° C., when it is exposed to the atmosphere as shown in FIG. 4, dew condensation occurs on the surface of the power supply member 50, and high-frequency creeping transmission occurs. There was a problem that there was a risk of happening.
[0012]
The present invention has been made in view of the above problems of the conventional plasma processing apparatus and its power supply member, and the object of the present invention is to cut off heat transmission while efficiently transmitting high-frequency power. It is an object of the present invention to provide a new and improved plasma processing apparatus and power supply member thereof.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, according to the present invention, a processing gas is introduced into an airtight processing container and a high-frequency power is applied to form plasma of the processing gas. A power supply member that is provided in a plasma processing apparatus that performs plasma processing and electrically connects a high-frequency power source that generates high-frequency power and an electrode portion to which the high-frequency power is applied, the first power supply member being formed of a conductor Provided are a power supply member having a member, and a dielectric second member interposed between the first member and at least one layer, and a plasma processing apparatus including the power supply member. The second member is preferably formed of any one of alumina ceramic, bulk yttria, or zirconia.
[0014]
According to such a configuration, the first member of the conductor is directly connected to the high-frequency power source and the electrode unit, and at least one layer is provided on the first member, and the second member formed of a dielectric having low thermal conductivity is provided. Power can be transmitted efficiently and heat conduction can be cut off.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Exemplary embodiments of a plasma processing apparatus and its power supply member according to the present invention will be described below in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0016]
1 is a schematic cross-sectional view of a plasma etching apparatus 100 as an example of the plasma processing apparatus according to the present embodiment, FIG. 2 is a schematic cross-sectional view showing a power supply member 150, and FIG. 3 is a schematic view showing a power supply member 160. It is sectional drawing.
[0017]
As shown in FIG. 1, in the plasma etching apparatus 100, for example, a lower electrode 104 serving as a mounting table, on which a semiconductor wafer W is mounted, is mounted, for example, in a substantially cylindrical grounded airtight processing container 102. It can be moved up and down. The bottom surface portion of the processing container 102 and the bottom surface portion of the lower electrode 104 are hermetically connected by a bellows 120 formed in a substantially cylindrical bellows shape, and the inside of the processing container 102 is kept airtight.
An upper electrode 108 is provided to face the lower electrode 104 and is grounded through the processing container 102. In the present embodiment, high-frequency power is applied only to the lower electrode 104, but high-frequency power may be applied to the upper electrode 108.
[0019]
A gas introduction port 106 connected to a gas introduction system (not shown) is provided at the upper portion of the processing vessel 102, and processing gas is introduced into the processing vessel 102 from a plurality of gas discharge ports 109 provided in the upper electrode 108. Introduce. For example, a mixed gas of C 4 F 6 gas, Ar gas, and O 2 gas is used as the processing gas.
[0020]
An exhaust pipe 110 connected to an exhaust mechanism (not shown) is provided at the lower part of the processing container 102, and the processing container 102 is kept at a predetermined vacuum level by being evacuated through the exhaust pipe 110. Be drunk. Further, magnets may be provided outside the both side walls of the processing vessel 102 to apply a magnetic field perpendicular to the electric field. In this case, it is preferable that the intensity of the magnetic field of the magnet is variable.
[0021]
The lower electrode 104 is maintained at a predetermined temperature by a temperature adjustment mechanism (not shown) including a heater, a refrigerant supply unit, a temperature measurement member and the like embedded therein. A heat transfer gas (for example, He gas) is supplied between the semiconductor wafer W and the lower electrode 104 from a heat transfer gas supply mechanism (not shown) at a predetermined pressure, and heat from the lower electrode 104 is supplied to the semiconductor wafer W. The temperature of the semiconductor wafer W can be controlled.
[0022]
A high frequency power source 114 is connected to the lower electrode 104 via a power supply member 150 and a matching unit 112. The frequency of the high frequency power supply 114 is, for example, 13.56 MHz. The configuration of the power supply member 150, which is a feature of the present invention, will be described later.
[0023]
As described above, the processing gas introduced into the processing container 102 is in a plasma state by the power supplied from the high-frequency power source 114 via the matching unit 112 and the power supply member 150 and is generated in the vicinity of the lower electrode 104 between the electrodes. The object to be processed is etched by the energy of ions and radicals accelerated by the self-bias voltage.
[0024]
Next, an operation when performing an etching process using the plasma etching apparatus 100 will be described. First, the semiconductor wafer W is placed on the lower electrode 104 in the processing chamber 102, and the processing chamber 102 is evacuated to a predetermined vacuum level or less by an exhaust mechanism (not shown) through the exhaust pipe 110. Thereafter, a predetermined processing gas is introduced into the processing container 102 from the gas introduction port 106 through the gas discharge port 109 at a predetermined flow rate, and adjusted to a predetermined degree of vacuum.
[0025]
The lower electrode 104 is adjusted so that the semiconductor wafer W is maintained at a predetermined temperature by a temperature adjusting mechanism inside thereof. For example, when etching polysilicon or the like, the lower electrode 104 is controlled to 60 ° C. or higher, and when etching a silicon oxide film or the like, the temperature is controlled from about 0 ° C. to −20 ° C. Subsequently, for example, high frequency power of 13.56 MHz is applied from the high frequency power source 114 via the matching unit 112 and the power supply member 150. By applying this high frequency power, the processing gas in the processing container 102 is turned into plasma, and a predetermined etching process is performed on the surface of the object to be processed.
[0026]
The power supply member 150, which is also referred to as a conduction rod (Hot / Return), will be described. As shown in FIG. 2, the power supply member 150, which is a feature of the present invention, includes three portions of conductors 152, 156 and a dielectric 154. Have. The conductors 152 and 156 are formed of a good conductor having a low electrical resistance such as aluminum or copper, and have a substantially cylindrical shape with a bottom area A, for example. The dielectric 154 is formed of a dielectric having low thermal conductivity and has a substantially cylindrical shape having a thickness d and a bottom area A. The shapes of the conductors 152, 156, and the dielectric 154 may be cylindrical or a column having a plurality of columnar cavities inside.
