JP4132799B2 - How to install the level gauge - Google Patents

How to install the level gauge Download PDF

Info

Publication number
JP4132799B2
JP4132799B2 JP2001369636A JP2001369636A JP4132799B2 JP 4132799 B2 JP4132799 B2 JP 4132799B2 JP 2001369636 A JP2001369636 A JP 2001369636A JP 2001369636 A JP2001369636 A JP 2001369636A JP 4132799 B2 JP4132799 B2 JP 4132799B2
Authority
JP
Japan
Prior art keywords
level gauge
liquid level
liquid
pressure side
side detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001369636A
Other languages
Japanese (ja)
Other versions
JP2003164703A (en
Inventor
修平 矢田
寧之 小川
潔 高橋
芳郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001369636A priority Critical patent/JP4132799B2/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to CN200410069855.6A priority patent/CN1240662C/en
Priority to PCT/JP2002/012709 priority patent/WO2003048100A1/en
Priority to EP02786024A priority patent/EP1452518B1/en
Priority to ES10190825.9T priority patent/ES2547412T3/en
Priority to ES10190824.2T priority patent/ES2552378T3/en
Priority to BRPI0214697-5A priority patent/BR0214697B1/en
Priority to BRBR122012016826-2A priority patent/BR122012016826B1/en
Priority to BRBR122012016827-0A priority patent/BR122012016827B1/en
Priority to CN200410069856.0A priority patent/CN1260201C/en
Priority to EP10190826.7A priority patent/EP2311791B1/en
Priority to ES10190826T priority patent/ES2715315T3/en
Priority to CN200410069857.5A priority patent/CN1260202C/en
Priority to EP10190824.2A priority patent/EP2311789B1/en
Priority to CN200410069854.1A priority patent/CN1272304C/en
Priority to EP10190825.9A priority patent/EP2311790B1/en
Priority to AU2002354084A priority patent/AU2002354084A1/en
Priority to ES02786024T priority patent/ES2387564T3/en
Priority to CNB028243188A priority patent/CN100494155C/en
Priority to RU2004120291/04A priority patent/RU2300515C2/en
Priority to CN200410069853.7A priority patent/CN1247515C/en
Publication of JP2003164703A publication Critical patent/JP2003164703A/en
Priority to US10/859,221 priority patent/US7348455B2/en
Priority to US11/674,247 priority patent/US20070129571A1/en
Publication of JP4132799B2 publication Critical patent/JP4132799B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、易重合性化合物の製造設備に使用する液面計の設置方法に係り、更に詳しくは、特に前記液面計の高圧側検出部分の設置方法に関するもので、液面計の検出部が閉塞することなく設備の連続運転を可能とした液面計の設置方法である。
【0002】
【従来の技術及びその課題】
従来、アクリル酸等を製造する設備において、当該機器本体に直結して液面計の高圧側検出部分を取り付けて圧力測定を行うのが一般的であった。
しかしながら、従来の液面計の設置方法では、易重合性化合物の製造時に使用される重合禁止剤、或いは発生した重合物が液面計の高圧側検出部分に供給されるため、ここに固形物が蓄積されて液面計に誤作動が発生することがあった。
従って、液面計によって連続して正確な測定ができず設備の長期安定運転が行えなかった。
【0003】
【課題を解決するための手段】
本発明者は、易重合性化合物の製造設備に液面計を設置する方法であって、当該液面計の高圧側検出部分に測定液体の固形物が発生・蓄積するのを防止し、連続して正確な測定を行える液面径の設置方法を庭球するものである。即ち、本発明の要旨は、
(1)易重合性化合物の製造設備において、易重合性化合物を含有する液体を貯留する箇所へ差圧式液面計、ガラスゲージ型或いはチューブの直視式液面計、ディスプレッサー式液面計より選択された液面計を設置する際の液面計の設置方法であって、当該液面計の高圧側検出ラインと貯留した上記液体抜き出しラインとの接続角αは10〜90°で接続され、かつ液面計の高圧側検出ラインの管径D と液体の抜き出しラインの管径D との寸法比D /D は1.3〜20であるものを使用したことを特徴とする液面計の設置方法である。
) 液体抜き出しラインは、蒸留塔、蒸留塔の還流槽、分解反応塔、薄膜蒸発器、塔頂ガス冷却液槽、縦型貯蔵槽、横型貯槽又はタンクに接続されていることを特徴とする上記(1)記載の液面計の設置方法である。
) 液面計の高圧側検出ライン及び/又は低圧側検出ラインは、加熱或いは保温してあることを特徴とする上記1〜記載の液面計の設置方法である。
)液面計の高圧側検出ラインび/又は低圧側検出ラインは、ガス及び/又は液体の注入口を接続していることを特徴とする上記1〜記載の液面計の設置方法である。
) 易重合性化合物は、(メタ)アクリル酸又はそのエステルであることを特徴とする上記1〜記載の液面計の設置方法である。
) 液面計で測定する液体は、(メタ)アクリル酸又はそのエステルを製造する場合に副生するアクリル酸2量体、β−(メタ)アクリロキシプロピオン酸エステル類、β−アルコキシプロピオン酸エステル類、β−ヒドロキシプロピオン酸、β−ヒドロキシプロピオン酸エステル類を少なくとも1種類以上含有するものであることを特徴とする上記記載の液面計の設置方法である。
【0004】
【発明の実施の形態】
本発明の液面計の設置方法を添付図面に基づいて説明する。
図1はアクリル酸の製造における(高沸物)分解反応塔及び塔頂ガス冷却液槽に本発明の液面計の設置方法を実施した設備全体図、図2は図1の(高沸物)分解反応塔に液面計を設置した部分拡大図及び図3は図1の塔頂ガス冷却液槽に液面計を設置した部分拡大図である。
【0005】
先ず、図1によりアクリル酸の製造設備の概要を説明する。
Aは(高沸物)分解反応塔であって、当該(高沸物)分解反応塔Aには供給ライン1が取付けられている。
1は塔底ポンプであって、当該塔底ポンプB1の流入側は(高沸物)分解反応塔Aの塔底に取付けられている塔底液体抜き出しライン2に接続されており、またその流出側は分解残差物抜き出しライン4に接続されている。
Cは加熱用熱交換器であって、当該加熱用熱交換器の流入側は上記流出側は分解残差物抜き出しライン4から分岐した加熱用熱交換器供給ライン3に接続されており、またその流出側はラインによって(高沸物)分解反応塔Aの下側壁に接続されている。
【0006】
Dは塔頂ガス冷却熱交換器であって、当該塔頂ガス冷却熱交換器Dの流入側は(高沸物)分解反応塔Aの塔頂に取付けられた分解後ガス回収ライン6に接続されており、その流出側はラインを介して塔頂ガス冷却液槽Eの流入側に接続されている。
また、塔頂ガス冷却液槽Eの流出側は槽底液体引き出しライン5及びポンプB2を介しての塔頂ガス冷却液抜き出しライン8に接続されており、塔頂ガス冷却液はこのライン8によって次の設備に移送される。
また塔頂ガス冷却液抜き出しライン8から分岐した冷却液戻しライン9は塔頂ガス冷却熱交換器Dの流入側に接続されている。
Fはベントガス冷却熱交換器であって、当該ベントガス冷却熱交換器Fの流入側はラインを介して塔頂ガス冷却液槽Eに接続されており、当該ベントガス冷却熱交換器Fに流入したベントガスは、冷却されガス中の有価物は回収された後、ベントガス抜き出しライン7に導かれる。
【0007】
1及びH2は差圧式液面計であって、この液面計H1及びH2の設置方法が本発明の主要素をなす装置である。
即ち、差圧式液面計H1の高圧側は高圧側検出ライン11を介して塔底液体抜き出しライン2に接続されおり、また差圧式液面計H1の低圧側は低圧側検出ライン12を介して(高沸物)分解反応塔Aの下側壁に接続されている。
差圧式液面計H2の高圧側は高圧側検出ライン13を介して槽底液体引き出しライン5に接続されており、差圧式液面計H2の低圧側は低圧側検出ライン14を介して塔頂ガス冷却液槽Eの上面に接続されている。
【0008】
次に上記差圧式液面計H1及びH2の設置方法の具体例を図2及び3に基づいて詳述する。
図2の(1)及び(2)において、Aは(高沸物)分解反応塔であって、当該(高沸物)分解反応塔Aの塔底に貯留された液体は、塔底に取付けられた塔底液体抜き出し短管2a及び塔底液体抜き出し導管2bで構成された塔底液体抜き出しライン2によって塔外に抜き出される。
1は差圧式液面計であって、当該差圧式液面計H1の高圧側は高圧側検出短管11a及び高圧側検出導管11bで構成された高圧側検出ライン11によって、塔底液体抜き出しライン2を構成する短管2a或いは導管2bのいずれかに接続されている。
【0009】
この高圧側検出ライン11と塔底液体抜き出しライン2との接続角αは5〜90°好ましくは10〜90°が良い。
当該接続角が5°未満では実質上接続が困難であり、また接続角が90°を超えた場合には液体中の固形物が高圧側検出ライン11に流入しやすくなって好ましくない。
【0010】
高圧側検出ラインの管径D1と液体抜き出しラインの管径D2との寸法比D2/D1は1〜20、好ましくは1.3〜10が良い。
当該D2/D1が1未満では液体中の固形物が高圧側検出ライン11に流入しやすくなって好ましくなく、またD2/D1が20を超えると液体面の検出が困難となる。
【0011】
差圧式液面計H1の低圧側は低圧側検出導管12b及び低圧側検出短管12aで構成さてた低圧側検出ライン12によって(高沸物)分解反応塔Aの下側壁に接続されている。
なお、図2の(1)は塔底液体抜き出しライン2の垂直部に高圧側検出ライン11を接続した例であり、図2の(2)は塔底液体抜き出しライン2の水平部に高圧側検出ライン11を接続した例である。
【0012】
図3の(1)及び(2)において、Eは塔頂ガス冷却液槽であって、当該塔頂ガス冷却液槽Eの槽底に貯留された液体は、槽底に取付けられた槽底液体抜き出し短管5a及び槽底液体抜き出し導管5bで構成された槽底液体抜き出しライン5によって槽外に抜き出される。
2は差圧式液面計であって、当該差圧式液面計H2の高圧側は高圧側検出短管13a及び高圧側検出導管13bで構成された高圧側検出ライン13によって、槽底液体抜き出しライン5を構成する短管5a或いは導管5bのいずれかに接続されている。
また、差圧式液面計H2の低圧側は低圧側検出導管14b及び低圧側検出短管14aで構成された低圧側検出ライン14によって塔頂ガス冷却液槽Eの上面に接続されている。
【0013】
この高圧側検出ライン13と槽底液体抜き出しライン5との接続角α及び高圧側検出ライン13の管径D1と槽底液体抜き出しライン5の管径D2との寸法比D2/D1は、上記図2の例で詳述した高圧側検出ライン11と液体抜き出しライン2との関係を具備していれば良い。
なお、図3の(1)は槽底液体抜き出しライン5の垂直部に高圧側検出ライン13を接続した例であり、図3の(2)は槽底液体抜き出しライン5の水平部に高圧側検出ライン13を接続した例である。
【0014】
上記液体抜き出しラインは蒸留塔、蒸留塔の還流槽、分解反応塔、薄膜蒸発器、塔頂ガス冷却液槽、縦型貯蔵槽、横型貯槽或いはタンク等の易重合性化合物を含有する溶液が貯留する箇所に接続し、これに液面計の高圧側検出ラインを取付けて液面を測定することができる。
【0015】
また、本発明で使用される液面計は、差圧式液面計、ガラスゲージ型或いはチューブの直視式液面計、ディスプレッサー式液面計等を挙げることができる。
これらの液面計の高圧側検出ライン及び/又は低圧側検出ラインには、ガス及び/又は液体の注入口が接続されていることが好ましい。
何らかの運転変動で液体中の固形物が当該検出ラインに流入した場合に、固形物を速やかにガス及び/又は液体によって追い出すことができる。このガス及び/又は液体は、連続供給でも間欠供給でもよい。
これに使用されるガスは空気、窒素、二酸化炭素等がよく、液体はアクリル酸、アクリル酸エステル等の液体抜き出しラインに流れる液体と同一液体を使用することが好ましい。
更に、液面計の高圧側検出ライン及び/又は低圧側検出ラインに液体中の固形物が付着するのを防止するために、この部分を加熱或いは保温を施すとよい。
【0016】
本発明の液面計の設置方法を使用して測定される易重合性化合物は、(メタ)アクリル酸又はそのエステル類を製造する際に有効である。
更に、液面計で測定する液体は、上記(メタ)アクリル酸又はそのエステルを製造する場合に副生するアクリル酸2量体、β−(メタ)アクリロキシプロピオン酸エステル類、β−アルコキシプロピオン酸エステル類、β−ヒドロキシプロピオン酸、β−ヒドロキシプロピオン酸エステル類を少なくとも1種類以上含有するものが特に有効である。
【0017】
【実施例】
実施例1
図1及び2に示す設備で高沸液の分解反応を実施した。
高沸液の組成はアクリル酸ブチル22重量%、β−ブトキシプロピオン酸ブチル67重量%、アクルロキシプロピオン酸ブチル4重量%、β−ヒドロキシプロピオン酸ブチル2重量%、ハイドロキノン3重量%、メトキシキノン2重量%で、580kg/hで供給した。
【0018】
分解反応触媒として硫酸1重量%水溶液を供給液に対して10%重量比で供給し、反応圧力100kPa、分解温度190℃、滞留時間1時間で分解反応を実施した結果、塔底よりアクリル酸ブチル11.7重量%、β−ブトキシプロピオン酸ブチル68.5重量%、アクリロキシプロピオン酸ブチル2重量%、β−ヒドロキシプロピオン酸ブチル0.3重量%、ハイドロキノン8.7重量%、メトキシキノン5.8重量%、ブタノール0.8重量%、硫酸2.9重量%で、200.1kg/hが反応残差物として得られ、塔底より抜き出された。
【0019】
分解反応塔塔底液は、塔底鏡部の最下位に取付けられた塔底液体抜き出しライン2より抜き出された。塔底の液面計H1は差圧式液面計で図2の(1)に示す配置で設置した。高圧側検出ライン11と塔底液体抜き出しラインとの接続角αは45°に設定した。
6ヶ月連続運転を行った後、運転を停止して液面計H1の高圧側検出ライン11の高圧側検出短管11a及び高圧側検出導管11bを点検した。その点検の結果、何れにも蓄積物の付着がなかった。