[0027]
In order to reduce the loss due to the electrostatic coupling of the high-frequency power between the conductors 152 and 156, it is preferable to increase the capacitance of the power supply member 150. The electrostatic capacity of the power supply member 150 is proportional to the dielectric constant of the dielectric 154 and the bottom area A, and inversely proportional to the thickness d. Therefore, the dielectric constant and the bottom area A are as large as possible, and the thickness d is as thin as possible. There is a need. The bottom area A is preferably as large as possible in the design of the plasma etching apparatus 100, and the thickness d is preferably thin as long as the dielectric 154 can be processed.
[0028]
Further, in order to thermally cut off the lower electrode 104 and the conductor 156, the dielectric 154 is preferably a material having low thermal conductivity. As a material of the dielectric 154, for example, alumina ceramic, bulk yttria, zirconia, or the like can be used in consideration of dielectric constant and thermal conductivity.
[0029]
According to the above configuration, the dielectric 154 is provided on the power supply member 150 that supplies high-frequency power to the lower electrode 104, and, for example, high-frequency power of 10 MHz or higher is efficiently transmitted, while the heat of the lower electrode 104 is transmitted to the power supply member 150. Since conduction to the lower conductor 156 can be blocked, danger during maintenance, reduction in work efficiency, and condensation on the surface of the power supply member 150 can be prevented.
[0030]
As shown in FIG. 3, a power feeding member 160 may be used instead of the power feeding member 150. The power supply member 160 has five parts: conductors 162, 166, 170 and dielectrics 164, 168. The conductors 162, 166, and 170 are made of a good conductor having a low electrical resistance, such as aluminum or copper, and have a substantially cylindrical shape with a bottom area A, for example. The dielectrics 164 and 168 are formed of a dielectric material having low thermal conductivity, and have a substantially cylindrical shape having thicknesses d1 and d2 and a bottom area A, respectively. The shapes of the conductors 162, 166, 170 and the dielectrics 164, 168 may be cylindrical or a columnar shape having a plurality of columnar cavities inside.
[0031]
In order to reduce the loss due to the electrostatic coupling of the high-frequency power between the conductors 162 and 166 and the conductors 166 and 170, it is preferable to increase the capacitance of the power supply member 160. The capacitance between the conductors 162 and 166 is proportional to the dielectric constant of the dielectric 164 and the bottom area A, and is inversely proportional to the thickness d1, and the capacitance between the conductors 166 and 170 is the dielectric constant of the dielectric 168. , And the bottom area A, and inversely proportional to the thickness d2, the dielectric constant and the bottom area A must be as large as possible, and the thicknesses d1 and d2 must be as thin as possible.
[0032]
The bottom area A is preferably as large as possible in the design of the plasma etching apparatus 100, and the thicknesses d1 and d2 are preferably thin as long as the dielectrics 164 and 168 can be processed.
[0033]
The dielectrics 164 and 168 are preferably made of a material having low thermal conductivity in order to thermally shield the lower electrode 104 and the conductor 170. Therefore, as materials for the dielectrics 164 and 168, for example, alumina, ceramic, bulk yttria, zirconia, or the like can be used in consideration of the dielectric constant and the thermal conductivity. According to the above configuration, since the two-layer dielectrics 164 and 168 having a heat blocking effect are provided, there is an effect that heat conduction can be further prevented while preventing loss of high frequency power of 10 MHz or more, for example.
[0034]
As described above, the power supply member 150 or 160 that transmits the power from the high-frequency power source 114 to the lower electrode 104 includes the dielectric 154 or the dielectrics 164 and 168 having a heat blocking effect. Can be efficiently transmitted to the lower electrode 104, and the temperature of the lower electrode 104, which also serves as a temperature control body, can be prevented from being conducted to the lower part of the power supply members 150 and 160, so that the lower electrode 104 is heated to 60 ° C. or higher. It is possible to safely and efficiently perform various processes including a process of etching polysilicon and a process of etching a silicon oxide film controlled to a low temperature of 0 to -20 ° C.
[0035]
While the preferred embodiments of the plasma processing apparatus and the power supply member according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
[0036]
For example, when the plasma etching apparatus 100 is provided with the power supply members 150 and 160, the power supply members 150 and 160 have a substantially cylindrical shape. However, when the plasma processing apparatus has a rectangular column shape, for example, for manufacturing a liquid crystal display device, the power supply members 150 and 160 have a substantially rectangular column shape. Such differences in the outer shape are within the technical scope of the present invention.
[0037]
Further, the conductor and dielectric material forming the power supply member are not limited to the above. Although the case where the dielectric layer has one layer or two layers has been described, more dielectric layers may be formed. In addition, the position where the dielectric layer is arranged in the power supply member is determined in consideration of the design restrictions of the plasma processing apparatus, but the scope of the present invention is applicable as long as it has the same effect. It is understood that.
[0038]
【The invention's effect】
As described above, according to the present invention, at least one layer of dielectric is provided on the power supply member that supplies high-frequency power to the electrode in the plasma processing apparatus, and the high-frequency power is efficiently transmitted while being applied to the electrode. Since the generated heat can be blocked from conducting to the lower part of the power supply member, it is possible to safely and efficiently perform plasma treatment by preventing dangers during maintenance, lowering work efficiency, and condensation on the surface of the power supply member. .
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a plasma etching apparatus 100 according to an embodiment.
FIG. 2 is a schematic sectional view showing a power supply member 150. FIG.
3 is a schematic cross-sectional view showing a power feeding member 160. FIG.
4 is a schematic cross-sectional view of the plasma etching apparatus 10. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Plasma etching apparatus 102 Processing container 104 Lower electrode 106 Gas inlet 108 Upper electrode 109 Gas outlet 110 Exhaust pipe 112 Matching device 114 High frequency power supply 120 Bellows 150 Feed member 152,156 Conductor 154 Dielectric

Claims (3)

気密な処理容器内に処理ガスを導入するとともに高周波電力を印加して前記処理ガスのプラズマを形成し,被処理体の処理面に対して所定のプラズマ処理を施すプラズマ処理装置に備えられ,前記高周波電力を発生する高周波電源と前記高周波電力が印加される電極部との間を電気的に接続する給電部材であって,
導体で形成された第1の部材と,
前記第1の部材に,少なくとも1層,被処理体の処理面に平行に層状に介挿された誘電体の第2の部材と,を有し,
第2の部材は,アルミナセラミック,バルクイットリア,またはジルコニアのいずれかで形成されていることを特徴とする給電部材。
A plasma processing apparatus for introducing a processing gas into an airtight processing container and applying a high frequency power to form a plasma of the processing gas and performing a predetermined plasma processing on a processing surface of an object to be processed is provided, A power supply member that electrically connects a high-frequency power source that generates high-frequency power and an electrode portion to which the high-frequency power is applied,
A first member formed of a conductor;
Wherein the first member, possess at least one layer, and a second member of the dielectric interposed in layers parallel to the processing surface of the object to be processed, the,
The power supply member , wherein the second member is formed of any one of alumina ceramic, bulk yttria, or zirconia .
前記第2の部材は,前記第1の部材に,2層以上,被処理体の処理面に平行に層状に介挿されていることを特徴とする請求項1に記載の給電部材。2. The power supply member according to claim 1, wherein the second member is interposed in the first member in a layered manner in two or more layers in parallel with the processing surface of the object to be processed . 請求項1または請求項2に記載の給電部材を備えたプラズマ処理装置。  The plasma processing apparatus provided with the electric power feeding member of Claim 1 or Claim 2.
JP2002054225A 2002-02-28 2002-02-28 Plasma processing apparatus and power supply member thereof Expired - Lifetime JP4132873B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002054225A JP4132873B2 (en) 2002-02-28 2002-02-28 Plasma processing apparatus and power supply member thereof
PCT/JP2003/002381 WO2003073489A1 (en) 2002-02-28 2003-02-28 Plasma processing device and feeding unit
US10/927,587 US7230202B2 (en) 2002-02-28 2004-08-27 Plasma processing apparatus, electrode unit, feeder member and radio frequency feeder rod
US11/797,626 US20070284085A1 (en) 2002-02-28 2007-05-04 Plasma processing apparatus, electrode unit, feeder member and radio frequency feeder rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054225A JP4132873B2 (en) 2002-02-28 2002-02-28 Plasma processing apparatus and power supply member thereof