【0020】
比較例1
差圧式液面計H1の高圧側検出ライン11を、分解反応塔Aの下側壁に水平に接続した以外は実施例1と同一条件である。
2ヶ月運転後、塔底ポンプB1内で突然キャビテーションが発生した。急遽、分解反応塔Aの運転を停止し、内部を点検した結果、分解反応塔Aの塔底部に液が無く、液面計H1が誤指示していることが判明した。
液面計H1の高圧側検出ライン11の高圧側検出短管11a及び高圧側検出導管11bを点検した結果、当該短管11a及び導管11bが閉塞していた。
【0021】
比較例2
差圧式液面計H1の高圧側検出ライン11を、分解反応塔Aの下側壁に対して接続角αを45°で接続した以外は実施例1と同一条件である。
3ヶ月運転後、塔底ポンプB1内で突然キャビテーションが発生した。急遽、分解反応塔Aの運転を停止し、内部を点検した結果、分解反応塔Aの塔底部に液が無く、液面計H1が誤指示していることが判明した。
液面計H1の高圧側検出ライン11の高圧側検出短管11a及び高圧側検出導管11bを点検した結果、当該短管11a及び導管11bが閉塞していた。
【0022】
実施2
薄膜型蒸発器を使用して、下記条件を満たす蒸発操作を実施した。
原料(粗アクリルモノマー)組成は、アクリル酸66.6重量%、マレイン酸8.0、アクリル酸多量体25.0重量%、ハイドロキノン0.5重量%、フェノチアジン0.5重量%を含む混合物を85℃で3000kg/hで供給した。
塔頂圧力9kPa、塔底圧力10kPa、塔頂温度95℃、塔底温度98℃で運転に入り、塔頂からは供給量の53%が抜き出され、純度88重量%以上のアクリル酸が得られた。
塔底より、アクリル酸41.1重量%、マレイン酸10.9重量%、アクリル酸多量体46.16重量%、ハイドロキノン0.92重量%、フェノチアジン0.92重量%を含む混合物が抜き出された。
【0023】
薄膜型蒸発器の塔底液は、塔底鏡部の最下位に取付けられた塔底液体抜き出しラインより抜き出された。塔底の液面計は差圧式液面計で図2の(1)に示す配置で設置した。高圧側検出ライン11と塔底液体抜き出しラインとの接続角αは45°に設定した。
6ヶ月連続運転を行った後、運転を停止して液面計の高圧側検出ライン11の高圧側検出短管11a及び高圧側検出導管11bを点検した。その点検の結果、何れにも蓄積物の付着がなかった。
【0024】
比較例3
差圧式液面計の高圧側検出ライン11を、薄膜型蒸発器の下側壁に水平に接続した以外は実施例2と同一条件で蒸発操作を実施した。
1ヶ月運転後、塔底ポンプ内で突然キャビテーションが発生した。薄膜型蒸発器の運転を停止し、内部を点検した結果、薄膜型蒸発器に液が無く、液面計が誤指示していることが判明した。
液面計の高圧側検出ライン11の高圧側検出短管11a及び高圧側検出導管11bを点検した結果、当該短管11a及び導管11bが閉塞していた。
【0025】
【発明の効果】
易重合性化合物の製造設備中に、本発明の液面計設置方法を採用すれば、易重合性化合物の液体中に存在する固形物が液面計の高圧側検出ラインへの流入が無い。
従って、測定すべき液体によって液面計の検出部が閉塞しないので当該液面計によって正確に連続測定が可能となり、長期に亘って設備を運転することができる。
【図面の簡単な説明】
【図1】アクリル酸の製造における(高沸物)分解反応塔及び塔頂ガス冷却液槽に本発明の液面計の設置方法を実施した設備全体図
【図2】図1の(高沸物)分解反応塔に液面計を設置した部分拡大図。
【図3】図1の塔頂ガス冷却液槽に液面計を設置した部分拡大図。
【符号の説明】
A…(高沸物)分解反応塔
E…塔頂ガス冷却液槽
1及びH2…液面計
2…塔底液体抜き出しライン
2a…塔底液体抜き出し短管、 2b…塔底液体抜き出し導管
5…槽底液体抜き出しライン
5a…槽底液体抜き出し短管、 5b…槽底液体抜き出し導管
11及び13…高圧側検出ライン
11a及び13a…高圧側検出短管、 11b及び13b…高圧側検出導管
12及び14…低圧側検出ライン
12a及び14a…低圧側検出短管、 12b及び14a…低圧側検出導管
α…高圧側検出ラインと液体抜き出しラインとの接続角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for installing a level gauge used in a production facility for an easily polymerizable compound, and more particularly, particularly to a method for installing a high-pressure side detection portion of the level gauge. This is a liquid level gauge installation method that allows continuous operation of equipment without obstruction.
[0002]
[Prior art and problems]
Conventionally, in facilities for manufacturing acrylic acid or the like, it is common to perform pressure measurement by directly connecting to the device body and attaching a high-pressure side detection portion of a liquid level gauge.
However, in the conventional level gauge installation method, the polymerization inhibitor used in the production of the easily polymerizable compound or the generated polymer is supplied to the high pressure side detection part of the level gauge, so that the solid substance is used here. May accumulate, causing malfunctions in the level gauge.
Therefore, continuous accurate measurement could not be performed with the liquid level gauge, and long-term stable operation of the equipment could not be performed.
[0003]
[Means for Solving the Problems]
The present inventor is a method of installing a liquid level gauge in a production facility of an easily polymerizable compound, preventing the generation and accumulation of solids of the measurement liquid in the high pressure side detection portion of the liquid level gauge, Thus, a method of setting the liquid surface diameter that can perform accurate measurement is used. That is, the gist of the present invention is as follows.
(1) In a production facility for an easily polymerizable compound, to a location for storing a liquid containing the easily polymerizable compound, from a differential pressure type liquid level gauge, a glass gauge type or tube direct-view type liquid level gauge, and a displacer type liquid level gauge A method of installing a liquid level gauge when installing a selected liquid level gauge, wherein a connection angle α between the high pressure side detection line of the liquid level gauge and the stored liquid extraction line is 10 to 90 °. And the dimensional ratio D 2 / D 1 between the pipe diameter D 1 of the high-pressure side detection line of the liquid level gauge and the pipe diameter D 2 of the liquid extraction line is 1.3 to 20 It is the installation method of the liquid level gauge.
( 2 ) The liquid extraction line is connected to a distillation tower, a reflux tank of the distillation tower, a decomposition reaction tower, a thin film evaporator, a tower top gas cooling liquid tank, a vertical storage tank, a horizontal storage tank or a tank. It is the installation method of the liquid level meter as described in said (1).
(3) high voltage side detection line and / or the low pressure side detection line of the liquid level meter is a method of installing the 1-2 wherein the liquid level meter, characterized in that are heated or kept warm.
( 4 ) The method for installing a liquid level gauge according to any one of the above items 1 to 3, wherein the high pressure side detection line and / or the low pressure side detection line of the liquid level gauge is connected to a gas and / or liquid inlet. It is.
(5) easily polymerizable compound is a method of installing the 1-4 wherein the liquid level meter, which is a (meth) acrylic acid or its ester.
( 6 ) The liquid to be measured by a liquid level meter is acrylic acid dimer, β- (meth) acryloxypropionic acid esters, β-alkoxypropion, which are by-produced when (meth) acrylic acid or its ester is produced. 6. The method for installing a liquid level meter as described in 5 above, which comprises at least one acid ester, β-hydroxypropionic acid, and β-hydroxypropionic acid ester.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
A method for installing the level gauge of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall view of the facility in which the method for installing the liquid level gauge of the present invention is installed in the (high boiling point) decomposition reaction tower and the tower top gas cooling liquid tank in the production of acrylic acid, and FIG. FIG. 3 is a partially enlarged view in which a liquid level gauge is installed in the decomposition reaction tower and FIG. 3 is a partial enlarged view in which a liquid level gauge is installed in the tower top gas cooling liquid tank of FIG.
[0005]
First, an outline of an acrylic acid production facility will be described with reference to FIG.
A is a (high boiling point) decomposition reaction tower, and a supply line 1 is attached to the (high boiling point) decomposition reaction tower A.
B 1 is a column bottom pump, and the inflow side of the column bottom pump B 1 is connected to a column bottom liquid extraction line 2 attached to the column bottom of the (high boiling point) decomposition reaction column A; The outflow side is connected to a decomposition residue extraction line 4.
C is a heating heat exchanger, the inflow side of the heating heat exchanger is connected to the heating heat exchanger supply line 3 branched from the decomposition residue extraction line 4 on the outflow side, and The outflow side is connected to the lower side wall of the decomposition reaction tower A by a line (high boiling matter).