Publications (2)

Publication Number Publication Date
JP2003257940A JP2003257940A (en) 2003-09-12
JP4132873B2 true JP4132873B2 (en) 2008-08-13

Family

ID=28665440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054225A Expired - Lifetime JP4132873B2 (en) 2002-02-28 2002-02-28 Plasma processing apparatus and power supply member thereof

Country Status (1)

Country Link
JP (1) JP4132873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858656B2 (en) * 2017-06-26 2021-04-14 東京エレクトロン株式会社 Power supply member and board processing device

Also Published As

Publication number Publication date
JP2003257940A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
KR102383357B1 (en) Mounting table and substrate processing apparatus
TWI566296B (en) Plasma processing device
JP4151749B2 (en) Plasma processing apparatus and method
JP6986937B2 (en) Plasma processing equipment
KR100745942B1 (en) Inductive coupling plasma processing apparatus
US10544508B2 (en) Controlling temperature in substrate processing systems
KR101374332B1 (en) A chemical oxide removal(cor) processing system and method
KR100929448B1 (en) Substrate holding mechanism and plasma processing apparatus
US20070284085A1 (en) Plasma processing apparatus, electrode unit, feeder member and radio frequency feeder rod
JP4256503B2 (en) Vacuum processing equipment
TWI407530B (en) Electrostatic chuck and apparatus for treating substrate including the same
JP2017022216A (en) Plasma processing apparatus
TW201936014A (en) Plasma processing apparatus
JPH10223621A (en) Vacuum treating apparatus
KR20230017296A (en) Plasma etching system, and Faraday shield that can be used for heating
US20050236111A1 (en) Processing apparatus
KR102508315B1 (en) Power feed member and substrate processing apparatus
JP2011040528A (en) Plasma processing apparatus
JP3323928B2 (en) Plasma processing equipment
CN104882376B (en) High-frequency plasma processing unit and high-frequency plasma processing method
JP4132873B2 (en) Plasma processing apparatus and power supply member thereof
JP2006127900A (en) Annular heater
JP4463363B2 (en) Lower electrode structure and plasma processing apparatus using the same
JP4339442B2 (en) Plasma process equipment
JP2001217304A (en) Substrate stage, substrate processing apparatus and method using the substrate stage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4132873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term