[0006]
D is a tower top gas cooling heat exchanger, and the inflow side of the tower top gas cooling heat exchanger D is connected to a post-cracking gas recovery line 6 attached to the top of the (high boiling point) cracking reaction tower A. The outflow side is connected to the inflow side of the tower top gas coolant tank E through a line.
The outflow side of the tower top gas coolant tank E is connected to the tower bottom liquid draw line 5 and the tower top gas coolant draw line 8 via the pump B 2. Is transferred to the next facility.
A coolant return line 9 branched from the tower top gas coolant extraction line 8 is connected to the inflow side of the tower top gas cooling heat exchanger D.
F is a vent gas cooling heat exchanger, the inflow side of the vent gas cooling heat exchanger F is connected to the tower top gas cooling liquid tank E via a line, and the vent gas flowing into the vent gas cooling heat exchanger F Is cooled and valuables in the gas are recovered and then led to a vent gas extraction line 7.
[0007]
H 1 and H 2 are differential pressure type liquid level gauges, and the installation method of the liquid level gauges H 1 and H 2 is an apparatus that constitutes the main element of the present invention.
That is, the high pressure side of the differential pressure type liquid level gauge H 1 is connected to the tower bottom liquid extraction line 2 via the high pressure side detection line 11, and the low pressure side of the differential pressure type liquid level gauge H 1 is connected to the low pressure side detection line 12. (High boiling point) through the bottom wall of the decomposition reaction column A.
The high pressure side of the differential pressure type liquid level gauge H 2 is connected to the tank bottom liquid drawing line 5 via the high pressure side detection line 13, and the low pressure side of the differential pressure type liquid level gauge H 2 is connected to the low pressure side detection line 14. The top gas cooling liquid tank E is connected to the upper surface.
[0008]
Next, a specific example of the installation method of the differential pressure type liquid level gauges H 1 and H 2 will be described in detail with reference to FIGS.
In (1) and (2) of FIG. 2, A is a (high boiling point) decomposition reaction column, and the liquid stored in the bottom of the (high boiling point) decomposition reaction column A is attached to the bottom of the column. The column bottom liquid extraction short pipe 2a and the column bottom liquid extraction conduit 2b are extracted to the outside of the column by a column bottom liquid extraction line 2.
H 1 is a differential pressure type liquid level gauge, and the high pressure side of the differential pressure type liquid level gauge H 1 has a column bottom liquid by a high pressure side detection line 11 constituted by a high pressure side detection short tube 11a and a high pressure side detection conduit 11b. It is connected to either the short pipe 2a or the conduit 2b constituting the extraction line 2.
[0009]
The connection angle α between the high-pressure side detection line 11 and the column bottom liquid extraction line 2 is 5 to 90 °, preferably 10 to 90 °.
If the connection angle is less than 5 °, connection is practically difficult, and if the connection angle exceeds 90 °, solids in the liquid easily flow into the high-pressure side detection line 11, which is not preferable.
[0010]
The dimensional ratio D 2 / D 1 between the pipe diameter D 1 of the high-pressure side detection line and the pipe diameter D 2 of the liquid extraction line is 1 to 20, preferably 1.3 to 10.
If D 2 / D 1 is less than 1, solids in the liquid are liable to flow into the high-pressure side detection line 11, and if D 2 / D 1 exceeds 20, it becomes difficult to detect the liquid level.
[0011]
The low pressure side of the differential pressure type liquid level gauge H 1 is connected to the lower side wall of the decomposition reaction tower A (high boiling point) by a low pressure side detection line 12 constituted by a low pressure side detection conduit 12b and a low pressure side detection short tube 12a. .
2 is an example in which a high-pressure side detection line 11 is connected to a vertical portion of the column bottom liquid extraction line 2, and FIG. 2 (2) is a high-pressure side in the horizontal portion of the column bottom liquid extraction line 2. This is an example in which the detection line 11 is connected.
[0012]
In (1) and (2) of FIG. 3, E is a tower top gas cooling liquid tank, and the liquid stored in the tank bottom of the tower top gas cooling liquid tank E is the tank bottom attached to the tank bottom. The liquid is extracted out of the tank by a tank bottom liquid extraction line 5 including a liquid extraction short pipe 5a and a tank bottom liquid extraction conduit 5b.
H 2 is a differential pressure type liquid level gauge, and the high pressure side of the differential pressure type liquid level gauge H 2 is a tank bottom liquid by a high pressure side detection line 13 comprising a high pressure side detection short tube 13a and a high pressure side detection conduit 13b. It is connected to either the short pipe 5a or the conduit 5b constituting the extraction line 5.
Further, the low-pressure side of the differential pressure type liquid level meter H 2 are connected by the low-pressure side detection line 14 composed of a low voltage side detection conduit 14b and the low pressure side of the detected short tube 14a on the upper surface of the overhead gas cooling liquid tank E.
[0013]
The connection angle α between the high pressure side detection line 13 and the tank bottom liquid extraction line 5 and the dimensional ratio D 2 / D 1 between the pipe diameter D 1 of the high pressure side detection line 13 and the pipe diameter D 2 of the tank bottom liquid extraction line 5. Need only have the relationship between the high-pressure side detection line 11 and the liquid extraction line 2 described in detail in the example of FIG.
3 is an example in which the high pressure side detection line 13 is connected to the vertical portion of the tank bottom liquid extraction line 5, and FIG. 3 (2) is the high pressure side to the horizontal portion of the tank bottom liquid extraction line 5. This is an example in which the detection line 13 is connected.
[0014]
The liquid extraction line stores a solution containing an easily polymerizable compound such as a distillation tower, a reflux tower of a distillation tower, a decomposition reaction tower, a thin film evaporator, a tower top gas cooling liquid tank, a vertical storage tank, a horizontal storage tank or a tank. The level of the liquid can be measured by connecting to a high pressure side detection line of the liquid level gauge.
[0015]
Examples of the liquid level gauge used in the present invention include a differential pressure type liquid level gauge, a glass gauge type or tube direct-view type liquid level gauge, and a displacer type liquid level gauge.
A gas and / or liquid inlet is preferably connected to the high-pressure side detection line and / or the low-pressure side detection line of these liquid level gauges.
When solid matter in the liquid flows into the detection line due to some operational fluctuation, the solid matter can be quickly expelled by the gas and / or liquid. The gas and / or liquid may be supplied continuously or intermittently.
The gas used for this is air, nitrogen, carbon dioxide or the like, and the liquid is preferably the same liquid as the liquid flowing in the liquid extraction line such as acrylic acid or acrylic ester.
Furthermore, in order to prevent the solid matter in the liquid from adhering to the high-pressure side detection line and / or the low-pressure side detection line of the liquid level gauge, this portion may be heated or kept warm.
[0016]
The easily polymerizable compound measured using the method for installing the liquid level gauge of the present invention is effective in producing (meth) acrylic acid or esters thereof.
Furthermore, the liquid to be measured with a liquid level meter is acrylic acid dimer, β- (meth) acryloxypropionic acid esters, β-alkoxypropion, which are by-produced when the (meth) acrylic acid or its ester is produced. Those containing at least one acid ester, β-hydroxypropionic acid, or β-hydroxypropionic acid ester are particularly effective.
[0017]
【Example】
Example 1
The high boiling liquid decomposition reaction was carried out with the equipment shown in FIGS.
The composition of the high-boiling liquid is 22% by weight of butyl acrylate, 67% by weight of butyl β-butoxypropionate, 4% by weight of butyloxypropionate, 2% by weight of butyl β-hydroxypropionate, 3% by weight of hydroquinone, 2 methoxyquinone It was supplied at 580 kg / h in weight%.
[0018]
As a decomposition reaction catalyst, a 1% by weight sulfuric acid aqueous solution was supplied at a 10% weight ratio with respect to the feed solution, and the decomposition reaction was carried out at a reaction pressure of 100 kPa, a decomposition temperature of 190 ° C., and a residence time of 1 hour. 11.7 wt%, butyl β-butoxypropionate 68.5 wt%, butyl acryloxypropionate 2 wt%, butyl β-hydroxypropionate 0.3 wt%, hydroquinone 8.7 wt%, methoxyquinone 5. 200.1 kg / h was obtained as a reaction residue at 8 wt%, butanol 0.8 wt% and sulfuric acid 2.9 wt%, and was extracted from the bottom of the column.
[0019]
The cracking reaction column bottom liquid was extracted from a column bottom liquid extraction line 2 attached at the bottom of the column bottom mirror. The liquid level gauge H 1 at the bottom of the tower is a differential pressure type liquid level gauge and is installed in the arrangement shown in FIG. The connection angle α between the high pressure side detection line 11 and the column bottom liquid extraction line was set to 45 °.
After 6 months continuous operation was inspected high voltage side detection short pipe 11a and the high voltage side detection conduit 11b of the high-pressure side detection line 11 of the liquid level meter H 1 to stop the operation. As a result of the inspection, there was no deposit on any of them.
[0020]
Comparative Example 1
The conditions are the same as in Example 1 except that the high pressure side detection line 11 of the differential pressure type liquid level gauge H 1 is connected horizontally to the lower side wall of the decomposition reaction tower A.
After two months of operation, suddenly cavitation in the tower bottom pump B 1 it has occurred. Suddenly, the operation of the decomposition reaction tower A was stopped and the inside was inspected. As a result, it was found that there was no liquid at the bottom of the decomposition reaction tower A, and the liquid level gauge H 1 indicated erroneously.
High voltage side detection short pipe 11a and a result of the check the high voltage side detection conduit 11b of the high-pressure side detection line 11 of the liquid level meter H 1, the short pipe 11a and conduit 11b were closed.
[0021]
Comparative Example 2
The conditions are the same as in Example 1 except that the high pressure side detection line 11 of the differential pressure type liquid level gauge H 1 is connected to the lower side wall of the decomposition reaction tower A at a connection angle α of 45 °.
After three months of operation, suddenly cavitation in the tower bottom pump B 1 it has occurred. Suddenly, the operation of the decomposition reaction tower A was stopped and the inside was inspected. As a result, it was found that there was no liquid at the bottom of the decomposition reaction tower A, and the liquid level gauge H 1 indicated erroneously.
High voltage side detection short pipe 11a and a result of the check the high voltage side detection conduit 11b of the high-pressure side detection line 11 of the liquid level meter H 1, the short pipe 11a and conduit 11b were closed.
[0022]
Implementation 2
Using a thin film evaporator, an evaporation operation satisfying the following conditions was performed.
The composition of the raw material (crude acrylic monomer) is a mixture containing 66.6% by weight of acrylic acid, 8.0% of maleic acid, 25.0% by weight of acrylic acid multimer, 0.5% by weight of hydroquinone, and 0.5% by weight of phenothiazine. It was supplied at 3000 kg / h at 85 ° C.
The operation was started at a tower top pressure of 9 kPa, a tower bottom pressure of 10 kPa, a tower top temperature of 95 ° C., and a tower bottom temperature of 98 ° C., and 53% of the supplied amount was extracted from the tower top to obtain acrylic acid having a purity of 88% by weight or more. It was.
A mixture containing 41.1 wt% acrylic acid, 10.9 wt% maleic acid, 46.16 wt% acrylic acid multimer, 0.92 wt% hydroquinone, and 0.92 wt% phenothiazine was extracted from the bottom of the column. It was.
[0023]
The bottom liquid of the thin film evaporator was extracted from the bottom liquid extraction line attached to the bottom of the bottom mirror part. The liquid level gauge at the bottom of the tower was a differential pressure type liquid level gauge and was installed in the arrangement shown in FIG. The connection angle α between the high pressure side detection line 11 and the column bottom liquid extraction line was set to 45 °.
After 6 months of continuous operation, the operation was stopped and the high-pressure side detection short tube 11a and the high-pressure side detection conduit 11b of the high-pressure side detection line 11 of the level gauge were inspected. As a result of the inspection, there was no deposit on any of them.
[0024]
Comparative Example 3
The evaporation operation was performed under the same conditions as in Example 2 except that the high pressure side detection line 11 of the differential pressure type liquid level gauge was connected horizontally to the lower wall of the thin film evaporator.
After one month of operation, cavitation suddenly occurred in the bottom pump. As a result of stopping the operation of the thin film type evaporator and inspecting the inside, it was found that there was no liquid in the thin film type evaporator and the liquid level gauge indicated erroneously.
As a result of inspecting the high pressure side detection short tube 11a and the high pressure side detection conduit 11b of the high pressure side detection line 11 of the liquid level gauge, the short tube 11a and the conduit 11b were blocked.
[0025]
【The invention's effect】
If the liquid level gauge installation method of the present invention is adopted in the production facility of the easily polymerizable compound, the solid substance present in the liquid of the easily polymerizable compound does not flow into the high pressure side detection line of the liquid level gauge.
Therefore, since the detection part of the liquid level gauge is not blocked by the liquid to be measured, accurate continuous measurement is possible with the liquid level gauge, and the equipment can be operated for a long time.
[Brief description of the drawings]
FIG. 1 is an overall view of equipment in which the method for installing a liquid level gauge of the present invention is applied to a (high boiling point) decomposition reaction tower and an overhead gas cooling liquid tank in the production of acrylic acid. Article) Partial enlarged view in which a liquid level gauge is installed in the decomposition reaction tower.
FIG. 3 is a partially enlarged view in which a liquid level gauge is installed in the tower top gas cooling liquid tank of FIG. 1;
[Explanation of symbols]
A ... (high boiling point) decomposition reaction tower E ... tower top gas cooling liquid tanks H 1 and H 2 ... level gauge 2 ... tower bottom liquid extraction line 2a ... tower bottom liquid extraction short pipe, 2b ... tower bottom liquid extraction conduit DESCRIPTION OF SYMBOLS 5 ... Tank bottom liquid extraction line 5a ... Tank bottom liquid extraction short pipe, 5b ... Tank bottom liquid extraction conduits 11 and 13 ... High pressure side detection line 11a and 13a ... High pressure side detection short pipe, 11b and 13b ... High pressure side detection conduit 12 And 14 ... Low-pressure side detection lines 12a and 14a ... Low-pressure side detection short pipes, 12b and 14a ... Low-pressure side detection conduit α ... Connection angle between the high-pressure side detection line and the liquid extraction line

Claims (6)

易重合性化合物の製造設備において、易重合性化合物を含有する液体を貯留する箇所へ差圧式液面計、ガラスゲージ型或いはチューブの直視式液面計、ディスプレッサー式液面計より選択された液面計を設置する際の液面計の設置方法であって、当該液面計の高圧側検出ラインと貯留した上記液体抜き出しラインとの接続角αは10〜90°で接続され、かつ液面計の高圧側検出ラインの管径D と液体抜き出しラインの管径D との寸法比D /D は1.3〜20であるものを使用したことを特徴とする液面計の設置方法。In a production facility for easily polymerizable compounds, selected from a differential pressure type liquid level gauge, a glass gauge type or a tube direct-view type liquid level gauge, and a displacer type liquid level gauge to a location for storing a liquid containing the easily polymerizable compound . A method for installing a level gauge when installing a level gauge, wherein the connection angle α between the high-pressure side detection line of the level gauge and the stored liquid extraction line is 10 to 90 °, and A liquid level gauge having a dimensional ratio D 2 / D 1 of 1.3 to 20 between the pipe diameter D 1 of the high pressure side detection line of the surface gauge and the pipe diameter D 2 of the liquid extraction line Installation method. 液体抜き出しラインは、蒸留塔、蒸留塔の還流槽、分解反応塔、薄膜蒸発器、塔頂ガス冷却液槽、縦型貯蔵槽、横型貯槽又はタンクに接続されていることを特徴とする請求項1記載の液面計の設置方法。 The liquid extraction line is connected to a distillation tower, a reflux tank of the distillation tower, a decomposition reaction tower, a thin film evaporator, a tower top gas cooling liquid tank, a vertical storage tank, a horizontal storage tank or a tank. The installation method of the liquid level gauge of 1. 液面計の高圧側検出ライン及び/又は低圧側検出ラインは、加熱或いは保温してあることを特徴とする請求項1〜記載の液面計の設置方法。The method for installing a liquid level gauge according to claim 1 or 2 , wherein the high pressure side detection line and / or the low pressure side detection line of the liquid level gauge is heated or kept warm. 液面計の高圧側検出ラインび/又は低圧側検出ラインは、ガス及び/又は液体の注入口を接続していることを特徴とする請求項1〜記載の液面計の設置方法。High voltage side detection line beauty / or low pressure side detection line of the liquid level gauge, the installation method according to claim 1-3, wherein the liquid level meter, characterized by connecting the gas and / or inlet of liquid. 易重合性化合物は、(メタ)アクリル酸又はそのエステルであることを特徴とする請求項1〜記載の液面計の設置方法。Easily polymerizable compound is (meth) Installation according to claim 1-4, wherein the liquid level meter, which is a acrylic acid or its ester. 液面計で測定する液体は、(メタ)アクリル酸又はそのエステルを製造する場合に副生するアクリル酸2量体、β−(メタ)アクリロキシプロピオン酸エステル類、β−アルコキシプロピオン酸エステル類、β−ヒドロキシプロピオン酸、β−ヒドロキシプロピオン酸エステル類を少なくとも1種類以上含有するものであることを特徴とする請求項記載の液面計の設置方法。The liquid to be measured with a level gauge is acrylic acid dimer, β- (meth) acryloxypropionic acid esters, β-alkoxypropionic acid esters produced as a by-product when producing (meth) acrylic acid or its ester. 6. The method for installing a liquid level gauge according to claim 5 , comprising at least one of β-hydroxypropionic acid and β-hydroxypropionic acid esters.
JP2001369636A 2001-12-04 2001-12-04 How to install the level gauge Expired - Lifetime JP4132799B2 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
JP2001369636A JP4132799B2 (en) 2001-12-04 2001-12-04 How to install the level gauge
CN200410069853.7A CN1247515C (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compound
EP10190824.2A EP2311789B1 (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acids
ES10190825.9T ES2547412T3 (en) 2001-12-04 2002-12-04 Production process of (meth) acrylic acids
ES10190824.2T ES2552378T3 (en) 2001-12-04 2002-12-04 Production process of (meth) acrylic acids
BRPI0214697-5A BR0214697B1 (en) 2001-12-04 2002-12-04 process for the production of (meth) acrylic acids.
BRBR122012016826-2A BR122012016826B1 (en) 2001-12-04 2002-12-04 Method for decomposing by-product formed during the production of (meth) acrylic acids
BRBR122012016827-0A BR122012016827B1 (en) 2001-12-04 2002-12-04 Method for installing liquid level meter
CN200410069856.0A CN1260201C (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compound
EP10190826.7A EP2311791B1 (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acids
ES10190826T ES2715315T3 (en) 2001-12-04 2002-12-04 Procedure to produce (meth) acrylic acids
CN200410069857.5A CN1260202C (en) 2001-12-04 2002-12-04 Process for producing (meth) acrylic acids
CN200410069855.6A CN1240662C (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compound
EP02786024A EP1452518B1 (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compounds
CN200410069854.1A CN1272304C (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compound
AU2002354084A AU2002354084A1 (en) 2001-12-04 2002-12-04 Process for producing (meth) acrylic acid compound
ES02786024T ES2387564T3 (en) 2001-12-04 2002-12-04 Production process of (meth) acrylic acid compounds
CNB028243188A CN100494155C (en) 2001-12-04 2002-12-04 Process for producing (meth) acrylic acids
RU2004120291/04A RU2300515C2 (en) 2001-12-04 2002-12-04 Method of production of methacrylic acids by catalytic oxidation of propylene or isobutylene (versions), method of decomposition of by-product (versions) and plant for realization of this method
PCT/JP2002/012709 WO2003048100A1 (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acid compound
EP10190825.9A EP2311790B1 (en) 2001-12-04 2002-12-04 Process for producing (meth)acrylic acids
US10/859,221 US7348455B2 (en) 2001-12-04 2004-06-03 Process for producing (meth)acrylic acids
US11/674,247 US20070129571A1 (en) 2001-12-04 2007-02-13 Process for producing (meth)acrylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369636A JP4132799B2 (en) 2001-12-04 2001-12-04 How to install the level gauge

Publications (2)

Publication Number Publication Date
JP2003164703A JP2003164703A (en) 2003-06-10
JP4132799B2 true JP4132799B2 (en) 2008-08-13

Family

ID=19178995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369636A Expired - Lifetime JP4132799B2 (en) 2001-12-04 2001-12-04 How to install the level gauge

Country Status (1)

Country Link
JP (1) JP4132799B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740283A4 (en) * 2003-12-02 2008-03-12 Sylvan Source Inc Fully automated water processing control system
JP4984116B2 (en) * 2006-07-07 2012-07-25 独立行政法人産業技術総合研究所 Circulating liquid or supercritical carbon dioxide reaction / treatment equipment

Also Published As

Publication number Publication date
JP2003164703A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP2000355570A (en) Method for preventing polymerization of easily polymerizable compound
EP1084740B1 (en) Apparatus and method for handling easily polymerizable compound
KR100548121B1 (en) Process for the Production of Carbonyl Compound
KR100444331B1 (en) Distillation process for easily polymerizable substance-containing solution
US7241919B2 (en) Storage tank for easily polymerizable compound and method of storage
JP4132799B2 (en) How to install the level gauge
US8389762B2 (en) Method for purifying methacrylic acid
US10301252B2 (en) Production of tert-butyl esters of ethylenically unsaturated carboxylic acids
CN100384808C (en) Method and apparatus for refining materials containing components easy to polymerize
US7351310B2 (en) Rectificative separation of fluids comprising (meth) acrylic monomers
CN109916195A (en) A kind of heat recovery heat exchange equipment and method synthesizing exothermic reaction
WO2005090277A1 (en) Method of preventing clogging of apparatus for handling (meth)acrylic acid or ester thereof
US20040231722A1 (en) Method for preventing clogging of apparatus for handling (meth) acrylic acid and esters thereof
JP4466190B2 (en) Easily polymerizable compound handling and manufacturing equipment
JP4186459B2 (en) Tower equipment for easily polymerizable compounds
CN104225942A (en) System device for recycling condensed water of evaporators in esterification reaction of isooctyl acrylate
JP2003287200A (en) Piping facility for easily polymerizing matter and method for transporting easily polymerizing matter
CN210933846U (en) Distillation column for chemical reaction
JP4468688B2 (en) Distillation tower and distillation apparatus equipped with the same
JP2005214468A (en) Heat exchanger, and heat exchanging method in heat exchanger
JP2004261683A (en) Passing device for easily polymerizable substance and its use
Saenmart et al. Onset of flooding in a small diameter tube
JP5066496B2 (en) Purification method for substances containing easily polymerizable substances
RU2498974C2 (en) Method of producing methacrylic acid
KR20200111175A (en) Method for producing (meth)acrylic acid or its ester

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4132799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term